Universiteit Leiden

Opleiding Informatica

Strategies for

Klondike Solitaire

Name: Marieke Kortsmit

Studentnr: 0740675

Date: 18/12/2014

Supervisors: Walter Kosters, Floske Spieksma

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Contents

1 Introduction 1
2 The game 2
2.1 Explanation L 2
2.2 Variations 4
2.2.1 Initial build stack variations 4

2.2.2 Movingacard block 0oL 5

2.2.3 Move card from suit stack to build stack 5

2.2.4 Move cards from pile to talon 5

2.2.5 Thoughtful Solitaire 7

2.3 Complexity 7

3 Game problems 8
3.1 Unwinnable games 8
3.1.1 Unplayable games 9

3.1.2 Unsolvable games 9

3.2 Strategyo e 10
3.2.1 Standard scoring of moves 11

3.2.2 Scoring pile moves greedy, 13

3.2.3 Scoring pile moves point-based L. 14

4 Implementation 15
4.1 Storage and initialization of the game state 15
4.2 Variables for different game rules 16
4.2.1 Implementation of thepile. 17

4.3 Function find_possiblemoves 17
4.4 Functiondomove. 17
4.5 Implementation of different strategies 17

5 Experiments 18
5.1 Assumptions about game rules and priorities 19
5.2 Variations in strategyo 22
5.2.1 Random player 22

5.2.2 Heuristic player 22

5.3 Summary of results 29
5.3.1 Comparison of thesis results to literature results 30

6 Conclusions and Further Research 31

References 32

1 INTRODUCTION

1 Introduction

Klondike Solitaire is also known as Patience, or simply Solitaire. According to
Parlett ([10] and [11]), the card game originated in the eighteenth century when
fortune-tellers started cartomancy (fortune-telling with cards). This is supported
by the fact that the earliest description of Patience occurs within a few years
of the invention of card layouts for cartomancy. The popularity of the game has
greatly benefited from the Microsoft Windows implementation, which has been
inseparable from every version of Microsoft Windows since 1990. Today, many
free Solitaire apps exist for playing on smartphone and tablet. The combination
of these factors makes it highly unlikely, that one is not familiar with the game
of Klondike Solitaire.

Section 1 introduces the basic game rules of Klondike Solitaire based on [5]
combined with some well-known variations on these game rules. One of these
variations is Thoughtful Solitaire, which probably has been studied most. In this
variant the location of each card is known from the beginning of the game: all
cards are face-up. Though a lot of research on this game variant has been done
in [1] and [5], little information about these results is lined out. To give a notion
of the complexity of the game, some theoretical results from [8] concerning the
complexity are presented.

Section 3 shows that despite the fact that Klondike Solitaire is a famous game,
a lot of uncertainty still exists regarding some aspects of the game. The exact
probability of winning a game of Solitaire and the optimal strategy are unknown.
Research on the amount of unplayable games has been done in [6], [7] and [13],
and research on unsolvable games has been done in [1] and [2]. Altogether some
research has been done concerning all kinds of problems about Klondike Soli-
taire, but none of them consider strategies that focus on handling the cards in
the pile. In this section we examine one existing strategy from [5] for a game of
Kondike Solitaire. This section also introduces two different, new pile-handling
strategies for a game of Klondike Solitaire.

To be able to test the effectiveness of these two different pile-handling strategies
we created a C++ program which is explained in Section 4. This implementa-
tion is used in Section 5, where some experiments concerning the pile-handling
strategies are performed.

This thesis is written in pursuit of a Bachelor of Science degree in Computer
Science and Mathematics from Leiden University in the Netherlands, and has
been supervised by Walter Kosters and Floske Spieksma.

2 THE GAME

2 The game

This chapter will explain the game of Klondike Solitaire. First, the basic game
rules are pointed out. Second, a few common variations on these rules will be
shown. Third, we will give a notion of the complexity of the game.

2.1 Explanation

The traditional version of Klondike Solitaire is played with all 52 playing cards
in a standard deck of cards without Jokers. The cards are divided into four
suits: two black suits (Spades # and Clubs &), and two red suits (Hearts ©
and Diamonds). Every suit has 13 cards with rank 1,...,13, where rank 1
is associated with Ace (A), rank 11 with Jack (J), rank 12 with Queen (Q)
and rank 13 with King (K). The game features different locations: the pile, the
talon, four suit stacks and seven build stacks. A possible initial configuration of
the game is displayed in Figure 1.

J o, O | —
e
odl

Figure 1: A possible initial configuration of Klondike Solitaire; screenshot from

[3].

2.1 Explanation 2 THE GAME

The game has the following rules (formulated based on [5]):
Build stacks:

Suit

Build stacks are numbered from left to right, 1,...,7.

At the start configuration of the game, the cards are divided with one card
on the first build stack, two cards on the second build stack, etc.

The top card in every build stack is face-up. The rest of the cards in the
build stack are face-down.

The (stack of) open card(s) on one build stack is named a card block.
A card block can be moved to another build stack, provided that the
receiving build stack accepts the bottommost face-up card of the sending
build stack. All face-up cards in a card block are to be moved at once.
After moving a card block to a receiving build stack, all received cards
and already present cards form a new build stack together. The order is
preserved.

If all cards from a build stack are moved, an empty stack remains.

An empty stack can only accept a King. The movement of a King to an
empty build stack is called a Kings mowve.

If the upper card in a build stack is face-down, it automatically turns
face-up.

The upper card of a build stack can be moved to the top of a suit stack
provided that the receiving suit stack accepts this card.

A build stack will only accept an incoming card block if the upper card
of the build stack is adjacent to and braided with the bottom card of the
card block. We define:

* A card is adjacent to another card with rank r if the card has rank
r—1.

* Two cards are braided with each other if they have a different color.
stacks:
Every suit stack corresponds to one suit.
At the initial configuration of the game, all suit stacks are empty.
Cards are being accepted in ascending order.
A suit stack can only accept cards with the same suit.
An empty suit stack can only accept an Ace.

If the suit stack is not empty, it will only accept cards of one rank higher
than the upper card of the suit stack.

2.2 Variations 2 THE GAME

Pile and talon:

The pile initially contains 24 cards, the talon is initially empty.

If the pile is not empty, the upper three cards in the pile can be moved to
the talon one by one. Then they can be played in a first-in-last-out order.

If the pile is empty, all cards from the talon can be dealt back to the pile.
This will preserve the ordering of the cards. This move can be done an
infinite number of times.

A topcard of the talon can be moved to a suit stack or a build stack,
provided that the stack accepts the card.

The goal of the game is to move all cards to the suit stacks. If this succeeds, the
game is won.

If we generalize the game, we use a deck of cards containing sn cards, divided
over s suits. If the number of suits is greater than four, and even, half of the suits
is black and half of the suits is red. In the most common variant of Klondike
Solitaire the number of suits is four: two black suits (Spades # and Clubs &),
and two red suits (Hearts © and Diamonds). Every suit contains n cards
with ranks 1,2,3,...,n—2,n—1,n. Rank 1 is associated with generalized Ace
(A), rank n — 2 with generalized Jack, (J), rank n — 1 with generalized Queen
(Q), and rank n with generalized King (K). The game consists of the pile ini-
tially containing p cards, talon, s suit stacks and b build stacks. Depending on
variables s and n, the last build stack may contain some remaining cards from
which the initial number of cards in the pile will be determined. An empty build
stack can accept any card with rank n, and an empty suit stack can accept any
card with rank 1. The rules remain unchanged.

2.2 Variations

Klondike Solitaire has a lot of proporties we can adjust, so the game will be
slightly different. Small adjustments can have a major influence on the prob-
ability of winning the game. The following variations are interesting and will
be described according to the differences between the variant and the game as
formulated in Section 2.1.

2.2.1 Initial build stack variations

The initial build stack configuration as described in the rules in Section 2.1 can
be adjusted in all kinds of forms, for example a rectangular form with the same
amount of cards on all build stacks. If we consider Solitaire without a pile, we
have to determine how to add the remaining cards to the build stacks. Of course
more than seven build stacks is a possibility as well. In this thesis the standard
initial build stack configuration is observed.

2.2 Variations 2 THE GAME

2.2.2 Moving a card block

It is only allowed to move a complete card block to another build stack. A
variation is to allow movement of partial card blocks. The movement of partial
card blocks is allowed in [2] and [1]. As in [5], the option for moving partial
build stacks is disregarded in this thesis.

2.2.3 Move card from suit stack to build stack

In some versions of Klondike Solitaire it is allowed to move the uppermost card
of a suit stack, back to a build stack, provided that the build stack accepts this
card. This option is allowed in [5], [1] and [2]. We will not discuss the details of
this variation, due to simplification reasons, though it does allows for a greater
amount of possible moves.

2.2.4 Move cards from pile to talon

If the pile is nonempty, the upper card can be played to the talon. The upper
card in the talon can be played. The pile initially contains 24 cards. This means
that all 24 of these cards can be used directly. This variant is called deal-1. An
example of all playable cards can be found in Figure 2.

64392AK4K27667081(42395510 #

RRRCEL XS RRKRYD RRRRRRIRL

mdex_
2 3 4 5 6 7 8B 9 101112 13 14 15 16 17 18 19 20 21 22 23

Figure 2: Playable cards in pile in case of deal-1. Created with use of [3].

A common variation is deal-3, which is used in [5], [1] and [2]. In this case, if the
talon is empty, the 3 upper cards are played to the talon in a first-in-last-out
way. Only 8 out of 24 cards in the pile are now directly playable, and there is
no guarantee that one will eventually be able to play all 24 cards in the pile.
This reduces the number of possible moves, resulting in a harder game. Figure 3
shows which cards are directly playable in a deal-3 situation. In this figure the
pile is dealt to the talon from left to right: the leftmost card is the first card
in the talon. All directly playable cards are shifted up. If we now play the first
possible card, ©3, then the number of playable cards directly increases. All cards
that are now playable can be found in Figure 4. This figure follows directly from
Figure 2: all directly playable cards are shifted up. This method of determining
the playable cards is a very greedy method. After playing a single card from
the pile, the complete set of playable pile cards may be different. In general the

2.2 Variations 2 THE GAME

following holds: after playing the card with index r € {0,...,23}, we shift all
cards to the left. This means that all cards with an initial index higher than r
will have their index decreased by 1. Let us assume there are p cards left in the
pile. Then the cards with the following index become playable, directly after
playing card 7:

e index 7+ 3m < p, with m = 1,2..., and m < 557

e indexr —1+3m < p,withm=0,1...,and m < p*:,%l.
e index 2+ 3m < r, with m = 0,1..., and m < 7;2. These cards were
playable before playing card r as well.

e the last card, provided it is not caught by previous statements.

In some variants of the game the number of times the pile is playable to the
talon is finite, but this option will be disregarded.

64592Ak4K276670881(42395510 #

KERCER XA RRARYY ERRREANRL)

mdex-
2 345 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23

Figure 3: Playable cards (the prevailing cards) in pile in case of deal-3. Created
with use of [3].

64@92AK4K27667887427935510 &

K8 KKK RRARFYRRERRELRY 3

mdex-
2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23

Figure 4: Playable cards (the prevailing cards) in pile in case of deal-3, after
playing card ©3. Created with use of [3].

2.3 Complexity 2 THE GAME

2.2.5 Thoughtful Solitaire

Thoughtful Solitaire has the exact same rules as Klondike Solitaire. The only
difference is that in Thoughtful Solitaire the location of each card is known at
the beginning of the game; all cards are face-up. This provides the option to
use more information about the location of cards to determine which move is
optimal. As reported in [5] a heuristic player (following practically the same
rules as our SIMPLEST HEURISTIC STRATEGY as formulated in Section 3.2.1) for
Thoughtful Solitaire can supposedly win approximately 13.05% of the games,
and with a rollout strategy (a rollout strategy computes an action that would
result from an iteration of policy improvement applied to the heuristic policy;
it may be considered an alternative heuristic that improves the original), this
percentage gains to an alleged 70.20%. In [1] even a percentage of 82% is posed.
This implies a bound for the number of winnable games of Klondike Solitaire.
The used solving methods for Thoughtful Solitaire can be used to solve Klondike
Solitaire. Monte-Carlo techniques are applied to the random probability distri-
bution of the closed cards in Klondike Solitaire. With such a solver, using the
same heuristic as [5], [2] claims 36.97% of the games of Klondike Solitaire can
be won. Thoughtful Solitaire is not further investigated in this thesis.

2.3 Complexity

The problem of determining whether an n-card Klondike initial configuration
can lead to a win is complex. This decision problem is referred to as KLONDIKE.
Problems discussed in Chapter 3 are a result of this complexity. The great
complexity of this problem has been extensively researched in [8]. Here the
following definitions are used.

Definition 2.1 (SOLIT(b,r)). Let an initial b-black-suit and r-red-suit
KLONDIKE configuration involving the same number n of cards per suit be given.
Determine whether the (b 4 r)n cards can be placed on the b+ r suit stacks
by applying the standard KLONDIKE game rules starting from the given initial
configuration.

Definition 2.2 (FLAT-SOLIT(b,r)). SOLIT(b, r) with an initial configuration
having an empty pile and empty talon.

Definition 2.3 (FLAT-SOLITNoKing (b, 7)). FLAT-SOLIT (b, r) played with mod-
ified rules that forbid an empty stack from accepting a King.

In [8] the following complexity results about the different types of KLONDIKE
Solitaire are proven:

e KLONDIKE is NP-complete and remains so with only three suits available.
e KLONDIKE with a black suit and a red suit is NL-hard.

e KLONDIKE with any fixed number b of black suits is in NL. The same
holds for any fixed number of r red suits.

3 GAME PROBLEMS

e KLONDIKE with a single suit is in AC[3].

e Flat KLONDIKE (KLONDIKE Solitaire with an empty pile) is NL-complete
for an arbitrary number of suits.

e Flat KLONDIKE with 2 black suits and without Kings is in AC°. The same
holds for 2 red suits without Kings.

These statements give a notion of how complex the practical problems stated
in Chapter 3 are. Precise definitions of all used complexity classes can be found
in [8] and [9]. Cited from [8] we have:

AC’ c AC°[3] CL C NL C P C NP.

Here, the complexity class AC? is the set of languages accepted by DLOGTIME-
uniform unbounded-fan-in constant depth {A, V, =}-circuits of polynomial size.
The larger class AC°[3] is the set of languages AC’-Turing reducible to the
MOD,,, Boolean function, defined to output 1 if and only if 3 does not divide
the sum of its Boolean inputs. The classes L and NL stand for deterministic
and nondeterministic logarithmic space respectively. The classes P and NP are
deterministic and nondeterministic polynomial time respectively.

3 Game problems

Despite the fact that Klondike Solitaire is a famous game, there is still a lot
of uncertainty regarding some aspects of the game. The exact probability of
winning a game of Solitaire and the optimal strategy are unknown. Also, little
research has been done to establish the significance of the way of handling the
cards in the pile. In this section the probability of winning a game and different
strategies to win a game are examined. The strategies focus mainly on finding
a strategy that handles moving of the pile cards. In Section 5 some experiments
concerning these strategies will be performed. This entire section will concern
standard games of Unthoughtful Klondike Solitaire, so the variant of Thoughtful
Klondike Solitaire explained in Section 2.2.5 is disregarded.

3.1 Unwinnable games

The initial configuration of Klondike Solitaire is determined by distributing all
available cards randomly to all allowable initial locations. This has no further
restrictions, so it is possible that a game of Klondike Solitaire is unwinnable.
We distinguish two types: unplayable games and unsolvable games. Unplayable
games of Klondike Solitaire are games for which the initial state (the state of the
game in the initial configuration) of the game is unplayable: there are no possible
moves. Unsolvable games of Klondike Solitaire are games which can never be
won: the game will eventually result in an unplayable game state which is not
necessarily equal to the initial game state. It directly follows that unplayable
games are automatically unsolvable.

3.1 Unwinnable games 3 GAME PROBLEMS

3.1.1 Unplayable games

The initial situation of a traditional game of Klondike Solitaire with deal-3
consists of 15 cards from which one card is potentially moved in the first move.
These moveable cards consist of the 7 top cards of each build stack and the
8 playable cards in the talon. It follows that the number of different initial
configurations equals:

2 4
(57> . (85) = 28,837,689, 349, 669, 200 ~ 3 - 10'6.

If one of these 15 cards is an Ace, the first possible move is a fact. This Ace can
be moved to a suit stack directly. The probability that none of these 15 directly
playable cards contain an Ace, equals:

48 52
() (22) =021

However, this will not cover all unplayable games. It may be possible that 2 out
of the 7 playable cards on the build stacks can be stacked. This is only the case if
the cards are adjacent and braided. Another option is that one of the 8 playable
cards in the talon can be moved to a build stack. The following conditions have
to hold simultaneously in case of an unplayable game:

e There is no Ace among the 15 playable cards.

e None of the 7 playable build stack cards can be moved to another build
stack.

e None of the 8 playable talon cards can be moved to a build stack.

Latif [7] used Monte Carlo simulations to show that the percentage of unplayable
games equals approximately 0.25%. Donkersteeg [6] shows that this percentage
can be determined exactly, by using brute force, from which it follows that the
number of unplayable games equals 72,099, 595,172, 416. This equals a percent-
age of 0.25002%. De Ruiter [13] confirms this percentage by dynamic program-
ming.

3.1.2 Unsolvable games

The exact percentage of unsolvable games of Klondike Solitaire is still unknown.
In the literature, [1] states that no less than 82.0% and no more than 91.4%
of Klondike Solitaire games have winning solutions, leaving the percentage of
unsolvable games between 8.6% and 18.0%. In [2] this result is confirmed. In
this section we will investigate the unsolvability of games of Klondike Solitaire,
depending on variations in number of cards and number of suits.

3.2 Strategy 3 GAME PROBLEMS

One suit without Kings move In the case of one suit and an empty pile,
what determines the winnability of the game is whether the cards in the build
stacks are in order. In this situation, moves which move a card from a build
stack to a suit stack are the only moves allowed. The only possibility to win the
game is to move each card one by one directly to the suit stack. To be able to
play all cards to the suit stack by only using this type of move, all cards in the
build stack need to be in order. Consider the following game variation:

e An empty pile.
e The Kings move, moving a King to an empty build stack, is not permitted.
e There are b build stacks.

e The first build stack contains b; cards, the second build stack contains by
cards, etc.

e Every top card in a build stack is face-up.

The probability for such a game to be winnable equals:

(3.1.2.1)

Tl
P(cards in build stack all in order) = H e
=1

3.2 Strategy

An optimal strategy for winning Klondike Solitaire is unknown. However, some
notion about what moves are favorable over others is present. For example mov-
ing an Ace or 2 from a build stack to a suit stack is always without risk. A little
more attention is needed for further expanding the suit stacks. In general it
seems to come in handy to keep the ranks of the top cards at all suit stacks
close to each other. If there are multiple options in moving a card block to an-
other build stack, it seems favorable to move the card block from the build stack
which contains the most remaining face-down cards. It also seems unnecessary
to move the last card in a build stack, if you do not have a King available to
move to the residual empty build stack.

In this thesis we observe three strategies for Klondike Solitaire. The first strategy
is an existing strategy from [5], which we will refer to as SIMPLEST HEURISTIC
STRATAGY. For this strategy we try to obtain the optimal parameter values.
The second and third strategies are new strategies. In the first kind, which we
will refer to as GREEDY PILE STRATEGY, we play by scoring moves, meaning
that we will score all possible moves and make a decision based on which move
has the highest score. In the second kind, which we will refer to as POINT PILE
STRATEQCY, we play the game by scoring game states, meaning that we will score
all game states reachable by doing a single move and choose the move which
leads to the game state with the highest score. We will score the states based on
giving a high score to a more favorable state. For example, a game state from

10

3.2 Strategy 3 GAME PROBLEMS

which a lot of moves are possible could be favorable over a game state with
only one possible move left. By running experiments using these two kinds of
strategies, we will gain more insight about how to choose which move is best.
Note that all three strategies can be used for deal-1 and deal-3, but in this thesis
we will focus on deal-3.

To be able to determine if one strategy is better than an other, we have to
somehow validate a strategy. The strategies are measured by evaluating the end
state of a game, which is the state in which the game either gets stuck or is won.
The properties of the end state which validate a strategy are shown in Figure 5.
For example a better strategy might be indicated by a higher number of moves
before the game is lost. These properties are only used to report about different
strategies in Section 5.

The outcome which might indicate a
better strategy:

If the game is lost

Number of moves High
Number of cards in pile Low
Number of closed cards Low

Number of cards in suit stack | High
If the game is won

Winning percentage High
Number of moves Low
General

Time per game ‘ Low

Figure 5: Strategy validation properties.

3.2.1 Standard scoring of moves

To be able to program a heuristic player we will have to assign values to possible
moves, and eventually we will even have to assign priorities to moves with equal
values. To be able to formulate such a score-based strategy, we have to make a
lot of assumptions and choices. The assumptions and choices explained in this
section are mainly based on intuition gained from a lot of game playing, and
on the heuristic strategy from [5]. The scoring method in this section will be
referred to as the SIMPLEST HEURISTIC STRATEGY.

Value of moves We use parameters to assign a value to each move based on
the heuristic strategy from [5] described below. We use parameters for each type
of score:

e The initial score is 0.

11

3.2 Strategy 3 GAME PROBLEMS

e When a card is moved from a build stack to a suit stack, SCORE_O points
are gained.

e When a card is moved from a build stack to another build stack, SCORE_1
points are gained.

e When a card is moved from the pile to a build stack, SCORE_2 points are
gained.

e When a card is moved from the pile to a suit stack, SCORE_3 points are
gained.

A short overview of all types of moves with associated scoring parameters can
be found in Figure 6. The move that maximizes the score will be executed, in
case of a tie priorities of a move play a role. The used priorities are described
below. In [5] the parameters in Figure 6 have values SCORE_O = 5, SCORE_1 = 0,
SCORE_2 = 0 and SCORE_3 = 5. This choice is not motivated in the article.

Type ‘ Description ‘ Scoring parameter
0 From build stack to suit stack SCORE_O
1 From build stack to build stack | SCORE_1
2 From pile to build stack SCORE_2
3 From pile to suit stack SCORE_3

Figure 6: Allowable move types with associated parameters in case of the SIM-
PLEST HEURISTIC STRATEGY.

Priority of moves with equal score The choice between moves according
to this score system is not unique if the maximum score can be achieved by
different moves. To be able to make a decision about what move to choose, we
introduce the priority as follows (based on [5]):

e If the move transfers a card block from build stack to build stack, one of
the following priorities holds:

* If the movement of the card block means a new card can be turned
face-up, assign a priority of k£ + 1, in which k equals the number of
face-down cards in the build stack.

* If the move empties a build stack, assign a priority of 1.

e If the move transfers a card from talon to build stack, the following priority
holds:

* If the moved card equals K, assign a priority of 1.

All other moves have a priority of 0. In case of multiple moves with a score
equal to the maximum score, and a priority equal to the maximum priority, we
choose randomly among those moves.

12

3.2 Strategy 3 GAME PROBLEMS

3.2.2 Scoring pile moves greedy

The way of scoring and prioritizing moves as described in Section 3.2.1 gives
little special attention to pile moves, since we do not have any priority rules for-
mulated for them. The way of handling pile moves is actually a very important
part of playing, and thus winning, a game of Solitaire. We introduce a greedy
pile move strategy, based on a Monte Carlo Tree Search like approach for the
pile moves. Monte Carlo Tree Search is a search method combining the precision
of tree search with the generality of random sampling, as explained in [4]. In
this greedy pile strategy we do not use the scores of integer type SCORE_2 and
SCORE_3, but we determine different values for these scores for each situation in
the pile. This results in the following approach, reffered to as the GREEDY PILE
STRATEGY:

We use parameters for each type of move:
e The initial score is 0.

e When a card is moved from a build stack to a suit stack, SCORE_0 points
are gained.

e When a card is moved from a build stack to another build stack, SCORE_1
points are gained.

e When a card is moved from the pile to a build stack, SCORE_z points are
gained.

e When a card is moved from the pile to a suit stack, SCORE_z points are
gained.

The variable SCORE_x with initial value of 0 is determined as follows:
e Copy the complete game state.

e Execute the considered pile move in the copied game state. This will result
in a game state with nr_pile possible pile moves (moves from the pile to
another location which are moves of type 2 and 3 as in Figure 7).

e Now continue the game in the following way until there are no possible
pile moves left:

* Take a random pile move of the nr_pile possible pile moves and
execute this move in the copied game state.
* Update SCORE_z by adding:

* SCORE_NOT_PILE multiplied by the number of possible not-pile
moves in this game state.

* SCORE_PILE multiplied by the number of possible pile moves in
this game state.

13

3.2 Strategy 3 GAME PROBLEMS

* The resulting game state has nr_pile possible pile moves. If nr_pile
is at least one, then repeat. Else, break and return the value of
SCORE_zx.

A short overview of all types of moves with associated scoring parameters can
be found in Figure 7. The move which maximizes the score will be executed, in
case of a tie a random move of the moves with the maximum score is executed.

Type ‘ Description ‘ Scoring parameter

0 From build stack to suit stack SCORE_O

1 From build stack to build stack | SCORE_1

2,3 Pile move Variable SCORE_x determined by:

e SCORE_NOT_PILE
e SCORE_PILE

Figure 7: Allowable move types with associated parameters in case of the
GREEDY PILE STRATEGY.

3.2.3 Scoring pile moves point-based

In addition to the GREEDY PILE STRATEGY, we introduce a point-based pile
move strategy. This strategy is based on specific game situation characteristics
which are observed when performing a specific pile move. We do not use the
scores of integer type SCORE_2 and SCORE_3, but we determine different values
for these scores for each situation in the pile. This results in the following ap-
proach, referred to as the POINT PILE STRATEGY:

We use parameters for each type of move:
e The initial score is 0.

e When a card is moved from a build stack to a suit stack, SCORE_O points
are gained.

e When a card is moved from a build stack to another build stack, SCORE_1
points are gained.

e When a card is moved from a pile to a build stack, SCORE_x points are
gained.

e When a card is moved from a pile to a suit stack, SCORE_x points are
gained.

The variable SCORE_x with initial value of 0 is determined as follows:
e Copy the complete game state.

e Execute the considered pile move in the copied game state. This will result
in a new game state. Now update SCORE_z by adding:

14

4 IMPLEMENTATION

* SCORE_FIRST_PILE multiplied by the number of possible movable pile
cards with previous index equal to 0, 3, 6,...as in Figure 3.

* SCORE_SECOND_PILE multiplied by the number of possible movable
pile cards with previous index equal to 1, 4, 7,...as in Figure 3.

* NEW_BUILD_MOVE multiplied by the number of possible moves of type

1.

* NR_SUIT_MOVES multiplied by the number of possible moves of type
0 or 3, which equals the number of possible moves to the suit stack.

A short overview of all types of moves with associated scoring parameters can
be found in Figure 8. The move which maximizes the score will be executed, in
case of a tie a random move of the moves with the maximum score is executed.

Type | Description Scoring parameter

0 From build stack to suit stack SCORE_O

1 From build stack to build stack | SCORE_1

2,3 Pile move Variable SCORE_x determined by:

e SCORE_FIRST_PILE
e SCORE_SECOND_PILE
e NEW_BUILD_MOVE

e NR_SUIT_MOVES

Figure 8: Allowable move types with associated parameters in case of the POINT
PILE STRATECY.

4

Implementation

To be able to simulate a large amount of Klondike Solitaire games, a C++
program has been written. In this section an outline of the implementation

structure of this program will be presented.

4.1 Storage and initialization of the game state

All cards are numbered 1,2,...,sn. The used and unused cards are saved in
arrays as follows:

e card_nrs[2] [MAX_SUITS * MAX_CARDS_PER_SUIT]: contains the rank and
suit of each card. In the program all cards are referred to with a number.
When the rank or suit of a card is needed, it is retrieved from card_nrs.

e used_cards[MAX_SUITS * MAX_CARDS_PER_SUIT]: contains all card num-
bers from which the location is known; all face-up cards.

e unused_cards [MAX_SUITS * MAX_CARDS_PER_SUIT]: contains all card num-

bers from which the location is unknown; all face-down cards.

15

4.2

Variables for different game rules 4 IMPLEMENTATION

The game state is saved in arrays as follows:

4.2

build_stacks [MAX_STACKS] [3 * MAX_CARDS_PER_SUIT]: contains all build

stacks. All numbers of face-up cards are stored. The first entry of each
stack is reserved for the number of face-down cards in this particular build
stack. The value 3 * MAX_CARDS_PER_SUIT ensures there is enough space
reserved for the build stacks during the game.

suit_stack [MAX_SUITS]: for each suit it contains the highest card rank
present in the corresponding suit stack.

pile[MAX_PILE]: contains all card numbers of cards in the pile.
playable_pile_cards[2] [MAX_PILE]: contains all cards from the pile
which can be directly played.

Variables for different game rules

We want to investigate the influence of certain game rules on the game. To be
able to do so, we have to create variables that determine the rules. These are as
follows:

bool MOVE_KING: is valued true if we allow for a King to move to an empty
build stack.

bool ASCENDING_BUILD_STACKS: is valued true if we want to create as-
cending build stacks, with one card in the first build stack, two cards in
the second build stack, etc. If this variable is false, then we want to create
build stacks with equal height, where

* int NR_OF_STACKS: states the amount of stacks in case of stacks of
equal height.

* int NR_OF_CARDS_PER_STACK: states the height of stacks in case of
stacks of equal height.

int DEAL: is valued 3 if we want the pile to handle a deal-3 move as stated
in Section 2.2.4. All other integer values are also possible, but only the
value 1, meaning deal-1, describes a game which is common to play.

int NR_OF_SUITS: the number of used suits.
int NR_OF_CARDS_PER_SUIT: the number of cards per suit.

int NR_OF_CARDS_IN_PILE: the number of cards present in the pile.

16

4.3 Function find_possible_moves 4 IMPLEMENTATION

4.2.1 Implementation of the pile

As explained in Section 2.2.4, not all of the cards in the pile can always be used
directly. In case of deal-1, all cards in the pile are accessible directly. But: in

case of deal-3 each card with index mod 3 == 2 is available directly, meaning the
cards with index mod 3 == 1 and mod 3 == 0 are specifically not available di-
rectly. The possibilities to access cards with index mod 3 == 1 and mod 3 ==

are described in Section 2.2.4.

In our implementation of the game we keep an array playable_pile_cards[][],
containing all directly accessible cards. The array is updated each time a move
from the pile is executed.

4.3 Function find_possible_moves

The function find_possible_moves searches for all possible moves in the given
game situation. The possible moves are categorized in different types. The cate-
gorization can be found in Table 6. The function stores the following information
per move:

e the type of move, as stated in Table 6.
e the index of the to be moved card in the location of origin.
e the new index of the to be moved card in the location of destination.

In case we use play_strategy_heuristic or play_strategy_evaluation it
also stores the associated score, and in case of play_strategy_heuristic it ad-
ditionally stores the associated priority. find_possible_moves determines how
many different moves are possible and stores this integer in nr_of_possbile_
moves as well.

4.4 Function do_move

The function do_move carries out a certain move. It updates the build stacks,
suit stacks, pile and the directly playable pile cards to the new situation. If
after performing a move one of the build stacks has a face-down card on top,
the card automatically gets turned face-up. In this case the arrays used_cards
and unused_cards will be updated as well.

4.5 Implementation of different strategies

To be able to test different strategies, there is a first major distinction in strategy
for which two different functions are used. For the non-random strategy, different
variables are used to be able to make slight adjustments to the strategy.

17

5 EXPERIMENTS

Function play_strategy random The function play_strategy_random de-
termines, as long as possible, a random move and calls the function do_move to
execute the determined random move. This iteration stops when there are no
possible moves left. In this case the game is won, or it is stuck.

Function play_strategy_heuristic The function play_strategy_heuristic
determines, as long as possible, the best heuristic move to carry out for the sim-
PLEST HEURISTIC STRATEGY and calls the function do_move to execute the
determined move. The best heuristic move is the move with maximum score. If
this results in more than one possible move, the move with maximum priority
is chosen. (the exact scores and priority rules which are used can be found in
Section 3.2.1). If this is ambiguous it chooses a random move amongst all moves
with maximum score and maximum priority. This iteration stops when there
are no possible moves left. In this case the game is won, or it is stuck.

Variables for different strategies To be able to test certain slight strategy
adjustments for game playing, variables for turning these strategies on or off are
implemented:

e bool MAX_DIFF_SUIT_STACK: is valued true if we prefer a move to the
suit stack if the maximum difference between the top ranks in the dif-
ferent suits is restricted. Of course, it there is no other possible move, a
difference greater then the maximum difference will always be allowed. If
this difference does not matter to us, this variable is valued false.

e int NR_OF_MAX_DIFF_SUIT_STACK: the maximum difference between top
ranks in different suit stacks. This value is only used if bool
MAX_DIFF_SUIT_STACK is true.

e bool greedy_pile_strategy is valued true if we want to use the GREEDY
PILE STRATEGY described in Section 3.2.2.

e bool point_pile_strategy is valued true if we want to use the POINT
PILE STRATEGY described in Section 3.2.3.

5 Experiments

To perform experiments to investigate certain parts of Klondike Solitaire we use
the program explained in Section 4. To be able to determine the importance of
a certain rule or part of Klondike Solitaire, we compare the results with a game
of Klondike Solitaire played by the basic rules as formulated in Section 2.1. To
be able to compare different strategies to each other, all valuations of the end
state of a game as explained in Section 3.2 are used.

All experiments are run on a Mac OS X 10.9.4 with a 2,4 GHz Intel Core i5
processor and 4 GB 1333 MHz DDR3 memory.

18

5.1 Assumptions about game rules and priorities 5 EXPERIMENTS

5.1 Assumptions about game rules and priorities

The game, and everything to it, logically completely depends on the used rules
and the associated priorities. If more moves are possible, the probability of win-
ning will improve. But it remains unclear what influence all kinds of variations
have on the winning probability. To be able to perform experiments to improve
the winning percentage, we make some assumptions about the game rules we
use. In this section we will explain certain assumptions we make, and under-
pin these assumptions with some experimental results. We will take a look at
these differences based on the SIMPLEST HEURISTIC STRATEGY as formulated
in Section 3.2.1 and we use deal-3 if not stated otherwise. In these first ex-
periments our parameter values are based on [5]: SCORE_O = 5, SCORE_1 = 0,
SCORE_2 = 0 and SCORE_3 = 5.

Kings move; allowed or not? The permission to fill empty build stacks
seems to be a rather important part of the game. The simulated win percentage
after 1,000,000 games with the Kings move allowed, equals 25.70%. The simu-
lated win percentage after 1,000,000 games with the Kings move not allowed,
equals 0.30%. So it follows that allowing the Kings move is very important to
the winning rate. If we think about it, this is easy to understand. If a build
stack containing a King also contains a card from the same suit and a lower
rank below this specific King, the game can never be won! So in all experiments
from now on we allow the Kings move.

Way of increasing suit stacks During the game it is tempting to move
a card directly to the suit stack, if possible. In the end, all cards have to be
moved to the suit stack, so why not perform the move as soon as one has the
chance to do so? However, if a lot of cards with high rank are already moved to
the associated suit stack, it gets harder to stack cards in a build stack, which
reduces the chance of turning face-down cards. Simulation of 1,000,000 games
gives the winning percentages if we simulate the maximum difference between
ranks in the suit stack in Table 9. We discriminated a deal-1 situation and a
deal-3 situation and fixed the variable which indicates the maximum difference
between ranks in the suit stacks, NR_OF_MAX_DIFF_SUIT_STACK. It appears that
in both the deal-1 situation as in the deal-3 situation, it is optimal to give
priority to a move to the suit stack if its difference has a maximum difference
of 2. So in every experiment from now on we will give priority to moves which
keep this maximum difference of 2 intact.

19

5.1 Assumptions about game rules and priorities 5 EXPERIMENTS

Maximum difference between Winning %
ranks in suit stacks Deal-1 | Deal-3
1 37.8% | 9.0%
2 40.4% | 9.8%
3 372% | 7.7%
4 36.5% | 7.9%
5 30.5% | 7.2%
6 28.3% | 6.4%
7 28.3% | 6.6%
8 28.8% | 6.2%
9 28.7% 6.2%
10 26.7% | 5.8%
11 27.5% 6.4%
12 27.5% | 5.9%

Figure 9: Simulated percentage of winnable games, with a simulated maximum
difference between card ranks in the suit stacks.

Number of cards in the pile In the original game, 28 of the cards are
placed in build stacks, and the remaining 24 cards are initially placed in the
pile. This gives rise to the question why the cards are distributed this way.
Simulation gives us Figure 10 and Table 11. This shows a certain periodicity.
If we distribute 52 cards in increasing build stacks, this results in build stacks
of size 1, 2, 3, 4, 5, 6, 7, 8, 9, 7. If we observe Figure 10 from left to right,
the first minimum is achieved when the number of cards in the pile is equal to
7. This number corresponds with the last build stack containing only 7 cards.
The second minimum (seen from left to right) occurs when the number of cards
in the pile is equal to 7 + 9 = 16. This number corresponds to the last build
stack containing 7 cards and the second-to-last build stack containing 9 cards.
This explanation holds for all minima in the figure. Inituitively this is clear. An
incomplete build stack placed in the pile will result in a higher probability of
winning because at least one card is left in the build stack, so that the top card
in this build stack can be used to stack cards on. If we had placed all these cards
in the pile, this would not have been possible.

20

5.1 Assumptions about game rules and priorities 5 EXPERIMENTS

100,00%

90,00% 1

80,00% -

70,00% M

60,00% R

= deal-1

50,00%

s==deal-2

40,00% H

wlr=deal-3

30,00%

Simulated winning percentage

wmm=deal-4

20,00% 1

10,00%

0,00%
1 4 7101316192225283134374043464952

Number of cards in pile

Figure 10: Simulated percentage of winning, increasing number of cards in pile.
Based on simulation of 1,000,000 games.

Variant | Winning percentage

deal-1 35.6%
deal-2 21.4%
deal-3 10.2%
deal-4 4.1%

Figure 11: Simulated winning percentage with 24 cards in the pile, based on
1,000,000 games.

21

5.2 Variations in strategy 5 EXPERIMENTS

5.2 Variations in strategy

In Section 3.2, three types of strategies have been discussed: the SIMPLEST
HEURISTIC STRATEGY, the GREEDY PILE STRATEGY and the POINT PILE STRAT-
EGY. Of course there always is the random strategy, in which a random move is
carried out. In this subsection we will investigate the different types of strate-
gies and their influence on winning rates. Note that due to reasons explained in
Section 5.1 on page 19 we will allow the Kings move and give priority to moves
which keep the maximum difference of 2 between ranks in suit stacks intact in
all experiments.

5.2.1 Random player

If we simulate 1,000,000 games played by the random player using deal-1, the
winning percentage is about 10.41%. The total experiment had a duration of
7.38 minutes. In case of deal-3 the winning percentage is about 3.78%, and
the duration of the experiment was 5.00 minutes. From [2] anecdotal evidence
suggests that typical human players win around 15% of the games, so we know
that a good strategy will definitely increase the winning percentage.

5.2.2 Heuristic player

When a game is played, choices are made based on some sort of strategy. A
heuristic player also uses a strategy, as explained in Section 3.2 and Section 4.5.
In this section we show the results of all executed strategy experiments.

Experiments for the simplest heuristic player In this paragraph we want
to find the best values for the parameters SCORE_O, SCORE_1, SCORE_2 and
SCORE_3 which are used for the SIMPLEST HEURISTIC STRATEGY as formulated in
Section 3.2.1. In Section 3.2.1 we have used values 5, 0, 0 and 5, but because the
strategy is determined by the ratio of the parameters, multiplying them by the
same integer results in the same strategy. For this reason we use the parameter
values multiplied by 100. To search for a good combination of these scores, we
fix SCORE_O at 500 and run experiments for all possible combinations with all
other score values equal to one of the values 100, 300, 500, 700, 900 or 1100.
We have tested 216 different score combinations used to play 100,000 games per
score combination. This experiment took about 2.84 hours, so using this strategy
takes about 0.00047 seconds per game of Solitaire. These experiments led to a
first result of the best combination of parameters to lead to a high winning
percentage. The combinations resulting in the top ten winning percentages are
picked and run again for 1,000,000 games per combination for a better validation
of the result. Results are shown in Figure 12.

As displayed in Figure 12, we observe the 10 parameter combinations resulting

in the highest winning percentages. The games played with these combinations
give a notion of the value of the strategy as explained in Section 3.2. The average

22

5.2 Variations in strategy 5 EXPERIMENTS

winning percentage | winning percentage
based on based on
SCORE_1 | SCORE_2 | SCORE_3 100,000 games 1,000,000 games
100 100 100 9.84% 9.84%
100 100 300 9.90% 9.80%
100 100 500 9.84% 9.80%
300 300 100 9.85% 9.83%
300 300 300 9.84% 9.88%
700 100 100 9.84% 9.75%
700 100 300 9.93% 9.73%
700 300 100 9.86% 9.72%
900 100 500 9.84% 9.73%
1100 100 300 9.90% 9.76%

Figure 12: Parameter combinations with SCORE_0 = 500 resulting in top 10
highest winning percentages after playing 100,000 games and associated win-
ning percentages for playing 1,000,000 games with the SIMPLEST HEURISTIC
STRATEGY.

values of these results are displayed in Figure 13. The average number of cards
on the suit stack in the end state of the game is represented in Figure 14.

If the game is lost

Number of moves 25.11
Number of cards in pile 12.40
Number of closed cards 12.11

Number of cards in suit stack | 2.15
If the game is won

Winning percentage 9.78%
Number of moves 95.30
General

Time per game ‘ 0.00047 s

Figure 13: Strategy validation properties of the 10 best parameter combinations
determining the SIMPLEST HEURISTIC STRATEGY.

Based on these experiments, the parameter combination of SCORE_0 = 500,
SCORE_1 = 300, SCORE_2 = 300 and SCORE_3 = 300 has the best winning per-
centage. This is remarkable because this result implies that only a move from a
build stack to a suit stack is more favorable over all other kind of moves.

Experiments using a greedy pile strategy In this paragraph we want to
find the best values for the parameters SCORE_0, SCORE_1, SCORE_NOT_PILE and
SCORE_PILE, which are used for the GREEDY PILE STRATEGY, as formulated in

23

5.2 Variations in strategy 5 EXPERIMENTS

18,00% T
16,00%

14,00%

12,00%
10,00% T
8,00% it
6,00%

Number of games
(1,000,000 games played)

4,00% 7

2,00% HT

0.00% I __I_l“lln_a_._._.. . .

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Number of cards in suit stack

Figure 14: Average number of cards in suit stack at the end state. The SIMPLEST
HEURISTIC STRATEGY is used with parameter values equal to the top 10 winning
combinations.

Section 3.2.2. To search for a good combination of these scores, we fix SCORE_O at
500 and vary all other score values. We have tested 216 different combinations as
shown in Figure 15. These are used to play 10,000 games per score combination.
This experiment took about 9.09 hours, so using this strategy takes 0.01516
seconds per game.

SCORE_1 | SCORE_NOT_PILE | SCORE_PILE
100 1 1
300 2 2
500 3 3
700 4 4
900 5 5
1100 6 6

Figure 15: Used score combinations of parameters with SCORE_0 = 500 for the
GREEDY PILE STRATEGY.

These experiments led to a first result of the best combination of parameters
to lead to a high winning percentage. The combinations resulting in the top
ten winning percentages are picked and run again for 1,000,000 games per com-
bination for a better validation of the result. Results are shown in Figure 16.
As displayed in Figure 16, we observe the 10 parameter combinations resulting
in the highest winning percentages. The games played with these combinations
give a notion of the value of the strategy as explained in Section 3.2. The average
values of these results are displayed in Figure 17. The average number of cards
on the suit stack in the end state of the game is represented in Figure 18.

24

5.2 Variations in strategy

5 EXPERIMENTS

winning percentage

winning percentage

SCORE_ SCORE_ based on based on
SCORE_1 | NOT_PILE | PILE 10,000 games 1,000,000 games

300 3 1 17.58% 17.76%
500 5 4 17.65% 17.76%
1100 4 1 17.62% 17.73%
500 6 2 18.01% 17.68%
700 4 1 18.01% 17.66%
900 6 3 17.84% 17.65%
900 4 2 17.92% 17.62%
900 2 1 17.28% 17.62%
500 5 3 18.04% 17.59%
500 3 2 17.88% 17.57%

Figure 16: Parameter combinations with SCORE_0 = 500 resulting in top 10
highest winning percentages after playing 10,000 games and associated winning
percentages for playing 1,000,000 games with the GREEDY PILE STRATEGY.

If the game is lost

Number of moves 30.02
Number of cards in pile 10.05
Number of closed cards 10.68
Number of cards in suit stack | 3.80

If the game is won

Winning percentage 17.76%
Number of moves 93.86
General

Time per game ‘ 0.015s

Figure 17: Strategy validation properties of the 10 best parameter combinations
determining the GREEDY PILE STRATEGY.

25

5.2 Variations in strategy 5 EXPERIMENTS

18,00%
_ 16,00%
3
g & 1900%
ET 1200%
W v
S E 1000%
= b
22 8,00%
€S Gl
R
28 500%
-
= g00% T
2,00% i
| 11T

0,00%
0 4 8 12 16 20 24 28 32 36 40 44 48 52

Number of cards in suit stack

Figure 18: Average number of cards in suit stack at the end state. The GREEDY
PILE STRATEGY is used with parameter values equal to the top 10 winning
combinations.

Based on these experiments, the parameter combination of SCORE_0 = 500,
SCORE_1 = 300, SCORE_NOT_PILE = 3 and SCORE_PILE = 1 has the best win-
ning percentage.

Experiments using a point based pile strategy In this paragraph we
want to find the best values for the parameters SCORE_0, SCORE_1, SCORE_FIRST
_PILE, SCORE_SECOND_PILE, NEW_BUILD_MOVE and NR_SUIT_MOVES, which are
used for the POINT PILE STRATEGY as formulated in Section 3.2.3. To search
for a good combination of these scores, we fix SCORE_O at 50 and vary all other
score values. We have tested 3125 different combinations as shown in Figure 19.
These are used to play 1,500 games per score combination. This experiment
took about 7.46 hours, so using this strategy takes 0.0057 seconds per game.

SCORE_ SCORE_ NEW NR_

SCORE_1 | FIRST_PILE | SECOND_PILE | BUILD_MOVE | SUIT_MOVE
25 10 10 10 10
50 20 20 20 20
75 30 30 30 30
100 40 40 40 40
125 50 50 50 50

Figure 19: Used score combinations of parameters with SCORE_0 = 50 for the
POINT PILE STRATEGY.

These experiments led to a first result of the best combination of parameters to
lead to the highest winning percentage. The combinations resulting in the top

26

5.2 Variations in strategy 5 EXPERIMENTS

ten winning percentages are shown in Figure 20.

SCORE_ | SCORE_ NEW NR_ winning percentage
FIRST_ | SECOND_ | BUILD_ | SUIT_ based on
SCORE_1 PILE PILE MOVE MOVE 1,500 games

125 10 10 10 10 14.13%
125 10 10 30 10 13.53%
125 10 20 10 10 13.53%
100 10 10 10 10 13.33%
125 10 10 10 20 13.27%
125 10 10 20 20 13.20%
125 20 10 10 10 12.93%
125 10 30 10 10 12.87%
125 20 20 10 10 12.80%
125 10 10 10 20 12.20%

Figure 20: Parameter combinations with SCORE_0 = 50 resulting in top 10 high-
est winning percentages after playing 1,500 games with the POINT PILE STRAT-
ECY.

Some notable things in these results are the following:
e in 0.02% of the cases, the value of SCORE_1 is greater than or equal to 100.

e the values of all other variables are almost always around the value of 10
for the top winning percentages.

From this observations we choose to do another experiment with a fixed value
of SCORE_O = 50, SCORE_1 =125, and varying the other score parameters with
slighter changes around the value of 10, resulting in the top 10 highest winning
percentages displayed in Figure 21. As displayed in Figure 21, we observe the
10 parameter combinations resulting in the highest winning percentages. The
games played with these combinations give a notion of the value of the strategy
as explained in Section 3.2. The average values of these results are displayed in
Figure 22. The average number of cards on the suit stack in the end state of the
game is represented in Figure 23.

Based on these experiments, the parameter combination of SCORE_0 = 50,
SCORE_1 = 125, SCORE_FIRST_PILE = 6, SCORE_SECOND_PILE = 6,
NEW_BUILD_MOVE = 8 and NR_SUIT_MOVE = 8 have the best winning percent-
age.

27

5.2 Variations in strategy

5 EXPERIMENTS

winning winning
SCORE_ | SCORE_ NEW NR_ percentage percentage
FIRST_ | SECOND_ | BUILD_ | SUIT_ based on based on

PILE PILE MOVE MOVE | 1,500 games | 100,000 games

6 6 8 8 15.73% 14.10%

6 10 12 6 15.73% 14.00%

6 8 8 8 15.73% 13.92%

6 12 12 6 16.13% 13.87%

10 6 8 8 15.53% 13.78%

8 8 8 10 15.67% 13.71%

8 12 6 6 16.47% 13.63%

8 10 6 8 15.93% 13.63%

14 10 12 8 15.73% 13.44%

10 14 6 8 16.07% 13.38%

Figure 21: Parameter combinations with SCORE_.0 = 50 and SCORE_1 = 125 re-
sulting in top 10 highest winning percentages after playing 1,500 games and
associated winning percentages for playing 1,000,000 games with the POINT
PILE STRATEGY.

If the game is lost

Number of moves
Number of cards in pile
Number of closed cards

28.52
10.99
11.99

Number of cards in suit stack | 3.21

If the game is won

Winning percentage
Number of moves

86.64

13.75%

General

Time per game

| 0.0057s

Figure 22: Strategy validation properties of the 10 best parameter combinations
determining the POINT PILE STRATEGY.

28

5.3 Summary of results 5 EXPERIMENTS

18,00%

16,00%
14,00%
12,00% |
10,00% |

8,00%

Number of games
(1,000,000 games played)

6,00% Tt
4,00% T

oo

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Number of cards in suit stack

Figure 23: Average number of cards in suit stack at the end state. The POINT
PILE STRATEGY is used with parameter values equal to the top 10 winning
combinations.

5.3 Summary of results

A summary of the results of playing a game of Klondike Solitaire with one of the
three discussed strategies is shown in Figure 24. In this figure a few statistics
are striking. In this section the differences between strategies are discussed.

| SIMPLEST H. | GREEDY PILE | POINT PILE

If the game is lost

Number of moves 25.11 30.02 28.52
Number of cards in pile 12.40 10.05 10.99
Number of closed cards 12.11 10.68 11.99
Number of cards in suit stack 2.15 3.80 3.21
If the game is won

Winning percentage 9.78% 17.76% 13.75%
Number of moves 95.30 93.86 86.64
General

Time per game 0.00047s | 0.015s | 0.0057s

Figure 24: Properties of every tested strategy.

The GREEDY PILE STRATEGY has the highest winning percentage. If you change
your strategy from SIMPLEST HEURISTIC to GREEDY PILE, the winning rate im-
proves 81.59%, but the time needed to accomplish a win increases with a factor
32. Changing strategy from SIMPLEST HEURISTIC to POINT PILE, leads to a win-
ning rate improvement of 40.59% by having the time increase with a factor 12.

29

5.3 Summary of results 5 EXPERIMENTS

A striking difference is that the POINT PILE STRATEGY wins a game using less
card moves. This is explained by the fact that the GREEDY PILE STRATEGY
prefers game states in which more cards are present in build stacks over more
cards present in the pile. Meaning that the GREEDY PILE STRATEGY tends to
move cards more often from the pile to a build stack, compared to the POINT
PILE STRATEGY.

The experiments bring forward a very remarkable aspect of a lost game of
Klondike Solitaire. As we can see in Figure 24, a game of Solitaire gets stuck in
a situation where the average amount of closed cards is very close to the average
amount of cards in the pile.

5.3.1 Comparison of thesis results to literature results

While all experiments in this thesis are based on unThoughtful Solitaire, all
results in the literature, except from results in [2], are based on Thoughtful
Solitaire. The difference between these to variants is described in Section 2.2.5.

The heuristic player (a player following a heuristic) for Thoughtful Solitaire,
described in [5], can supposedly win approximately 13.05% of the games with
an average time of 0.021 seconds per game. With a rollout strategy (a roll-
out strategy computes an action that would result from an iteration of policy
improvement, applied to the heuristic policy; it may be considered an alterna-
tive heuristic that improves the original), this percentage gains to an alleged
70.20%. This strategy takes an average 1 hour and 45 minutes per game. All
strategies discussed in this thesis take fewer time per game than the heuristic
player from [5] and all strategies, except the SIMPLEST HEURISTIC STRATEGY,
have a higher winning percentage than the the heuristic player from [5].

The heuristic player from [1] achieves a winning percentage of 16.17% in an
average time of 0.02 seconds per game. This result is quite close to the results
of our GREEDY PILE STRATEGY.

The solving methods used for Thoughtful Solitaire can be used to solve Klondike
Solitaire. Monte-Carlo techniques are applied to the random probability distri-
bution of the closed cards in Klondike Solitaire. Such a solver is used in [2],
where a claimed percentage of 36.97% of the games of Klondike Solitaire can be
won. This strategy takes on average 2280.55 seconds per game, which is much
higher than the duration of our strategies. The quickest strategy in [2] takes on
average 44.50 seconds per game and has a winning percentage of 24.64% which
is a winning percentage none of our three strategies comes close to.

30

6 CONCLUSIONS AND FURTHER RESEARCH

6 Conclusions and Further Research

We have analyzed three different strategies for playing a game of Klondike Soli-
taire, two of which have a focus on pile moves. These pile moves appear to be
important since games get stuck with the average amount of closed cards and
the average amount of cards in the pile very close to each other.

The GREEDY PILE STRATEGY has a partial Monte-Carlo like greedy approach for
considering pile moves, aside from a simple heuristic approach for other kind of
moves. Having a different kind of approach, for different types of moves appear
to be useful since this strategy leads to a winning percentage of 17.76% in only
0.015 seconds. Such a high winning percentage in so little time is remarkable.

A suggestion for future work is that it could be interesting to further split these
pile moves into different types of moves and search for a different strategy for
each type of move. As we have seen in this thesis, pile moves are of very high
importance in a game of Klondike Solitaire, but this GREEDY PILE STRATEGY
is only a start.

31

REFERENCES REFERENCES

References

(1

2]

R. Bjarnason, P. Tadepalli and A. Fern. Searching Solitaire in real time.
International Computer Games Association Journal, 30:131-142, 2007.

R. Bjarnason, P. Tadepalli and A. Fern. Lower bounding Klondike Solitaire
with Monte-Carlo planning. Proceedings of the International Conference on
Automated Planning and Scheduling, pages 26-33, 2009.

Brainium Studios LLC. Mobile Solitaire Application. http://www.
brainiumstudios.com/app/solitaire, accessed December 2014.

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samathrakis and S. Colton. A Survey of
Monte Carlo Tree Search Methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1-43, 2012.

P. Diaconis, X. Yan, P. Rusmevichientong and B. Van Roy. Solitaire: Man
Versus Machine. Proceedings Advances in Neural Information Processing
Systems, 17:1553-1560, 2004.

P.B. Donkersteeg. Klondike strategies using Monte Carlo techniques. Mas-
ter’s thesis, Universiteit Leiden, 2010.

U. Latif. The Probability of Unplayable Solitaire (Klondike) Games. http:
//www.techuser.net/klondikeprob.html, accessed December 2014.

L. Longpré and P. McKenzie. The Complexity of Solitaire. Theoretical
Computer Science, 410:5252-5260, 2009.

C. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.
D. Parlett. A History of Card Games. Oxford University Press, 1991.

D. Parlett. Patience and playing-card Solitaires. http://www.davpar.eu/
histocs/patience.html, accessed December 2014.

J.N. van Rijn. Playing games; The complexity of Klondike, Mahjong, Nono-
grams and Animal Chess. Master’s thesis, Universiteit Leiden, 2012.

J. de Ruiter. Counting classes of Klondike Solitaire configurations. Master’s
thesis, Universiteit Leiden, 2012.

32

