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Abstract 

This study examined the role of domain knowledge and abstract reasoning 

ability on undergraduate computer science students' software design learning 

and ability using the LIACS software design test. The study comprised a pretest-

posttest design. Participants (N=151) were administered pretests that measured 

(1) software design skills on topics separation of concerns, cohesion & coupling, 

maintenance, reuse and dependency; (2) domain knowledge (UML); and (3) 

abstract reasoning ability respectively. During posttest the LIACS software 

design test was administerd again; this was conducted after the students 

followed an undergraduate software engineering course. We found that inital 

software design ability was related to both abstract reasoning ability and domain 

knowledge; however, improvement in software design ability was somewhat 

related to domain knowledge, but not to abstract reasoning skills. More 

specifically with regard to the topics measured we found that maintenance and 

reuse were the most difficult pretest topics, but also showed the greatest 

improvement from pretest to posttest. In the future administering the LIACS 

software design test may be helpful for educators so that content can be tailored 

to the knowledge and skills the students already possess as well as evaluate how 

effective teaching of particular topics has been. Future research should 

investigate whether increasing students' knowledge of UML improves their 

chances of learning from a software design course.  

 

 

  



1. Introduction 

Software plays an essential role in our daily lives; from cell phones to kitchen 

appliances, and from furniture production to writing a paper. In order to create 

excellent software it must be well designed and good software designers are 

needed to avoid the high costs of software maintenance and error fixing. 

Software design "aims at the description of the basic features of the future 

computer system and prescribes the functions the system should perform" (p. 

373)[1]. The question this paper explores is which factors influence ability and 

learning of software design in novices.  

 The two cognitive factors we investigated were fluid intelligence (i.e., 

abstract reasoning) and domain knowledge, both of which are related to problem 

solving skills and the development of expertise in a plethora of domains such as 

chess, computer programming or knowledge of baseball [2]–[5]. As Siau & Tan 

(2005) indicate in their review of human cognition factors that play a role in 

conceptual modeling for software design, domain knowledge and abstract 

reasoning ability are considered important aspects that play a role at level of the 

individual software designer[6]. However, this has yet to be investigated in the 

domain of software design ability. Evidence is provided by Leung & Bollejou 

(2006) based on their empirical study of design errors of novice analysts; they 

defined a set of frequent (syntactic and semantic) errors that were thought to be 

due deficits in one or more cognitive factors[7]. For example, syntactic errors 

could be caused by insufficient domain knowledge of UML notation whereas 

semantic errors may be due to inaccuracies in abstract reasoning and/or 

working memory constraints.  

 Kramer (2007) poses the question why some software engineers are able 

to design clear and eloquent systems while others, with similar education and 

conceptual modeling tools, are not; he argues that abstraction ability is key[8]. 

Abstraction is the ability to solve novel problems often measured by intelligence 

tests such as the Raven Progressive Matrices (RPM) that require one to complete 

visual patterns by inducing abstract rules. In research on the development of 

expertise abstract reasoning ability is said to plays an important role with regard 

to a person's initial skill level and is also required for the first cognitive phase of 

skill acquisition[9]. 



 Working memory, defined as the ability to process, store and retrieve 

information, also appears to be a factor predicting the acquisition of software 

development skills[6], [10]–[12]. However, working memory is strongly linked to 

abstract reasoning ability and some researchers argue that these two 

psychological constructs may be one and the same [13]–[15]. Given the 

similarities between working memory and abstract reasoning as well as the 

advice of Bergersen and colleagues (2011) to include a more pure measure of g 

(i.e., general intelligence often indictaed a abstract reasoning ability) such as the 

Raven's Advanced Progressive Matrices (RAPM) to examine person factors 

influencing software development skills, we chose to use only RAPM in this 

study. 

 Domain knowledge is considered a main driving force behind skill 

acquisition - often referred to as the 'knowledge is power' hypothesis[2]. A few 

studies have found a relationship between software programming skills and 

prior experience[4], [16]. Bergersen et al. (2011) determined that domain 

knowledge was the underlying (i.e. mediating) source in this relationship - where 

people with more experience inherently have greater domain knowledge and 

thus perform better on software programming measures[12]. Indeed, domain 

knowledge showed a strong relationship with programming skills. 

 In the present study we examined how domain knowledge and abstract 

reasoning ability relate to students software design ability before and after a 

software engineering course. UML (Unified Modeling Language) is the current 

standard for visual abstract software design. For this reason we specifically focus 

on UML design ability and use the LIACS UML design skills test developed by 

Stikkelorum and colleagues (2013)[17]. By analyzing students performance and 

change on five item categories using statistical modeling techniques from item 

response theory (IRT)[18] we aimed to answer questions about the role of 

domain knowledge and abstract reasoning ability on: (1) initial performance on a 

software design test and (2) learning from a course on software design as 

measured by improvement on the LIACS software design test. In short, is 

abstract reasoning ability really the key predictor of which students can learn to 

design software or is "knowledge is power" and thus domain knowledge the 

driving force? Based on prior research in expertise development we expect 



abstract reasoning ability to play the largest role in novice software designer's 

initial ability, whereas domain knowledge is expected to predict both initial 

ability and performance change. 

 

2. Method 

2.1. Participants 

This study included 274 first year software engineering students (93% male) 

recruited from two university courses; one in Gothenburg, Sweden and the other 

in Utrecht, The Netherlands. Participants agreed to participation through an 

online informed consent form prior to completing the pretest. 248 students 

completed all pretest assessments and 151 students completed the posttest 

assessment. 

 

2.2. Design & Procedure 

The study comprised a pretest-posttest design. Each participant was 

administered three pretest assessments that measured (1) design skills, (2) 

domain knowledge and (3) abstract reasoning ability respectively. The posttest 

was conducted after the students followed a freshman undergraduate software 

engineering course at his/her university. The posttest consisted of the same 

software design skills task (assessment 1) administered at pretest.  

 

2.3. Materials  

2.3.1. LIACS Software Design Skills test  

The LIACS Software Design test utilized in this study comprised 20 multiple-

choice questions assessing the understanding of software design concepts[19]. 

The main concepts measured were design principles (separation of concerns, 

cohesion & coupling), quality (maintainability, reuse) and architecture 

(dependency); see Table 1 for an overview of which concepts were assessed per 

item. The items generally consisted of an example design and a question about 

consequences of changes in the design and/or a comparison of the quality two or 

more designs; see Figure 1 for an example. A complete list of the items including 

solutions and main measured concepts can be found in Appendix A. The designs 



were presented in Unified Modeling Language (UML1); this popular modeling 

language was chosen as it is used in the students' courses on software design.  

 

Table 1. 
Concepts measured per item from LIACS Design Skills test.  
Item Separation of 

concerns 
Cohesion & 

coupling 
Maintenance Reuse Dependency 

1    X X 
2     X 
3     X 
4     X 
5     X 
6   X   
7     X 
8 X     
9  X    
10 X     
11  X X   
12  X   X 
13   X   
14    X  
15 X X    
16   X X  
17 X  X   
18    X  
19   X   
20 X   X  
 

 
Figure 1. Example item from LIACS Design Skills test.  
 

The initial version of this test comprised 10 items that were evaluated by experts 

according to criteria of clarity, complexity and difficulty level and piloted in a 

                                                           
1
 http://www.uml.org 



population of 60 first year university computer science students; a quantitative 

validation of the test items can be found in Stikkelorum et al. (2013)[17]. These 

items formed the basis for the items used in the present study. Additional items 

were created and rated by experts. A quantitative evaluation of the psychometric 

quality of the version of the items used in the present study can be found in 

section 3.1 of this paper. 

 

2.3.2. UML knowledge quiz 

A UML knowledge quiz was created specifically for this experiment in order to 

assess domain knowledge that formed a prerequisite for understanding and 

correctly answering the diagrams used in the LIACS Software Design Skills test. 

The quiz consisted of 22 items focusing on the syntax and semantics of the 

Unified Modeling Language (UML). See Figure 2 for an example; the actual items 

can be found in Appendix B.  

 

 
Figure 2. Example item from the UML quiz used to measure domain knowledge.  
 

2.3.3. Abstract Reasoning  

A computerized short-form of the original Raven's Advanced Progressive 

Matrices[20] was administered to measure non-verbal abstract reasoning. This 

particular short form comprised the even items extracted from the original 36-

item RAPM. The RAPM is a visuospatial reasoning task often used to measure 

fluid intelligence and requires participants to induce abstract rules and relations 

between geometric figures presented in a 3x3 matrix to complete a visual 

pattern by choosing among nine multiple-choice alternatives. Short forms of the 



RAPM are used to reduce administration time without losing psychometric 

properties or predictive validity[21].  

 

3. Results 

3.1. Psychometric properties of software design and domain knowledge 

measures  

Prior to examine the role of cognitive factors on the students' performance on 

the LIACS software design test and UML domain knowledge quiz the 

psychometric properties of these two new instruments were evaluated as 

measurement scales using both classical test theory (CTT) and item response 

(IRT) theory[22]. Both methods are used to evaluate test scores and item 

responses. CTT is more commonly utilized as the metrics are relatively easy to 

compute; however, IRT has distinct advantages such as being population 

independent so that item difficulty and discrimination can be evaluated without 

bias - important in the present situation as the population is rather specific with 

limited differences in software design ability.  

 According to CTT item difficulty is determined by the proportion correct 

responses per item. Item discrimination represents how sensitive an item is to 

actual differences between test-takers and is thus a means of examining an 

item's impact on the internal consistency of a test. In CTT item discrimination is 

represented by the point-biserial correlation between performance on a specific 

item and the test as a whole. In IRT item difficulty and discrimination can be 

computed using the two-parameter logistic (2PL) IRT model. In this IRT model 

the chance that an item is solved correctly (i.e., y = 1) depends on the difference 

between the latent ability (θ) of the test-taker p and the difficulty (β) and 

discrimination (α) of item i: 

𝑃(𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛽𝑖, 𝛼𝑖) =
𝑒(𝛼𝑖(𝜃𝑝−𝛽𝑖))

1 + 𝑒(𝛼𝑖(𝜃𝑝−𝛽𝑖))
 

where θp~N(0, σθ2), βi~N(0, σβ2), and αi~N(0, σα2)  (1) 

 

In this section we evaluate item difficulty and discrimination with both CTT and 

IRT; furthermore, reliability and construct validity are addressed from the CTT 

perspective. 



3.2.1. LIACS Software Design Skills  

Item difficulty (CTT, proportion correct) ranged from .19 to .80 (M=.58, SD=.17) 

for the pretest and from .25 to .87 (M=.67, SD=.16) for the posttest; this indicates 

that there was likely some improvement from pretest to posttest and that the 

items were generally solved correctly at above chance level (> .25 on items with 

4 multiple-choice options). Ideally the 2PL IRT item difficulty parameters 

represent a range of difficulties so that the estimation of ability is accurate for 

persons with a range of latent aptitude (see Table 2). 

  

Table 2. 
Psychometric item properties of LIACS software design test. 
 Pretest  Posttest  
 CTT IRT CTT IRT 

item 
p-
value 

Item-total 
correlation 

β α 
p-
value 

Item-total 
correlation 

β α 

1 .38 .21 0.81 0.73 .49 .26 0.08 0.63 
2 .72 .27 -1.25 0.83 .74 .39 -1.02 1.29 
3 .63 .23 -0.66 0.85 .70 .07 -4.39 0.19 
4 .69 .42 -0.27 4.16 .57 .35 0.55 0.62 
5 .71 .19 -0.56 10.75 .74 .31 -1.31 0.90 
6 .57 .31 -0.67 0.41 .86 .36 -1.77 1.32 
7 .63 .18 -2.81 0.28 .42 .25 -0.31 1.07 
8 .80 .20 -6.48 0.18 .62 .16 -1.41 0.89 
9 .61 .25 0.53 0.56 .85 .20 -3.85 0.51 
10 .74 .32 3.00 0.15 .54 .16 -1.00 1.41 
11 .68 .24 -2.61 0.29 .70 .25 5.30 0.21 
12 .65 .23 1.18 0.30 .78 .37 -1.19 1.36 
13 .44 .17 -6.23 -0.23 .87 .17 -1.17 1.39 
14 .77 .15 -2.97 0.48 .75 .32 -1.40 0.37 
15 .68 .07 -0.47 0.30 .25 .10 -0.72 1.61 
16 .39 .18 -1.74 0.64 .74 .36 -0.33 0.46 
17 .42 -.10 -1.03 0.43 .77 .37 -3.07 0.62 
18 .19 .16 -1.29 0.62 .77 .34 -1.53 0.60 
19 .54 .05 -1.18 0.52 .70 .41 -1.36 1.16 
20 .30 .21 -8.60 -0.10 .50 .14 -0.03 0.37 

* p<.05, ** p<.01 
 

Item discrimination for CTT is represented by the item-total correlation. A 

rule-of-thumb in psychometrics is to discard items with an item-total correlation 

of less than .20. As can be seen in Table 2 nine items in the pretest and six items 

in the posttest meet this criterion. In the 2PL IRT model the item discrimination 

index is related to the range of test scores for which the item discriminates best 

between test-takers; higher values indicate greater discrimination and those 



near zero (α<|.20|) yield little to no information on the test-taker's ability and 

should be discarded (see Table 2).  Based on these values it is advisable to revise 

items 8, 10 and 20 from the pretest and item 3 from the posttest. It is important 

to note for analyses presented in section 3.2.2 that items 8, 10 and 20 each 

measure understanding of the concept separation of concerns. 

 Reliability, i.e. “...the extent to which differences in respondents’ observed 

scores are consistent with differences in their true scores” (Furr & Bacharach, 

2014, p. 103), was determined using Cronbach's alpha coefficient of internal 

consistency; for the 20 item scale at pretest this was α=.60 and at posttest α=.69. 

These reliabilities are considered acceptable[23].  

 Construct validity, i.e. “...the degree to which test scores can be 

interpreted as reflecting a particular psychological construct” (Furr & Bacharach, 

2014, p. 201), was determined by computing the correlation between posttest 

IRT scale scores and the students' scores on the software design course final 

exams. The resulting Pearson's (r=.26, p=.06) for the students from Utrecht who 

completed both the posttest and the final exam (N=55) is in the expected positive 

direction and considered weak; this provides some evidence that similar 

constructs were measured by the LIACS software design test and the respective 

course exams. 

3.2.2. UML Domain Knowledge Quiz 

Item difficulty ranged from .00 to .77 (M=.37, SD=.21). Reliability based on 

Cronbach's alpha coefficient of internal consistency was α=.69 and is considered 

good[23]. Table 3 provides an overview of the CTT and IRT item properties. 

Based on these results it is advisable to remove or revise item 13 as no one 

solved this correctly and also to revise items 1, 5-7, 11 and 20 given the low 

item-total correlations. 

 

  



Table 3. 
Psychometric item properties of UML domain knowledge quiz. 
 CTT IRT 

item p-value 
Item-total 
correlation 

β α* 

1 .08 .02 2.34 1.25 

2 .64 .56 -0.54 1.25 

3 .68 .58 -0.73 1.25 
4 .47 .40 0.18 1.25 

5 .18 .15 1.52 1.25 

6 .18 .08 1.54 1.25 
7 .23 .15 1.23 1.25 

8 .17 .22 1.60 1.25 

9 .38 .40 0.58 1.25 

10 .29 .30 0.93 1.25 
11 .15 .19 1.76 1.25 
12 .17 .20 1.62 1.25 

13 .00 .00 10.07 1.25 

14 .77 .57 -1.19 1.25 
15 .40 .41 0.48 1.25 
16 .52 .46 -0.03 1.25 

17 .39 .40 0.51 1.25 

18 .59 .59 -0.32 1.25 

19 .50 .49 0.07 1.25 

20 .13 .05 1.88 1.25 
21 .60 .58 -0.38 1.25 

22 .29 .22 0.95 1.25 

* The best IRT model for the UML quiz is a special case of the 2PL model, i.e. the 
Rasch (1PL) model with the same α value for all items. 
 

3.2. Performance on the LIACS software design test  

This  was investigated using explanatory IRT[18] analyses where item responses 

(Ypi) for person p on item i on the LIACS Software design ability test was the 

dependent variable and j variables were evaluated as predictors (X) using the 

following regression model:  

𝑃(𝑌𝑝𝑖 = 1|𝑋𝑝𝑖𝑗, 𝛽𝑖) =
𝑒(

∑ 𝐵𝑗𝑋𝑝𝑖𝑗+𝜃𝑝+𝛽𝑖
𝐽
𝑗=1 )

1 + 𝑒
(∑ 𝐵𝑗𝑋𝑝𝑖𝑗+𝜃𝑝+𝛽𝑖

𝐽
𝑗=1 )

 

 

where θp~N(0, σθ2) and βi~N(0, σβ2)  (2) 

The resulting regression weights (B) for the person predictors (abstract 

reasoning, domain knowledge) and item predictors (measured concepts: 

separation of concerns, cohesion & coupling, maintenance, reuse, dependency) 



are shown in Table 4. The results of this model are discussed per preditor type 

(persons, items) in the following two sections. 

 

Table 4. 
Results of the explanatory item response model evaluating item predictors 
(measured concepts: separation of concerns, cohesion & coupling, maintenance, 
reuse, dependency) and person predictors (abstract reasoning, domain 
knowledge, pretest-to-posttest change). Main item effects were evaluated with 
the pretest as reference time point. 
Predictor B SE p lower bound upper bound 

Intercept (overall mean) -0.02 0.41 .97 -0.42 0.39 
Main effects item predictors      
separation of concerns -0.23 0.30 .44 -0.53 0.07 
cohesion & coupling -0.04 0.28 .88 -0.32 0.23 
maintenance -0.71 0.30 .02 -1.02 -0.41 
reuse -1.23 0.28 <.001 -1.50 -0.95 
dependency -0.17 0.33 .60 -0.50 0.16 
Main effects person predictors      
post-pre 0.23 0.36 .53 -0.13 0.59 
abstract reasoning 0.08 0.02 <.001 0.06 0.10 
domain knowledge 0.23 0.06 <.001 0.17 0.29 
Interaction effects item predictors with pretest-to-posttest change 
separation of concerns X post-pre -1.02 0.19 <.001 -1.20 -0.83 
cohesion & coupling X post-pre -0.29 0.18 .11 -0.46 -0.11 
maintenance X post-pre 0.95 0.19 <.001 0.76 1.15 
reuse X post-pre 0.88 0.17 <.001 0.71 1.06 
dependency X post-pre -0.54 0.21 .01 -0.75 -0.33 
Interaction effects person predictors with pretest-to-posttest change  
abstract reasoning X post-pre 0.02 0.02 .29 0.00 0.05 
domain knowledge X post-pre -0.15 0.08 .06 -0.23 -0.07 
 

 

3.2.1. Role of abstract reasoning and domain knowledge in learning software 

design 

The main research question was whether abstract reasoning and domain 

knowledge were able to predict initial ability and learning of software design. 

The results of the statistical model (see Table 4) showed that the chance of 

solving an item correctly generally improved from pretest to posttest for a 

student with average abstract reasoning skills and domain knowledge. Domain 

knowledge was a significant predictor of pretest performance (B=0.23, SE=0.06, 

p<.001) and a marginal predictor of improvement from pretest to posttest (B=-

0.15, SE=0.08, p=.06); see Figure 3. Abstract reasoning was a significant 

predictor of pretest performance (B=0.08, SE=0.02, p<.001), but did not predict 

performance change over time (B=0.02, SE=0.02, p=.06); see Figure 4. 



  

Figure 3. Domain knowledge (low = -2 SD, avg = Mean and high = +2 SD) 
significantly influenced the chance of solving LIACS software design test items 
correctly (y-axis) on the pretest and showed a marginal effect in predicting 
improvement from pretest to posttest (x-axis). Students with low domain 
knowledge generally performed less well on the software design test, whereas 
those with higher domain knowledge performed better. The gap between 
students with lower and higher domain knowledge decreased from pretest to 
posttest after following a software engineering course. 
 

 

Figure 4. Abstract reasoning ability (low = -2 SD, avg = Mean and high = +2 SD) 
significantly influenced the chance of solving LIACS software design test items 
correctly (y-axis) on the pretest, but did not affect improvement from pretest to 
posttest (x-axis). Students with low abstract reasoning ability generally 
performed less well on the software design test, whereas those with higher 
abstract reasoning ability performed better. The differences between students of 
differing abstract reasoning ability did not change after following a software 
engineering course, i.e. abstract reasoning ability did not predict learning from 
before and after the course. 
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3.2.2. Performance per measured concept 

The LIACS software design test contained items measuring five concepts: 

separation of concerns, cohesion & coupling, maintainability, reuse and 

dependency. The results are depicted in Figure 5. Items measuring 

understanding of  the concepts maintainability and reuse were significantly more 

difficult than the average item (maintenance: B=-0.71, SE=0.30, p=.02; reuse: B=-

1.23, SE=0.28, p<.001), whereas separation of concerns, cohesion & coupling and 

dependency were of average difficulty. Performance improvement from pretest to 

posttest was significant (p<.05) for items measuring understanding of the 

concepts maintainability and reuse (maintenance: B=0.95, SE=0.19, p=<.001; 

reuse: B=0.88, SE=0.17, p<.001); however, for separation of concerns and 

dependency there was a significant decline in performance from pretest to 

posttest (separation of concerns: B=-1.02, SE=0.19, p<.001; dependency: B=-0.54, 

SE=0.21, p<.01). There were no significant changes in performance on the items 

measuring understanding of cohesion & coupling (B=-0.29, SE=0.18, p=.11).  

 

Figure 5. The chance of solving an item correctly (y-axis) that measured a 
particular concept (x-axis) on the LIACS software design test administered at 
pretest (light gray columns) and posttest (dark gray columns). Results show that 
items concerning the topics maintenance and reuse were more difficult on the 
pretest than items measuring understanding of the concepts separation of 
concerns, cohesion & coupling and dependency. Performance on items measuring 
understanding of maintainability and reuse improved, but performance on items 
measuring understanding of separation of concerns and dependency declined. 
There was no change in performance on items measuring cohesion & coupling. 
The presented model was computed with domain knowledge and abstract 
reasoning fixed at average skill levels. 
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4. Discussion 

The aim of the current study was to examine the role of domain knowledge and 

abstract reasoning ability on undergraduate computer science students' software 

design learning and ability. To this end, participants completed assessments of 

(1) software design ability in which comparisons between and/or judgements of 

changes to designs were assessed five concepts: separation of concerns, cohesion 

& coupling, maintainability, reuse and dependency; (2) domain knowledge of the 

syntax and semantics of the Unified Modeling Language (UML) commonly 

utilized in software design; and (3) abstract reasoning ability. The software 

design task was administered to first year computer science students before and 

after a software engineering course. There were four main findings: (1) inital 

software design ability was related to both abstract reasoning ability and domain 

knowledge; (2) improvement in software design ability was somewhat related to 

domain knowledge, but not to abstract reasoning skills; (3) the topics 

maintenance and reuse were more difficult on the pretest than separation of 

concerns, cohesion & coupling and dependency; and (4) understanding of the 

concepts maintainability and reuse improved from pretest to posttest, but 

performance on items measuring understanding of separation of concerns and 

dependency declined. The discussion is organized along these findings. 

 

4.1. Abstract reasoning and domain knowledge as predictors software 

design ability and learning 

The students' knowledge of the correct syntax and semantics of the Unified 

Modeling Language (UML) was used as a proxy to measure their domain 

knowledge in the field of software design. Based upon prior research on the 

development of expertise[24] and the "knowledge is power" hypothesis[2] we 

expected domain knowledge to play a role in both initial software design ability 

as well as how much students learned about software design after following a 

course in software engineering. Indeed UML knowledge was a predictor of both 

initial software design skills as well as improvement from pretest to posttest. 

This finding is in accordance with the findings of Bergensen et al. (2011) in the 

domain of software programming where greater knowledge indicated better 

programming skills in expert software developers. 



 Abstract reasoning ability, a main component of fluid intelligence, has 

been postulated to be involved in all learning, especially novel tasks[25], [26]. 

Therefore, we expected the initial ability and learning of software design of the 

undergraduate computer science students in our study also to be related to their 

performance on the Raven's Advanced Progressive matrices - a measure of fluid 

intelligence. Indeed our results showed that initial understanding of software 

design principles were significantly predicted by the students' abstract reasoning 

ability. However, the students' learning from a course in software design as 

measured by their change in performance on the LIACS software design test 

administered before and after the course, was not related to their abstract 

reasoning ability. Perhaps the effect of abstract reasoning, which is a construct 

similar to working memory, is also mediated by domain knowledge as was the 

case in Bergensen et al.'s (2011) found that the predictive effect of working 

memory on software programming skills in experts was mediated by domain 

knowledge. Abstract reasoning is very similar if not the same construct as 

working memory[13]–[15]; therefore perhaps domain knowledge also functions 

as a mediator in the prediction of software design skills learning - i.e., those with 

better abstract reasoning likely have greater domain knowledge and show the 

most growth in software design performance. In our statistical model we 

included abstract reasoning and domain knowledge as predictors at the same 

level, if domain knowledge is a mediator this could remove evidence the 

influence of abstract reasoning; future investigations should focus on whether 

domain knowledge mediates the relationship between abstract reasoning and 

the learning of software design principles.  

 

4.2. Understanding of measured software design concepts  

On the whole the students performed quite well on the LIACS software design 

test, with approximately 60% chance of solving pretest items correctly and a 

70% chance on the posttest - thus on the whole showing significant 

improvement from pretest to posttest. Students appeared to know more about 

the design concepts separation of concerns, cohesion & coupling and dependency 

during the pretest than the topics maintenance and reuse. However, the most 

improvement from pretest to posttest was on these two more difficult topics; 



this is most likely because of the relatively high chance of solving items on the 

other three topics correctly - there may have been less room to improve on these 

particular topics. Strangely, performance on items measuring understanding of 

separation of concerns and dependency declined somewhat; this may be due to 

problems with the items measuring these topics; the psychometric analyses of 

the test indicate that nearly all of the items measuring separation of concerns 

should be revised. On the whole our results provide insight into which topics 

students mastered both before and after the course. In the future administering 

the LIACS software design test may be helpful for educators so that content can 

be tailored to the knowledge and skills the students already possess as well as 

evaluate how effective teaching of particular topics has been.  

 

4.3. Limitations 

Some limitations of this study deserve mention and can be informative for future 

research. First, domain knowledge in the form of a UML quiz was only assessed 

at pretest. In future research this task should also be administered at posttest in 

order to (1) assess gains in domain knowledge as a consquence of the course and 

(2) examine whether the mediating role of domain knowledge on the students' 

design ability changes during the learning process - a specific prediction of 

Ackerman's (1998) theory of how skills develop[9].  

 Second, the instruments we used to assess software design ability and 

domain knowledge (UML) were created specifically for this study and require 

further development and evaluation before assuming their reliability and 

validity. The reliability of these measures were addressed using psychometric 

classical test theory and item response theory; however, certain revisions to the 

items are warrented given their low correlation with other related items and/or 

lack of fit in the item response measurement model. The construct validity was 

examined by computing correlations with course grades; the moderate 

correlation indicated that the software design skills test indeed measures a 

similar construct to the software engineering course exams at both universities.  

 A third limitation was that we did not account for the role of experience in 

the students' ability to learn software design. Experience is a good predictor of 

expertise in novices[1] and likely strongly related to both domain knowledge and 



initial software design ability as appears to be the case with software 

programming [12]. A fourth and final limitation to overcome in future research is 

the inclusion of a control group. By including a control group we can control for 

the effect of retesting when measuring learning in a pretest-intervention-

posttest design. 

 

4.4. Conclusions & Future Directions 

Based on this study we can conclude that both domain knowledge and abstract 

reasoning are key predictors of students' software design ability. Domain 

knowledge in particular predicts how much students learn from a software 

design course. Perhaps increasing students' knowledge of UML may improve 

their chances of learning from a software design course. In the future the 

effectiveness of improving domain knowledge on course or training outcomes 

should be investigated. 

 The present study focused on undergraduate students performance 

before and after a course on software design; it woud be of particular interest to 

use the LIACS software design test to examine the performance of complete 

novices (e.g., psychology students) and undergraduate computer science 

students before and after following training in software design[27].  
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Appendix A: Software Design Skills Questions 

 

Item: 

solution 

Content Concepts 

1: 

B 

 

Reuse, 

Dependency 

2: 

C 

 

Dependency 



3: 

C  

 

Dependency 

4: 

D 

 

Dependency 



5: 

B 

 

Dependency 

6: 

C 

 

Maintenance 

7: 

C 

 

Dependency 



8: 

D 

 

Separation of 

concerns 

9: 

C 

 

Coupling / 

Cohesion, 

Separation of 

concerns 



10: 

B 

 

Separation of 

concerns 

11: 

A 

 

Coupling / 

Cohesion, 

Maintenance 



12: 

C 

 

Coupling / 

cohesion, 

Dependency 

13: 

C 

 

Maintenance 

14: 

A 

 

Reuse 



15: 

C 

 

Separation of 

concerns, 

coupling / 

cohesion 

16: 

A 

 

Reuse, 

maintenance 



17: 

C 

 

Maintenance, 

separation of 

concerns 

18: 

A 

 

Reuse 



19: 

A 

 

Maintanence 

20: 

D 

 

Reuse, 

separation of 

concerns 

  



Appendix B UML knowledge quiz 
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2  

to  

7 

 

8  

to 

11 

 



12 

 

13 

 

14 

to  

22 

 

 

 

 


