Universiteit Leiden

Opleiding Informatica

Learning software design: Is abstraction ability key?

Name: Claire E. Stevenson
Date: 20/03/2015

1% supervisor: Prof. dr. Michel R.V. Chaudron
2" supervisor: Dave Stikkelorum, MSc.

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

This study examined the role of domain knowledge and abstract reasoning
ability on undergraduate computer science students' software design learning
and ability using the LIACS software design test. The study comprised a pretest-
posttest design. Participants (N=151) were administered pretests that measured
(1) software design skills on topics separation of concerns, cohesion & coupling,
maintenance, reuse and dependency; (2) domain knowledge (UML); and (3)
abstract reasoning ability respectively. During posttest the LIACS software
design test was administerd again; this was conducted after the students
followed an undergraduate software engineering course. We found that inital
software design ability was related to both abstract reasoning ability and domain
knowledge; however, improvement in software design ability was somewhat
related to domain knowledge, but not to abstract reasoning skills. More
specifically with regard to the topics measured we found that maintenance and
reuse were the most difficult pretest topics, but also showed the greatest
improvement from pretest to posttest. In the future administering the LIACS
software design test may be helpful for educators so that content can be tailored
to the knowledge and skills the students already possess as well as evaluate how
effective teaching of particular topics has been. Future research should
investigate whether increasing students' knowledge of UML improves their

chances of learning from a software design course.

1. Introduction

Software plays an essential role in our daily lives; from cell phones to kitchen
appliances, and from furniture production to writing a paper. In order to create
excellent software it must be well designed and good software designers are
needed to avoid the high costs of software maintenance and error fixing.
Software design "aims at the description of the basic features of the future
computer system and prescribes the functions the system should perform" (p.
373)[1]. The question this paper explores is which factors influence ability and
learning of software design in novices.

The two cognitive factors we investigated were fluid intelligence (i.e.,
abstract reasoning) and domain knowledge, both of which are related to problem
solving skills and the development of expertise in a plethora of domains such as
chess, computer programming or knowledge of baseball [2]-[5]. As Siau & Tan
(2005) indicate in their review of human cognition factors that play a role in
conceptual modeling for software design, domain knowledge and abstract
reasoning ability are considered important aspects that play a role at level of the
individual software designer[6]. However, this has yet to be investigated in the
domain of software design ability. Evidence is provided by Leung & Bollejou
(2006) based on their empirical study of design errors of novice analysts; they
defined a set of frequent (syntactic and semantic) errors that were thought to be
due deficits in one or more cognitive factors[7]. For example, syntactic errors
could be caused by insufficient domain knowledge of UML notation whereas
semantic errors may be due to inaccuracies in abstract reasoning and/or
working memory constraints.

Kramer (2007) poses the question why some software engineers are able
to design clear and eloquent systems while others, with similar education and
conceptual modeling tools, are not; he argues that abstraction ability is key[8].
Abstraction is the ability to solve novel problems often measured by intelligence
tests such as the Raven Progressive Matrices (RPM) that require one to complete
visual patterns by inducing abstract rules. In research on the development of
expertise abstract reasoning ability is said to plays an important role with regard
to a person's initial skill level and is also required for the first cognitive phase of

skill acquisition[9].

Working memory, defined as the ability to process, store and retrieve
information, also appears to be a factor predicting the acquisition of software
development skills[6], [10]-[12]. However, working memory is strongly linked to
abstract reasoning ability and some researchers argue that these two
psychological constructs may be one and the same [13]-[15]. Given the
similarities between working memory and abstract reasoning as well as the
advice of Bergersen and colleagues (2011) to include a more pure measure of g
(i.e., general intelligence often indictaed a abstract reasoning ability) such as the
Raven's Advanced Progressive Matrices (RAPM) to examine person factors
influencing software development skills, we chose to use only RAPM in this
study.

Domain knowledge is considered a main driving force behind skill
acquisition - often referred to as the 'knowledge is power' hypothesis[2]. A few
studies have found a relationship between software programming skills and
prior experience[4], [16]. Bergersen et al. (2011) determined that domain
knowledge was the underlying (i.e. mediating) source in this relationship - where
people with more experience inherently have greater domain knowledge and
thus perform better on software programming measures[12]. Indeed, domain
knowledge showed a strong relationship with programming skills.

In the present study we examined how domain knowledge and abstract
reasoning ability relate to students software design ability before and after a
software engineering course. UML (Unified Modeling Language) is the current
standard for visual abstract software design. For this reason we specifically focus
on UML design ability and use the LIACS UML design skills test developed by
Stikkelorum and colleagues (2013)[17]. By analyzing students performance and
change on five item categories using statistical modeling techniques from item
response theory (IRT)[18] we aimed to answer questions about the role of
domain knowledge and abstract reasoning ability on: (1) initial performance on a
software design test and (2) learning from a course on software design as
measured by improvement on the LIACS software design test. In short, is
abstract reasoning ability really the key predictor of which students can learn to
design software or is "knowledge is power" and thus domain knowledge the

driving force? Based on prior research in expertise development we expect

abstract reasoning ability to play the largest role in novice software designer's
initial ability, whereas domain knowledge is expected to predict both initial

ability and performance change.

2. Method

2.1.Participants

This study included 274 first year software engineering students (93% male)
recruited from two university courses; one in Gothenburg, Sweden and the other
in Utrecht, The Netherlands. Participants agreed to participation through an
online informed consent form prior to completing the pretest. 248 students
completed all pretest assessments and 151 students completed the posttest

assessment.

2.2.Design & Procedure

The study comprised a pretest-posttest design. Each participant was
administered three pretest assessments that measured (1) design skills, (2)
domain knowledge and (3) abstract reasoning ability respectively. The posttest
was conducted after the students followed a freshman undergraduate software
engineering course at his/her university. The posttest consisted of the same

software design skills task (assessment 1) administered at pretest.

2.3.Materials

2.3.1. LIACS Software Design Skills test

The LIACS Software Design test utilized in this study comprised 20 multiple-
choice questions assessing the understanding of software design concepts[19].
The main concepts measured were design principles (separation of concerns,
cohesion & coupling), quality (maintainability, reuse) and architecture
(dependency); see Table 1 for an overview of which concepts were assessed per
item. The items generally consisted of an example design and a question about
consequences of changes in the design and/or a comparison of the quality two or
more designs; see Figure 1 for an example. A complete list of the items including

solutions and main measured concepts can be found in Appendix A. The designs

were presented in Unified Modeling Language (UML1); this popular modeling

language was chosen as it is used in the students' courses on software design.

Table 1.
Concepts measured per item from LIACS Design Skills test.

Item Separation of Cohesion & Maintenance Reuse Dependency

concerns COllplil’lg
1 X X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X X
12 X X
13 X
14 X
15 X X
16 X X
17 X X
18 X
19 X
20 X X
Consider the design below:
™ (5] [c | |
- => -~ —> - -
If C changes :
Choose one of the following answers
Then A, B and D may have to change also. Please enter your comment here:
Only B may have to change.
Both A and B may have to change.
D may need to change.

Figure 1. Example item from LIACS Design Skills test.

The initial version of this test comprised 10 items that were evaluated by experts

according to criteria of clarity, complexity and difficulty level and piloted in a

! http://www.uml.org

population of 60 first year university computer science students; a quantitative
validation of the test items can be found in Stikkelorum et al. (2013)[17]. These
items formed the basis for the items used in the present study. Additional items
were created and rated by experts. A quantitative evaluation of the psychometric
quality of the version of the items used in the present study can be found in

section 3.1 of this paper.

2.3.2. UML knowledge quiz

A UML knowledge quiz was created specifically for this experiment in order to
assess domain knowledge that formed a prerequisite for understanding and
correctly answering the diagrams used in the LIACS Software Design Skills test.
The quiz consisted of 22 items focusing on the syntax and semantics of the
Unified Modeling Language (UML). See Figure 2 for an example; the actual items
can be found in Appendix B.

*12 Which of the following diagrams represents a relationship between Class A and Class B where A depends on B
at a certain point during software execution?
Choose one of the following answers

Class A<>—{Class B

Class A<} - - - {Class B

” [class Al———C] Class B

other

Figure 2. Example item from the UML quiz used to measure domain knowledge.

2.3.3. Abstract Reasoning

A computerized short-form of the original Raven's Advanced Progressive
Matrices[20] was administered to measure non-verbal abstract reasoning. This
particular short form comprised the even items extracted from the original 36-
item RAPM. The RAPM is a visuospatial reasoning task often used to measure
fluid intelligence and requires participants to induce abstract rules and relations
between geometric figures presented in a 3x3 matrix to complete a visual

pattern by choosing among nine multiple-choice alternatives. Short forms of the

RAPM are used to reduce administration time without losing psychometric

properties or predictive validity[21].

3. Results
3.1.Psychometric properties of software design and domain knowledge
measures

Prior to examine the role of cognitive factors on the students' performance on
the LIACS software design test and UML domain knowledge quiz the
psychometric properties of these two new instruments were evaluated as
measurement scales using both classical test theory (CTT) and item response
(IRT) theory[22]. Both methods are used to evaluate test scores and item
responses. CTT is more commonly utilized as the metrics are relatively easy to
compute; however, IRT has distinct advantages such as being population
independent so that item difficulty and discrimination can be evaluated without
bias - important in the present situation as the population is rather specific with
limited differences in software design ability.

According to CTT item difficulty is determined by the proportion correct
responses per item. Item discrimination represents how sensitive an item is to
actual differences between test-takers and is thus a means of examining an
item's impact on the internal consistency of a test. In CTT item discrimination is
represented by the point-biserial correlation between performance on a specific
item and the test as a whole. In IRT item difficulty and discrimination can be
computed using the two-parameter logistic (2PL) IRT model. In this IRT model
the chance that an item is solved correctly (i.e., y = 1) depends on the difference
between the latent ability (0) of the test-taker p and the difficulty () and

discrimination (a) of item i:

e(ai(Bp—ﬁi))
(pi |619"Bl’ a‘) 1+ e(ai(ep—ﬁi))
where 8,~N(0, oe?), Bi~N(0, 0?), and ai~N(0, 0s*) (1

In this section we evaluate item difficulty and discrimination with both CTT and
IRT; furthermore, reliability and construct validity are addressed from the CTT

perspective.

3.2.1. LIACS Software Design Skills

Item difficulty (CTT, proportion correct) ranged from .19 to .80 (M=.58, SD=.17)
for the pretest and from .25 to .87 (M=.67, SD=.16) for the posttest; this indicates
that there was likely some improvement from pretest to posttest and that the
items were generally solved correctly at above chance level (> .25 on items with
4 multiple-choice options). Ideally the 2PL IRT item difficulty parameters
represent a range of difficulties so that the estimation of ability is accurate for

persons with a range of latent aptitude (see Table 2).

Table 2.
Psychometric item properties of LIACS software design test.

Pretest Posttest

CTT IRT CTT IRT
item p- Item-tot.al B o p- Item-tot.al B o

value correlation value correlation
1 .38 21 0.81 0.73 .49 26 0.08 0.63
2 72 27 -1.25 0.83 .74 .39 -1.02 1.29
3 .63 23 -0.66 085 .70 .07 -439 0.19
4 .69 42 -0.27 416 .57 .35 0.55 0.62
5 71 .19 -0.56 10.75 .74 31 -1.31 0.90
6 .57 31 -0.67 041 .86 36 -1.77 1.32
7 .63 .18 -2.81 0.28 42 .25 -0.31 1.07
8 .80 20 -6.48 0.18 .62 .16 -1.41 0.89
9 61 25 0.53 0.56 .85 .20 -3.85 0.51
10 74 32 3.00 015 .54 .16 -1.00 1.41
11 .68 24 -2.61 029 .70 25 530 0.21
12 .65 23 1.18 0.30 .78 37 -1.19 1.36
13 44 A7 -6.23 -0.23 .87 17 -1.17 1.39
14 77 .15 -297 048 .75 32 -1.40 0.37
15 .68 .07 -0.47 030 .25 .10 -0.72 1.61
16 .39 .18 -1.74 0.64 .74 .36 -0.33 0.46
17 42 -.10 -1.03 043 .77 37 -3.07 0.62
18 .19 .16 -1.29 0.62 .77 34 -1.53 0.60
19 .54 .05 -1.18 052 .70 41 -1.36 1.16
20 30 21 -8.60 -0.10 .50 .14 -0.03 0.37

* p<.05, ** p<.01

Item discrimination for CTT is represented by the item-total correlation. A
rule-of-thumb in psychometrics is to discard items with an item-total correlation
of less than .20. As can be seen in Table 2 nine items in the pretest and six items
in the posttest meet this criterion. In the 2PL IRT model the item discrimination
index is related to the range of test scores for which the item discriminates best

between test-takers; higher values indicate greater discrimination and those

near zero (a<|.20|) yield little to no information on the test-taker's ability and
should be discarded (see Table 2). Based on these values it is advisable to revise
items 8, 10 and 20 from the pretest and item 3 from the posttest. It is important
to note for analyses presented in section 3.2.2 that items 8, 10 and 20 each
measure understanding of the concept separation of concerns.

Reliability, i.e. “..the extent to which differences in respondents’ observed
scores are consistent with differences in their true scores” (Furr & Bacharach,
2014, p. 103), was determined using Cronbach's alpha coefficient of internal
consistency; for the 20 item scale at pretest this was a=.60 and at posttest a=.69.
These reliabilities are considered acceptable[23].

Construct validity, i.e. “..the degree to which test scores can be
interpreted as reflecting a particular psychological construct” (Furr & Bacharach,
2014, p. 201), was determined by computing the correlation between posttest
IRT scale scores and the students' scores on the software design course final
exams. The resulting Pearson's (r=.26, p=.06) for the students from Utrecht who
completed both the posttest and the final exam (N=55) is in the expected positive
direction and considered weak; this provides some evidence that similar
constructs were measured by the LIACS software design test and the respective
course exams.

3.2.2. UML Domain Knowledge Quiz

Item difficulty ranged from .00 to .77 (M=.37, SD=.21). Reliability based on
Cronbach's alpha coefficient of internal consistency was a=.69 and is considered
good[23]. Table 3 provides an overview of the CTT and IRT item properties.
Based on these results it is advisable to remove or revise item 13 as no one
solved this correctly and also to revise items 1, 5-7, 11 and 20 given the low

item-total correlations.

Table 3.
Psychometric item properties of UML domain knowledge quiz.

CTT IRT

. Item-total "
item pvalue o elation b “

1 .08 .02 2.34 1.25
2 .64 .56 -0.54 1.25
3 .68 .58 -0.73 1.25
4 47 40 0.18 1.25
5 .18 .15 1.52 1.25
6 .18 .08 1.54 1.25
7 23 15 1.23 1.25
8 17 22 1.60 1.25
9 .38 40 0.58 1.25
10 .29 .30 0.93 1.25
11 .15 .19 1.76 1.25
12 17 .20 1.62 1.25
13 .00 .00 10.07 1.25
14 77 .57 -1.19 1.25
15 40 41 0.48 1.25
16 .52 46 -0.03 1.25
17 .39 40 0.51 1.25
18 .59 .59 -0.32 1.25
19 .50 49 0.07 1.25
20 13 .05 1.88 1.25
21 .60 .58 -0.38 1.25
22 29 22 0.95 1.25

* The best IRT model for the UML quiz is a special case of the 2PL model, i.e. the
Rasch (1PL) model with the same a value for all items.

3.2. Performance on the LIACS software design test

This was investigated using explanatory IRT[18] analyses where item responses
(Ypi) for person p on item i on the LIACS Software design ability test was the
dependent variable and j variables were evaluated as predictors (X) using the
following regression model:

o Ce1 BiXpij+0p+B0)

P(Y, = 1|X,i1,0:) =
(pl | Py pi) 1+e(2§=13jxpij+9p+ﬁi)
where 8,~N(0, 0¢?) and Bi~N(0, 0g2) (2)

The resulting regression weights (B) for the person predictors (abstract

reasoning, domain knowledge) and item predictors (measured concepts:

separation of concerns, cohesion & coupling, maintenance, reuse, dependency)

are shown in Table 4. The results of this model are discussed per preditor type

(persons, items) in the following two sections.

Table 4.

Results of the explanatory item response model evaluating item predictors
(measured concepts: separation of concerns, cohesion & coupling, maintenance,
reuse, dependency) and person predictors (abstract reasoning, domain
knowledge, pretest-to-posttest change). Main item effects were evaluated with
the pretest as reference time point.

Predictor B SE p lower bound upper bound
Intercept (overall mean) -0.02 0.41 97 -0.42 0.39
Main effects item predictors

separation of concerns -0.23 0.30 44 -0.53 0.07
cohesion & coupling -0.04 0.28 .88 -0.32 0.23
maintenance -0.71 0.30 .02 -1.02 -0.41
reuse -1.23 0.28 <.001 -1.50 -0.95
dependency -0.17 0.33 .60 -0.50 0.16
Main effects person predictors

post-pre 0.23 0.36 .53 -0.13 0.59
abstract reasoning 0.08 0.02 <.001 0.06 0.10
domain knowledge 0.23 0.06 <.001 0.17 0.29
Interaction effects item predictors with pretest-to-posttest change

separation of concerns X post-pre -1.02 0.19 <.001 -1.20 -0.83
cohesion & coupling X post-pre -0.29 0.18 11 -0.46 -0.11
maintenance X post-pre 0.95 0.19 <.001 0.76 1.15
reuse X post-pre 0.88 0.17 <.001 0.71 1.06
dependency X post-pre -0.54 0.21 .01 -0.75 -0.33
Interaction effects person predictors with pretest-to-posttest change

abstract reasoning X post-pre 0.02 0.02 29 0.00 0.05
domain knowledge X post-pre -0.15 0.08 .06 -0.23 -0.07

3.2.1. Role of abstract reasoning and domain knowledge in learning software
design

The main research question was whether abstract reasoning and domain
knowledge were able to predict initial ability and learning of software design.
The results of the statistical model (see Table 4) showed that the chance of
solving an item correctly generally improved from pretest to posttest for a
student with average abstract reasoning skills and domain knowledge. Domain
knowledge was a significant predictor of pretest performance (B=0.23, SE=0.06,
p<.001) and a marginal predictor of improvement from pretest to posttest (B=-
0.15, SE=0.08, p=.06); see Figure 3. Abstract reasoning was a significant
predictor of pretest performance (B=0.08, SE=0.02, p<.001), but did not predict
performance change over time (B=0.02, SE=0.02, p=.06); see Figure 4.

1
0,9
H led
Domain Knowledge
_ 08 ° e g
=2 ” - &= |ow
(=) P
* 07 -z e
! ”
7 o high
' 4
0,6
0,5
pretest posttest

Figure 3. Domain knowledge (low = -2 SD, avg = Mean and high = +2 SD)
significantly influenced the chance of solving LIACS software design test items
correctly (y-axis) on the pretest and showed a marginal effect in predicting
improvement from pretest to posttest (x-axis). Students with low domain
knowledge generally performed less well on the software design test, whereas
those with higher domain knowledge performed better. The gap between
students with lower and higher domain knowledge decreased from pretest to
posttest after following a software engineering course.

1
0,9 ®
08 o Abstract Reasoning
% - 8= low
[°
0,7 — - —_ avg
- = o= high
l
0,6
0,5
pretest posttest

Figure 4. Abstract reasoning ability (low = -2 SD, avg = Mean and high = +2 SD)
significantly influenced the chance of solving LIACS software design test items
correctly (y-axis) on the pretest, but did not affect improvement from pretest to
posttest (x-axis). Students with low abstract reasoning ability generally
performed less well on the software design test, whereas those with higher
abstract reasoning ability performed better. The differences between students of
differing abstract reasoning ability did not change after following a software
engineering course, i.e. abstract reasoning ability did not predict learning from
before and after the course.

3.2.2. Performance per measured concept

The LIACS software design test contained items measuring five concepts:
separation of concerns, cohesion & coupling, maintainability, reuse and
dependency. The results are depicted in Figure 5. Items measuring
understanding of the concepts maintainability and reuse were significantly more
difficult than the average item (maintenance: B=-0.71, SE=0.30, p=.02; reuse: B=-
1.23, SE=0.28, p<.001), whereas separation of concerns, cohesion & coupling and
dependency were of average difficulty. Performance improvement from pretest to
posttest was significant (p<.05) for items measuring understanding of the
concepts maintainability and reuse (maintenance: B=0.95, SE=0.19, p=<.001;
reuse: B=0.88, SE=0.17, p<.001); however, for separation of concerns and
dependency there was a significant decline in performance from pretest to
posttest (separation of concerns: B=-1.02, SE=0.19, p<.001; dependency: B=-0.54,
SE=0.21, p<.01). There were no significant changes in performance on the items

measuring understanding of cohesion & coupling (B=-0.29, SE=0.18, p=.11).

1
0,9
0,8
0,7

= 0,6

=05

& 0,4
0,3
0,2
0,1

H pretest

posttest

Figure 5. The chance of solving an item correctly (y-axis) that measured a
particular concept (x-axis) on the LIACS software design test administered at
pretest (light gray columns) and posttest (dark gray columns). Results show that
items concerning the topics maintenance and reuse were more difficult on the
pretest than items measuring understanding of the concepts separation of
concerns, cohesion & coupling and dependency. Performance on items measuring
understanding of maintainability and reuse improved, but performance on items
measuring understanding of separation of concerns and dependency declined.
There was no change in performance on items measuring cohesion & coupling.
The presented model was computed with domain knowledge and abstract
reasoning fixed at average skill levels.

4. Discussion

The aim of the current study was to examine the role of domain knowledge and
abstract reasoning ability on undergraduate computer science students' software
design learning and ability. To this end, participants completed assessments of
(1) software design ability in which comparisons between and/or judgements of
changes to designs were assessed five concepts: separation of concerns, cohesion
& coupling, maintainability, reuse and dependency; (2) domain knowledge of the
syntax and semantics of the Unified Modeling Language (UML) commonly
utilized in software design; and (3) abstract reasoning ability. The software
design task was administered to first year computer science students before and
after a software engineering course. There were four main findings: (1) inital
software design ability was related to both abstract reasoning ability and domain
knowledge; (2) improvement in software design ability was somewhat related to
domain knowledge, but not to abstract reasoning skills; (3) the topics
maintenance and reuse were more difficult on the pretest than separation of
concerns, cohesion & coupling and dependency; and (4) understanding of the
concepts maintainability and reuse improved from pretest to posttest, but
performance on items measuring understanding of separation of concerns and

dependency declined. The discussion is organized along these findings.

4.1.Abstract reasoning and domain knowledge as predictors software
design ability and learning
The students' knowledge of the correct syntax and semantics of the Unified
Modeling Language (UML) was used as a proxy to measure their domain
knowledge in the field of software design. Based upon prior research on the
development of expertise[24] and the "knowledge is power" hypothesis[2] we
expected domain knowledge to play a role in both initial software design ability
as well as how much students learned about software design after following a
course in software engineering. Indeed UML knowledge was a predictor of both
initial software design skills as well as improvement from pretest to posttest.
This finding is in accordance with the findings of Bergensen et al. (2011) in the
domain of software programming where greater knowledge indicated better

programming skills in expert software developers.

Abstract reasoning ability, a main component of fluid intelligence, has
been postulated to be involved in all learning, especially novel tasks[25], [26].
Therefore, we expected the initial ability and learning of software design of the
undergraduate computer science students in our study also to be related to their
performance on the Raven's Advanced Progressive matrices - a measure of fluid
intelligence. Indeed our results showed that initial understanding of software
design principles were significantly predicted by the students' abstract reasoning
ability. However, the students' learning from a course in software design as
measured by their change in performance on the LIACS software design test
administered before and after the course, was not related to their abstract
reasoning ability. Perhaps the effect of abstract reasoning, which is a construct
similar to working memory, is also mediated by domain knowledge as was the
case in Bergensen et al.'s (2011) found that the predictive effect of working
memory on software programming skills in experts was mediated by domain
knowledge. Abstract reasoning is very similar if not the same construct as
working memory[13]-[15]; therefore perhaps domain knowledge also functions
as a mediator in the prediction of software design skills learning - i.e., those with
better abstract reasoning likely have greater domain knowledge and show the
most growth in software design performance. In our statistical model we
included abstract reasoning and domain knowledge as predictors at the same
level, if domain knowledge is a mediator this could remove evidence the
influence of abstract reasoning; future investigations should focus on whether
domain knowledge mediates the relationship between abstract reasoning and

the learning of software design principles.

4.2.Understanding of measured software design concepts

On the whole the students performed quite well on the LIACS software design
test, with approximately 60% chance of solving pretest items correctly and a
70% chance on the posttest - thus on the whole showing significant
improvement from pretest to posttest. Students appeared to know more about
the design concepts separation of concerns, cohesion & coupling and dependency
during the pretest than the topics maintenance and reuse. However, the most

improvement from pretest to posttest was on these two more difficult topics;

this is most likely because of the relatively high chance of solving items on the
other three topics correctly - there may have been less room to improve on these
particular topics. Strangely, performance on items measuring understanding of
separation of concerns and dependency declined somewhat; this may be due to
problems with the items measuring these topics; the psychometric analyses of
the test indicate that nearly all of the items measuring separation of concerns
should be revised. On the whole our results provide insight into which topics
students mastered both before and after the course. In the future administering
the LIACS software design test may be helpful for educators so that content can
be tailored to the knowledge and skills the students already possess as well as

evaluate how effective teaching of particular topics has been.

4.3. Limitations

Some limitations of this study deserve mention and can be informative for future
research. First, domain knowledge in the form of a UML quiz was only assessed
at pretest. In future research this task should also be administered at posttest in
order to (1) assess gains in domain knowledge as a consquence of the course and
(2) examine whether the mediating role of domain knowledge on the students'
design ability changes during the learning process - a specific prediction of
Ackerman's (1998) theory of how skills develop[9].

Second, the instruments we used to assess software design ability and
domain knowledge (UML) were created specifically for this study and require
further development and evaluation before assuming their reliability and
validity. The reliability of these measures were addressed using psychometric
classical test theory and item response theory; however, certain revisions to the
items are warrented given their low correlation with other related items and/or
lack of fit in the item response measurement model. The construct validity was
examined by computing correlations with course grades; the moderate
correlation indicated that the software design skills test indeed measures a
similar construct to the software engineering course exams at both universities.

A third limitation was that we did not account for the role of experience in
the students' ability to learn software design. Experience is a good predictor of

expertise in novices[1] and likely strongly related to both domain knowledge and

initial software design ability as appears to be the case with software
programming [12]. A fourth and final limitation to overcome in future research is
the inclusion of a control group. By including a control group we can control for
the effect of retesting when measuring learning in a pretest-intervention-

posttest design.

4.4. Conclusions & Future Directions

Based on this study we can conclude that both domain knowledge and abstract
reasoning are key predictors of students' software design ability. Domain
knowledge in particular predicts how much students learn from a software
design course. Perhaps increasing students' knowledge of UML may improve
their chances of learning from a software design course. In the future the
effectiveness of improving domain knowledge on course or training outcomes
should be investigated.

The present study focused on undergraduate students performance
before and after a course on software design; it woud be of particular interest to
use the LIACS software design test to examine the performance of complete
novices (e.g, psychology students) and undergraduate computer science

students before and after following training in software design[27].

5. Acknowledgements

This project was conducted under the supervision of prof. dr. Michel Chaudron
and PhD candidate Dave Stikkelorum. Dave conducted nearly all of the data
collection for this project and has published a paper on this topic[19]. | am very
grateful for the opportunity to collaborate with these researchers on such an
interesting project that in addition to completing my computer science study also
spans my interests and expertise developed as a researcher in developmental

and educational psychology.

6. References

[1] S.Sonnentag, C. Niessen, and J. Volmer, “Expertise in software design,” in
The Cambridge handbook of expertise and expert performance, no. 1981,
2006, pp. 373-387.

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

D. Z. Hambrick and R. W. Engle, “Effects of domain knowledge, working
memory capacity, and age on cognitive performance: an investigation of
the knowledge-is-power hypothesis.,” Cogn. Psychol., vol. 44, no. 4, pp.
339-87, Jun. 2002.

R. B. Cattell, Intelligence: its Structure, Growth and Action: its Structure,
Growth and Action. New York, New York, USA: Elsevier, 1987.

J. R. Anderson, “Skill acquisition: Compilation of weak-method problem
situations.,” Psychol. Rev., vol. 94, no. 2, pp. 192-210, 1987.

P. L. Ackerman, “New Developments in Understanding Skilled
Performance,” Curr. Dir. Psychol. Sci., vol. 16, no. 5, pp. 235-239, Oct. 2007.

K. Siau and X. Tan, “Improving the quality of conceptual modeling using
cognitive mapping techniques,” Data Knowl. Eng., vol. 55, no. 3, pp. 343-
365, Dec. 2005.

N. Bolloju and F. S. K. Leung, “Assisting novice analysts in developing
quality conceptual models with UML,” Commun. ACM, vol. 49, no. 7, pp.
108-112, 2006.

J. Kramer, “Is abstraction the key to computing?,” Commun. ACM, vol. 50,
no. 4, pp. 36-42, Apr. 2007.

P. L. Ackerman, “Determinants of individual differences during skill
acquisition: Cognitive abilities and information processing.,” J. Exp. Psychol.
Gen.,vol. 117, no. 3, pp. 288-318, 1988.

V.]. Shute, “Who is Likely to Acquire Programming Skills?,” Journal of
Educational Computing Research, vol. 7. pp. 1-24, 1995.

W. W. Wittmann and H.-M. Suf3, “Investigating the paths between working
memory, intelligence, knowledge, and complex problem-solving
performances via Brunswik symmetry.,” in Learning and individual
differences: Process, trait, and content determinants., P. L. Ackerman, P. C.
Kyllonen, and R. D. Roberts, Eds. Washington, D.C.: APA, 1999, pp. 77-108.

G. R. Bergersen and J.-E. Gustafsson, “Programming Skill, Knowledge, and
Working Memory Among Professional Software Developers from an
Investment Theory Perspective,” J. Individ. Differ., vol. 32, no. 1987, pp.
201-209, 2011.

P. L. Ackerman, M. E. Beier, and M. O. Boyle, “Working Memory and
Intelligence : The Same or Different Constructs ?,” vol. 131, no. 1, pp. 30-
60, 2005.

M. Buehner, S. Krumm, and M. Pick, “Reasoning = working memoryp
attention,” vol. 33, pp. 251-272, 2005.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. Colom, 1. Rebollo, A. Palacios, M. Juan-espinosa, and P. C. Kyllonen,
“Working memory is (almost) perfectly predicted by g,” vol. 32, pp. 277-
296, 2004.

E. Arisholm and D. I. K. Sjoberg, “Evaluating the effect of a delegated versus
centralized control style on the maintainability of object-oriented
software,” IEEE Trans. Softw. Eng., vol. 30, no. 8, pp. 521-534, Aug. 2004.

D. R. Stikkolorum, C. E. Stevenson, and M. R. V Chaudron, “Technical report
2013-02,” Leiden, The Netherlands, 2013.

P. A. L. De Boeck and M. Wilson, Explanatory item response models: A
generalized linear and nonlinear approach. New York, New York, USA:
Springer, 2004.

D. R. Stikkolorum, C. E. Stevenson, and M. R. V Chaudron, “Assessing
Software Design Skills and Their Relation With Reasoning Skills,” in
EduSymp@ MoDELS, 2013, pp. 1-8.

J. Raven,]. C. Raven, and J. H. Court, Manual for Raven’s Progressive Matrices
and Vocabulary Scales. Section 4: The Advanced Progressive Matrices. San
Antonion, TX: Harcourt Assessment, 1998.

D. A. Bors and T. L. Stokes, “Raven’s Advanced Progressive Matrices:
Norms for First-Year University Students and the Development of a Short
Form,” Educ. Psychol. Meas., vol. 58, no. 3, pp. 382-398, Jun. 1998.

S. E. Embretson and S. Reise, Item response theory for psychologists.
Mahwah, NJ: Erlbaum Publishers., 2000.

R. M. Furr and V. R. Bacharach, Psychometrics An Introduction, 2nd ed.
London: SAGE, 2014, p. 442.

K. A. Ericsson, N. Charness, P. |. Feltovich, and R. R. Hoffman, Handbook of
Expertise. London: Cambridge University Press, 2006.

M. C. Voelkle, W. W. Wittmann, and P. L. Ackerman, “Abilities and skill
acquisition: A latent growth curve approach,” Learn. Individ. Differ., vol. 16,
no. 4, pp. 303-319, Jan. 2006.

R. Primi, M. E. Ferrdo, and L. S. Almeida, “Fluid intelligence as a predictor of
learning: A longitudinal multilevel approach applied to math,” Learn.
Individ. Differ., vol. 20, no. 5, pp. 446-451, Oct. 2010.

D. R. Stikkolorum, M. R. V. Chaudron, and O. de Bruin, “The Art of Software
Design, a Video Game for Learning Software Design Principles,” in Models
2012,2012.

Appendix A: Software Design Skills Questions

Class A

Item: Content Concepts
solution
1: 15 Reuse,
Consider the design below:
B Dependency
Class A Class B
1f we want to reuse Class B we:
Choose one of the following answers
() have to change Class A Please enter your comment here:
() also need to use Class A
() do not need to use Class A
() need to inherit from A
2: 18 Dependency
Consider the design below:
C

Class B

If we change Class B, we:

Choose one of the following answers

(0 need to change Class A

O need to inherit from A

7 do not need to change Class A

7 can not do that, because B uses A

Please enter your comment here:

1

==
i
SomingeMonager |

Conflguratar WMLParsar

2nges in Packags

Suppase th
an attributs

Then ...
Choose one of the following answers

7y it requires 2 change in 'Editer”, because it uses a class from 'Settingsmanager'. The use of this class propagates changes
= in 'Settingsmanager' to all classes in 'Editor’,

(7) it requiras 2 change in Editor because it uses XMLParser. And XMLParser is used by 'Configurator’
(@) it does not require a change, because 'Configurater’ has no impact on "XMLParser',

") it requires 2 change in "XMLConverter', because XMLParser would be affected.

Dependency

=18
Caonsider the design below:
A

If package A depends on package B, and a change is performed in a class of package B, then:

Choose one of the following answers

() changes in one package never affect other packages (separation of concerns)

() itis always necessary to check all classes in package A whether they need to be changed
accordingly to the change in B.

© it is always necessary to change at least one class in package A

() only if the change in B affects the interface it offers to package A, do we need to check whether
A also needs to be changed.

Dependency

5: °15 Dependency
Consider the design below:
B
A B C
— -) - —) _ *
If B changes :
Choose one of the following answers
() Then A, C and D must also change. Please enter your comment here:
) Only A may change.
7 Both A and C must change.
) C and D must change.
. =20 .
6' Consider the 2 designs of the same system below: Malntenance
Customer
C Customer Shopinterface B
Webshop Webshop
Catalogue Shuélnterhce
DeliverySe [Catalogue |
rvice
‘ DeliverySe ‘
rvice
Product
P
1f we change Class B, we:
Choose one of the following answers
() Ais a better design, because interfacing dlasses should only exists outside packages
(7) Both Design A and B are equally good considering maintaince
(7 Bis a better design, because the number of points of entries to the package is lowered by making the interfacing
classes part of the package.
() Both are bad designs because they introduce an extra indirection .
7: *21 Dependency

Caonsider the design below:

ra

(5|

E 1

-=>

"]

If C changes :

Choose one of the following answers

) Then A, B and D may have to change also.
) Only B may have to change.

") Both A and B may have to change.

) D may need to change.

Please enter your comment herg

51

*22
Consider the design below:

Separation of

concerns
" Account
Person 1.2 3 balance
name
give_personal_info() hisa
In a banking system a person's account balance is stored. The operation 'procesPayment()’,
that lowers the balance has to be added. Which class does this operation belong to?
Choose one of the following answers
) In class Person Please enter your comment here:
) In both classes
() Neither, Person can approach balance
) In class Account
) -
Belan are tus Gesigrs o e same system, The Operatar Rardles method-rmgumsts for Coupllng /
the cliznts classes instead of directly {as in Design 1).
Cohesion,

Client classes

Subsystem classes

Design 1

What iz true about using this ‘Operater’ in Design 27

Chzoze onz of the following snswers
Itis & bad ides, conzidering separation of concems,
(0 Itis a good idea, but it increases coupling,
@ Itis good idea, it hides information from the clients.

Itis 2 bad idea, because is costs an extra class,

["Planning |

[ProductSupport |

Design 2

Separation of

concerns

Which de=ign ix the =aziest t> maintain?
Choosz on of the following answers
(@) Design 1, because there is low coupling between the packages and high cohesion within the packages
() Design 2, because there is no coupling of packages and average cohesion,
() Design 2, because there is high coupling between the packages and average cohesion within the packages.

() Design 4, because there is high cohesion in the packages and average coupling between the packages,

10: 4 , Separation of
Conzider the designs of the same syst=m below:
B concerns
o Madam g Modem
Dialf)
Hangup)
Send)
Receval)
DataChannel Connection
Send|) Dial{)
Receivell Hanglipi}
9]
Madem
Madam
Connecti)
ExchangeData)
DataSender DataReceiver Connectar Exiter
Sandl) Recaival) Diali) HangUpd)
Which cne is a better design, considering assignment of responsibility?
Cheoze one of the following answers
(7) Design A, because the system is too small to split up in different classes with different respansibilities,
(@) Design B, because operations that are part of the same task are combined to a responsibility,
(7) Design C, because every aperation is 2 respansibility,
(7) Design D, because it is necessary to reduce the amount of operations in a class, not the respansibility,
11: = Couplin
Consider the designs for the same system below: p g /
A Cohesion,
1| pee - 2 Maintenance
- |
. Aartan - -
s = =] —
s | 1 ve =]
4 B
g i
L
=]

Coupling /

~26
Dezign 1 ard 2 reprasect possible desigrs far the zame system. In d=sign 2 Class A1 =n A2 together have the sams funclion a= Clazz & in d=sign 1. Wh

cohesion,

Dependency

Design 1 Design 2

A
operationli) operationl()

operation2()

| & |
operation3()

B
operation3()
AZ C
< operation2() operationd()
operationdi)

Choose one of the following answers
(7 Design 1, considering loose coupling.
(7) Design 1, because it has less associations.
() Design 2, because it brakes circular dependency

| Design 2, because it is more tight coupled.

| Both bad design , because of to many dependencies
|

Maintenance

27
Dezign 1 and 2 represent possible designs for the same system. Suppose the price for a mowvie ¢

Which one iz the preferrable design?

Design 1 Design 2
Movie has [Price |

tith
N == s b

tithe

length

seralnumber

Customer
rents name
| Movieltem) Kustomer
—

serialnumber

Choose one of the following answers
©) Design 1

D) Design 2

) One is not better than the other.
Reuse

14:

=28
Consider the design below:

A

Translatar

=<|ntaifaces>
Outputlanguage

' i
T 5 ==liatfaces=
i o InputLanguage
%It?]
| Duteh English

Design B has interfaces, that design A does not have. This ...

Choose one of the following answers
(@) makes translator zzsier to reuse
(7) makes translator more difficult to reuse

(7) makes no difference with a concerning reuse

() mzkes translator more dependent of Dutch and English

-29 :
& patiznt comes o the sdministration of a haspital. The administration calls the doctor for 3 examination. The dector diagneses and calls the nursz to maks Separatlon of
Becauss be has iz stay svar,

; " concerns,
Design 1 Design 2
coupling /

L cohesion

‘Which diagram is a better design?

Choose one of the following answers

Design 1 is a better design, because it has low coupling, In design 2 the coupling is high,

Design 1 is 2 better design, baczuse the classes correspand to 2 proces arder, thus easier to understand,

(@) Design 2 is a better design, beczuse the responsibility of controling the proces can be implementad in 2 single place:
= Administration,

(7) Design 2 is 3 better design, beczusz of low coupling,

50

Reuse,

The Scaigen Bolow nepreacnl alisrnalive Scsign of B asms xraiem.

1 - e— N E— maintenance

[St | [e I |
| '

T =3

L) Feoarayer

1o tia soaiee we uar srushieg 2nE mhamas 23 ez foe sushly o dmmge
i st i T
Chezar zmz =t B el 2mrweea

Elaags anar VOUT COMITANT Nare;

() & 15 the nest cesign.

€ Is the best design.

& and 8 are aquaily gaod

1
Conmdicr B Scagm Bolcw:
2
it -
= i e
TR |
:]
et
| russien)
—=¢
c

aTriETaoR > J= =
acthatel) umen

- Laaer |

murrems oo wanla T 20 B frageent Bolow.

SwitchButicn
switchi)

1m ok ofTeT Szmgem s eafezgeielis sISmd wiIulsamgies BT fammma ot T aegmal GImge 2o TrIameus —aelzesdll of 2 dzmaet
rzzae ez =t e fellzwng 2eanmen

Plaass anter your comiment hers:

Maintenance,
separation of

concerns

L [y |
shemTmel
shawSongl) T
Py Rade |
et
heosef remsencyl)
o

P e Sananal)

Eozmoazees waela iz ezes samea st e of e demgea
al provide famcions s bes and Dming |
aitash s wedlE mat e el

] far @ miEEwE s TvEn.

Secas sos of B fllowing arawsra

Design & Bsaceamarvourcommembers:
() Designa
(&) pestanc

(@) oessano

Reuse

message : string
receiver : Employee

A

class Employee

name: string
address: string
date-of-birth: date
salary: number

message : string

receiver: Addressee

L 4

class Addressee

GetName(): string

GetAddress(): string

class Employee

salary: number

date-of-birth: date

Thesz anr= designs for sending mails to large groups of employees.

Q: which de=ign is better [l=ft - &, right: B)?

Choose one of the followiing amswers

@ A because it has better cohesion of attributes in Emplayee

(7) B because the use of inheritance make the design easy to extend

(71 A becauseitis more reuszble

") B because class Addressee pravents direct access of Emailer to class Employee

19: 33 Maintanence
Consider the design below:
A Public Transport System Credit
amaunt
CardMachine Products
Trevnlar JoadCredit) credt
makeChaice() howProducts() subscription
payl} showTravelHistoryi) daytickets
useCardReader) loadOrden) discounts
tenRideTickets
TravelHistory
PaymentType T
ChipCard time
credit station
cardid startCradit
customerhame endCredit
dayOfBirth BankCard Coin
Order
travelProduct
Suppose this is a final design:
Errars that have been made are:
Choose one of the following answers
@) vrong classes are associated
() vrong use of inheritance
(©) poor choice of classnames
() coupling of class 'Traveler' is too high
. -34
20' Consider the designs below - Reuse’
D A B separation of
class Emailer class Emailer concerns

Appendix B UML knowledge quiz

1 *2 A class diagram can be used to model following things except
Choose one of the following answers
interaction between entities
@ implementation of entities
states and behavior of entities
relationships between entities
2 *9 Which symbol specifies the visiability of a ... class member?
to Public Private Protected Package Derived Static
= 1
!
+
not shown
8 #10 Which instance level relationship is represented in each of the following diagrams?
to Unidirectional Reflexive
Association Aggregation Composition Association
11 Class Ake——{Class B
Class A Class B
Class Ajf#»——Class B
Class A———(]Class B
Class A<} - - - {Class B
Class A Class B

not shown

12

*11 How are instances depicted?
Choose one of the following answers

7 =« instance ==
") instance
) instance

" instance

13

*12 Which of the following diagrams represents a relationship between Class A and Class B where A depends on B
at a certain point during software execution?
Choose one of the following answers

Class Ak<>——Class B

Class Ak} - - - {Class B

“lclass Al——— Class B

7 other
@) Other:
14 Parson Address
Nama Streat
to Phone Number 0.1 r—— , |City
Email Addrass Stata
22 Postal Coda
Purchase Parking Pass Country
i Validate
Cutput As Label
Student Profassos
Studant Number Salary

Average Mark

Is Eligible To Enrall
Get Seminars Taken

Which Which is
isa Which is a Whichis Whichisa1 Whichisan an Whichisa1l Whichisa Whichis
class bidirectional a class ton inheritance abstract to 1l class a

name? association? method? association? association? class? association? attribute? subtype?
Persan F
Validate
Salary

Is Eligable
to Enroll

Person
Address
association

Student
Person
association

not shown
in diagram

other

