

Universiteit Leiden

Opleiding Informatica

Learning software design: Is abstraction ability key?

Name: Claire E. Stevenson
Date: 20/03/2015

1st supervisor: Prof. dr. Michel R.V. Chaudron
2nd supervisor: Dave Stikkelorum, MSc.

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

This study examined the role of domain knowledge and abstract reasoning

ability on undergraduate computer science students' software design learning

and ability using the LIACS software design test. The study comprised a pretest-

posttest design. Participants (N=151) were administered pretests that measured

(1) software design skills on topics separation of concerns, cohesion & coupling,

maintenance, reuse and dependency; (2) domain knowledge (UML); and (3)

abstract reasoning ability respectively. During posttest the LIACS software

design test was administerd again; this was conducted after the students

followed an undergraduate software engineering course. We found that inital

software design ability was related to both abstract reasoning ability and domain

knowledge; however, improvement in software design ability was somewhat

related to domain knowledge, but not to abstract reasoning skills. More

specifically with regard to the topics measured we found that maintenance and

reuse were the most difficult pretest topics, but also showed the greatest

improvement from pretest to posttest. In the future administering the LIACS

software design test may be helpful for educators so that content can be tailored

to the knowledge and skills the students already possess as well as evaluate how

effective teaching of particular topics has been. Future research should

investigate whether increasing students' knowledge of UML improves their

chances of learning from a software design course.

1. Introduction

Software plays an essential role in our daily lives; from cell phones to kitchen

appliances, and from furniture production to writing a paper. In order to create

excellent software it must be well designed and good software designers are

needed to avoid the high costs of software maintenance and error fixing.

Software design "aims at the description of the basic features of the future

computer system and prescribes the functions the system should perform" (p.

373)[1]. The question this paper explores is which factors influence ability and

learning of software design in novices.

 The two cognitive factors we investigated were fluid intelligence (i.e.,

abstract reasoning) and domain knowledge, both of which are related to problem

solving skills and the development of expertise in a plethora of domains such as

chess, computer programming or knowledge of baseball [2]–[5]. As Siau & Tan

(2005) indicate in their review of human cognition factors that play a role in

conceptual modeling for software design, domain knowledge and abstract

reasoning ability are considered important aspects that play a role at level of the

individual software designer[6]. However, this has yet to be investigated in the

domain of software design ability. Evidence is provided by Leung & Bollejou

(2006) based on their empirical study of design errors of novice analysts; they

defined a set of frequent (syntactic and semantic) errors that were thought to be

due deficits in one or more cognitive factors[7]. For example, syntactic errors

could be caused by insufficient domain knowledge of UML notation whereas

semantic errors may be due to inaccuracies in abstract reasoning and/or

working memory constraints.

 Kramer (2007) poses the question why some software engineers are able

to design clear and eloquent systems while others, with similar education and

conceptual modeling tools, are not; he argues that abstraction ability is key[8].

Abstraction is the ability to solve novel problems often measured by intelligence

tests such as the Raven Progressive Matrices (RPM) that require one to complete

visual patterns by inducing abstract rules. In research on the development of

expertise abstract reasoning ability is said to plays an important role with regard

to a person's initial skill level and is also required for the first cognitive phase of

skill acquisition[9].

 Working memory, defined as the ability to process, store and retrieve

information, also appears to be a factor predicting the acquisition of software

development skills[6], [10]–[12]. However, working memory is strongly linked to

abstract reasoning ability and some researchers argue that these two

psychological constructs may be one and the same [13]–[15]. Given the

similarities between working memory and abstract reasoning as well as the

advice of Bergersen and colleagues (2011) to include a more pure measure of g

(i.e., general intelligence often indictaed a abstract reasoning ability) such as the

Raven's Advanced Progressive Matrices (RAPM) to examine person factors

influencing software development skills, we chose to use only RAPM in this

study.

 Domain knowledge is considered a main driving force behind skill

acquisition - often referred to as the 'knowledge is power' hypothesis[2]. A few

studies have found a relationship between software programming skills and

prior experience[4], [16]. Bergersen et al. (2011) determined that domain

knowledge was the underlying (i.e. mediating) source in this relationship - where

people with more experience inherently have greater domain knowledge and

thus perform better on software programming measures[12]. Indeed, domain

knowledge showed a strong relationship with programming skills.

 In the present study we examined how domain knowledge and abstract

reasoning ability relate to students software design ability before and after a

software engineering course. UML (Unified Modeling Language) is the current

standard for visual abstract software design. For this reason we specifically focus

on UML design ability and use the LIACS UML design skills test developed by

Stikkelorum and colleagues (2013)[17]. By analyzing students performance and

change on five item categories using statistical modeling techniques from item

response theory (IRT)[18] we aimed to answer questions about the role of

domain knowledge and abstract reasoning ability on: (1) initial performance on a

software design test and (2) learning from a course on software design as

measured by improvement on the LIACS software design test. In short, is

abstract reasoning ability really the key predictor of which students can learn to

design software or is "knowledge is power" and thus domain knowledge the

driving force? Based on prior research in expertise development we expect

abstract reasoning ability to play the largest role in novice software designer's

initial ability, whereas domain knowledge is expected to predict both initial

ability and performance change.

2. Method

2.1. Participants

This study included 274 first year software engineering students (93% male)

recruited from two university courses; one in Gothenburg, Sweden and the other

in Utrecht, The Netherlands. Participants agreed to participation through an

online informed consent form prior to completing the pretest. 248 students

completed all pretest assessments and 151 students completed the posttest

assessment.

2.2. Design & Procedure

The study comprised a pretest-posttest design. Each participant was

administered three pretest assessments that measured (1) design skills, (2)

domain knowledge and (3) abstract reasoning ability respectively. The posttest

was conducted after the students followed a freshman undergraduate software

engineering course at his/her university. The posttest consisted of the same

software design skills task (assessment 1) administered at pretest.

2.3. Materials

2.3.1. LIACS Software Design Skills test

The LIACS Software Design test utilized in this study comprised 20 multiple-

choice questions assessing the understanding of software design concepts[19].

The main concepts measured were design principles (separation of concerns,

cohesion & coupling), quality (maintainability, reuse) and architecture

(dependency); see Table 1 for an overview of which concepts were assessed per

item. The items generally consisted of an example design and a question about

consequences of changes in the design and/or a comparison of the quality two or

more designs; see Figure 1 for an example. A complete list of the items including

solutions and main measured concepts can be found in Appendix A. The designs

were presented in Unified Modeling Language (UML1); this popular modeling

language was chosen as it is used in the students' courses on software design.

Table 1.
Concepts measured per item from LIACS Design Skills test.
Item Separation of

concerns
Cohesion &

coupling
Maintenance Reuse Dependency

1 X X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X X
12 X X
13 X
14 X
15 X X
16 X X
17 X X
18 X
19 X
20 X X

Figure 1. Example item from LIACS Design Skills test.

The initial version of this test comprised 10 items that were evaluated by experts

according to criteria of clarity, complexity and difficulty level and piloted in a

1
 http://www.uml.org

population of 60 first year university computer science students; a quantitative

validation of the test items can be found in Stikkelorum et al. (2013)[17]. These

items formed the basis for the items used in the present study. Additional items

were created and rated by experts. A quantitative evaluation of the psychometric

quality of the version of the items used in the present study can be found in

section 3.1 of this paper.

2.3.2. UML knowledge quiz

A UML knowledge quiz was created specifically for this experiment in order to

assess domain knowledge that formed a prerequisite for understanding and

correctly answering the diagrams used in the LIACS Software Design Skills test.

The quiz consisted of 22 items focusing on the syntax and semantics of the

Unified Modeling Language (UML). See Figure 2 for an example; the actual items

can be found in Appendix B.

Figure 2. Example item from the UML quiz used to measure domain knowledge.

2.3.3. Abstract Reasoning

A computerized short-form of the original Raven's Advanced Progressive

Matrices[20] was administered to measure non-verbal abstract reasoning. This

particular short form comprised the even items extracted from the original 36-

item RAPM. The RAPM is a visuospatial reasoning task often used to measure

fluid intelligence and requires participants to induce abstract rules and relations

between geometric figures presented in a 3x3 matrix to complete a visual

pattern by choosing among nine multiple-choice alternatives. Short forms of the

RAPM are used to reduce administration time without losing psychometric

properties or predictive validity[21].

3. Results

3.1. Psychometric properties of software design and domain knowledge

measures

Prior to examine the role of cognitive factors on the students' performance on

the LIACS software design test and UML domain knowledge quiz the

psychometric properties of these two new instruments were evaluated as

measurement scales using both classical test theory (CTT) and item response

(IRT) theory[22]. Both methods are used to evaluate test scores and item

responses. CTT is more commonly utilized as the metrics are relatively easy to

compute; however, IRT has distinct advantages such as being population

independent so that item difficulty and discrimination can be evaluated without

bias - important in the present situation as the population is rather specific with

limited differences in software design ability.

 According to CTT item difficulty is determined by the proportion correct

responses per item. Item discrimination represents how sensitive an item is to

actual differences between test-takers and is thus a means of examining an

item's impact on the internal consistency of a test. In CTT item discrimination is

represented by the point-biserial correlation between performance on a specific

item and the test as a whole. In IRT item difficulty and discrimination can be

computed using the two-parameter logistic (2PL) IRT model. In this IRT model

the chance that an item is solved correctly (i.e., y = 1) depends on the difference

between the latent ability (θ) of the test-taker p and the difficulty (β) and

discrimination (α) of item i:

𝑃(𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛽𝑖, 𝛼𝑖) =
𝑒(𝛼𝑖(𝜃𝑝−𝛽𝑖))

1 + 𝑒(𝛼𝑖(𝜃𝑝−𝛽𝑖))

where θp~N(0, σθ2), βi~N(0, σβ2), and αi~N(0, σα2) (1)

In this section we evaluate item difficulty and discrimination with both CTT and

IRT; furthermore, reliability and construct validity are addressed from the CTT

perspective.

3.2.1. LIACS Software Design Skills

Item difficulty (CTT, proportion correct) ranged from .19 to .80 (M=.58, SD=.17)

for the pretest and from .25 to .87 (M=.67, SD=.16) for the posttest; this indicates

that there was likely some improvement from pretest to posttest and that the

items were generally solved correctly at above chance level (> .25 on items with

4 multiple-choice options). Ideally the 2PL IRT item difficulty parameters

represent a range of difficulties so that the estimation of ability is accurate for

persons with a range of latent aptitude (see Table 2).

Table 2.
Psychometric item properties of LIACS software design test.
 Pretest Posttest
 CTT IRT CTT IRT

item
p-
value

Item-total
correlation

β α
p-
value

Item-total
correlation

β α

1 .38 .21 0.81 0.73 .49 .26 0.08 0.63
2 .72 .27 -1.25 0.83 .74 .39 -1.02 1.29
3 .63 .23 -0.66 0.85 .70 .07 -4.39 0.19
4 .69 .42 -0.27 4.16 .57 .35 0.55 0.62
5 .71 .19 -0.56 10.75 .74 .31 -1.31 0.90
6 .57 .31 -0.67 0.41 .86 .36 -1.77 1.32
7 .63 .18 -2.81 0.28 .42 .25 -0.31 1.07
8 .80 .20 -6.48 0.18 .62 .16 -1.41 0.89
9 .61 .25 0.53 0.56 .85 .20 -3.85 0.51
10 .74 .32 3.00 0.15 .54 .16 -1.00 1.41
11 .68 .24 -2.61 0.29 .70 .25 5.30 0.21
12 .65 .23 1.18 0.30 .78 .37 -1.19 1.36
13 .44 .17 -6.23 -0.23 .87 .17 -1.17 1.39
14 .77 .15 -2.97 0.48 .75 .32 -1.40 0.37
15 .68 .07 -0.47 0.30 .25 .10 -0.72 1.61
16 .39 .18 -1.74 0.64 .74 .36 -0.33 0.46
17 .42 -.10 -1.03 0.43 .77 .37 -3.07 0.62
18 .19 .16 -1.29 0.62 .77 .34 -1.53 0.60
19 .54 .05 -1.18 0.52 .70 .41 -1.36 1.16
20 .30 .21 -8.60 -0.10 .50 .14 -0.03 0.37

* p<.05, ** p<.01

Item discrimination for CTT is represented by the item-total correlation. A

rule-of-thumb in psychometrics is to discard items with an item-total correlation

of less than .20. As can be seen in Table 2 nine items in the pretest and six items

in the posttest meet this criterion. In the 2PL IRT model the item discrimination

index is related to the range of test scores for which the item discriminates best

between test-takers; higher values indicate greater discrimination and those

near zero (α<|.20|) yield little to no information on the test-taker's ability and

should be discarded (see Table 2). Based on these values it is advisable to revise

items 8, 10 and 20 from the pretest and item 3 from the posttest. It is important

to note for analyses presented in section 3.2.2 that items 8, 10 and 20 each

measure understanding of the concept separation of concerns.

 Reliability, i.e. “...the extent to which differences in respondents’ observed

scores are consistent with differences in their true scores” (Furr & Bacharach,

2014, p. 103), was determined using Cronbach's alpha coefficient of internal

consistency; for the 20 item scale at pretest this was α=.60 and at posttest α=.69.

These reliabilities are considered acceptable[23].

 Construct validity, i.e. “...the degree to which test scores can be

interpreted as reflecting a particular psychological construct” (Furr & Bacharach,

2014, p. 201), was determined by computing the correlation between posttest

IRT scale scores and the students' scores on the software design course final

exams. The resulting Pearson's (r=.26, p=.06) for the students from Utrecht who

completed both the posttest and the final exam (N=55) is in the expected positive

direction and considered weak; this provides some evidence that similar

constructs were measured by the LIACS software design test and the respective

course exams.

3.2.2. UML Domain Knowledge Quiz

Item difficulty ranged from .00 to .77 (M=.37, SD=.21). Reliability based on

Cronbach's alpha coefficient of internal consistency was α=.69 and is considered

good[23]. Table 3 provides an overview of the CTT and IRT item properties.

Based on these results it is advisable to remove or revise item 13 as no one

solved this correctly and also to revise items 1, 5-7, 11 and 20 given the low

item-total correlations.

Table 3.
Psychometric item properties of UML domain knowledge quiz.
 CTT IRT

item p-value
Item-total
correlation

β α*

1 .08 .02 2.34 1.25

2 .64 .56 -0.54 1.25

3 .68 .58 -0.73 1.25
4 .47 .40 0.18 1.25

5 .18 .15 1.52 1.25

6 .18 .08 1.54 1.25
7 .23 .15 1.23 1.25

8 .17 .22 1.60 1.25

9 .38 .40 0.58 1.25

10 .29 .30 0.93 1.25
11 .15 .19 1.76 1.25
12 .17 .20 1.62 1.25

13 .00 .00 10.07 1.25

14 .77 .57 -1.19 1.25
15 .40 .41 0.48 1.25
16 .52 .46 -0.03 1.25

17 .39 .40 0.51 1.25

18 .59 .59 -0.32 1.25

19 .50 .49 0.07 1.25

20 .13 .05 1.88 1.25
21 .60 .58 -0.38 1.25

22 .29 .22 0.95 1.25

* The best IRT model for the UML quiz is a special case of the 2PL model, i.e. the
Rasch (1PL) model with the same α value for all items.

3.2. Performance on the LIACS software design test

This was investigated using explanatory IRT[18] analyses where item responses

(Ypi) for person p on item i on the LIACS Software design ability test was the

dependent variable and j variables were evaluated as predictors (X) using the

following regression model:

𝑃(𝑌𝑝𝑖 = 1|𝑋𝑝𝑖𝑗, 𝛽𝑖) =
𝑒(

∑ 𝐵𝑗𝑋𝑝𝑖𝑗+𝜃𝑝+𝛽𝑖
𝐽
𝑗=1)

1 + 𝑒
(∑ 𝐵𝑗𝑋𝑝𝑖𝑗+𝜃𝑝+𝛽𝑖

𝐽
𝑗=1)

where θp~N(0, σθ2) and βi~N(0, σβ2) (2)

The resulting regression weights (B) for the person predictors (abstract

reasoning, domain knowledge) and item predictors (measured concepts:

separation of concerns, cohesion & coupling, maintenance, reuse, dependency)

are shown in Table 4. The results of this model are discussed per preditor type

(persons, items) in the following two sections.

Table 4.
Results of the explanatory item response model evaluating item predictors
(measured concepts: separation of concerns, cohesion & coupling, maintenance,
reuse, dependency) and person predictors (abstract reasoning, domain
knowledge, pretest-to-posttest change). Main item effects were evaluated with
the pretest as reference time point.
Predictor B SE p lower bound upper bound

Intercept (overall mean) -0.02 0.41 .97 -0.42 0.39
Main effects item predictors
separation of concerns -0.23 0.30 .44 -0.53 0.07
cohesion & coupling -0.04 0.28 .88 -0.32 0.23
maintenance -0.71 0.30 .02 -1.02 -0.41
reuse -1.23 0.28 <.001 -1.50 -0.95
dependency -0.17 0.33 .60 -0.50 0.16
Main effects person predictors
post-pre 0.23 0.36 .53 -0.13 0.59
abstract reasoning 0.08 0.02 <.001 0.06 0.10
domain knowledge 0.23 0.06 <.001 0.17 0.29
Interaction effects item predictors with pretest-to-posttest change
separation of concerns X post-pre -1.02 0.19 <.001 -1.20 -0.83
cohesion & coupling X post-pre -0.29 0.18 .11 -0.46 -0.11
maintenance X post-pre 0.95 0.19 <.001 0.76 1.15
reuse X post-pre 0.88 0.17 <.001 0.71 1.06
dependency X post-pre -0.54 0.21 .01 -0.75 -0.33
Interaction effects person predictors with pretest-to-posttest change
abstract reasoning X post-pre 0.02 0.02 .29 0.00 0.05
domain knowledge X post-pre -0.15 0.08 .06 -0.23 -0.07

3.2.1. Role of abstract reasoning and domain knowledge in learning software

design

The main research question was whether abstract reasoning and domain

knowledge were able to predict initial ability and learning of software design.

The results of the statistical model (see Table 4) showed that the chance of

solving an item correctly generally improved from pretest to posttest for a

student with average abstract reasoning skills and domain knowledge. Domain

knowledge was a significant predictor of pretest performance (B=0.23, SE=0.06,

p<.001) and a marginal predictor of improvement from pretest to posttest (B=-

0.15, SE=0.08, p=.06); see Figure 3. Abstract reasoning was a significant

predictor of pretest performance (B=0.08, SE=0.02, p<.001), but did not predict

performance change over time (B=0.02, SE=0.02, p=.06); see Figure 4.

Figure 3. Domain knowledge (low = -2 SD, avg = Mean and high = +2 SD)
significantly influenced the chance of solving LIACS software design test items
correctly (y-axis) on the pretest and showed a marginal effect in predicting
improvement from pretest to posttest (x-axis). Students with low domain
knowledge generally performed less well on the software design test, whereas
those with higher domain knowledge performed better. The gap between
students with lower and higher domain knowledge decreased from pretest to
posttest after following a software engineering course.

Figure 4. Abstract reasoning ability (low = -2 SD, avg = Mean and high = +2 SD)
significantly influenced the chance of solving LIACS software design test items
correctly (y-axis) on the pretest, but did not affect improvement from pretest to
posttest (x-axis). Students with low abstract reasoning ability generally
performed less well on the software design test, whereas those with higher
abstract reasoning ability performed better. The differences between students of
differing abstract reasoning ability did not change after following a software
engineering course, i.e. abstract reasoning ability did not predict learning from
before and after the course.

0,5

0,6

0,7

0,8

0,9

1

pretest posttest

P
(1

|θ
)

Domain Knowledge

low

avg

high

0,5

0,6

0,7

0,8

0,9

1

pretest posttest

P
(1

|θ
)

 Abstract Reasoning

low

avg

high

3.2.2. Performance per measured concept

The LIACS software design test contained items measuring five concepts:

separation of concerns, cohesion & coupling, maintainability, reuse and

dependency. The results are depicted in Figure 5. Items measuring

understanding of the concepts maintainability and reuse were significantly more

difficult than the average item (maintenance: B=-0.71, SE=0.30, p=.02; reuse: B=-

1.23, SE=0.28, p<.001), whereas separation of concerns, cohesion & coupling and

dependency were of average difficulty. Performance improvement from pretest to

posttest was significant (p<.05) for items measuring understanding of the

concepts maintainability and reuse (maintenance: B=0.95, SE=0.19, p=<.001;

reuse: B=0.88, SE=0.17, p<.001); however, for separation of concerns and

dependency there was a significant decline in performance from pretest to

posttest (separation of concerns: B=-1.02, SE=0.19, p<.001; dependency: B=-0.54,

SE=0.21, p<.01). There were no significant changes in performance on the items

measuring understanding of cohesion & coupling (B=-0.29, SE=0.18, p=.11).

Figure 5. The chance of solving an item correctly (y-axis) that measured a
particular concept (x-axis) on the LIACS software design test administered at
pretest (light gray columns) and posttest (dark gray columns). Results show that
items concerning the topics maintenance and reuse were more difficult on the
pretest than items measuring understanding of the concepts separation of
concerns, cohesion & coupling and dependency. Performance on items measuring
understanding of maintainability and reuse improved, but performance on items
measuring understanding of separation of concerns and dependency declined.
There was no change in performance on items measuring cohesion & coupling.
The presented model was computed with domain knowledge and abstract
reasoning fixed at average skill levels.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

P
(1

|θ
)

pretest

posttest

4. Discussion

The aim of the current study was to examine the role of domain knowledge and

abstract reasoning ability on undergraduate computer science students' software

design learning and ability. To this end, participants completed assessments of

(1) software design ability in which comparisons between and/or judgements of

changes to designs were assessed five concepts: separation of concerns, cohesion

& coupling, maintainability, reuse and dependency; (2) domain knowledge of the

syntax and semantics of the Unified Modeling Language (UML) commonly

utilized in software design; and (3) abstract reasoning ability. The software

design task was administered to first year computer science students before and

after a software engineering course. There were four main findings: (1) inital

software design ability was related to both abstract reasoning ability and domain

knowledge; (2) improvement in software design ability was somewhat related to

domain knowledge, but not to abstract reasoning skills; (3) the topics

maintenance and reuse were more difficult on the pretest than separation of

concerns, cohesion & coupling and dependency; and (4) understanding of the

concepts maintainability and reuse improved from pretest to posttest, but

performance on items measuring understanding of separation of concerns and

dependency declined. The discussion is organized along these findings.

4.1. Abstract reasoning and domain knowledge as predictors software

design ability and learning

The students' knowledge of the correct syntax and semantics of the Unified

Modeling Language (UML) was used as a proxy to measure their domain

knowledge in the field of software design. Based upon prior research on the

development of expertise[24] and the "knowledge is power" hypothesis[2] we

expected domain knowledge to play a role in both initial software design ability

as well as how much students learned about software design after following a

course in software engineering. Indeed UML knowledge was a predictor of both

initial software design skills as well as improvement from pretest to posttest.

This finding is in accordance with the findings of Bergensen et al. (2011) in the

domain of software programming where greater knowledge indicated better

programming skills in expert software developers.

 Abstract reasoning ability, a main component of fluid intelligence, has

been postulated to be involved in all learning, especially novel tasks[25], [26].

Therefore, we expected the initial ability and learning of software design of the

undergraduate computer science students in our study also to be related to their

performance on the Raven's Advanced Progressive matrices - a measure of fluid

intelligence. Indeed our results showed that initial understanding of software

design principles were significantly predicted by the students' abstract reasoning

ability. However, the students' learning from a course in software design as

measured by their change in performance on the LIACS software design test

administered before and after the course, was not related to their abstract

reasoning ability. Perhaps the effect of abstract reasoning, which is a construct

similar to working memory, is also mediated by domain knowledge as was the

case in Bergensen et al.'s (2011) found that the predictive effect of working

memory on software programming skills in experts was mediated by domain

knowledge. Abstract reasoning is very similar if not the same construct as

working memory[13]–[15]; therefore perhaps domain knowledge also functions

as a mediator in the prediction of software design skills learning - i.e., those with

better abstract reasoning likely have greater domain knowledge and show the

most growth in software design performance. In our statistical model we

included abstract reasoning and domain knowledge as predictors at the same

level, if domain knowledge is a mediator this could remove evidence the

influence of abstract reasoning; future investigations should focus on whether

domain knowledge mediates the relationship between abstract reasoning and

the learning of software design principles.

4.2. Understanding of measured software design concepts

On the whole the students performed quite well on the LIACS software design

test, with approximately 60% chance of solving pretest items correctly and a

70% chance on the posttest - thus on the whole showing significant

improvement from pretest to posttest. Students appeared to know more about

the design concepts separation of concerns, cohesion & coupling and dependency

during the pretest than the topics maintenance and reuse. However, the most

improvement from pretest to posttest was on these two more difficult topics;

this is most likely because of the relatively high chance of solving items on the

other three topics correctly - there may have been less room to improve on these

particular topics. Strangely, performance on items measuring understanding of

separation of concerns and dependency declined somewhat; this may be due to

problems with the items measuring these topics; the psychometric analyses of

the test indicate that nearly all of the items measuring separation of concerns

should be revised. On the whole our results provide insight into which topics

students mastered both before and after the course. In the future administering

the LIACS software design test may be helpful for educators so that content can

be tailored to the knowledge and skills the students already possess as well as

evaluate how effective teaching of particular topics has been.

4.3. Limitations

Some limitations of this study deserve mention and can be informative for future

research. First, domain knowledge in the form of a UML quiz was only assessed

at pretest. In future research this task should also be administered at posttest in

order to (1) assess gains in domain knowledge as a consquence of the course and

(2) examine whether the mediating role of domain knowledge on the students'

design ability changes during the learning process - a specific prediction of

Ackerman's (1998) theory of how skills develop[9].

 Second, the instruments we used to assess software design ability and

domain knowledge (UML) were created specifically for this study and require

further development and evaluation before assuming their reliability and

validity. The reliability of these measures were addressed using psychometric

classical test theory and item response theory; however, certain revisions to the

items are warrented given their low correlation with other related items and/or

lack of fit in the item response measurement model. The construct validity was

examined by computing correlations with course grades; the moderate

correlation indicated that the software design skills test indeed measures a

similar construct to the software engineering course exams at both universities.

 A third limitation was that we did not account for the role of experience in

the students' ability to learn software design. Experience is a good predictor of

expertise in novices[1] and likely strongly related to both domain knowledge and

initial software design ability as appears to be the case with software

programming [12]. A fourth and final limitation to overcome in future research is

the inclusion of a control group. By including a control group we can control for

the effect of retesting when measuring learning in a pretest-intervention-

posttest design.

4.4. Conclusions & Future Directions

Based on this study we can conclude that both domain knowledge and abstract

reasoning are key predictors of students' software design ability. Domain

knowledge in particular predicts how much students learn from a software

design course. Perhaps increasing students' knowledge of UML may improve

their chances of learning from a software design course. In the future the

effectiveness of improving domain knowledge on course or training outcomes

should be investigated.

 The present study focused on undergraduate students performance

before and after a course on software design; it woud be of particular interest to

use the LIACS software design test to examine the performance of complete

novices (e.g., psychology students) and undergraduate computer science

students before and after following training in software design[27].

5. Acknowledgements

This project was conducted under the supervision of prof. dr. Michel Chaudron

and PhD candidate Dave Stikkelorum. Dave conducted nearly all of the data

collection for this project and has published a paper on this topic[19]. I am very

grateful for the opportunity to collaborate with these researchers on such an

interesting project that in addition to completing my computer science study also

spans my interests and expertise developed as a researcher in developmental

and educational psychology.

6. References

[1] S. Sonnentag, C. Niessen, and J. Volmer, “Expertise in software design,” in
The Cambridge handbook of expertise and expert performance, no. 1981,
2006, pp. 373–387.

[2] D. Z. Hambrick and R. W. Engle, “Effects of domain knowledge, working
memory capacity, and age on cognitive performance: an investigation of
the knowledge-is-power hypothesis.,” Cogn. Psychol., vol. 44, no. 4, pp.
339–87, Jun. 2002.

[3] R. B. Cattell, Intelligence: its Structure, Growth and Action: its Structure,
Growth and Action. New York, New York, USA: Elsevier, 1987.

[4] J. R. Anderson, “Skill acquisition: Compilation of weak-method problem
situations.,” Psychol. Rev., vol. 94, no. 2, pp. 192–210, 1987.

[5] P. L. Ackerman, “New Developments in Understanding Skilled
Performance,” Curr. Dir. Psychol. Sci., vol. 16, no. 5, pp. 235–239, Oct. 2007.

[6] K. Siau and X. Tan, “Improving the quality of conceptual modeling using
cognitive mapping techniques,” Data Knowl. Eng., vol. 55, no. 3, pp. 343–
365, Dec. 2005.

[7] N. Bolloju and F. S. K. Leung, “Assisting novice analysts in developing
quality conceptual models with UML,” Commun. ACM, vol. 49, no. 7, pp.
108–112, 2006.

[8] J. Kramer, “Is abstraction the key to computing?,” Commun. ACM, vol. 50,
no. 4, pp. 36–42, Apr. 2007.

[9] P. L. Ackerman, “Determinants of individual differences during skill
acquisition: Cognitive abilities and information processing.,” J. Exp. Psychol.
Gen., vol. 117, no. 3, pp. 288–318, 1988.

[10] V. J. Shute, “Who is Likely to Acquire Programming Skills?,” Journal of
Educational Computing Research, vol. 7. pp. 1–24, 1995.

[11] W. W. Wittmann and H.-M. Süß, “Investigating the paths between working
memory, intelligence, knowledge, and complex problem-solving
performances via Brunswik symmetry.,” in Learning and individual
differences: Process, trait, and content determinants., P. L. Ackerman, P. C.
Kyllonen, and R. D. Roberts, Eds. Washington, D.C.: APA, 1999, pp. 77–108.

[12] G. R. Bergersen and J.-E. Gustafsson, “Programming Skill, Knowledge, and
Working Memory Among Professional Software Developers from an
Investment Theory Perspective,” J. Individ. Differ., vol. 32, no. 1987, pp.
201–209, 2011.

[13] P. L. Ackerman, M. E. Beier, and M. O. Boyle, “Working Memory and
Intelligence : The Same or Different Constructs ?,” vol. 131, no. 1, pp. 30–
60, 2005.

[14] M. Buehner, S. Krumm, and M. Pick, “Reasoning = working memoryp
attention,” vol. 33, pp. 251–272, 2005.

[15] R. Colom, I. Rebollo, A. Palacios, M. Juan-espinosa, and P. C. Kyllonen,
“Working memory is (almost) perfectly predicted by g,” vol. 32, pp. 277–
296, 2004.

[16] E. Arisholm and D. I. K. Sjoberg, “Evaluating the effect of a delegated versus
centralized control style on the maintainability of object-oriented
software,” IEEE Trans. Softw. Eng., vol. 30, no. 8, pp. 521–534, Aug. 2004.

[17] D. R. Stikkolorum, C. E. Stevenson, and M. R. V Chaudron, “Technical report
2013-02,” Leiden, The Netherlands, 2013.

[18] P. A. L. De Boeck and M. Wilson, Explanatory item response models: A
generalized linear and nonlinear approach. New York, New York, USA:
Springer, 2004.

[19] D. R. Stikkolorum, C. E. Stevenson, and M. R. V Chaudron, “Assessing
Software Design Skills and Their Relation With Reasoning Skills,” in
EduSymp@ MoDELS, 2013, pp. 1–8.

[20] J. Raven, J. C. Raven, and J. H. Court, Manual for Raven’s Progressive Matrices
and Vocabulary Scales. Section 4: The Advanced Progressive Matrices. San
Antonion, TX: Harcourt Assessment, 1998.

[21] D. A. Bors and T. L. Stokes, “Raven’s Advanced Progressive Matrices:
Norms for First-Year University Students and the Development of a Short
Form,” Educ. Psychol. Meas., vol. 58, no. 3, pp. 382–398, Jun. 1998.

[22] S. E. Embretson and S. Reise, Item response theory for psychologists.
Mahwah, NJ: Erlbaum Publishers., 2000.

[23] R. M. Furr and V. R. Bacharach, Psychometrics An Introduction, 2nd ed.
London: SAGE, 2014, p. 442.

[24] K. A. Ericsson, N. Charness, P. J. Feltovich, and R. R. Hoffman, Handbook of
Expertise. London: Cambridge University Press, 2006.

[25] M. C. Voelkle, W. W. Wittmann, and P. L. Ackerman, “Abilities and skill
acquisition: A latent growth curve approach,” Learn. Individ. Differ., vol. 16,
no. 4, pp. 303–319, Jan. 2006.

[26] R. Primi, M. E. Ferrão, and L. S. Almeida, “Fluid intelligence as a predictor of
learning: A longitudinal multilevel approach applied to math,” Learn.
Individ. Differ., vol. 20, no. 5, pp. 446–451, Oct. 2010.

[27] D. R. Stikkolorum, M. R. V. Chaudron, and O. de Bruin, “The Art of Software
Design, a Video Game for Learning Software Design Principles,” in Models
2012, 2012.

Appendix A: Software Design Skills Questions

Item:

solution

Content Concepts

1:

B

Reuse,

Dependency

2:

C

Dependency

3:

C

Dependency

4:

D

Dependency

5:

B

Dependency

6:

C

Maintenance

7:

C

Dependency

8:

D

Separation of

concerns

9:

C

Coupling /

Cohesion,

Separation of

concerns

10:

B

Separation of

concerns

11:

A

Coupling /

Cohesion,

Maintenance

12:

C

Coupling /

cohesion,

Dependency

13:

C

Maintenance

14:

A

Reuse

15:

C

Separation of

concerns,

coupling /

cohesion

16:

A

Reuse,

maintenance

17:

C

Maintenance,

separation of

concerns

18:

A

Reuse

19:

A

Maintanence

20:

D

Reuse,

separation of

concerns

Appendix B UML knowledge quiz

1

2

to

7

8

to

11

12

13

14

to

22

