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Abstract

The growth rate of biomedical literature has now surpassed the ability of experts to keep up even in narrowly

defined knowledge domains. New methods are being developed continuously to reduce this information

overload. The Biosemantics Group at LUMC have text-mined abstracts from PubMed, creating a large se-

mantic network of associated concepts and their co-occurrence frequencies. Although these data have been

successfully used in automated knowledge discovery applications, it is still not understood how the network

is structured and how this structure can lead to relevant novel associations. Here, we have developed an

application called CPVisuals that visually represents concept profiles derived from the semantic network of

concepts. We then systematically sample a rank-ordered list of all possible gene-disease associations, and

use the CPVisuals application to show how structures within concept profiles contributes to high-ranking

and low-ranking gene-disease pairs. We observe a potential transition separating certain knowledge from

uncertain knowledge and conjecture that discovery tends to occur near this transition.
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Chapter 1

Introduction

1.1 Background

It has become apparent that the academic world cannot keep up with the huge amount of new research data

and publications each day. In 2013, a total of 1,135,634 publications were added to the PubMed/MedLine

database, averaging to roughly 3,111 new publications each day [3]. This has led to the situation in which it is

impossible for scientists to discover all research relevant to their area of expertise. Next to new data flowing

into the publication databases, there is the risk of losing relevant findings made in the past.

This issue has been noticed in the last few years and automated methods have been developed to cope with

this. Text-mining literature is a viable option and was introduced by Don Swanson [13]. An application of his

method is the discovery of associated biomedical concepts even if they do not appear together in the same

document. The association would be discovered by looking at an intermediate concept, which is associated

with both concepts. For example, concepts X and Y are mentioned and researched in an article. Concepts

Y and Z co-occur in a different article. Then it could imply that concepts X and Z are associated through

intermediate concept Y. The association between concepts X and Z could therefore be interesting to investigate

if no prior research about this association exists.

The BioSemantics Group, a collaboration between LUMC and LIACS, implemented Swanson’s idea. Abstracts

of the PubMed database were text-mined, resulting in a large database of concepts which were disambiguated

biomedical terms. These concepts represent genes, diseases, proteins, symptoms, biological processes and

other biomedically relevant semantic types. Then, concept profiles were generated by making a list of all

concepts for each concept they are associated with. These links between concepts are called explicit. For

every associated concept the link will be given a weight. This weight represents the mutual information of

co-occurrence frequency in the abstracts. Calculation of this weight is explained in Section 2.1.2. For all gene-
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4 Chapter 1. Introduction

disease concept profile pairs, a match score was computed representing the inner product of all weights of

the overlapping concepts between two concept profiles. These links between concept profile pairs are called

implicit. The strength of an implicit link is defined by the match score. The idea is that the concept pairs with

the highest match scores would be the most promising pairs to research. [5] [19] [20]

In Figure 1.1, a concept profile pair can be seen. The concept profile of concept X consists of concepts Y1, Y2

and Y3, which are explicitly linked as represented by the black line. Concept Z is also associated with these

concepts Y1, Y2 and Y3. Thus a match score can be calculated based on the inner products of the weights of

these overlapping concepts Y1, Y2 and Y3. The implicit link between concepts X and Z is represented by the

red dotted line.

Figure 1.1: Implicit versus explicit links

1.2 The problem

Presently, concept profiles and concept profile pairs are (for analytical purposes) treated as vectors. Although

the information contained in concept profiles can be valuable to the biologist this information remains largely

inaccessible to the human user. One approach to exposing this information in a user-friendly way is through

graphical representation. Here, we develop a visualization method called CPVisuals.

1.3 Solution: CPVisuals

For this study, we built a web application tool CPVisuals to visualize concept profiles. The tool is able

to visualize the structures of concept profiles individually. Another feature is the ability to visualize the

overlapping concepts of concept profile pairs. In this project, the CPVisuals database consists of the concept

profiles generated in the study by Hettne et al [5]. A demonstration of the tool can be seen in Figure 1.2

below. The figure shows a visualization of a concept profile pair: CENPJ associated with Seckel Syndrome.
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We use this visualization tool to search for patterns in gene-disease concept profile pairs that will drive match

scores.

Figure 1.2: Concept profile pair: CENPJ associated with Seckel Syndrome



Chapter 2

Methods

In this chapter we describe analytical methods and software that were used in this project.

2.1 Concept profiles

2.1.1 Data formats

All the data concerning concepts and concept profiles are described in the study by Hettne et al. [5].

The data related to biomedical concepts are located in the CPVisuals MySQL database [9]. In the concepts table,

each row represents one concept. A row consists of a unique identifier integer id, a string name and a string

definition. The CPVisuals database currently consists of 687,718 disambiguated concepts. These concepts can

be related to 107 semantic types. Each semantic type is classified hierarchically into a category. See Appendix

A. The size of the CPVisuals database is 463.9MB. Over 17 million PubMed abstracts as of January 1980 were

text-mined to produce this data.

The data representing the concept profiles are saved in text files. The file name represents the unique concept

identifier integer value. This identifier can be used to find the corresponding concept and its metadata in the

CPVisuals database. The text file contains lines in the following format: id,weight. Each line represents an as-

sociated concept. id is the unique concept identifier as an integer and weight the mutual information between

the co-occurrence frequency of concepts as a fraction. A total of 33,368 concept profiles were generated as

text files, which amounts to 2.25GB on disk.

6
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2.1.2 Calculation of concept weight

The means of calculating the weight of a concept is based on the method used in the study by Hettne et

al. [5]. The weight wij of a concept j represents the strength of its association to concept i. For two concepts

X and Y, four contingencies may occur in relation to their co-occurrence in an article: they both occur, only X

occurs, only Y occurs, both X and Y do not occur. An association between X and Y is computed from this 2x2

contingency table by using a measure of mutual information, called the symmetric uncertainty coefficient:

U(Xi, Yj), where H is entropy. See Equation 2.1.

wij = U(Xi, Yj) =
H(Xi) + H(Yj)− H(Xi, Yj)

1
2 (H(Xi + H(Xj)))

(2.1)

2.2 CPVisuals visualization

CPVisuals provides two main features: (1) showing the structure of a single concept profile and (2) showing

the structure of the overlapping concepts of a concept profile pair. In this section both will be explained and

the methods used to generate each of them. A structure consists of a center node, multiple outer nodes and

multiple edges connecting the center to the outer nodes. The outer nodes are evenly distributed in a circle

around the center node. See Figure 1.2.

2.2.1 Concept profile

For a concept profile, the center node represents the main concept, the outer nodes represent the concepts

explicitly linked to the main concept and the edges represent the co-occurrence of concepts with the main

concept. The length of an edge represents the weight of the association (based on the co-occurrence frequency

of both concepts).

2.2.2 Concept profile pair

For a concept profile pair, the center node represents a composition of both main concepts (the pair), the

outer nodes represent the overlapping concepts of the main concept pair and the edge length represents the

sum of the weights of the concept existing in both concept profiles. For example, if main concepts X and Z

both have explicit links with concept Y, then the weight of Y associated with X plus the weight of Y associated

with Z will be the value used to determine the length of the edge.
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2.2.3 Graphic calculations

Outer node rotational position

Calculation of the rotational position of an outer node on an imaginary circle around the center node is

performed by applying the Equation 2.2 below.

r = 360 ∗ nodeCount
totalNodes

+ o f f set (2.2)

where r is the rotation of the node in degrees compared to the center node, nodeCount is the amount of nodes

who had their rotation calculated so far, totalNodes is the total of nodes that will be shown and offset is a

configuration setting to start at a specific rotation.

Calculating node distance

The distance of the outer node compared to the center node is calculated through the percentage of the weight

of the linked concept. It differs for concept profiles and concept profile pairs. Equation 2.3 will demonstrate

how the percentage is calculated for an explicitly linked concept in a concept profile and Equation 2.4 will

show how it is calculated for an overlapping concept between a concept profile pair. Then the actual length

of the edge will be calculated in Equation 2.5.

Concept profile

p =
weight−minWeight

maxWeight−minWeight
(2.3)

where p is a percentage which is inversely proportional to the maximal length of an edge, weight is the

weight of the concept explicitly linked to the main concept, minWeight is the lowest weight found in the

concept profile of the main concept and maxWeight is the highest weight found in the concept profile of the

main concept.

Concept profile pair

p =
(weightY,X + weightY,Z)−minWeight

maxWeight−minWeight
(2.4)

where p is a percentage which is inversely proportional to the maximal length of an edge, weightY,X is the

weight of the concept Y explicitly linked to the main concept X, weightY,Z is the weight of the concept Y

explicitly linked to the main concept Z, minWeight is the lowest sum of weights of two overlapping concepts

found in the concept profiles of the main concepts and maxWeight is the highest sum of weights of two
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overlapping concepts found in the concept profiles of the main concepts.

Distance

d = ((1− p) ∗ (maxDistance−minDistance)) + minDistance (2.5)

where d is the distance of the outer node compared to the center node (length of an edge), p is the percentage

calculated in either Equation 2.3 or 2.4 and maxDistance and minDistance are configurable settings in pixels to

set boundaries for the length of an edge.

Calculating position

The actual rendered x,y coordinates are then calculated by the following Equation 2.6.

x

y

 =

centerX + d ∗ cos(r ∗ π
180 )

centerY + d ∗ sin(r ∗ π
180 )

 (2.6)

where x,y are the coordinates of the node, centerX and centerY are the coordinates of the center node, r is the

rotation of the node calculated in Equation 2.2 and d is the distance calculated in Equation 2.5.

2.2.4 Filters

It is possible for the user to filter concepts based on semantic type. This is sometimes desired if not all

semantic types are relevant and only clutter up the visualization. If a concept has at least one semantic type

which is not filtered out, it will be processed for visualization.

2.2.5 Amount of visible nodes threshold

A concept profile is first processed fully to sort by weight. After that, a selection is made on which concepts

to show. The amount of nodes shown is based on two criteria.

Dynamic threshold

The first criterion is a threshold based on the percentile in which the weight belongs. After all concepts have

been processed, the highest weight and lowest weight are known, the lowest weight representing 0% and the

highest weight representing 100%. Next, the concepts which are below a set percentage on that scale are left

out of the selection.
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Hard threshold

The second criterion is a hard cut-off of nodes, to prevent a user’s browser from crashing if too much nodes

are rendered simultaneously. The default setting is 500 nodes.

2.2.6 Semantic type mapping

Each concept belongs to one or more semantic types. This relationship was only available in the database,

which proved too slow to process. Therefore, for each concept existing in the database, the corresponding

semantic types were exported to a single text file in the following format:

conceptid|type1,type2,...,typeN

Furthermore, semantic types are classified hierarchically. Each semantic type belongs to a single category.

See Appendix A.

Now, before processing the concepts, all semantic types are loaded into memory. For each loaded concept

the corresponding semantic type identifier is attached. The next step is to unload the semantic types from

memory which are not present in the concepts or that have a filter applied which excludes the semantic type

specifically.

2.2.7 Color generation

For each semantic category, a color is generated and appointed to it. If a concept has semantic types spanning

multiple categories, it is considered a new, unique semantic category. Composite categories are colored grey.

To ensure that each singular category has a distinct color, the golden ratio conjugate [21] was used. The

golden ratio conjugate has a value of 0.618033988749895. It enables us to use a sequential formula: for each

new color we can generate the next distinct color. Each singular category is given an index based on its first

appearance. The result from the formula is passed to a HSV color generation function as the hue, saturation

is set at 0.99 and value is set at 0.99 to provide intense colors. The color is then converted to RGB format. See

Equation 2.7 below.

distinctValue = (i ∗ 0.618033988749895) mod 1 (2.7)

The variable i represents the index of the category. distinctValue is the value passed to the HSV color genera-

tion function.
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For the purposes of this experiment, the following five semantic type categories were assigned the colors:

Anatomy (blue), Chemicals & Drugs (green), Disorders (yellow), Genes & Molecular Sequences (purple) and

Physiology (orange). As long as the semantic categories are not modified (because of updates in the UMLS

vocabulary), the colors remain the same.

2.3 Software

CPVisuals is a web application and therefore makes use of various scripting languages, frameworks and

libraries, which are explained in this section.

2.3.1 PHP

PHP [18] is the driver and the scripting language upon which the whole application has been built. It is easy

to set up, lightweight, and above all widely used in web applications across the internet. Accessibility is a key

point in deploying a web application; by using PHP no additional prerequisites exist for an arbitrary user.

2.3.2 Laravel Framework

Laravel [11] is the underlying PHP framework, which provides a Model-View-Controller architectural design.

This aids in keeping the web application modular and organized. It also enables quick deployment and easy

maintenance of web applications by providing various utilities.

2.3.3 MySQL database

MySQL [9] is the underlying database of the web application. It is capable of retrieving data quickly when

queried. MySQL is most commonly used with web applications, has easy integration with PHP and Laravel

and thus a logical addition to the application.

2.3.4 JavaScript

JavaScript is a scripting language which enables features that add to the user experience, making the web

application more interactive. It is executed in the browser of the client and exists in every standard client

browser.
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2.3.5 jQuery

jQuery [17] is an extension of JavaScript and makes use of background calls to load the requested data directly

into a part of the page, removing the need to reload the page completely.

2.3.6 Cytoscape.js

Cytoscape.js [15] is the interactive lightweight web version of the desktop application Cytoscape [16], which

is used for displaying (large) networks and graphs. This addition provides the actual visual representation of

concept profiles and concept profile pairs. It is easily integrated into the web application by using JavaScript

and jQuery.

2.3.7 Bootstrap

Twitter’s Bootstrap [10] provides the look-and-feel. It enhances the look of the web application by providing

upgraded HTML components, making it more aesthetically pleasing.

2.3.8 Typeahead.js

Twitter’s Typeahead.js [4] makes use of jQuery to provide a dropdown with instant search results sorted by

match rating when entering a concept into the input field. It searches while the user types and highlights the

matching part of the concept.

2.4 Analytics

For our experiment, we parsed the Gene-Disease database. This database consists of concept profile pairs of

genes and diseases.

This database, from a study by Hettne et al. [5], was built pairing 19,113 gene concept profiles and 21,847

disease concept profiles, resulting in a total of (19,113 x 21,847 =) 417,561,711 possible gene-disease pairs.

213,489,335 gene-disease pairs, which is more than half of the total, lacked sufficient literature backing to

build a concept profile for either one or both concepts, and were thus disregarded. The result is a total of

204,072,376 gene-disease pairs present in the database.

These gene-disease pairs are rank-ordered by match score. Concept profile pairs may have explicit or implicit

associations. Here we focus on implicit associations only. The Gene-Disease database is represented by Figure
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2.1. The small curve represents the explicitome, which are explicit gene-disease associations. The much larger

curve represents the implicitome, which are indirect, implicit gene-disease associations.

Figure 2.1: Implicitome (red) and explicitome (black): Amount of gene-disease pairs versus corresponding match score

We take five samples, referred to as Sample 1-5, of 10 gene-disease pairs from the Gene-Disease database, at

equal intervals (rank-ordered by match score): Top 10, 75th percentile, 50th percentile, 25th percentile and

lowest 10. The location of each sample in the database is marked in Figure 2.1. For example, the match scores

of the pairs taken from the 75th percentile are higher than 75% of the match scores of all the pairs in the

database. We take samples to see if the visual representations of gene-disease pairs from one sample differ

significantly from gene-disease pairs from another sample.

Note that the highest match score for an implicit concept profile pair was found at rank 4657. The top 10

implicit concept profile pairs were found between rank 4657 and rank 6584, with a match score higher than

99.996% of all match scores of gene-disease pairs calculated. The other samples are taken from the database

at the specified intervals.



Chapter 3

Results

In this section we will use the CPVisuals tool to provide visualizations for each of our concept profile pairs

in five sample groups (Samples 1-5). We hope to find new insights that are driving the match scores.

3.1 Experiment

In this section, we analyze the results of our five samples. In each case we depict the CPVisuals visual

representation of the gene-disease pair. We filter the semantic type categories to the following: Anatomy,

Chemicals & Drugs, Disorders, Genes & Molecular Sequences and Physiology. Each of these categories has

all the semantic types enabled (thus not filtered out). The corresponding acronyms and node colors can be

found in Table 3.1.

Semantic Category Acronym Node color
Anatomy ANAT blue
Chemicals & Drugs CHEM green
Disorders DISO yellow
Genes & Molecular Sequences GENE purple
Physiology PHYS orange

Table 3.1: Semantic categories with corresponding acronyms and node colors

14
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3.1.1 Sample 1

In Sample 1, we have obtained the 10 highest (implicit gene-disease pair) match scores from the Gene-Disease

database. Sample 1 is depicted in Figure 3.1 and more detailed information can be found in Table 3.2.

1 2 3 4 5

6 7 8 9 10

Figure 3.1: CPVisuals visualizations of overlapping concepts of the highest 10 rated gene-disease pair match scores

Index Gene concept Disease concept Nodes Match score Rank
1 TTBK1 SCA11 57 0.0918 4657

2 CNNM3 cone-rod dystrophy and amelogenesis imperfecta 22 0.0856 5049

3 WDR62 MCPH4 81 0.0834 5208

4 SUMO4 insulin-dependent diabetes mellitus 8 104 0.0801 5448

5 CWH43 hyperphosphatasia with mental retardation 20 0.0796 5502

6 B9D1 MKS2 77 0.0751 5846

7 TUBB4 DYT2 71 0.0719 6148

8 AP4E1 SPG12 41 0.0717 6159

9 DDHD1 SPG21 102 0.0705 6276

10 SUMO4 insulin-dependent diabetes mellitus 4 112 0.0677 6584

Table 3.2: Overlapping concepts of the highest 10 rated gene-disease pair match scores

We see that the high match scores are always caused by one or two highly weighted overlapping concepts of

the semantic type Amino Acid, Peptide or Protein (in the category Chemicals/Drugs (green)). In half of the

cases it is also caused by highly weighted overlapping concepts of the semantic type Disease or Syndrome

(in the category Disorders (yellow)).

3.1.2 Sample 2

In Sample 2, we have obtained 10 gene-disease pair match scores at the 75th percentile from the Gene-Disease

database. Sample 2 is depicted in Figure 3.2 and more detailed information can be found in Table 3.3.

The visualizations from Sample 2 are usually more dense than the visualizations from Sample 1. This is most
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11 12 13 14 15

16 17 18 19 20

Figure 3.2: CPVisuals visualizations of overlapping concepts of 10 in the 75th percentile rated gene-disease pair match
scores

Index Gene concept Disease concept Nodes Match score Rank
11 AMPH Premenstrual syndrome 278 4.6054E-6 51018094

12 KIAA1409 spondylocarpotarsal synostosis syndrome 213 4.6054E-6 51018095

13 CNTN1 hemodialysis-associated amyloidosis 246 4.6054E-6 51018096

14 TFAP2D Laminitis 228 4.6054E-6 51018097

15 ODZ4 Onychogryposis 187 4.6054E-6 51018098

16 ADCY3 Fowlpox 311 4.6054E-6 51018099

17 DDX17 Secondary hypertension 500 4.6054E-6 51018100

18 MTHFD2 Hypotrichosis 225 4.6054E-6 51018101

19 NANOS3 Anal spasm 62 4.6054E-6 51018102

20 CDKN1C anemia of renal disease 239 4.6054E-6 51018103

Table 3.3: Overlapping concepts of 10 in the 75th percentile rated gene-disease pair match scores

likely caused by the fact that individual weights of overlapping concepts lie more closely together. We can

compare this to Sample 1, where a few outliers cause lots of overlapping concepts not to show due to the

dynamic cutoff as described in Section 2.2.5.

In contrast to the results from Sample 1, the distribution of semantic types in Sample 2 are relatively uniform.

3.1.3 Sample 3

In Sample 3, we have obtained 10 gene-disease pair match scores at the 50th percentile from the Gene-Disease

database. Sample 3 is depicted in Figure 3.3 and more detailed information can be found in Table 3.4.

Weights of overlapping concepts lie even more closely together compared to Sample 2, which is what causes

the graphs to show more variation in node distances. For some graphs seashell-like structures seem to occur.

This is caused by the ordering of overlapping concepts (first by semantic type, then by weight) and because

the weight differences between the overlapping concepts are small.
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21 22 23 24 25

26 27 28 29 30

Figure 3.3: CPVisuals visualizations of overlapping concepts of 10 in the 50th percentile rated gene-disease pair match
scores

Index Gene concept Disease concept Nodes Match score Rank
21 TPMT internal jugular vein stenosis 43 3.8132E-7 102036188

22 CNTN5 atrioventricular conduction disorder 156 3.8132E-7 102036189

23 FNBP1L derangement of temporomandibular joint 168 3.8132E-7 102036190

24 NKX2-8 Bronchocentric granulomatosis 58 3.8132E-7 102036191

25 ERCC3 HAE III 56 3.8132E-7 102036192

26 SAGE1 autosomal recessive cutis laxa 62 3.8132E-7 102036193

27 MON2 cowden-like syndrome 74 3.8132E-7 102036194

28 PSAT1 Orbivirus Infection 97 3.8132E-7 102036195

29 CMPK1 Lens Diseases 214 3.8132E-7 102036196

30 PSME1 exudative otitis media 119 3.8132E-7 102036197

Table 3.4: Overlapping concepts of 10 in the 50th percentile rated gene-disease pair match scores

3.1.4 Sample 4

In Sample 4, we have obtained 10 gene-disease pair match scores at the 25th percentile from the Gene-Disease

database. Sample 4 is depicted in Figure 3.4 and more detailed information can be found in Table 3.5.

The visualizations become more sparse.
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31 32 33 34 35

36 37 38 39 40

Figure 3.4: CPVisuals visualizations of overlapping concepts of 10 in the 75th percentile rated gene-disease pair match
scores

Index Gene concept Disease concept Nodes Match score Rank
31 CREBZF Superficial folliculitis 28 2.7165E-8 153054282

32 CTNNA2 asymmetrical sensorineural hearing loss 63 2.7165E-8 153054283

33 PPFIBP2 disorder of small intestine 82 2.7165E-8 153054284

34 GALNT13 Eosinophilic meningoencephalitis 67 2.7165E-8 153054285

35 GPR97 autoimmune limbic encephalitis 56 2.7165E-8 153054286

36 MTA3 Suppurative parotitis 43 2.7165E-8 153054287

37 FFAR2 rheumatoid arthritis of temporomandibular joint 43 2.7165E-8 153054288

38 TMSB10 adult spinal muscular atrophy 57 2.7165E-8 153054289

39 VSTM1 Amalgam tattoo 33 2.7165E-8 153054290

40 RPL30 amyloid of vitreous 43 2.7165E-8 153054291

Table 3.5: Overlapping concepts of 10 in the 25th rated gene-disease pair match scores

3.1.5 Sample 5

In Sample 5, we have obtained the bottom 10 gene-disease pair match scores from the Gene-Disease database.

This sample represents the tail of the implicitome. There are no links with overlapping concepts. Therefore

the resulting visualizations do not show any associations.

3.2 Summary

In this section we will perform three analyses on Samples 1-4. In the first analysis we will see the weight

contribution of overlapping concepts to match scores per semantic category. In the second analysis we will

see the amount of overlapping concepts (nodes) per index. The third analysis will show the weight variance

of overlapping concepts per index. Note that index refers to the corresponding visualization in Section 3.1.
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3.2.1 Analysis 1: Weight contribution to match score per semantic category

For each sample, we did an analysis of the overlapping concepts for each semantic category. First we summed

the weights of these concepts per semantic category. We then converted this number into a percentage of

contribution to the total sum of weights. The result can be seen in Figure 3.5.

Sample 1 Sample 2

Sample 3 Sample 4

Figure 3.5: Weight contribution to match score per semantic category per sample

In Sample 1, the only two categories to significantly contribute to the match scores were the categories

Chemicals & Drugs (71.2%) and Disorders (28.3%). The other three categories Anatomy (0.2%), Genes &

Molecular Sequences (0.1%) and Physiology (0.2%) are (almost) not visible in the plot, thus not significant

contributors to the match scores. In Samples 2-4, a pattern of 3 large pillars (representing categories) is visible.

Categories Anatomy (23.6%, 27.7%, 31.5%), Disorders (34.6%, 35.9%, 30.4%) and Physiology (23.6%, 22.4%,

28%) contribute 80% to 90% of the total. Category Genes & Molecular Sequences remains stable in Samples

2-4 around 3% to 5% contribution. For all samples, the category Disorders is the only solid contributing

category, ranging between 28.3% and 35.9% contribution. Also, category Chemicals & Drugs degrades in

contribution over all samples, from 71.2% in Sample 1, 15.2% in Sample 2, 10.2% in Sample 3 to 5.4% in
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Sample 4.

3.2.2 Analysis 2: Amount of overlapping concepts (nodes) per index

We plotted the count of overlapping concepts (called nodes) per index. The result is depicted in Figure 3.6.

We also calculated the mean, median and standard deviation of nodes per sample. These statistics can be

found in Table 3.6.

Figure 3.6: Amount of overlapping concepts (nodes) per index, coloured by sample

Sample Mean Median St. Dev.
1 68.7 74.0 33.19

2 248.9 233.5 110.01

3 104.7 85.5 57.71

4 51.5 49.5 16.55

Table 3.6: Mean, median and standard deviation of amount of overlapping concepts per sample

From Figure 3.6 and Table 3.6, we can determine that Sample 2 has the most overlapping concepts with a mean

of 248.9 nodes and a large standard deviation of 110.01. There is also one outlier reaching the hard threshold

at 500 nodes (index 17). For Sample 1 we found a mean of 68.7 nodes with a standard deviation of 33.19. The

comparison between Sample 1 and 2 is interesting - it suggests that the highest ranked concept pairs have

a smaller amount of overlapping concepts contributing to the match score than lower ranked concept pairs.

This must mean that each overlapping concept generally has a higher weight in the highest ranked concept
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pairs than in the lower ranked concept pairs. In Sample 3, we found a mean of 104.7 nodes and a standard

deviation of 57.71 nodes. In Sample 4, we found a mean of 51.5 nodes and a standard deviation of 16.55

nodes. This means that in Samples 2-4, the amount of overlapping concepts degrades along with its variance.

3.2.3 Analysis 3: Weights of overlapping concepts per index

We plotted the weight of each overlapping concept per index. The result is depicted in Figure 3.7. Note

that the y-scale (representing the weight of an overlapping concept) in this figure is logarithmic. We also

calculated the mean, median and standard deviation of weights of overlapping concepts per sample. These

statistics can be found in Table 3.7.

Figure 3.7: Weights of overlapping concepts per index, coloured by sample

Sample Mean Median St. Dev.
1 0.0201816 0.0000361 0.0792601

2 0.0001668 0.0000806 0.0003871

3 0.0000675 0.0000342 0.0001216

4 0.0000252 0.0000141 0.0000319

Table 3.7: Mean, median and standard deviation of weights of overlapping concepts per sample

From Figure 3.7 and Table 3.7, we can clearly see that Sample 1 has the largest variance of weights. Also it

is the only sample with weights greater than a value of 1.0E-2. Interesting to see are the medians of these

samples. The median of Sample 1 is 3.61E-5, whereas Sample 2 has a greater median of 8.06E-5. Sample 3
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follows with a smaller 3.42E-5. Lastly there is Sample 4 with the smallest median of 1.41E-5. The variance

degrades from a standard deviation of 7.92601E-2 in Sample 1 to 3.19E-5 in Sample 4. Thus the weights of

the lower ranked overlapping concepts are more concentrated.
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Conclusions

In this section, we will first provide an outline of this study. Then, we will discuss the effectiveness of

CPVisuals. Lastly we will discuss the results of our experiment and the patterns that we have found.

In Section 1, we have provided a background of the issues we face today in terms of scientific literature abun-

dance along with efforts made prior to this study to solve those issues. We introduced concept profiles and

explained implicit and explicit associations between concepts. Also, we introduced CPVisuals, our concept

profile visualization tool. We explained that the objective of CPVisuals is to aid in prioritizing research by

pointing out promising concept profile pairs and to avoid prior research from getting lost in the large heap

of literature. Then, we explained that our goal for this study is to use CPVisuals to discover patterns in gene-

disease concept profile pairs that will drive match scores. In Section 2, we described analytical methods that

CPVisuals uses to visualize concept profile pairs. We also discussed software used to produce CPVisuals.

Lastly, we discussed the Gene-Disease database and the methods we used to extract five samples for our

experiment. In Section 3, we discussed the results of our experiment. We depicted the visualizations along

with statistical data corresponding to the samples in the experiment. We performed three analyses on these

samples and discovered several patterns.

In the first analysis, we were looking for patterns in semantic categories. For simplicity, we identified five

semantic categories that would seem most relevant to the biologist. In this analysis we were hoping to

identify semantic categories that could be indicative of the match score value. In this regard, we were

partially successful. For the highest ranking match scores, the two semantic categories Chemicals & Drugs

and Disorders were dominating. The other three categories were almost non-existent. However, in Samples

2-4, the distributions are approximately the same. They seem to have no discrimination for match score. Also,

the influence of the Chemicals & Drugs category has dramatically decreased in these last samples, while the

Disorders category remained roughly the same. The lower ranking associations also demonstrate a balance of

23
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Anatomy of Physiology categories, that remain constant over match score. Surprisingly, overlapping concepts

in the Genes & Molecular Sequences category remain low throughout the samples and contribute little to the

match score. From these data, it appears that high match scores are driven by overlapping concepts in the

category Chemicals & Drugs. It is not possible to conclude from these data what role the other semantic

categories are playing in determining match score. This suggests that we may need to expand this analysis

to include all semantic categories.

In the second and third analyses, we observe in the Samples 1 and 2 (match scores in the 25th percentile or

higher) a balance between number of nodes on one hand and the magnitude of weights on the other hand

in relation to match score. Specifically, Sample 1 has on average a smaller number of nodes but those nodes

have a higher average weight. In contrast, Sample 2 has on average a higher number of nodes but those nodes

have a lower average weight. This means that in Sample 1, the match scores are driven by fewer, stronger

links. In Sample 2, there are more, but weaker links driving the match scores.

For the lower ranking concept pairs in Samples 2-4, there is a trend of decreasing weights and decreasing

amount of nodes. This degradation confirms our intuition that low match scores are associated with low

information content associations, and in the limit are approaching meaningless, random associations. In the

same way, the associations in Sample 1 confirms our intuition that high match scores are associated with high

weights.

However, in Sample 2 we begin to see a tension between these two limiting cases, where concept pairs demon-

strate a co-existence of both high and low information content associations and both sparsely connected and

richly connected concepts. At this resolution of sampling, we can identify Sample 2 as a transition between

certain knowledge and random associations. We conjecture that new associations (knowledge discovery) oc-

cur near this transition zone, possibly located around the explicitome, where highly weighted associations

come into contact with low information content associations.

Having sampled match score with a small number of concept pairs (50), it is difficult to locate exactly where

this transition occurs. Expanding this analysis to include all 204 million gene-disease concept pairs will help

us to more precisely locate the position of this transition. Interestingly, when looking back at Figure 2.1, we

see that the explicitome curve peaks in between Samples 1 and 2 . It would be instructive to determine the

location of the the transition in relation to the peak of explicit knowledge.

Our CPVisuals concept profile visualization tool has proved to be a useful addition to further investigate

structures of concept profiles and concept profile pairs. Based on the intuition a user obtains from the

visualizations, it is now possible to prioritize analysis of concept profile pairs, leading to discover knowledge

sooner.
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Semantic types

Semantic types are grouped by semantic category. Based on the UMLS Semantic Groups [2] [8].

Activities & Behaviors

Behavior T53

Daily or Recreational Activity T56

Event T51

Governmental or Regulatory Activity T64

Individual Behavior T55

Machine Activity T66

Occupational Activity T57

Social Behavior T54

Anatomy

Anatomical Structure T17

Body Location or Region T29

Body Part, Organ, or Organ Component T23

Body Space or Junction T30

Body Substance T31

Body System T22

Cell T25

Cell Component T26

Embryonic Structure T18

Fully Formed Anatomical Structure T21

Tissue T24

25
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Chemicals & Drugs

Amino Acid, Peptide, or Protein T116

Antibiotic T195

Biologically Active Substance T123

Biomedical or Dental Material T122

Carbohydrate T118

Chemical T103

Chemical Viewed Functionally T120

Chemical Viewed Structurally T104

Clinical Drug T200

Eicosanoid T111

Element, Ion, or Isotope T196

Enzyme T126

Hazardous or Poisonous Substance T131

Hormone T125

Immunologic Factor T129

Indicator, Reagent, or Diagnostic Aid T130

Inorganic Chemical T197

Lipid T119

Neuroreactive Substance or Biogenic Amine T124

Nucleic Acid, Nucleoside, or Nucleotide T114

Organic Chemical T109

Organophosphorus Compound T115

Pharmacologic Substance T121

Receptor T192

Steroid T110

Vitamin T127
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Concepts & Ideas

Classification T185

Conceptual Entity T77

Functional Concept T169

Group Attribute T102

Idea or Concept T78

Intellectual Product T170

Language T171

Qualitative Concept T80

Quantitative Concept T81

Regulation or Law T89

Spatial Concept T82

Temporal Concept T79

Devices

Drug Delivery Device T203

Medical Device T74

Research Device T75

Disorders

Acquired Abnormality T20

Anatomical Abnormality T190

Cell or Molecular Dysfunction T49

Congenital Abnormality T19

Disease or Syndrome T47

Experimental Model of Disease T50

Finding T33

Injury or Poisoning T37

Mental or Behavioral Dysfunction T48

Neoplastic Process T191

Pathologic Function T46

Sign or Symptom T184
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Genes & Molecular Sequences

Amino Acid Sequence T87

Carbohydrate Sequence T88

Gene or Genome T28

Molecular Sequence T85

Nucleotide Sequence T86

Geographic Areas

Geographic Area T83

Living Beings

Age Group T100

Amphibian T11

Animal T8

Archaeon T194

Bacterium T7

Bird T12

Eukaryote T204

Family Group T99

Fish T13

Fungus T4

Group T96

Human T16

Mammal T15

Organism T1

Patient or Disabled Group T101

Plant T2

Population Group T98

Professional or Occupational Group T97

Reptile T14

Vertebrate T10

Virus T5
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Objects

Entity T71

Food T168

Manufactured Object T73

Physical Object T72

Substance T167

Occupations

Biomedical Occupation or Discipline T91

Occupation or Discipline T90

Organizations

Health Care Related Organization T93

Organization T92

Professional Society T94

Self-help or Relief Organization T95

Phenomena

Biologic Function T38

Environmental Effect of Humans T69

Human-caused Phenomenon or Process T68

Laboratory or Test Result T34

Natural Phenomenon or Process T70

Phenomenon or Process T67

Physiology

Cell Function T43

Clinical Attribute T201

Genetic Function T45

Mental Process T41

Molecular Function T44

Organism Attribute T32

Organism Function T40

Organ or Tissue Function T42

Physiologic Function T39
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Procedures

Diagnostic Procedure T60

Educational Activity T65

Health Care Activity T58

Laboratory Procedure T59

Molecular Biology Research Technique T63

Research Activity T62

Therapeutic or Preventive Procedure T61



Bibliography

[1] Z. Afzal, E. Pons, N. Kang, M. C. Sturkenboom, M. J. Schuemie, and J. Kors. ContextD: an algorithm to

identify contextual properties of medical terms in a Dutch clinical corpus. BMC bioinformatics, 15(1):373,

2014.

[2] O. Bodenreider and A. T. McCray. Exploring semantic groups through visual approaches. Journal of

biomedical informatics, 36(6):414–432, 2003.

[3] A. D. Corlan. Medline trend: automated yearly statistics of pubmed results for any query. http:

//dan.corlan.net/medline-trend.html, 2004. Accessed: 2012-02-14 (Archived by WebCite at http:

//www.webcitation.org/65RkD48SV).

[4] J. Harding and Twitter, Inc. Typeahead.js, a flexible javascript library that provides a strong foundation

for building robust typeaheads. http://twitter.github.io/typeahead.js/. Accessed: 2015-07-04.

[5] K. M. Hettne, M. Thompson, H. van Haagen, E. van der Horst, R. Kaliyaperumal, E. Mina, Z. Tatum,

J. F. Laros, E. M. van Mulligen, M. Schuemie, E. Aten, J. den Dunnen, G.-J. van Ommen, M. Roos, P. A.

t Hoen, B. Mons, and E. A. Schultes. The implicitome: exposing gene-disease associations hidden in the

literature. submitted for publication, 2015.

[6] D. Hristovski, B. Peterlin, J. A. Mitchell, and S. M. Humphrey. Using literature-based discovery to

identify disease candidate genes. International Journal of Medical Informatics, 74(24):289 – 298, 2005. {MIE}

2003.

[7] R. Jelier, M. J. Schuemie, P.-J. Roes, E. M. van Mulligen, and J. A. Kors. Literature-based concept profiles

for gene annotation: The issue of weighting. International Journal of Medical Informatics, 77(5):354 – 362,

2008.

[8] Lister Hill National Center for Biomedical Communications . The umls semantic groups. http://

semanticnetwork.nlm.nih.gov/SemGroups/. Accessed: 2015-08-31.

31



32 BIBLIOGRAPHY

[9] Oracle Corporation. MySQL, the world’s most popular open source database. https://www.mysql.com/.

Accessed: 2015-07-04.

[10] M. Otto, J. Thornton, and Bootstrap contributors. Bootstrap, the most popular html, css, and js frame-

work for developing responsive, mobile first projects on the web. http://www.getbootstrap.com. Ac-

cessed: 2015-07-04.

[11] T. Otwell. Laravel php framework. http://www.laravel.com. Accessed: 2015-06-18.

[12] N. R. Smalheiser. Literature-based discovery: Beyond the abcs. Journal of the American Society for Informa-

tion Science and Technology, 63(2):218–224, 2012.

[13] D. R. Swanson. Fish oil, raynaud’s syndrome, and undiscovered public knowledge. Perspectives in biology

and medicine, 30(1):7–18, 1986.

[14] D. R. Swanson, N. R. Smalheiser, and V. I. Torvik. Ranking indirect connections in literature-based

discovery: The role of medical subject headings. Journal of the American Society for Information Science and

Technology, 57(11):1427–1439, 2006.

[15] The Cytoscape Consoritum. Cytoscape.js, graph theory (a.k.a. network) library for analysis and visuali-

sation. https://cytoscape.github.io/cytoscape.js/. Accessed: 2015-07-04.

[16] The Cytoscape Consortium. Cytoscape, network data integration, analysis, and visualization in a box.

http://www.cytoscape.org/. Accessed: 2015-07-04.

[17] The jQuery Foundation. jQuery, write less, do more. https://jquery.com/. Accessed: 2015-07-04.

[18] The PHP Group. Php. http://www.php.net. Accessed: 2015-06-18.

[19] H. H. H. B. M. van Haagen, P. A. C. ’t Hoen, A. Botelho Bovo, A. de Morre, E. M. van Mulligen,

C. Chichester, J. A. Kors, J. T. den Dunnen, G.-J. B. van Ommen, S. M. van der Maarel, V. M. Kern,

B. Mons, and M. J. Schuemie. Novel protein-protein interactions inferred from literature context. PLoS

ONE, 4(11):e7894, 11 2009.

[20] H. H. H. B. M. van Haagen, P. A. C. ’t Hoen, B. Mons, and E. A. Schultes. Generic information can

retrieve known biological associations: Implications for biomedical knowledge discovery. PLoS ONE,

8(11):e78665, 11 2013.

[21] Wolfram Mathworld. Golden ratio conjugate. http://mathworld.wolfram.com/

GoldenRatioConjugate.html. Accessed: 2015-08-17.


