
Internal Report 2013–13 September 2013

Universiteit Leiden

Opleiding Informatica

Enhancing Relation Discovery

in Unmarked Spatial Temporal Data

using Visualisation

Rick van der Zwet

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Enhancing Relation Discovery in Unmarked
Spatial Temporal Sensor Data using Visualisation.

Rick van der Zwet
<hvdzwet@liacs.nl>

Leiden Institute of Advanced Computer Science, The Netherlands

License: Creative Commons Attribution

September 26, 2013

Abstract

The objective of this Master Thesis is to find out howto enhance au-
tomated relation discovery in untagged spatial temporal data, using visual
aids and meta-data learning.

This paper will demonstrate why existing implementations of automated
relation detection could benefit from adding meta-data and how a newly
defined feedback loop involving a human operator will enhance the sensor
data analytics and relation discovery methods.

This approach is demonstrated by walking through several use cases, like
interactive real-time visualization using heatmaps.

In this study it was found that using visual thinking as addition to
automated relation discovery enhances the ability to find new relations.
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1 Preface

Welcome! Allow me to introduce myself and say thanks the persons which I am
grateful for helping and supporting me.

1.1 Motivation

Embedded Systems and Wireless Network information Technologies caught my
attention as early as my teenage years and it was then when I decided to study
Computer Science later in life.

I very soon realized that I am not a typical student as such. I was spend-
ing quite some time with practical aspects of IT systems, especially UNIX and
FreeBSD derivatives making me realize that mastering this information could not
be learned from a book or study, but only by self-learning. Luckily Leiden has a
large number of FreeBSD and UNIX enthusiasts focused around various small and
larger companies like Cope IPS1, Joost Technologies B.V2, TransIP, Optiver and

1The company is now called Dimensional Insight Netherlands
2Ceased operations in the Netherlands
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volunteer organisations like Stichting Wireless Leiden.

My decision to start studying part-time and to work in IT turned out to be a
beautiful combination of both words enabling me to learn both theory and practical
examples of this beautiful field of research.

During my studies I encountered various other wonderful fields of computer
science, ranging from game theories, modelling of biological processes with Petri-
Nets and massive parallelisation. Things I never would have expected in Computer
Science.

With my Bachelor Thesis, I focused on the massive parallelisation on GPUs
keeping me close to my embedded systems interest. The large amounts of data
slowly caught my interest. I always liked the idea that it is very simple to generate
massive amounts of data and that it takes a lifetime to analyse this data.

My Master Project focused on even larger data sets in the field of High Fre-
quency Trading. This is the first time that I found myself drowning in data not
able to find all relations, how simple it looked at the first place. And to be honest
I liked it a lot.

For my master thesis I decided to take an even deeper dive. I found a small
company which was willing to share a lot of data. This data is gathered from
sensors of embedded systems at various times and places.

I took the challenge to see how much of my knowledge gathered during my
research on HFT data and analytics with the GPU could be applied for this very
interesting data.

The challenge has proven to be a really though cookie and I am proud that I
choose this path. This path allowed me to apply the knowledge I gathered during
the years at LIACS Leiden University to the full extent.

After exactly ten years, with my part-time choice in mind, I proudly present
you the result of my journey in Computer Science.

The result of my work is both theoretical and practical oriented. I hope you
enjoy it as much as I did writing it.

6



1.2 Acknowledgements

I like to provide my acknowledgements to Prof. H.A.G. Wijshoff for his patience
and drive to get the best out of all his students, by providing them a wide knowl-
edge view and interesting new viewpoints.

I would also like to thank Gerard Cats for providing his insights with regards to
relations discovery in meteorological data and for providing a clear view, guidance
and an eye for attention during our various discussions on the subject.

A word of thanks to Dr. Erwin M. Bakker for feedback on discussions with
regards to storage and databases.

A big thanks to Nick Hibma from AnyWi.com for providing me with endlessly
amounts of data and his clear explanation of real-life questions and issues he is
facing. The discussions I had and his feedback on my ideas allowed me to filter the
wild-ideas and test them to reality.

Lastly I would like to thank my parents Jan and Joke for their continued
support and my wife Inge for her patience, motivational talks and endless love.

2 Introduction

The last 5 years integration of electronic devices in our world is increasing at a
pace we could have never imagined. More and more electronics are equipped in our
equipment and new electronic devices with communication capabilities are added
to places we have never seen electronics.

This new generation devices have one thing in common. They are generating
a fair chunk of sensor data and unlike traditional devices this data could now be
shared in almost real-time due to the fast amount of communication possibilities
available now-a-days.

Gathering sensor data and processing them into centralized locations is done
by various companies. I have been asked by an engineer of AnyWi.com to find
out why there are connection drops in sensor transmission occurs within their
setup, this setup is explained in detail in Section 5. When trying to solve this
issue it was found that there is tooling missing to assist in visual thinking with
relation to spatial temporal sensor data. Existing tooling and solutions were not
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able to cope with the large amount of data. So I began to design an alternative,
using human operator expert knowledge to provide extra knowledge to automated
relation discovery process. This would allow faster detection of new relations. One
possible way to make detection and exploration much more easy is by using Visual
Thinking.

“Visual Thinking [1] is the phenomenon of thinking through
visual processing. Visual thinking uses the part of the brain
that is emotional and creative, to organize information in an
intuitive and simultaneous way. Visual thinking is one of a
number of forms of non-verbal thought, such as kinaesthetic,
musical and mathematical thinking. Visual thinking may be
more common for individuals with dyslexia and autism.

Spatial-temporal reasoning is the ability to visualize special
patterns and mentally manipulate them over a time-ordered
sequence of spatial transformations. Spatial visualization
ability is the ability to manipulate mentally two- and three-
dimensional figures.

Spatial-temporal reasoning is prominent among visual
thinkers as well as among kinaesthetic learners (those who
learn through movement, physical patterning and doing) and
logical thinkers (mathematical thinkers who think in patterns
and systems) who may not be strong visual thinkers at all.

https://en.wikipedia.org/wiki/Visual_thinking”Processing large amounts of data with automatic discovery could take a consid-
erable amount of time, as the searchable space is potentially very large. This time
constrains causes the automatic discovery processes usually to be non-interactive
batched process.

Analytics by automated discovery commonly follows the path as seen in Fig-
ure 1a. The data is sensed and transported to a storage location. Next automated
discovery will try to process the data in order to find relations. Ones relations are
found they are presented to the operator. Automatic Relation Discovery comes
in many different forms and shapes, this methods will be further explained in
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(a) Usual path of finding
relations.

(b) Proposed alternative
of finding relations.

Figure 1: Finding relations with automatic discovery is often a non-interactive
process, where-as an interactive process potentially has benefits due to the expert
knowledge of a human operator.
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Section 10.2.

For this matter an alternative structure is proposed as shown in Figure 1b
which will first uses analytics in earlier stages to annotate the raw data allowing
automated discovery to go faster. For example if the analytics finds out a data
column to be constant, this knowledge could for example be used by automated
discovery algorithms to include or exclude certain columns during execution.

Furthermore I would like to add expertise of a human operator into the au-
tomated analytics loop. By speeding-up the automated discovery to levels which
makes interactive usage possible it would allow a human operator to provide feed-
back on the automated discovery process.

The feedback by the automated discovery engine could for example present the
operator a list of columns which could together potentially form a location readout.
By visualisation of the different paths a human operator could select which sensors
readings in fact represent a path, as the operator could quickly detect if a path
is following a waterway or road when placed over geographical map. Ones a path
has found the automated discovery could continue the search. It will next present
sensors readings which could potentially have a relation to the path. One of such
readings could be the speed of the object. By providing a listing of speeds to the
human operator, the human operator could decide which speed read-outs are in
fact possible for the object being examined. If the path showed that the object is
travelling over waterways at all times, it could be identified as a ship. As such any
speed of higher then 50km/h for this object would be questionable.

If the operator cannot make a decision, extra information could be requested.
For example if the speed is presented the acceleration could also be calculated
and displayed, such extra information in our speed example allows the operator to
choose between a ship or an air-plane.

Sometimes the operator cannot make a decision and could for example mark
several columns to potentially representing the speed. The automated discovery
could continue the search and for example find and present the altitude possibilities
together with the speed, allowing the operator to select the possible combinations.

The last operation possible by the operator is the discrimination of the pre-
sented alternatives, if neither of the options are possible. This requires the auto-
mated discovery to find an alternative column or assume the data is not present
in the sensor data output.

The described automated human-assisted discovery for spatial temporal data,
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would potentially make finding relations more intuitive and faster.

This introduction gives an outline of what to expect in this Master Thesis, the
remainder of this document is structured as follows. In Section 3 an introduction
to sensors is given. Section 4 will zoom in on the data generated by the sensors. In
Section 5 transport of sensor data to the central storage engine will be discussed.
The next Section 6 will describe howto store the data is gathered. Section 7 will
describe why meta-data annotation on raw data is an important step to take.
Section 8 will show howto perform filtering on raw-sensor data. Section 9 will touch
analytics methods. Section 10 will provide a breakdown of existing analytics tooling
solutions and why they are lacking functionality for spatio-temporal analytics using
visual thinking. In Section 11 an example implementation of visualisation of sensor
data for visualisation recognition by an operator is presented. The results of the
experiments will be summarized in Section 12, following with recommendations
for further work in Section 13.

3 Sensors

Sensor data is data which is sensed by the sensor. The data is derived from it
surrounding or environment. For example a temperature sensor could read the
temperature from a certain object if attached to the object or it could read the
temperature from the environment if the probe is reading the air temperature.

Apart from “external” measurements values from the environment, like tem-
perature, speed and humidity, it could include measurements values about the
electronics itself, like battery status, CPU usage and bandwidth usage.

There are two types of sensor readings, the temperature reading for example
is a continuous analogue reading. The second type is the discrete digital readings,
for example a door sensor which detect whether the door is open or not, only has
two states.

The digital readings could be interpreted (and stored) right away, the analogue
readings however needs to be converted before they are able to be processed. One
way of converting the analogue reading to digital output is by using PCM sampling.
PCM (Pulse Code Modulation) is a technique which samples the data by getting
the reading at pre-defined time intervals. On example of PCM sampling is found
in Figure 2.

11



(a) Audio Signal

(b) PCM signal

Figure 2: Conversion of analogue readings to digital output with PCM conversion.
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PCM sampling will cause data readings to get lost, since there is no data storage
of the intervals where no sampling takes place. To reconstruct this data one could
try interpolation, however this techniques will not be able to retrieve the exact
result any-more. If sampling at a smaller interval is requested a higher resolution
sensor is required. Making higher resolution sensors however is more expensive, so
there will always be a trade-off between sensor resolution and price willing to pay
for the sensor.

This new devices now move around all over the globe and look to the real world
in various areas. And instead of just a few of them, there are many and many of
devices together gathering data at a rate we have never seen before.

And the innovation does not stop, it is only increasing at a bigger speed, the so
called “Internet Of Things” [2] is a very accurate description where we are heading
to; a totally inter-connected world where every device is connected to the internet
and is able to communicate with it.

Storing new massive amounts of sensor data gets to a whole new dimension
since there are so many different sensors around. This comes both in the storage
requirements and in the format the data is stored. Storing the data in an unified
format is not always possible any more. For example a heart-rate sensor has a
very different set of properties than a sensor used to measure temperature on an
oil-tanker.

There are various ways of storing this new data and they all try to allow flexible
data inserts and fast searches. However traditional databases are hardly sufficient
any more. The amount of entries (rows) grows beyond searchable/indexable pos-
sibilities. Secondly it becomes difficult to add new sensors (new columns) if the
dataset gets really large. New database storage systems are invented to cope with
this limitations, examples are storage using BigTable [3] and MapReduce [4]. More
on storage is found in Section 6.

This new sensor data is stored in this new database types and is usually kept
for a longer time. This itself however makes a challenge if the data is accessed at
later stage. The data columns descriptions might not be present any more or it
context is not clear any more. This poses huge issues when it comes to usability
of the measured sensor data in time.

Time is not the only issue when it comes to storing sensor data. There are
a lot of parameters to store. One special kind of data is the data gathered by
mobile sensors. Mobile sensors move around in the location space, this space is
not only limited to Earth, looking at sensor data from sensors in satellites and
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space exploration equipment. This sensor data has normally contains at least 4
parameters. The first parameter is the time parameter, which contains the time
the reading took place.

Secondly and third comes the mobility specific parameter. This parameter is
written down in 2 coordinate parameters if the object is moving over a 2D grid.

Lastly the reading of the sensor itself. Optionally we could add an 3rd location
parameter if the sensor object is moving in a 3D grid. Sometimes a sensor reports
the distance of a trajectory travelled from a certain point. This is not considered
location data if the trajectory itself is not stored, as there is no way to depict the
location in a different matter.

For some (mobility) sensors the view direction is also crucial information for
an accurate description of the sensor data. For example, if the sensor gets image
information, knowing in which direction the picture was taken is really valuable
information. This will then add 3 more parameters which are rotational parame-
ters, namely the angles of the sensor head on the X en Y axis, as seen on Figure 33.
Please note that this sensor also contains a gravity sensor in addition to the x-axis
and y-axis readings. This potentially could give different sensor reading, namely
tilt, vibration, motion and acceleration, which could all be derived from the read-
ings from this sensor.

Next the head position is required, which is usually done by a magnetic compass
sensor or an alternative which uses implicit direction calculated on coordinate
movements. The second is less precise as the direction cannot be calculated if the
sensor is idle at one location.

Lastly the coordinates are measurements from a location sensor like a GPS
(Global Positioning System) or its Russian counterpart GLONASS (GLObal’naya
NAvigatsionnaya Sputnikovaya Sistema4) sensor.

4 Sensor Data

Figure 4 shows a small snippet of data stored. This example illustrates the case of
making it hard to re-discover the context the data get stored in. There are various
columns of integers, floats and string values and not all rows are filled.

3Pictures from http://learn.parallax.com/KickStart/28017
4GLObal NAvigation Satellite System
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(a) Sensor package with
pin-outs for data readings
and power supply.

(b) Schematic represen-
tation of measurements
available.

Figure 3: A Memsic 2125 Dual-axis Accelerometer, is an example of a sensor which
allow measurements of tilt of two angles.

Figure 4: A random sample of data.

The snippet column headers are blurred on purpose as we are working with
Untagged Data. There is simply no usable identification available to find out what
this data is all about. The identification of the columns is as useful as the column
headers ’A’, ’B’, ’C”, etc...

Having said this, we are not totally clueless about the data in Figure 4 as we
know that the data is gathered on a ship. This valuable piece of so-called meta-
data information tells us that the data at least contains a time-stamp column, 2
location columns and at least one sensor reading.

This snippet is a part of the actual data which later used on to generate plots.
This paper will describe the various steps needed to take us from the data blob to
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an usable piece of data which could be used for analytics purposes.

Secondly the question arrived what kind of other relations could be found from
the data and more effectively howto improve the storage strategies such that effect
re-use of the data for other purposes could be made possible. Currently for every
new application the data model has to be re-invented and it is often found that
data is missing. This follows on the fact that the data gets analysed and more
questions are found. However for those questions the required sensor data might
not be gathered in the first place.

The spatial temporal sensor data gathered contains a lot of data. Our example
dataset of a single aggregator contains already 193 columns and roughly 27.8M
rows. When combining all 7 aggregators the search space expands to roughly 1338
columns and 138.4M rows. A detailed listing could be found in Table 1.

identifier columns rows

00:0d:b9:1b:57:10 239 43.8M
00:0d:b9:1b:57:14 180 8.6M
00:0d:b9:1b:57:28 184 13.2M
00:0d:b9:1b:57:30 157 2.3M
00:0d:b9:1b:5d:a0 213 37.3M
00:0d:b9:1b:5d:c0 172 4.8M
00:0d:b9:20:46:24 193 27.8M
combined datasets 1338 138.4M

Table 1: Overview of sizes of provided datasets by various aggregators, the ag-
gregators have different amount of rows due to the variation in run times. It also
has a different amount of columns due to different sensor configurations on the
aggregators.

Manual analytics of the data are not longer sufficient to provide answers. In
order to handle the massive amounts of data, automated discovery is required to
assist in finding relations in the data.

5 Transport

Before talking about transport, knowing where the data will be stored is a pre.
The sensor data could be stored on 3 locations, the traditional method is to store
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it on a centralized location. Local storage on the sensor could be an alternative.
And the hybrid solution is to store data at intermediate nodes.

The choice where to store the data is depicted by two parameters, the storage
capabilities and the transport capabilities.

Sensor data is usually gathered by devices with a very low power profile, tra-
ditional data transport consumes a fair amount of power, so there need to be
improvements to ensure efficient data transport. This could be done for example
by defining algorithms for sending data, which minimize the time the system needs
to be active in data communication [5].

Another approach is store-and-forward, where the data is stored on nodes for
a longer time and transmitted in batches. An alternative approach to the method
is by sending the data to specialized storage nodes and have the storage nodes
transport the sensor data to a centralized location in batches [6].

Figure 5: Data is gathered by sensors and transmitted to the aggregator device
using various protocols, like I2C, UART, Ethernet, wireless connectivity proto-
cols such as 802.11abgn (WiFi), ZigBee and various proprietary sensor transport
protocols, like SenSite.

In our case the sensor data is gathered by sensors connected to an aggregator
which is located on a ship. The aggregator is connected to the central power
supply of the ship. This aggregators are small i386 embedded systems running
FreeBSD operating systems, with 256MB of RAM and no writeable persistent
storage. Figure 5, shows the complete path of which the sensor data follows from
the moment it is “sensed” to the storage.

Satellite is preferred as most of the sensors are placed on ships which are
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travelling in various countries within Europe. This ships travel over the main
waters of Europe, which are rivers, canals and lakes. Within Europe data roaming
over 3G mobile connection is expensive. To ensure redundancy the aggregators are
connected through 3G mobile connection and an satellite connectivity to a central
storage system.

The satellite connection is preferred above a 3G mobile connection as within
Europe mobile data costs are in general very costly compared to satellite connec-
tivity, due to roaming costs and different data-plans in every European country.
On the flip-side the 3G mobile connection is in general more reliable than the
satellite connection, as satellite connections do not have a connection if there is
some object in between the satellite and the satellite received. A thundercloud or
mountain in the Line Of Sight (LOS) to the satellite, could make communication
with the satellite impossible. So the trade-off is to have both data communica-
tion paths available for use. The aggregator uses sensor reading to select the best
gateway to use.

The aggregator however sometimes picks the wrong path or start switching
paths frequently. Because every switch takes around 30 seconds to settle, switching
a lot means that there is virtually no data communication possible. For the sensor
readings this is not an issue as the data is buffered, however there are multiple
other information systems using the line connections as well. Since some of them
are interactive the users of this systems cannot use the systems during this time
periods. Section 11 will zoom in on this issues and tries to find an answer.

The aggregators sent the sensor readings using the LTRANS protocol over one
of the active links. The transmission uses the Internet to arrive to the storage
location. The LTRANS Protocol and its history is described in section 5.

Since the power consumption is not an issue as the sensor unit is connected to
the main power of the ship, allowing us to be flexibly when it comes to transport
and storage costs. A real-time protocol is preferred as we have limited amounts
of storage available on the units itself. Secondly storing and analysing the data
is more easy and faster if the data is stored on a centralized place. For example
when thinking on redundancy, when storing the data at the aggregators, data
somehow needs to be duplicated to cater with hardware failure, whereas this data
is stored on a centralized location, simple existing backup solutions could be used
for redundancy requirements.

Where power is “free”, data transport however does not comes free. Every byte
send over the 3G mobile phone connection or the satellite connection has a cost
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price, so the main goal is to avoid sending too many data over the line.

For the matter a (simple) transport protocol LTRANS is designed, which copes
with compression of data and avoiding data overhead.

Traditionally sensor systems are typically configured to sent their complete
state at predefined intervals, for example every second, this will give the follow-
ing list. The lat and lon readings are sent by a single sensor, next to this are 4
other sensors reporting readings. The data is structured in a table for readability
purposes:

timestamp;lat;lon;sensorA;sensorB;sensorC;sensorD

1378635719;4.12345;52.6789; ; ; ;

1378635719; ; ;10.1; ; ;

1378635719; ; ; ;0.566; ;

1378635719; ; ; ; ;15.0;

1378635719; ; ; ; ; ;foobar

1378635720;4.12345;52.6789; ; ; ;

1378635720; ;10.2; ; ;

1378635720; ; ; ;0.567; ;

1378635720; ; ; ; ;15.0;

1378635720; ; ; ; ; ;foobar

1378635721;4.12345;52.6789; ; ; ;

1378635721; ;10.1; ; ;

1378635721; ; ; ;0.567; ;

1378635721; ; ; ; ;15.0;

1378635721; ; ; ; ; ;foobar

1378635722;4.12345;52.6789; ; ; ;

1378635722; ;10.2; ; ;

1378635722; ; ; ;0.567; ;

1378635722; ; ; ; ;15.0;

1378635722; ; ; ; ; ;foobar

1378635723;4.12345;52.6789; ; ; ;

1378635723; ;10.2; ; ;

1378635723; ; ; ;0.567; ;

1378635723; ; ; ; ;15.0;

1378635723; ; ; ; ; ;foobar
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1378635724;4.12345;52.6789; ; ; ;

1378635724; ;10.2; ; ;

1378635724; ; ; ;0.567; ;

1378635724; ; ; ; ;15.0;

1378635724; ; ; ; ; ;foobar

1378635725;4.12345;52.6789; ; ; ;

1378635725; ;10.1; ; ;

1378635725; ; ; ;0.566; ;

1378635725; ; ; ; ;15.0;

1378635725; ; ; ; ; ;bert

1378635726;4.12345;52.6789; ; ; ;

1378635726; ;10.1; ; ;

1378635726; ; ; ;0.566; ;

1378635726; ; ; ; ;15.0;

1378635726; ; ; ; ; ;bert

1378635727;4.12345;52.6789; ; ; ;

1378635727; ;10.1; ; ;

1378635727; ; ; ;0.566; ;

1378635727; ; ; ; ;15.0;

1378635727; ; ; ; ; ;bert

1378635728;4.12345;52.6789; ; ; ;

1378635728; ;10.1; ; ;

1378635728; ; ; ;0.566; ;

1378635728; ; ; ; ;15.0;

1378635728; ; ; ; ; ;bert

1378635728;4.12345;52.6789; ; ; ;

1378635728; ;10.1; ; ;

1378635728; ; ; ;0.566; ;

1378635728; ; ; ; ;16.0;

1378635728; ; ; ; ; ;foobar

The above samples has a number of assuming set. At first it assumes that all
sensor readings are sent in the same intervals and are aligned perfectly around
the second. There is however a fair amount of overhead of sensor readings sent
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as all sensors include the time-stamps, which thus gets duplicated multiple times.
The first improvement to be done is by combining sensor readings of the same
time-stamp range and sending them in one batch. This could be done using an
aggregator. Do mind by using an aggregator it will update every reading as fast as
the fastest sensor. For example if one sensor is reporting at 10 second interval and
another one is reporting at a 1 second interval, all values get sent every 1 second:

timestamp;lat;lon;sensorA;sensorB;sensorC;sensorD

1378635719;4.12345;52.6789;10.1;0.566;15.0;foobar

1378635720;4.12345;52.6789;10.2;0.567;15.0;foobar

1378635721;4.12345;52.6789;10.1;0.567;15.0;foobar

1378635722;4.12345;52.6789;10.2;0.567;15.0;foobar

1378635723;4.12345;52.6789;10.2;0.567;15.0;foobar

1378635724;4.12345;52.6789;10.2;0.567;15.0;foobar

1378635725;4.12345;52.6789;10.1;0.566;15.0;bert

1378635726;4.12345;52.6789;10.1;0.566;15.0;bert

1378635727;4.12345;52.6789;10.1;0.566;15.0;bert

1378635728;4.12345;52.6789;10.1;0.566;15.0;bert

1378635729;4.12345;52.6789;10.1;0.566;16.0;foobar

There are various methods to reduce the amount of data to be transferred,
for example by filtering or caching. This how-ever comes with a penalty as the
sensor system will need more computing power and more (RAM) local storage.
The choice whether to reduce the data sent is a trade-off between sensor costs and
transport costs.

Reducing the amount of data to be sent could be done in multiple ways. First
we could send the initial state and next the delta of the changes. The initial packet
will contain the state of all sensors, updates are only sent out of any of the data
packets changes. The entries received will look like:

timestamp;lat;lon;sensorA;sensorB;sensorC;sensorD

1378635719;4.12345;52.6789;10.1;0.566;15.0;foobar

1378635720;4.12345;52.6789;10.2;0.567;15.0;foobar

1378635721;4.12345;52.6789;10.1;0.567;15.0;foobar

1378635725;4.12345;52.6789;10.1;0.566;15.0;bert

1378635729;4.12345;52.6789;10.1;0.566;16.0;foobar

The amount of entries is now reduced by 50% by not sending the lines which are
not changed, but there are still quite some unchanged entries in the data received.
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To save some more data we could leave out entries which are unchanged. This
gives us the benefit of even less data being transferred.

timestamp;lat;lon;sensorA;sensorB;sensorC;sensorD

1378635719;4.12345;52.6789;10.1;0.566;15.0;foobar

1378635720; ; ;10.2;0.567; ;

1378635721; ; ;10.1; ; ;

1378635725; ; ; ;0.566; ;bert

1378635729; ; ; ; ;16.0;foobar

This is not a free lunch, as we are in trouble if the receiver misses an update,
due to transport errors for example. There is no way to recover as we do not
receive a “full-state” periodically. So if the transport protocol is unreliable there
is an extra requirement in this method to make sure packets are always received
by for example acknowledging the packet or by sending “full-states” on periodic
basis, such that “unknown” states could be avoided.

For the case of LTRANS it is fixed by sending acknowledgements on every packet
received. If no acknowledgement is received for a period of time the sensor will
start discarding new data readings if the sensor internal storage is full. When
data communication is re-established the sensor will (re)start the communication
stream with a full packet to announce its full current state.

When it comes to saving there is one extra item which could potentially make a
difference. There is a lot of white-space transmitted and control characters trans-
mitted, this comes due to fact the sensor transmissions are sent using a fixed
column structure.

Having fixed amount of columns is useful if the sensor count is constant, how-
ever sensor counts these days are changing. For example a sensor starts to reporting
an extra information field or there are extra control fields added depending on the
state of the system. A GPS sensor for example has a field which tells whether it
has a “fix” e.g. knows howto calculate an accurate location. When this field is
set an alternative field is created showing how accurate the calculations are and
if the sensor is probed to display more verbose information it for example start
displaying in an extra field the satellite IDs is used in the calculations.

For all the changes there is no flexibility of adding and removing sensors in
fixed-column set-up, apart from re-initialising the entire array every time a sensor
field is added or removed. The behaviour is sometimes considered to be somehow
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inflexible so there is a second way defined of sending sensor data. The sensor
reading could also be sent as key=value pairs. For our example below will this
yield to the following result:

timestamp;

1378635719;lat=4.12345;lon=52.6789;sensorA=10.1;sensorB=0.566; \

sensorC=15.0;sensorD=foobar

1378635721;sensorB=0.567

1378635725;sensorB=0.566;sensorD=bert

1378635729;sensorC=16.0;sensorD=foobar

The key=value method as alternative to the column based storage allows us to
be as flexible as we want when it comes to sending sensor data to the store system.
However within the key=value method there is extra data introduced by the key=
entries in the transmission, which could lead to a larger data-stream. Sometimes a
key almost always changes, for example time-stamp and the location parameters,
which is in our case lat and lon. The choice of which keys are “tabular” and which
keys are of “key=value” type is currently set manually by the operator. This leads
to the following result:

timestamp ;lat ;lon ;

1378635719;4.12345;52.6789;sensorA=10.1;sensorB=0.566; \

sensorC=15.0;sensorD=foobar

1378635721; ; ;sensorB=0.567

1378635725; ; ;sensorB=0.566;sensorD=bert

1378635729; ; ;sensorC=16.0;sensorD=foobar

The sensor in this case was idle at one location, so it would actually be a better
choice if the location parameters where set as “key=value” entries instead. This
would have reduced the data overhead in this case.

6 Storage

The logical choice for storage of sensor data would be a relational database. This
could either be a row oriented or column oriented storage, giving you the benefits
of being able to process and query your data in a standard and well defined fashion,
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for example with SQ queries. With sensor data however there are a few catches
when using this kind of databases.

Firstly in order to store your data you need to come up with a database design
upfront. With sensor data here lies the catch. Sensor data is highly flexible and in
practice it is not known what is going to be stored. The database design needs to
cope with this changing requirements in a very dynamic way. Adding and changes
in a relational data is an expensive operation and takes up a lot of resources.

Secondly, resources are also an issue when it comes to search indexing, since
there are so many indexes you could search from. As the sensor array is dynamic
there is also no telling which will be important in the future. In real-life database
storage and database usage are two totally different fields of applications. So it is
actually best to index in a more dynamic way. This is a little bit more then just
telling the type of the field. This so-called meta-data properties of the data will
be of great concern at later stages. More on meta-data and indexing in section 7.

Lastly, sanitizing the data before it is insert into a database, might also be
a tempting idea as you for example do not need the precision of certain sensors
anyway or might discard certain entries completely. However this is again an as-
sumption which is very dangerous with dynamic sensor data storage. The precision
might not be needed as of this moment, but in a few years from now you find your-
self thinking that you should have stored the data in its original form.

Sensor data has only one property which is indexable, namely the time of the
reading. Every sensor reading will have an associated time-stamp and the time-
stamp will be increasing for new readings of a sensor.

For spatial sensor information the location property could also be identified as
an always indexable field, but only if the location property is chosen in such way
that it uniquely identifies a position. GPS coordinates are a good example of such
location parameters, since you could unique map any location on earth with such
coordinates 5. The distances to the nearest 3 cell towers is a bad set of parameters
as cell towers could be changed in time.

One entry often forgotten in data storage is the fact that the data also needs to
be readable after many years from now. Storing the data in today’s technologies
beautiful binary blobs makes the risk of not being able to read your data any
more in a few years from now, due to technical or licensing limitations. The most

5If your sensor is going to the moon or further you might want to consider an alternative
coordinate position systems for your sensors
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trivial and simple solution to this issue is to store the data in a format mankind
could potentially read in many more years from now. The only format to fit this
requirement for the past 50 years of computer science is simple plain text storage.

The central storage system in our case is modelled after plain text storing it is
running FreeBSD and has a large storage array for storing all the raw data uncom-
pressed. The records are stored in LTRANS format. LTRANS is a format defined by
AnyWi.com and is combined tabular and key=value pair flat file storage solution.
An example file is found in Appendix C. The full protocol description is found in
Appendix O.

Searching in plain text data could be done very easy, by either a human or a
computer however it is potentially very time consuming when walking over a lot
of data. Sensor data unfortunately happens to be a lot of data, so we require some
tricks to be able to search in data in the first place.

Firstly the sensor readings will be stored in files identified by timeslots, for
example a reading which took place at Sunday 8 September 2013 at 14:16 CEST,
will be stored at the following location 2013/09/08.txt. The / is a directory
delimiter. There is a limitation on this approach, since file systems have a limit on
how large a file can grow. When receiving a lot of data consider using a storage
strategy which includes hours or minutes, like this 2013/09/08/12/16.txt. See
that time is stored in a different format, by storing all entries as UTC (Coorinated
Universal Time), or a similar base set, it will make sure that the local time setting
of the sensor does not affect our storage strategy.

The above proposed system works really well for single sensors, however it does
no longer work if there are multiple sensors of the same kind reporting sensor data
to the storage system. To circumvent this issue there needs to be an identification
transmitted within the sensor data stream. This identification number needs to
be unique, both now and in the future. Various implementations of this so-called
Universally Unique identifier (UUID) exists, as defined by the ITU in RFC 4122 [7].
The data will then be stored in the following format:

/storage/<UUID>/2013/09/08/12/16.txt

Most sensor systems include such a number, however make sure that the num-
ber is really unique. There are various cases where the number as present by the
vendor or implementation is not actually unique. For example one case used the
serial number of the sensor as unique identifier, however the sensors from compet-
ing vendors used the same numbers range, making it impossible to identify the
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sensor data.

A second case used the MAC address of the sensor node as unique identification
for the sensor. This node was attached to a ship collected all kind of data of the
ship. Due to the fact the ship was replaced the sensor was transferred to a new ship.
This caused all kind of issues on the data analytics part as there was no knowledge
of the unique ship identifier stored in the sensor data. One could argue that the
data storage process was not broken due to the change of the aggregator to the
new ship, however there is an important point to emphasize over here. Make sure
the identification used for your sensor is uncoupled from psychical properties of
the sensor node in use, by storing this information within the sensor node readings
right from the start.

Retrieval data in this stored method is very fast when it comes to getting sensor
data for certain time intervals. Storing data based on the time-stamps is not so
efficient when for example a request for sensor of a specific area is needed, there
are two alternatives to consider with this regard. The first solution would be to
also store your sensor data in a location style storage system. For example a sensor
reading taken at location latitude 52.12345 and longitude 5.4567 is than stored at
52.12/5.45/67.txt. Storing based on location is somehow harder as you need to
find a way to segment your location space in blocks, which could scale big enough
for further needs.

This extra storage method will be a very expensive option as you will need to
store all your data twice, so this option should be used sparely or to be avoided.
The alternative solution is written down in Section 7.

As for storage, there are a few other important benefits when storing the sensor
data in plain text files. Adding storage is extremely easy as today’s file-systems
are virtually unlimitedly expandable [8].

Secondly data could be easily queried by all programs. Instead of being limited
to a database API, database access comes free, making it flexible to implement
own query methods on the data. This allows making different kind of database
access possible. The information index meta-data as written down in Section 7
would potentially allow unlimited variables on howto flexible index the data and
search through the data.
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7 Meta-data

Meta-data are annotations to the sensor readings. Meta-data provides context of
the environment the sensor was placed or about the sensor properties itself. An
other type of meta-data is the information which summarizes the data content
itself.

7.1 Virtual Meta-data

Not all properties of a sensor are transmitted by the sensor itself. For example
properties likes the sensor type and sensor accuracies are normally not included,
since if this static information was included in every transmit it would generate
a fair bit of overhead. With the proposed transmitting schema however this is
no issue anymore. The meta-data properties of the sensor could be included as
“key=value” pair, making them included only ones by the to-be-transmitted-data
by default, since this keys do not change anymore.

If sensor meta is not transmitted by itself a “virtual sensor” could be defined.
The virtual sensor will transmit the sensor meta information, allowing the meta
information stream to be included into the sensor readings.

It is vital to keep the meta-data of the sensor up-to-date and included. Without
this information it is very hard to know what the properties are when the data
blob is read at a later stage. One could safely assume that not including the meta-
data into the sensor output will render the data useless by any person/system who
needs to read the data at a later stage.

Take for example a sensor which is reporting a value of 115.12356. This could
be a temperature sensor which is either a hot temperature in degree Celsius, but
it could might as well be measuring the temperature in Fahrenheit, making it a
moderate temperature (46.1111 degree Celsius).

It even gets more interesting if the knowledge about the fact the sensor is a
temperate sensor is lost. Without any kind of meta information description this
sensor, it could might as well be an angle, height or speed sensor.

Next comes the accuracy, when looking at various readings one could conclude
that sensor is operating in a 0.00001 range of accuracy. Unfortunately there are
large number of sensors around which report a greater detail as they are actually
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designed for. For example this sensor is designed to be used as boiling temperature
measurements which will report its readings in steps of 1 degrees. Any sensor
reading produced by this sensor will have 0 digits of precision. This means that
a reading of 63.1231 is to be read as 63, the remainder 0.1231 is to be discarded.
Without knowing this limitation during the analytic phase one could draw a fast
kind of wrong conclusions.

An other case for keeping the meta-data of the sensor finds it use in data
validation and generating the informational meta-data as found earlier in Section 7.
Also without the data it gets very hard to pre-filter measurement readings, which
will be explained in Section 8.

Most of the time the “Virtual Meta-data or the so called properties of a sensor
are not stored at all or are not stored within the relation of the data to be stored.
This will essentially render the data useless if the data is exposed to a new system
or new operator. It is safe to say: “The meta-data is the key to unlock its database”.

7.2 Meta-data as Summary

If a sensor would generate one reading every second, you will get 86400 entries
a day, roughly 2.6M entries a month and 32.2M entries a year. This is just for a
single sensor reading. Sensors usually come in many different kinds, so you can
quickly see the entries growing to numbers where is it no longer maintainable in
traditional databases.

Searching for large sets of data becomes slow as indexing gets more difficult for
larger entries, so instead of indexing the whole dataset, we propose index classifi-
cation of the data based on the subsets stored like Section 6.

Instead of searching in the whole file, only the index will have to be read which
could be generated initially during the storage phase. Such indexes could also be
considered meta-data of the sensor readings as they provide information about the
data itself.

There are a number of properties to store in the index. A list of indexing fields
useful for spatial temporal sensor data are:

type Classification as found in the data, this could either be a string, float or
integer
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total Amount of entries to be found in this dataset. This for example allows to
check if it is worth checking the file at all.

unique (optional) To be used together with the total counter to see if the entry
is to be defined as unique identifier of the dataset, unique calculations could
potentially memory consuming so this field might not always be filled.

maximum Maximum number as found in the dataset, this is useful for range
checking operations.

minimum Minimum number as found in the dataset, this is useful for range
checking operations.

count minimum The amount of times the minimum entry appears in the data-
set, useful in detection the normal state of a (boolean) sensor.

count maximum The amount of times the maximum entry appears in the data-
set, useful in detection the normal state of a (boolean) sensor.

changes (optional) If the data is limited to only a certain amount of values rep-
resent the values it could take over here. This field is memory consuming to
calculate, so there is a fixed preset defined calculation to avoid the whole
dataset to appear over here.

choices (optional) Sometimes a sensor consist of a composite list of values, for
example the satellites identifiers currently visible to the sensor, this list gets
put to the sensor as string with a separation characters. This field will show
the amount of choices present over here. This field might not be present or
complete due to memory constrains during parsing for example.

The rather flexible set of index meta information provides a good start when
searching trough the data. There is a potential that all datasets needs to be
searched anyway, if the value searched for is presents in all datasets at some point.
By first parsing the index meta information there could be an indication given on
how many entries needs to parsed in the first place, allowing flexible adoption of
the search query or notification to the operator that the query might take a long
time.
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8 Filtering

Roughly said there are three types of filtering. The resolution of the data can be
reduced, the data can be removed from the dataset or it can be corrected.

8.1 Reduction

Within the world of filtering the incoming sensor data there are big considerations
to make with regards to storage and computing power. Most ideally all sensor
data is kept, however this sometimes renders to quite some large number of data
points. So decisions has to made to for example aggregation, basically reducing
the resolution of the dataset. An example of such reduction could be found at
Ganesan2003 [9] and using database storage like RRDTool [10].

There is one catch with new kind of sensor storage, since the question is usually
asked when all data is gathered it could very well be that not all data is available
any more. Which makes the dataset useless for answering this question. For this
purposes it is proposed to store all data regardless of the usage required. This bulky
data transfer could be somehow overwhelming at first glance, luckily storage is no
longer an issue with the storage strategy introduced in Section 6. So the virtually
unlimited amount sensor data allows to answer more questions, as the resolution
is as high as the original source.

The original source resolution is usually decided during design. Keep in mind
during design that the resolution of the readings will determine the resolution
of the data at a later stage, given the described unlimited storage solution. The
aim is to make the resolution as high as possible, allowing to answer as many
questions as possible at a later stage. Also consider the resolution number to be an
important meta-data property of the data, as it could be used at a later stage to
determine the maximum and minimum resolution possible in a fast and efficient
way. This is valid for both sensors with fixed intervals and sensors which allow
flexible resolutions.

8.2 Removal

There is another important property to consider, when it comes to filtering. Since
the boundaries of the sensor are known, as defined in Section 7.1, filtering out
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errors could take place. This seems tempting to consider at first glance, however
it could cause multiple issues.

By removing the errors it will not be able to answer for example which sensor
is defective. A sensor reporting bogus data seems useless at first glance, however it
actually is very valuable data. It “tells” that the sensor is still operational, this is
very important data to verify the current functionality of a wireless (mesh) network
for example.

Secondly if measurement errors are increasing it could mean the sensor is in
need of new parts, for example a battery of probe. So the error rate could help us
telling if a sensor has been properly serviced.

The sensor information meta-data could also be incorrect, leading to wrong
sensor information being discarded.

Removal of error-ed data is not a clever idea, both from a service and analytics
point of view, however there is also a valid case of filtering the data at start.
Filtering is the process of cleaning the data by removing anomalies of the data.
By filtering the raw data during storage, one could avoid processing the data
every time. Processing the filtering operation every time could potentially result
in spending large amounts of time doing the same work over and over again in
different implementation of the queries of the data.

Since removal the data is a bad thing and not cleaning the data as well is
also a bad idea, it seems stuck in a loop-hole. The solution in duplications of
data if filtering needs to take place, instead of removing an entry create a new
“key=value” field telling to discard a certain sensor reading. This valuable data
is also to be classified in the meta-data in Section 7 such that analytics on error
rates could also be simplified.

For values which are to be altered, adding field if the field changed is rather
confusing and should be avoided. Having a query program to search for two cases
of the data is not efficient at all. Image a query program which for every field needs
to check if a corrected value exists is rather in-efficient on lookups. Thus when a
value needs to be converted or altered, it is best to consistently re-create the value
into a new column or “key=value” pair. For example for the temperature sensor
from Section 7 which reported values like ’115.12345’, where it could only reported
in rounded 5 entries, it is wise to add a new field called “temperature corrected”.
Do not alter the original data, since this data could be used in different statistics.
Since the “* corrected” fields are also included in the information meta-data it is
up to the query program to decide which version to use. This allows maximum
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flexibility with regards to later queries.

Different kinds of filtering could be applied to the data, firstly all values of the
sensor which are clearly out-of-range could be corrected. For example a temper-
ature sensor reporting values in Kelvin could not never report below zero6. If it
does report itself below zero the value could be corrected to the minimum level
for example. In this case it is better to discard the value as the sensor is clearly
reporting faulty information.

Sometimes sensor looks valid at first glance. For example a speed sensor re-
porting 28m/s (roughly 100km/h) a time-stamp x + 1 could be a perfect valid
reading. However the delta of the reading might not be valid. If sensor was reading
0m/s a second ago (x), it would give the object an almost impossible acceleration.
As a consequence the partial sensor entry of 28m/s at x + 1 should be discarded.

Analytic and correction of this sensor details as described above could only
be done if accurate meta-data of the sensor is available. This meta-data could
be provided by the sensor, but could also be provided by the relations of the
sensor with it surroundings. A speed sensor on a container ship should never have
acceleration (positive or negative) of a certain kind and should also not be able to
go any faster than it possible by the physical properties of the ship. This meta-data
with regards of the surroundings should preferably be inserted when the data is
still accurate and available.

8.3 Correction

Sometimes a set of date end up with gaps in the data as a sensor might be stalled or
unreachable for various reasons. This will cause the sensor to start dropping data
if its (limited) buffer is no longer able to store the previous readings. When dealing
with data analytics it is sometimes required to try to restore the data to be able to
find out what might have happened during a certain time period. The most trivial
way of recovering the missing data is to “draw” a line between the last known
entry and the first known entry and try linear interpolation to reconstruct the
missing. There are far more advanced methods available to be able to reconstruct
missing sensor data. Some are using extensive data-mining [11] others using neural
networks [12] or auto-associative regression machines [13].

6If it does and your measurement validates, you have redefined the absolute zero temperature
point.
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Please do mind that reconstructing data is, from a sensor point of view, the
same principle as filtering the data. So make sure not to replace the data, instead
create a new column and make sure to mark the data as corrected as described in
Section 8. The same principles apply over here, knowing that sensor data was not
generated is very valuable data for different analytics tooling.

For example during analytics it might be needed to assign weighting or proba-
bilities to the sensor readings gathered. This is required to assist in analytics and
automatic relation discovery. When for example multiple sensor readings are com-
bined and two different sensors are both reading the same environmental value.
The “corrected” sensor readings could be treated with a lower confidence, allowing
“real” sensor to be preferred during analytics or automatic relation discovery.

9 Analytics

There are multiple types of analytics to be done on the data. The first kind of ana-
lytics involves looking at single columns. This analytic could for example generate
histograms and distributions of the numbers present. This allows discovery of the
space used by a sensor. It could for example also be used to answer questions like;
“What is the error-rate of a sensor?”. This question assumes that the meta-data
for the sensor is already present. A second type of analytics will take multiple
columns and tries to find a correlation between the columns.

9.1 Data Identification

All cases now considered have the properties of meta-data fully presented and
defined. But what happens when this meta-data is not present or invalid. The
example of Figure 4 at page 15 is such example. When the identification is unknown
ways have to be found to add the right label to the data.

There are numerous problems arising from this subject, ranging from duplicate
data definitions and an impossible amount of format. There is one key crucial for
most identification purposes. Knowing the time-stamps would be a very nice start.
Timestamps is defined as an entity which uniquely defines a point in time relative
to a certain fixed data, time entry. Timestamps classification could be done in
various ways.
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When it comes to identification a reference point would be a great point to start.
For example if the data is still arriving, checking of the incoming fields against the
current time could give a nice pointer about a possible column identifying the
time. Do mind that this could very well be a compound field as seen in Section 9.
The best way is to get a number of samples and verify its suspected time-stamp
column is an increasing values at rates which the sensor is expected to report.

Sometimes the column time-stamp could also be detected automatically. The
time-stamp column is a field which is always increasing and never resets, blindly
assuming the clock will not be reset or out-of-sync at some point and that the
reports arrive in chronological order..There might be a number of other fields which
could also have the same characteristics. If one characteristic is a 1:1 relation to the
local time, then you are sure that the field is time. So when applying the logic as
described there might be two or more fields matching the description. Now comes
an interesting case as multiple entries could in theory describe the time-stamp
column. To classify the right column, we find out what the difference is between
the entries in the potential columns. If this difference is constant, both fields will
describe the time only with a different base value. When a difference is found it
gets more troublesome to find out which entry is in fact the time-stamp column.
The best way will be to take a look at the differences. Take for example the two
rows found in Table 2. By looking at it “A” seems the best candidate for the
time-stamp column. However “B” also has the unique property and has increasing
numbers. In this case a decision could simply not be made, so it will leave no choice
to mark both columns as potential time-stamp columns.

A B

1 1
2 4
3 5
4 6
10 10
20 15
21 16

Table 2: Two columns which could potentially be the time-stamp column.

Even with more potential candidates for the time-stamp column there might
be an option to find the right one, if some information is known about the sensor
information. For example that one of the sensors is the distance travelled in km.
This allows to use both potential time-stamp columns to calculate the speed the
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object is travelling. If the speed is at ranges beyond physical properties of the
object, it it safe to assume that the column could be eliminated as potential time-
stamp column.

Knowing which sensors should have existed in the first place could also be a
trigger to find out the correct relation. In this case assume knowledge about the
fact there is at least one sensor which reports the distance travelled in km and
there is also a sensor reporting the speed in km/h. This extra information could
provide us with the answer, as the time-stamp calculation could be derived from
this values.

Next comes pattern recognition, as time-stamps are specified in numerous for-
mats, to list a few:

• “Wed 11 Sep 16:39:00 CEST 2013”

• “2013-09-11T16:39:48+0200”

• “5 minutes from 5 Jan 2013”

• “1378910479” (epoch)

By using pattern recognition it might be possible to find the column which
represents the time-stamps.

The three logical deductions are potentially very hard for a program to make,
thus automation is only possible in a limited set-up. Sometimes it is best for an
operator to look at the data itself and see if it could help the program by adding
the meta-data or adding new recognition patterns.

An example to identify the time-stamp column based on its unique properties
is found in Appendix D.

9.2 Relation Discovery

Correlation finding between data is important to find out if certain events are
related to each-other. For example one would like to know if a temperature sensor
is related to the location. By splitting the destination space into smaller spaces you
could “bin” the temperature readings to specific areas. For every area “bucket” you
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could see if data is related to each-other. A positive match would give a correlation
between the space and the temperature.

Unfortunately it might not be that simple. Which gives the 3rd type of analyt-
ics. The temperature could for example be related to multiple columns. Both the
location and the direction of the ship would yield to a positive match. The reason
for mentioning direction is that a ship travelling in a certain direction, could place
the sensor in a different angle to the sun, making the sensor heat up.

Finding linear relations using multiple tables quickly exploded to an unsearch-
able amount of combinations of sensors to query. If there are 10 sensor remaining
readings besides the temperature is could be as such that every combination of
sensor readings could be the relation for the temperature. Since a function is ei-
ther included or not it yields to an search set of 210 − 2 = 1023 combinations. The
000 . . . case where no function is considered relevant is of course not investigated.
This will give a complexity of O(2n), so searching all sensor combinations will not
be possible.

This simple linear relation detection could grow to more levels of complexity
when to consider alternative comparison methods. The “binning” approach as de-
scribed above might not be sufficient to detect the relation, every new combination
algorithm would trigger on full round of searching for all possible combinations.

Sometimes relations are not simple and require advanced relations in prepro-
cessing. Imagine a sensor reading which present the delta to certain fixed base
time and a second sensor reporting the fixed base time. By adding the values a
time-stamp could be created. If not known which values to add together (due to
missing database) for example, all columns needs to be added together and pre-
sented as new data. Next all new columns needs to be correlated with the current
columns to find out if the operation had any effect. Adding such entries makes an
explosion in search place.

Another set of entries which are needed are for example related data. If a
time-stamp entry is present a new requirement might be to add a new column
which represents the day of the month. This way you could for example answer
the question if the ship is going faster at certain days of the month. Making this
automated translations of the data is considered extremely difficult as there are
various properties to consider. First of all the program must be able to understand
the question and know what data is required. Secondly it should know which
sensor reading to convert the time-stamp reading to a new index, namely day of
the month.
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Lastly another field of sensor data is using combined sensor readings to provide
one result. This could be done by combining sensor readings at a fixed-location
An example would be to detect human presence by combining sensor readings of
a light, motion and sound sensors [14]. An alternative would be to combine sensor
readings from multiple locations taken at the same time. An example would be
temperature readings taken at the same time from different locations inside a rain
forest to make predictions on forest fires [15].

Finding relations in the data is a process which follows an iterative approach.
First a question is raised, next the data is found and the results are presented
to the operator. If the result is sufficient the operator present the results, else the
operator adjusts the knobs to generate new results from the dataset. The repeating
nature of the process, makes it a good fit for a real-time analytics tool. However
handling large amounts of data in a real-time fashion is somehow hard to-do.

Gathering statistics of temporal and spatial is not a problem as from a data
point of view this could be considered a very big table of entries. There is no
problem loading the data into the statistics programs. The output of this statistic
analytics however could sometimes be disappointing, since the data is displayed in
a table or as a list of entries. This makes it difficult to interpret. There would be
a better added usage if the values could be plotted onto a map, with method like
heatmap plots.

“A heatmap is a thematic mapping technique in which a
(typically) diverging, (usually) thermal-like colour scheme is
used to represent density in a continuous fashion.

https://en.wikipedia.org/wiki/Heat_map”Heat-maps are technically generated by plotting (filled) circles around a centre
point with a decreasing radius. The alpha is increased as the radius goes bigger.
And the colour is scaled (linear) from a primary colour to another primary colour.
For example from red to green. Thus every heatmap point is constructed as seen
in figure 6. The process of filling a circle is not a trivial task for an computer (for
this matter it could better to use squares) as it first need to calculate which blocks
to fill and next.

Being an lengthy process it is not useful for embedding in real-time analytics
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Figure 6: Build-up of a heatmap dot in steps

programs, making the operator wait a long time for the visualisation of the re-
sults becomes available. For this matter none of the analytics tools include live
visualisation of mapped data.

10 Existing Solutions

There are many different solutions on the market already claiming they can handle
large amounts of spatial temporal data. The solutions use different methods to
provide analyse or automation relation discovery. This section will provide an
overview of the available tooling and methods used.

10.1 Tooling

Numerous amount of tooling is available for data analytic. A few big commercial
players in the market are MatLab7, IBM SPSS8. From an open source point of
view it is worth looking at PSPP9. PSPP is open source implementation of SPSS,
featuring most features. A second player strongly presented in the open source
world is Rattle10. Rattle is a graphical user interface for data-mining using R [16].
One particular useful addition it GGobi [17] tool-kit. It allows the user to click

7http://www.mathworks.nl/products/matlab/
8http://www-01.ibm.com/software/nl/analytics/spss/
9http://www.gnu.org/software/pspp/

10http://rattle.togaware.com/
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around and view relations of data, for example one as found in Figure 7. By
(manually) scanning through the graphs one could quickly get an idea of the data
relations present.

Figure 7: Rattle running in R, showing the automated deductions made on the data
and an GGobi matrix window showing relations between different parameters

Rattle and friends have one big limitation when it comes to interactive dis-
covery using visual thinking, there is no mapping possible to a surface map, with
for example heatmap visualisation. The matrix visualisation included however pro-
vides a powerful way inspect the data dynamically. The build-in data classification
methods seems redundant if proper meta-data descriptions are available.

Next comes the tooling designed for automated relation discovery within large
datasets. A few big Open Source players in this field are SCaViS (Scientific Compu-
tation and Visualization Environment )11, KNIME (Konstanz Information Miner)12,
RapidMiner13, UIMA (Unstructured Information Management Architecture)14,

11http://jwork.org/scavis
12http://www.knime.org
13http://sourceforge.net/projects/rapidminer
14http://uima.apache.org
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Weka (Waikato Environment for Knowledge Analysis)15 and ELKI (Environment
for Developing KDD-Applications Supported by Index-Structures) [18].

This tooling focuses on various aspects of automated relation discovery, with
assisting visualisation tooling and profiling tools. It will for example interactively
visualize data in 2D or 3D plots. Provide histogram, contour en scatter plots,
examples of those could be found in Figure 8.

(a) histogram (b) contour (c) scatter

Figure 8: Plot style examples by Gnuplot

10.2 Methods

When it comes to automated discovery and analyse the available tooling consists
of different techniques to enable such discovery. For every “main” method there
are many more alternatives with specific improvement areas or specified for a cer-
tain application. This makes them currently difficult to apply them in a generic
matter to untagged spatial temporal data. Highlights of the ones I find most ap-
plicable for spatial temporal sensor data analytics are described in the following
chapters. There is special focus on limitations for deployment within automated
relation discovery. The limitations will be used in Section 11 to explain challenges
in feedback loop implementation.

10.2.1 Neural Networks

Neural Networks [19] are an artificial representation of a neural network, capable
of “learning” a response given a set of inputs. This is done by adding a (few)
hidden layer(s) of nodes between the input layer and the output layer as seen in
Figure 9. All nodes have a certain weight and a trigger level, on which the values are

15http://www.cs.waikato.ac.nz/~ml/weka
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“learned” by applying a test-set of data. After being initialized the neural network
is able to make decisions what the answer will be given a set of input variables.
This could be used in temporal spatial sensor data analytics by learning known
good cases and detections of outliers for example. The downside is the requirement
for a known good test-set, which is usually not present at initial stage.

Figure 9: Neural Network with one Hidden Layer

Neural Networks require data to train the network. Within our spatial tempo-
ral datasets, training data is not available making it impossible to initialize the
network, without help of other algorithms to provide a training set. Secondly since
it is unknown which parameters to use as explanatory variables, making a choice
and variant leads to an explosion of the search space.

10.2.2 Linear Regression

Linear Regression aims to find a relation between dependent variable and one of
more explanatory variables. A dependent variable represent (or is tested whether it
is) the output of effect, where-as an explanatory variables represents (or is tested
whether it is) the inputs or causes.16 For example in Figure 10 the x-axis contains
the explanatory variable and the y-axis contains the dependent variable. Depend-
ing on the choice of variables this could also be reversed. When relations are found

16https://en.wikipedia.org/wiki/Explanatory_variable
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between the two variables, this relations could be used to predict further variables
and could also be used to calculate missing variable. Note that the linear regression
aims to provide a fitting curve, making all points fall on this line, making the error
difference for every point as small as possible, however this might not always be
the case as seen in our example. Linear regression finds good use in fitting possible
relations within spatial temporal sensor data, by using this method to detect linear
relations between the variables.

Figure 10: Linear regression which has one explanatory variable

Finding linear regression relations between data works well for initial discovery
when used within overviews like the one with Rattle in Figure 7 on page 39.
Automatic Analytics of Linear Regression analytics over all columns, does not
work well. With automatic recognition it is unclear how the data itself relates
to each-other. The reason for this limitation seems to be caused by the so-called
Anscombe’s quartet as seen in Figure 1117.

10.2.3 Curve Fitting

Curve Fitting [20] is an application which uses a polynomial equation to try to fit
polynomial curves. For example for a 4th order polynomial equation is shown as
y = ax4 + bx3 + cx2 + dx + e. By choosing a, b, c, d and e accordantly one could
be able to fit the curve on the points available. More orders within the polynomial
equation means that a better mapping could be found. A example is shown in
Figure 1218.

There are multiple algorithms which can calculate the constants such that the
polynomial curve fits on the points available, an example of such algorithm is
Gauss-Newton method [21].

17https://en.wikipedia.org/wiki/Anscombe’s_quartet
18https://en.wikipedia.org/wiki/Curve_fitting
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Figure 11: These sets are identical with regards to linear regression when examined
using simple summary statistics, but vary considerably when the individual points
plotted.

Figure 12: Polynomial curves fitting points generated with a sine function. Red
line is a first degree polynomial, green line is second degree, orange line is third
degree and blue is fourth degree

One implementation of Gauss-Newton could be found in R [22], with the func-
tion nls [23]. An implementation example could be found at Appendix L, which
produces results as seen in Figure 13.
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Figure 13: Gauss-Newton algorithm finding x5 − 3 ∗ x4 + 3 ∗ x3 − 2 ∗ x2 − 5

Curve Fitting has limitations: it is time consuming to try fitting two parameters
with each-other, when doing automatic analytics. Trying to correlate all variables
becomes an endless job. There are multiple approaches to improvement of the
process one worth noting is “Beyond Eyeballing: Fitting Models to Experimental
Data” [24].

10.2.4 Cluster Analytics

Cluster Analytics is the process of mapping n observations into k clusters where
each observation belonging to one cluster with the nearest mean (K-means clus-
tering) If observation could be part of multiple clusters it is called Fuzzy C-means
algorithm [25]. K-means clustering also has it variants which preform better on
certain datasets. For example EM clustering [26] which has benefits over K-means
clustering as shown in Figure 1419.

The clustering methods finds it usefulness if the sensor data is distributed over
an area with both the x-axis and the y-axis, if the data is concentrated over a
path, such as a trajectory of a ship the results are not useful, see Figure 15 for an
explanation.

There are many more variants of clustering defined, however no clustering

19https://en.wikipedia.org/wiki/K-means_clustering
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Figure 14: k-means clustering and EM clustering on an artificial dataset (”mouse”).
The tendency of k-means to produce equi-sized clusters leads to bad results, while
EM benefits from the Gaussian distribution present in the data set.

Figure 15: K-means algorithm with 6 sections, by the ELKI tool-kit, shows the
path spliced in 6 parts, there is however no cluster mapping of the sensor value
itself.

method is found implemented by the ELKI Tool-kit20 which also takes the time
element into consideration, so the method finds its use in grouping data collected
over a larger area, where-as path and time relations are not considered in this case.

Cluster Analytics is not useful for path data as seen in Figure 15. The clusters
either become without context or are not grouping the right values at all.

20http://elki.dbs.ifi.lmu.de/wiki/Algorithms
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10.2.5 Time Series

Time Series are sequences of observations (data points) measured typically at
successive points in time spaced at uniform time intervals.21

This classification nicely fits to the sensor data, when using time series analysis
to find meaningful statistics and relations with regards to time. Such statistics and
relations could be finding trends within data. One example is trying to find the
frequencies found in signals, by the means of Fast-Fourier Transform (FFT) [27].
FFT comes in wide variety of implementation ranging from simple complex-number
arithmetic to group-theory and number theory.22 Because there are so many vari-
ants of FFT around, selecting the proper one for the job is not so easy, especially
when the data structure is not known in advance, which is usually the case with
sensor data.

10.2.6 Autocorrelation

Autocorrelation is the cross-relation of a signal with itself. Sensor reading are a
discrete set of readouts and no continuous signal anymore, due to the sampling as
seen in Section 2. However most original sensor sources used to be a continuous
signal, take for example temperature and direction readouts. With autocorrelation
we could find repeating patterns within a certain source. This could for example
be useful to find out if a sensor readout is for example following some periodic
behaviour. Note this is vastly different from the other types described over here,
which involves finding relations between two or more sensor readings, this is strictly
looking at one readout and tries to learn more about it.

Autocorrelation is limited by finding sequence with regards to time. There are
efforts [28] to apply the same field on spatial sequences, allowing to find repeating
sequences on a 2D spatial field, however no implementation has found.

Time Series Analytics using FFT or Autocorrelation tell which frequencies are
present within a sensor, this provides a great deal of more meta-data potentially
allowing data-analytics to be more easy.

The raw sensor readings has a fair amount of noise, which needs to be filtered
in order to find out frequencies within the data. The noise might be responsible

21https://en.wikipedia.org/wiki/Time_series_prediction
22https://en.wikipedia.org/wiki/Fast_Fourier_transform
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for adding all kind of bogus frequencies in the output. Filtering noise however
is troublesome if the source type is not known. Noise filtering to detect human
sound [29] is different from removing noise from an image CCD (Charge-coupled
Device) sensor [30]. One particular field of interest FFT would be to able to detect
“natural” rhythms with sensor output, one could for example think of natural
sequences as seen in Table 3 or man-made sequences like engine rotation, carrier
wave and periodic behaviour like “lights on 8 hours a day”.

sequence Sample applications

day temperature, power usage, internet usage and light
month water hight
season temperature, satellite coverage (clouds)
year temperature, yearly-activities

Table 3: Some examples of periodic patterns to be found in sensor data

10.2.7 Cellular Automata

Cellular Automata is a somehow unexpected member of this list.
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“A cellular automaton consists of a regular grid of cells, each
in one of a finite number of states, such as on and off (in
contrast to a coupled map lattice). The grid can be in any
finite number of dimensions. For each cell, a set of cells called
its neighbourhood is defined relative to the specified cell.
An initial state (time t = 0) is selected by assigning a state
for each cell. A new generation is created (advancing t by
1), according to some fixed rule (generally, a mathematical
function) that determines the new state of each cell in terms
of the current state of the cell and the states of the cells
in its neighbourhood. Typically, the rule for updating the
state of cells is the same for each cell and does not change
over time, and is applied to the whole grid simultaneously,
though exceptions are known, such as the stochastic cellular
automaton and asynchronous cellular automaton.

https://en.wikipedia.org/wiki/Cellular_automaton”Cellular automata have a notion of both space and time, in particular the
two-dimensional cellular automata. This makes them an interesting fit for mod-
elling behaviour within spatial temporal sensor data. There is however no analytic
component, such that the tooling could only be used for testing models.

Cellular Automata are a nice theoretical fit for modelling spatial temporal
relations, a example is found in modelling spatial and temporal processes of urban
growth [31].

11 Human-assisted Automated Relation Discov-

ery

An implementation is made for testing Human-assisted Automated Relation Dis-
covery as described in Section 2. This is done by creating a set of tools which
allows to operator to quickly view the data. Since the data is already stored the
focus is given on exploring the data and providing visualization with a real-time
interface for the operator.
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For rapid purpose prototyping the scripting language Python23 on a Linux
Fedora 19 (x64) Intel Core i7 laptop is used, the systems has 6GB of memory
and 4 CPU cores. With this setup, most recent computers should have no issues
running the provided code.

Heatmap generation as visualization concept is interesting when combined
with interactive usage, allowing to show new images in less than 5 seconds for
1000 heatmap points. How-ever existing traditional implementations to generate
heatmaps like matplotlib [32] and gnuplot24 where to slow. The heatmap gradient
points, as described in Figure 6 on page 38, are complex to generate as shown in
Figure 16.

The attempts of optimization of the code by trying to fully handle the heatmap
generation code ourself instead of plotting it via the “python-gnuplot“ or “python-
matplotlib“ API turned out to be still too slow. The biggest limitation with all
the implementations came with the fact that it is an expensive operation to draw
and fill a circle within an array, due to the fair amount computation needed to
find the pixels of which the circle consists.

The solution came from a rather unexpected angle, namely the “game” world.
Within the “gaming” industry it is rather common to draw circle, so this feature
has been implemented within the GPU (Graphical Processing Unit) as standard
operation. This hardware acceleration allows faster printing of circles on a “can-
vas”.

A python module called pygame25 which allows direct access to the advanced
drawing engines by the GPU [33]. The next nice feature is the fact that pygame
allows us to update parts of the screen, which making drawing circles with our
advanced alpha profile really fast, as we do the drawing of every dot localized.

An implementation of heatmap generation can be found in Appendix F. The
next thing needed was a parser for the LTRANS data. This is shown in Appendix G.

A heatmap is interesting, however plotting a heatmap on a blank canvas is
somehow disappointing as seen in Figure 17a. It would be better to overlay the
heatmap over a map of the world. For generation the base-map comes the package
matplotlib to the rescue26, this tool-kit includes a map generator, which is fast
enough for our usage.

23http://python.org
24http://gnuplot.info
25http://www.pygame.org
26http://matplotlib.org/basemap/users/geography.html
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(a) 1000 Random dots generated in 0.01s, code in
Appendix J

(b) 330 Gradient dots generated in 5.95s, code in
Appendix K

Figure 16: It takes a lot more time with gnuplot to generate gradient points instead
of solid filled circles, as a heatmap gradient circle is drawn using many circles in
ones.

The combination of matplotlib and pygame gives us a nice base-map and a
heap-map plotting in real-time, the path from above combined with a base-map
gives the result as seen in Figure 17b.

The base-map has 5 resolutions ranging from low to high: crude, low, interme-
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(a) Plotted sensor path on a blank
canvas.

(b) Plotted sensor path with map,
shows it is travelling over the river.

Figure 17: The difference between a plot without and one with a base-map.

diate, high and full. The difference in detail is shown in Figure 18, timing of the
various resolutions is found in Table 4. When using the base-map for interactive
usage it is best to set resolution to “low” allowing fast responses for interactive
pictures.

resolution time used

crude 0.254s
low 0.641s
intermediate 2.555s
high 9.224s
full 54.480s

Table 4: Time required to generate the base-map images

When looking at Figure 18e some reading does not seems to plotted within the
river. The zoomed Figure 19a makes this even better visible. When looking at the
map data at Figure 19b27 the river is wider plotted in Figure 19a.

Topological values are usually correct, keep in mind that the world, changes
so the data might be outdated. Secondly sometimes there are errors deliberately
introduced within card information to serve as Copyright Trap28.

27Data by OpenStreetMap.org contributors under CC BY-SA 2.0 license.
28http://en.wikipedia.org/wiki/Fictitious_entry
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(a) crude (b) low (c) intermediate

(d) high (e) full

Figure 18: The difference between the various resolutions of the base-map
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(a) Zoomed version of Figure 18d, where all readings are in green and
without transparency to highlight the path.

(b) Map visualisation by OpenStreetMap.org focusing on a part of the
area of Figure 19a, observe the variable width of the waterways present.

Figure 19: The path showing its offset and a map showing a part of the track

As this mismatch is appearing at multiple locations, it will rule out topological
errors, so the error must exist in the sensor or in the display of it.

There are no readings or reference sensor data available about the distance
between the ship and the shore, leaving several explanations available. The ship
might not always be travelling in the centre of the river which partially explains the
offset. Another possible cause could be inaccurate sensor readings, positioning the
ship at the wrong location. GPS sensors for example might auto-correct readings
and assume the object is travelling in a straight direction. When a turn is made it
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requires some time before this movement is detected and included into the sensor
readout.

Both assumptions could be validated and explained by including more sensor
data. Since this data is not available, an answer to the question what is causing
the offset is not possible with the current available sensor readings.

The next experiment aimed to provide insights on the connection loss issues,
as described in Section 2. By calling the program:

$ ./src/ltrans-parser.py --watcher vsat:SNR --heatmap <LTRANSFILE>

with a dataset to analyse and a parameter to display, in our case vsat:SNR which
represent the satellite connection quality, we generate the picture as shown in
Figure 20a.

(a) Zoom level 1 (b) Zoom level 2 (c) Zoom level 3

Figure 20: Signal level where red is bad and green is good seen from various zoom
levels.

Our picture shows some interesting red dots, which indicates a loss in connec-
tion. By zooming in we could directly view the hotspots in Figure 20b. Zooming
in one step more gives us Figure 20c. In this picture it is shown that the red dots
focus around corners within the pad. This gives an indication that it might be
related to activities caused by the rotation of the ship.

One of the activities involving rotation and satellite is the Maritime VSAT 29

(Very-small-aperture terminal). This piece of equipment comes as a satellite dish
equipped with two motors which are used by the satellite guidance system to keep
the dish aimed to the satellite in use.

29https://en.wikipedia.org/wiki/Very_small_aperture_terminal
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Maybe the ship satellite guidance system is unable to cope with fast changes
by the ship rotation. This causes the satellite connection to get lost as aiming
get inaccurate, making the connection unstable. The satellite guidance system
will need to be adjusted to receive information about ship movement or their
correction algorithms needs to be adjusted to cope with this kind of ships. There
is unfortunately no sensor output available for the Maritime VSAT systems to
verify this claim.

A river is sometimes pretty wide and the ship could travel on the river on
multiple location as seen in Figure 21, so by travelling an alternative path over
the river the satellite data coverage could also potentially be improved.

Figure 21: By loading multiple trajectories done by the ship on a specific part of
the river, it is show the ship is not always travelling the exact way through the
river.

The next “question” was to find out whether it was possible to automatically
the time-stamp field in the LTRANS data. For this purpose a simple identification
program was written as seen in Appendix D. The program was able to detect the
“offset” column as identification column.

There are many automatic data analytics classification, relation and analytics
methods around as seen in Section 10.2. However the application to untagged spa-
tial temporal sensor data turns out to be challenging. The existing methods are
often only able to work under specific cases or require extra annotation or helper
parameters to function within the data. An algorithm which is able to automati-
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cally select a method and fill in the proper parameters is not yet implemented, due
to time constrains. The feedback loop however as seen above has shown practical
use, by extending functionality it would be able to cope with more cases.

12 Conclusions

Spatial temporal data is an interesting sub-field of sensor data when it comes
to researching sensor data, the data has interesting properties to discover and
there are quite some challenges available in visualisation, analytics and automatic
relation discovery. The data has a great visualisation potential since it takes places
in time and space, potentially making it great research subject for those who like
to work with Visual Thinking.

As for the available data, sensor prices dropped and become more and more
available, this is leading to an explosion of data, measured from sensor networks.
The information gathered is not always storable in a traditional database any-
more. New storage and transport formats are being defined and created, coping
with the ability to store all this new data feeds. When it comes to transporting
data from sources where power is no limitation and transport costs is charged
per byte, the LTRANS protocol seems to fit nicely. From a storage point of view,
the plain text storage seems to come back as an alternative storage solution. This
trend is however caused by limitations in current database solutions, new database
storage types which focuses on storing a huge amount of key=values entries for
a longer period are actively being researched and designed and will see light the
next coming years.

However it is crucial to ensure the generated and stored data is annotated with
proper meta-data ensuring the date could be analysed at a later stage. The sensor
itself however is rarely reporting meta-data about itself, the meta-data should be
inserted by either an aggregator or the storage system itself.

Even when this meta-data is not available at first, it could possible be included
later. The proposed solution is to use human-assisted automatic relation discovery.
Human-assisted automatic discovery will enhances the automatic relation discov-
ery by adding a pre-step which adds extra meta-data to the raw sensor data and
a new feature which allows the operator to interact with the automatic relation
discovery engine.

This approach has been useful in a small subset of visualization of the data
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and providing enhanced details in an interactive program allowing the operator to
make decisions.

By using a “game” engine inside the visualisation possibilities on the spatial
dimension it became possible to generate near real-time responses, allowing the
operator to interactively interact with the data. This feature allows the operator
to “hover” through the data providing insights and allows the operator to add
his/her expert expertise to the solution.

The feedback loop has been tested in a limited fashion by first classifying the
data in the analytics phase and next having the operator tell which types of data
to discard and which sensors to further examine.

For the analysis option, there are various interesting features which could be
applied to spatial temporal data, such as Curve Fitting, Clustering, Time Series
and Numerical Classification. There is however no structured way to storing the
results of the analysis done on the data. A basic framework with fields like; type, to-
tal, unique, maximum, minimum, count minimum, count maximum, changes and
choices has been defined, however this list is far from complete. The basic features
allows quick search and indexing of the data for access of the data, however there
is more need for standard meta-data entries which could be used for the automatic
discovery methods.

The biggest lessons I learned came from the field of analytics, as I felt in
the trap of thinking that algorithms written are as generic as broad-spectrum
antibiotics. The use of analytic tooling however is turn out difficult. Attempts
with frequency detection within sensor data using Fast-Fourier Transform (FFT)
provided unsatisfactory results, many analytics tooling is written with a certain
pre-condition of the data in mind, like reporting at a fixed interval. If such pre-
conditions of the data are not known applying analytics tooling is like flying blind
as such analytics solutions needs proper tweaking to match the input parameters of
the data. Such basic requirements of the analytics tooling should be available even
before more advanced analytics can take place. However, a listing of the features
required is not yet available.

The various interesting automatic discovery methods for spatial temporal data,
such as Neural Networks, Linear Regression, Curve Fitting, Cluster Analytics,
Time Series, Autocorrelation and Cellular Automata are implemented into differ-
ent toolkits, they are however not implemented as a “block”. An implementation
as a block will potentially allow them to combined together into another solution.
Currently if automatic discovery of some kind needs to take place the data has to
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be made available in the toolkit and loaded with parameters to make such specific
automated discovery possible.

One solution would be a newly to-be-written automatic relation discovery en-
gine which could make use of the provided meta-data by the analytics. This will
next select the most interesting automatic relation discovery method on the data
and present the result for review to the operator. Attempt to combine multiple
analytics into toolkits exists, however they rely on an operator to select the tooling
and secondly mostly they do not provide their results appealing for easy interpre-
tation of the operator. Spatial temporal data has great potential for use in such a
toolkit due to its visualisation possibilities.

For simple cases it has been possible for the analytics toolkit to provide infor-
mation to the automatic relation discovery toolkit. This has mostly been done by
removing not interesting columns. It has been found possible to annotate the data
in such a way that the automatic relation discovery will understand it and use this
meta-data information for the decision-making process.

The automatic relation discovery toolkits should be able to interact more with
the operator. By gathering its input and including the knowledge in early stages it
could mean that results could be generated more efficiently. Manual post-discovery
of the data and finding the meta-data and relations automatically seems to be the
keyword in processing the sensor data.

The visualisation features as seen in Section 11 should together with existing
tools like GGobi bring more knowledge to the operator on the “journey” through
the spatial temporal data, allowing the operator to be a powerful extension of
automatic relations discovery methods.

The consequence is that toolkits need to become more interactive. The initial
steps of interactive data analytics are slowly appearing inside the toolkits, however
only small progressions are made for the special purpose applications like temporal
spatial sensor data.

13 Further Work

There are various analytics methods available, but algorithm which combine the al-
gorithms for efficient execution are lacking. A Swiss-army-knife solution for adding
various meta-data properties in a highly automated fashion is yet to be invented.
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This seems a rather new field as not knowing which meta-data to add with analyt-
ics is a new area in database research. Previously it was known in advance which
question was to be answered. Answering the question: “I have raw-sensor data, of
which I do not know any properties, please add as many meta-data you can find
to it” is a new type of question to be answered in the interesting field of sensor
data.

Analytics toolkits are discarding meta information provided in advance. This
means that there are various passes required by the analytics tools to come to
“obvious” conclusions. For example if columns are marked as constant data there
should be no need to find relations with this columns since there is nothing to
relate to.

The interface between the analytic results and the automatic relation discovery
is very loosely coupled. There exists no generic format of storing the results of the
analytics in such way that they could be re-used by various automatic relation
discovery entities. A reference example is provided, further extention is required
to fit all meta-data types.

Also toolkits are missing visualisation of data towards world map views, with
the ability to zoom and “play” with the data in a real-time fashion, implementa-
tions for static visualisation exists such as ggmap30 for the R Project for Statistical
Computing and basemap31 for Python matplotlib module. The dynamic features
however are not implemented yet.

The same limitations as described to the analytics methods, the automatic
combination of different methods using an algorithm, applies to automated relation
discovery. Relation discovery methods usually tackles a (very) specific area. An
algorithm which tries to find all relations within data, using a combination of the
existing algorithms as building blocks for example, is not yet defined.

Research with the field of automated relation discovery in Big Data seems
interesting to be applies to sensor data as well. However sensor data is more difficult
with regards to automated relation discovery. Sensor data has more unknowns like
for example missing header information. Secondly the quality of the data is also
not known. Innovation in automated relation discovery for sensor data should
provide us also more insights on howto handle databases with similar structures
and properties.

30http://cran.r-project.org/web/packages/ggmap/index.html
31http://matplotlib.org/basemap/users/geography.html
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The nature of the sensor data, makes the algorithms and implementations more
robust and also allows them to be applicable to bigger areas. This makes sensor
data a very interesting candidate for research in automated relation discovery.

Spatial temporal data has more benefits over Big Data. Big Data is usually
stored in large databases of corporations and is sometimes hard to acquire or
share. Spatial temporal sensor these days is easy to create since it usually applies
to day-to-day details, like temperature and humidity. Sharing the large datasets is
not an issue, making the datasets great candidates for extended research purposes.

There are also many-and-many specialized algorithms available for automatic
discovery or specific analytics. Most algorithms assume the data to be a certain
format. However there is less consistency found when trying to combine them.
Normally an algorithm will be reimplemented for every new implementation of
the algorithm, a modular approach of automatic relation discovery methods and
analytics methods should make it more easy to combine methods and implement
new methods when needed.

The proposed sensor transport and storage solution works well for discrete
sensor observations. It is not efficient for continuous observations like video and
sound recordings. Improvements to the protocol and storage setup are required to
make this possible.
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C LTRANS example

The data has been formatted by including newlines, wrapping and indentation for readability. It
contains samples of various parts of the filename. The original filename is called 1355961602.ltrans.

AnyWi.com is willing to share the full dataset for other research as well. Terms and condi-
tions could be retrieved from AnyWi.com, by contacting them32.

ltrans=1.0;unitid=00:0d:b9:1b:57:10;timestamp=1355961602

timestamp

0

1;gps:lon=4.85950000;gps:lat=51.81950000;wifi:attached=1;wifi:mode=;wifi:quality=none;wifi:quality:reason=Interface not active;wifi:speed=0.0; \

wifi:type=IEEE 802.11 Wireless Ethernet;wifi:up=1;tgpp:attached=1;tgpp:IMEI=353567040544331;tgpp:IMSI=204086588008657;tgpp:PIN:status=READY;\

tgpp:RSSI=23;tgpp:RSSIdBm=-67;tgpp:ccode=NL;tgpp:cellid=30174;tgpp:manufacturer=Conel/Sierra Wireless, Incorporated;tgpp:mcc=204; \

tgpp:mnc=08;tgpp:model=MC8705;tgpp:quality=medium;tgpp:quality:reason=UMTS/HSDPA connection; \

tgpp:revision=T1_0_1_1AP R309 CNSZXL00000015 2011/01/21 18:28:30;tgpp:sysmode=3G;tgpp:syssubmode=WCDMA;tgpp:SIM:ICCID=8931084711060668570; \

tgpp:SIM:ccode=NL;tgpp:SIM:ccgroup=0;tgpp:SIM:label=Dekatel NL (KPN);tgpp:SIM:quotum=8053063680;tgpp:SIM:reason=country code; \

tgpp:SIM:slot=1;tgpp:SIM:usage=54326395;gps:acquired=1;gps:attached=1;gps:dir=339.00;gps:dist=807903.821193;gps:dist:n=887795; \

gps:dist:sd=4.743308;gps:dist:sq=4946286.832725;gps:state=stationary;gps:tms=1355961754;gps:vel=0.000;route:PEP:link=VSat; \

route:PEP:quality=high;route:default:link=VSat;route:default:quality=high;route:DNS1:link=3G2;route:DNS1:quality=medium; \

route:DNS2:link=VSat;route:DNS2:quality=high;route:NTP:link=VSat;route:NTP:quality=high

5;vsat:attached=1;vsat:hardware=Newtec;vsat:quality=high;vsat:quality:reason=operational;vsat:SNR=11.2

13;PEP:status=Ok

59;ipstats:vsat:out:packets=7983952;ipstats:vsat:out:bytes=2708771659;ipstats:vsat:in:packets=8053018;ipstats:vsat:in:bytes=5907398602; \

ipstats:3g:out:packets=2376128;ipstats:3g:out:bytes=483302980;ipstats:3g:in:packets=2011071;ipstats:3g:in:bytes=884639494; \

ipstats:wifi:out:packets=0;ipstats:wifi:out:bytes=0;ipstats:wifi:in:packets=0;ipstats:wifi:in:bytes=0;ipstats:dnsint:out:packets=87881; \

ipstats:dnsint:out:bytes=7006425;ipstats:dnsint:in:packets=79212;ipstats:dnsint:in:bytes=11845200;ipstats:dnspub:out:packets=25402; \

ipstats:dnspub:out:bytes=2066259;ipstats:dnspub:in:packets=23259;ipstats:dnspub:in:bytes=3593141;ipstats:dnspub:out:2:packets=67513; \

ipstats:dnspub:out:2:bytes=5497109;ipstats:dnspub:in:2:packets=67204;ipstats:dnspub:in:2:bytes=10267875;ipstats:dnspub:out:3:packets=0; \

ipstats:dnspub:out:3:bytes=0;ipstats:dnspub:in:3:packets=0;ipstats:dnspub:in:3:bytes=0;ipstats:vpn:out:packets=0;ipstats:vpn:out:bytes=0; \

ipstats:vpn:in:packets=0;ipstats:vpn:in:bytes=0;ipstats:vpn:ssh:out:packets=0;ipstats:vpn:ssh:out:bytes=0;ipstats:vpn:ssh:in:packets=0; \

ipstats:vpn:ssh:in:bytes=0;ipstats:vpn:http:out:packets=0;ipstats:vpn:http:out:bytes=0;ipstats:vpn:http:in:packets=0; \

ipstats:vpn:http:in:bytes=0;ipstats:vpn:https:out:packets=0;ipstats:vpn:https:out:bytes=0;ipstats:vpn:https:in:packets=0; \

ipstats:vpn:https:in:bytes=0;ipstats:vpn:pop3:out:packets=0;ipstats:vpn:pop3:out:bytes=0;ipstats:vpn:pop3:in:packets=0; \

ipstats:vpn:pop3:in:bytes=0;ipstats:vpn:imap:out:packets=0;ipstats:vpn:imap:out:bytes=0;ipstats:vpn:imap:in:packets=0; \

ipstats:vpn:imap:in:bytes=0;ipstats:vpn:smtp:out:packets=0;ipstats:vpn:smtp:out:bytes=0;ipstats:vpn:smtp:in:packets=0; \

ipstats:vpn:smtp:in:bytes=0;ipstats:vpn:ipcomp:out:packets=0;ipstats:vpn:ipcomp:out:bytes=0;ipstats:vpn:ipcomp:in:packets=0; \

ipstats:vpn:ipcomp:in:bytes=0;ipstats:vpn:expand:out:packets=0;ipstats:vpn:expand:out:bytes=0;ipstats:vpn:expand:in:packets=0; \

ipstats:vpn:expand:in:bytes=0;ipstats:vpn:other:out:packets=0;ipstats:vpn:other:out:bytes=0;ipstats:vpn:other:in:packets=0; \

ipstats:vpn:other:in:bytes=0

61;tgpp:SIM:usage=54335701 74;vsat:SNR=11.1

100;gps:lon=4.85933333;gps:dir=333.00;gps:dist:n=887895;gps:dist:sd=4.742867;gps:state=moving;gps:tms=1355961854

107;vsat:SNR=11.2

118;ipstats:vsat:out:packets=7983987;ipstats:vsat:out:bytes=2708780293;ipstats:vsat:in:packets=8053049;ipstats:vsat:in:bytes=5907406768; \

ipstats:3g:out:packets=2376199;ipstats:3g:out:bytes=483308782;ipstats:3g:in:packets=2011124;ipstats:3g:in:bytes=884642926

119;vsat:SNR=11.3 121;tgpp:SIM:usage=54353259 130;vsat:SNR=11.2

...

599;ipstats:vsat:out:packets=7984363;ipstats:vsat:out:bytes=2708860395;ipstats:vsat:in:packets=8053386;ipstats:vsat:in:bytes=5907484405; \

ipstats:3g:out:packets=2376758;ipstats:3g:out:bytes=483348916;ipstats:3g:in:packets=2011550;ipstats:3g:in:bytes=884668740; \

ipstats:dnsint:out:packets=87884;ipstats:dnsint:out:bytes=7006626;ipstats:dnsint:in:packets=79215;ipstats:dnsint:in:bytes=11845638; \

ipstats:dnspub:out:packets=25404;ipstats:dnspub:out:bytes=2066421;ipstats:dnspub:in:packets=23261;ipstats:dnspub:in:bytes=3593385; \

ipstats:dnspub:out:2:packets=67514;ipstats:dnspub:out:2:bytes=5497193;ipstats:dnspub:in:2:packets=67205;ipstats:dnspub:in:2:bytes=10267975

602;tgpp:SIM:usage=54418935

616;vsat:SNR=11.3

627;vsat:SNR=11.0

639;vsat:SNR=11.2

...

83108;tgpp:SIM:usage=149449101

83114;PEP:status=Ok

83140;vsat:SNR=10.1

83159;ipstats:vsat:out:packets=8231993;ipstats:vsat:out:bytes=2755236511;ipstats:vsat:in:packets=8348552;ipstats:vsat:in:bytes=6146494388; \

ipstats:3g:out:packets=2550904;ipstats:3g:out:bytes=499147697;ipstats:3g:in:packets=2165187;ipstats:3g:in:bytes=963907263

83164;vsat:SNR=10.2

83169;tgpp:SIM:usage=149457351

83175;vsat:SNR=9.9

83186;vsat:SNR=10.2

83208;vsat:SNR=10.0

83210;tgpp:quality=high;tgpp:quality:reason=HSPA or HSPA+ connection;tgpp:syssubmode=HSPA+

...

86346;tgpp:SIM:usage=149911406

86348;vsat:SNR=9.9

86359;vsat:SNR=9.6

86365;gps:dir=352.00;gps:dist:n=974159;gps:dist:sd=4.616789;gps:tms=1356048134

86382;vsat:SNR=9.7

32https://www.anywi.com/contact/
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D ltrans-relations.py

Proof Of Concept for automatic identification of the time-stamp entries in LTRANS files, the
input for the command requires a CSV converted LTRANS file.

ltrans-relations.py
1 #!/ usr /bin /env python
2 #
3 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
4 #
5 ’ ’ ’
6 Find r e l a t i o n s by brute−f o r c i n g through the code
7 ’ ’ ’
8
9 import argparse

10 import sys
11 import csv
12 import l ogg ing
13 from c o l l e c t i o n s import d e f a u l t d i c t
14
15 l ogge r = logg ing . getLogger ( )
16 l ogge r . s e tLeve l ( l ogg ing . INFO)
17
18 fmt = logg ing . Formatter ( ’# %(levelname ) s : %(message ) s ’ )
19
20 ch = logg ing . StreamHandler ( )
21 ch . setFormatter ( fmt )
22 ch . s e tLeve l ( l ogg ing .DEBUG)
23
24 l ogge r . addHandler ( ch )
25
26 de f s e t p r e f i x ( p r e f i x ) :
27 fmt . fmt = ( ’# [%30 s ] ’ % p r e f i x ) + ’%(levelname ) s : %(message ) s ’
28
29
30 par se r = argparse . ArgumentParser ( d e s c r i p t i o n=’Check some data ’ )
31 par se r . add argument ( ’−−constant ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
32 par se r . add argument ( ’−−unique−mapping ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
33 par se r . add argument ( ’−−debug ’ , ’−g ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
34 par se r . add argument ( ’−− i n f i l e ’ , d e f au l t=’ . / bert . csv ’ )
35 par se r . add argument ( ’ f i e l d s ’ , nargs=’∗ ’ )
36 args = par se r . pa r s e a r g s ( )
37
38 l ogge r . debug ( args )
39
40 i f args . debug :
41 l ogge r . s e tLeve l ( l ogg ing .DEBUG)
42
43
44 de f check constant row ( headers , rows , i ) :
45 ’ ’ ’ See i f the re i s only one s p e c i f i c value in the row ’ ’ ’
46 column = [ ]
47 f o r row in rows :
48 column . append ( row [ i ] )
49
50 uniq count = len ( s e t ( column ) )
51 l ogge r . debug ( ”Unique e n t r i e s f o r row %s : %i ” , headers [ i ] , uniq count )
52
53 return ( uniq count == 1)
54
55
56
57 de f check uniq mapping ( headers , rows , i , j ) :
58 ’ ’ ’ A l l va lues toge the r are unique s e t s ’ ’ ’
59 s e t s = [ ]
60 f o r row in rows :
61 s e t s . append ( ( row [ i ] , row [ j ] ) )
62
63 uniq count = len ( s e t ( s e t s ) )
64 t o t a l c oun t = len ( rows )
65 l ogge r . debug ( ”Unique s e t s : %i ( t o t a l : %i ) ” , uniq count , t o t a l c oun t )
66
67 return ( uniq count == to ta l c oun t )
68
69
70 de f c h e c k l i n e a r r e l a t i o n ( headers , rows , i , j ) :
71 d i f f = None
72 f o r row in rows :
73 i f row [ i ] != None and row [ j ] != None :
74 new d i f f = abs ( row [ i ] − row [ j ] )
75 i f d i f f != None and new d i f f != d i f f :
76 l ogge r . debug ( ”Old d i f f : %f , New d i f f : %f ” , d i f f , n ew d i f f )
77 return False
78 return ( d i f f != None )
79
80
81
82
83 i f name == ’ ma in ’ :
84 # Store unique mappings f o r time i n d e n t i f i c a t i o n purposes
85 uniq mapping = de f a u l t d i c t ( l i s t )
86
87 # Open f i l e and read headers
88 l ogg ing . i n f o ( ”Reading f i l e %s ” , args . i n f i l e )
89 c sv r eade r = csv . reader ( open ( args . i n f i l e , ’ r ’ ) )
90 headers = c sv r eade r . next ( )
91
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92 logg ing . i n f o ( ”Going to proce s s headers : %s ” , headers )
93
94 # Find out which f i e l d s to check
95 i f not args . f i e l d s :
96 f i e l d i d s = range ( l en ( headers ) )
97 e l s e :
98 f i e l d i d s = [ ]
99 f o r nr , f i e l d in enumerate ( headers ) :

100 # Inc lude f i e l d s which have a p a r t i a l matchting
101 i f f i l t e r ( lambda x : x in f i e l d , args . f i e l d s ) :
102 f i e l d i d s . append ( nr )
103 l ogge r . debug ( ”Trying to r e l a t e the f o l l l ow i n g f i e l d s : %s ” , [ headers [ x ] f o r x in f i e l d i d s ] )
104
105
106 # TODO( rvdz ) : Not a l l f unc t i on s could be ab le to read a l l en t r i e s , when growing
107 # to l a r g e i t could lead to memory excaust ion .
108 l ogg ing . debug ( ”Converting a l l data to f l o a t e n t r i e s ” )
109 rows = [ ]
110 f o r row in c sv r eade r :
111 rows . append (map( lambda x : None i f x == ’ ’ e l s e f l o a t (x ) , row ) )
112
113 # Compare headers with each−other ( s i n g l e r e l a t i o n )
114 whi le f i e l d i d s :
115 i = f i e l d i d s . pop (0)
116 i f args . constant :
117 i s c on s t an t = check constant row ( headers , rows , i )
118 i f i s c on s t an t :
119 l ogge r . i n f o ( ”%s i s constant : %s ” , headers [ i ] , i s c o n s t an t )
120 f o r j in f i e l d i d s :
121 s e t p r e f i x ( ’%s vs %s ’ % ( headers [ i ] , headers [ j ] ) )
122 i f args . unique mapping :
123 i s uniq mapping = check uniq mapping ( headers , rows , i , j )
124 i f i s uniq mapping :
125 l ogge r . i n f o ( ”%s has unique mapping with %s” , headers [ i ] , headers [ j ] )
126 # Unique mapping are two−way r e l a t i o n s
127 uniq mapping [ i ] . append ( j )
128 uniq mapping [ j ] . append ( i )
129 i s l i n e a r r e l a t i o n = c h e c k l i n e a r r e l a t i o n ( headers , rows , i , j )
130 i f i s l i n e a r r e l a t i o n :
131 l ogge r . i n f o ( ”%s has l i n e a r r e l a t i o n with %s” , headers [ i ] , headers [ j ] )
132
133
134 # We now check which key has unique mappings to a l l other keys , t h i s are
135 # our primary i n d e n t i f i e r s .
136 f o r i in range ( l en ( headers ) ) :
137 i f l en ( uniq mapping [ i ] ) == len ( headers ) − 1 :
138 l ogge r . i n f o ( ”%s i s an i d e n t i f i e r ” , headers [ i ] )
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E ltrans2csv.py

Helper to convert LTRANS files to CSV formatted files.

ltrans2csv.py
1 #!/ usr /bin /env python
2 #
3 # LTRANS convers ion to CSV
4 #
5 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
6 #
7
8 v e r s i o n = ’ $Id : l t r an s 2 c s v . py 13788 2013−07−17 12 : 30 : 20Z r i c k $ ’
9

10 import argparse
11 import csv
12 import l ogg ing
13 import sys
14
15 l ogg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG)
16 l ogge r = logg ing . getLogger ( )
17
18 # In order to s t o r e the data in CSV format we need to f i nd out how many columns
19 # we need to store , secondly we temponary s t o r e the data somehow .
20 #
21 # Going to t r i c k a bit , by s t o r i n g the complete e n t r i e s in memory , when
22 # opt ima l i s a t i on i s needed we need two−pass l o g i c or a l t e r n a t i v e methods .
23 de f p a r s e f i l e ( f i l ename , args ) :
24 ”””
25 Process f i l e and watch s p e c i a l keys f o r changes
26 ”””
27 rows = [ ]
28 keys = se t ( [ ] )
29 with open ( f i l ename , ’ r ’ ) as fh :
30 l ogge r . i n f o ( ” Proces s ing %s” , f i l ename )
31 # Process the the header
32 header = fh . r e ad l i n e ( )
33 i f not header . s t a r t sw i th ( ’ l t r a n s=’ ) :
34 r a i s e IOError ( ” Inva l i d format ” )
35 # TODO( rvdz ) : Meta keys are to be inc luded in a l l e n t r i e s
36 meta = d i c t (map( lambda x : x . s p l i t ( ’=’ , 2) , header . r s t r i p ( ) . s p l i t ( ’ ; ’ ) ) )
37
38 # Get the f i e l d l i s t i n g , s i n c e i t part o f the p ro toco l
39 f i e l d l i s t = fh . r e ad l i n e ( ) . s t r i p ( ) . s p l i t ( ’ ; ’ )
40
41 # Get ac tua l va lues
42 f o r l i n e in fh . x r e ad l i n e s ( ) :
43 # The f i r s t value i s timestamp o f f s e t , t h i s i s how−ever imp l i c i t l y mentioned
44 l i n e = ’ o f f s e t=’ + l i n e
45 v = d i c t (map( lambda x : x . s p l i t ( ’=’ , 2) , l i n e . s t r i p ( ) . s p l i t ( ’ ; ’ ) ) )
46 v . update (meta )
47 rows . append (v )
48 # Update key mapping to inc lude r e l evan t new keys
49 keys |= se t (v . keys ( ) )
50
51 # Assign every key i t ’ s cor responding row , f o r debugging purposes make l i s t i n g so r t ed
52 key2row = d i c t ( z ip ( so r t ed ( keys ) , range (0 , l en ( keys ) ) ) )
53
54 with open ( args . output , ’wb ’ ) as c s v f i l e :
55 wr i t e r = csv . wr i t e r ( c s v f i l e )
56 # F i r s t c r ea t e empty l i s t and secondly f i l l the l i s t with e n t r i e s on the
57 # r i gh t spot and append i t to the CSV output
58 #
59 # F i r s t entry i s t r i c k to p r in t header
60 f o r row in [ d i c t ( z ip ( key2row , key2row ) ) ] + rows :
61 t = [ ’ ’ ] ∗ l en ( key2row )
62 f o r k , v in row . i t e r i t em s ( ) :
63 t [ key2row [ k ] ] = v
64 wr i t e r . writerow ( t )
65
66
67
68 i f name == ’ ma in ’ :
69 par se r = argparse . ArgumentParser ( d e s c r i p t i o n=’LTRANS conver t e r to CSV ’ )
70 par se r . add argument ( ’ f i l e s ’ , metavar=’ f i l e ’ , type=str , nargs=’+’ , he lp=”Filename to parse ” )
71 par se r . add argument ( ’−−qu i e t ’ , ’−q ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
72 par se r . add argument ( ’−−debug ’ , ’−g ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
73 par se r . add argument ( ’−−output ’ , ’−o ’ , d e f au l t=’ /dev/ stdout ’ )
74 args = par se r . pa r s e a r g s ( )
75
76 i f args . qu i e t :
77 l ogge r . s e tLeve l ( l ogg ing .ERROR)
78 e l i f a rgs . debug :
79 l ogge r . s e tLeve l ( l ogg ing .DEBUG)
80 e l s e :
81 l ogge r . s e tLeve l ( l ogg ing . INFO)
82 f o r f i l ename in args . f i l e s :
83 p a r s e f i l e ( f i l ename , args )
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F pygame heatmap plot.py

Library to generate heatmap plots based on Python pygame Gaming Engine.

python heatmap plot.py
1 #!/ usr /bin /python
2 #
3 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
4 #
5 ”””
6 Using pygame to d i sp l ay heatmaps with i n t e r a c t i v e p o s i b i l i t i e s
7 ”””
8
9 au th o r = ”$Author : r i c k $”

10 v e r s i o n = ” $Revis ion : 14083 $”
11 d a t e = ”$Date : 2013−09−23 15 : 24 : 16 +0200 (Mon, 23 Sep 2013) $”
12
13
14 import g rad i en t s
15 import math
16 import matp lo t l ib
17 matp lo t l ib . use ( ”Agg” )
18 import matp lo t l ib . backends . backend agg as agg
19 import numpy as np
20 import pygame
21 import pylab
22 import random
23 import time
24
25 from mp l t o o l k i t s . basemap import Basemap , cm
26
27 # Where can we f i nd t h i s button va r i a b l e s ?
28 pygame . mouse .LEFT, pygame . mouse .MIDDLE, pygame . mouse .RIGHT, pygame . mouse .UP, pygame . mouse .DOWN = range (1 ,6 )
29
30 # http :// s tackove r f l ow . com/ ques t i on s /15736995/how−can−i−quick ly−est imate−the−dis tance−between−two−l a t i t ude−

l ong i tude−po int s#answer−15737218
31 from math import radians , cos , s in , as in , s q r t
32 de f haver s ine ( lon1 , lat1 , lon2 , l a t 2 ) :
33 ”””
34 Ca lcu la te the great c i r c l e d i s t ance between two po int s
35 on the earth ( s p e c i f i e d in decimal degrees )
36 ”””
37 # convert decimal degrees to rad ians
38 lon1 , lat1 , lon2 , l a t 2 = map( radians , [ lon1 , lat1 , lon2 , l a t 2 ] )
39 # haver s ine formula
40 dlon = lon2 − lon1
41 d la t = l a t 2 − l a t 1
42 a = s in ( d la t /2) ∗∗2 + cos ( l a t 1 ) ∗ cos ( l a t 2 ) ∗ s i n ( dlon /2) ∗∗2
43 c = 2 ∗ as in ( sq r t ( a ) )
44 km = 6367 ∗ c
45 return km
46
47
48 de f make map( min lon , max lon , min lat , max lat , xdim , ydim , r e s o l u t i o n=’ low ’ , batch=False ) :
49 p r in t ”New zoomlevel : ” , min lon , max lon , min lat , max lat
50 f i g = pylab . f i g u r e (
51 f i g s i z e =[xdim/100 , ydim /100 ] , # Inches
52 dpi=100 , # 100 dots per inch , so the r e s u l t i n g bu f f e r i s 400x400 p i x e l s
53 frameon=False ,
54 )
55
56 # Convertion o f fu l lnames to shortnames
57 res map = d i c t ( crude=’ c ’ , low=’ l ’ , i n te rmed ia te=’ i ’ , high=’h ’ , f u l l= ’ f ’ )
58
59 f i g . s ubp l o t s ad ju s t ( l e f t =0.0 , r i gh t =1, top=1, bottom=0.0)
60 ax = f i g . gca ( )
61 m = Basemap( ax=f i g . gca ( ) , p r o j e c t i on=’merc ’ ,
62 r e s o l u t i o n = res map [ r e s o l u t i o n ] , a r ea th r e sh = . 1 ,
63 l l c r n r l a t = min lat , l l c r n r l o n = min lon ,
64 u r c r n r l a t = max lat , u r c rn r l on = max lon ,
65 f i x a s p e c t=False ,
66 )
67
68
69 # draw coa s t l i n e s , country boundaries , f i l l c on t inent s .
70 ##m. bluemarble ( )
71 m. drawcoas t l i n e s ( l i n ew idth =.4)
72 m. drawstates ( )
73 m. drawcountr ies ( l i n ew idth=1)
74 #m. f i l l c o n t i n e n t s ( c o l o r =’white ’ , l a k e c o l o r =’blue ’ )
75 m. drawr iver s ( c o l o r=’ blue ’ )
76 # draw the edge o f the m pro j e c t i on reg ion ( the p r o j e c t i on limb )
77 m. drawmapboundary ( )
78 # draw l a t / lon gr id l i n e s every 30 degree s .
79 m. drawmeridians (np . arange (0 , 360 , 30) )
80 m. d rawpa ra l l e l s (np . arange (−90 , 90 , 30) )
81
82 canvas = agg . FigureCanvasAgg ( f i g )
83 canvas . draw ( )
84 rendere r = canvas . g e t r ende r e r ( )
85 raw data = rendere r . t o s t r i n g r gb ( )
86 s i z e = canvas . g e t w id th he i gh t ( )
87 su r f = pygame . image . f r omst r ing ( raw data , s i z e , ”RGB” )
88 return su r f
89
90 de f make app ( points , boundry=(3.0 , 11 .25 , 50 . 0 , 55 . 0 ) , m in s i gna l =5, max s ignal=15, r e s o l u t i o n=’ low ’ , batch=

False ) :
91 # Screen s t a r t l o c a t i on and s i z i n g
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92 min lon , max lon , min lat , max lat = boundry
93
94 r a t i o = ( max lat − min lat ) / (max lon − min lon )
95
96 xdim = 1000
97 ydim = 1000
98
99 pygame . i n i t ( )

100 sc r een = pygame . d i sp l ay . set mode ( ( xdim , ydim) , pygame .SRCALPHA)
101 pygame . key . s e t r e p e a t (100 , 30)
102
103 # I n i t i a l c on t r o l s
104 map changed = True
105 layer changed = True
106 zoom act ive = False
107 zoom changed = False
108 a spec t f r e e zooming = True
109
110 last zoom change = 0
111 prev coords = [ ( −10 . 0 , 30 . 0 , 3 0 . 0 , 6 0 . 0 ) ]
112
113 font=pygame . font . Font (None , 3 0 )
114 cu r r l on = 0
115 c u r r l a t = 0
116
117 whi le True :
118 try :
119 event = pygame . event . wait ( )
120 except KeyboardInterrupt :
121 break
122 i f event . type == pygame .QUIT:
123 break
124 e l i f event . type == pygame .KEYDOWN:
125 i f event . key == pygame . K q :
126 break
127 e l i f event . key == pygame .K SPACE:
128 pass
129 e l i f event . key in (pygame .K RSHIFT , pygame .K LSHIFT) :
130 a spec t f r e e zooming = False
131 e l i f event . type == pygame .KEYUP:
132 i f event . key in (pygame .K RSHIFT , pygame .K LSHIFT) :
133 a spec t f r e e zooming = True
134 i f event . type == pygame .MOUSEBUTTONDOWN:
135 i f event . button == pygame . mouse .LEFT:
136 zoom act ive = True
137 zoom start = event . pos
138 zoom end = event . pos
139 e l i f event . type == pygame .MOUSEBUTTONUP:
140 i f event . button == pygame . mouse .LEFT:
141 # Determine new array to d i sp l ay
142 i f zoom act ive :
143 zoom end = event . pos
144 prev coords . append ( ( min lon , max lon , min lat , max lat ) )
145 # Get l e f t buttom the lower bound and r i gh t top as upper
146 # bound , note that coo rd ina t e s s t a r t l e f t−top , where−as
147 # l on l a t s t a r t s at l e f t−bottom
148 lb = (min ( zoom start [ 0 ] , zoom end [ 0 ] ) , max( zoom start [ 1 ] , zoom end [ 1 ] ) )
149 r t = (max( zoom start [ 0 ] , zoom end [ 0 ] ) , min ( zoom start [ 1 ] , zoom end [ 1 ] ) )
150
151 min lon = min lon + (max lon − min lon ) ∗ f l o a t ( lb [ 0 ] ) /xdim
152 max lon = min lon + (max lon − min lon ) ∗ f l o a t ( r t [ 0 ] ) /xdim
153 min lat = min lat + ( max lat − min lat ) ∗ f l o a t ( xdim − lb [ 1 ] ) /xdim
154 max lat = min lat + ( max lat − min lat ) ∗ f l o a t ( xdim − r t [ 1 ] ) /xdim
155
156 zoom act ive = False
157 map changed = True
158 e l i f event . button == pygame . mouse .RIGHT:
159 i f prev coords :
160 min lon , max lon , min lat , max lat = prev coords . pop ( )
161 map changed = True
162 e l i f event . type == pygame .MOUSEMOTION:
163 cu r r l on = min lon + (max lon − min lon ) ∗ f l o a t ( event . pos [ 0 ] ) /xdim
164 c u r r l a t = min lat + ( max lat − min lat ) ∗ f l o a t ( xdim − event . pos [ 1 ] ) /xdim
165 i f zoom act ive :
166 i f a spec t f r e e zooming :
167 zoom end = event . pos
168 e l s e :
169 # Square zoom to pre s e rve image r a t i o
170 dx = max( event . pos [ 0 ] , zoom start [ 0 ] ) − min( event . pos [ 0 ] , zoom start [ 0 ] )
171 dy = max( event . pos [ 1 ] , zoom start [ 1 ] ) − min( event . pos [ 1 ] , zoom start [ 1 ] )
172
173 dyx = max(dx , dy )
174 new dx = zoom start [ 0 ] + (dyx i f event . pos [ 0 ] > zoom start [ 0 ] e l s e dyx ∗ −1) ∗ r a t i o
175 new dy = zoom start [ 1 ] + (dyx i f event . pos [ 1 ] > zoom start [ 1 ] e l s e dyx ∗ −1)
176
177 zoom end = (new dx , new dy )
178
179
180 i f map changed :
181 t1 = time . time ( )
182 map layer = make map( min lon , max lon , min lat , max lat , xdim , ydim , r e s o l u t i o n )
183 t2 = time . time ( )
184
185 # Check the amount o f km per p i x e l
186 dx km = haver s ine ( min lon , min lat , max lon , min lat ) / xdim
187 dy km = haver s ine ( min lon , min lat , min lon , max lat ) / ydim
188 d km = max(dx km , dy km)
189 pr in t ”KM per p i x e l : %s ” % d km
190
191 max radius in km = 1.0
192 # Plot a l l po in t s on r i gh t l o c a t i on
193 f o r po int in po int s . i tems ( ) :
194 ( lon , l a t ) , s i g n a l = point
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195 # The higher the s i g n a l the b igge r the rad ius
196 #rad ius = ( max radius in km / d km) ∗ ( ( s i g n a l − min s i gna l ) / ( max s ignal − min s i gna l ) )
197 # Fixed rad ius
198 rad ius = ( max radius in km / d km)
199 x = ( lon − min lon ) / ( ( max lon − min lon ) / xdim)
200 y = ydim − ( ( l a t − min lat ) / ( ( max lat − min lat ) / ydim) )
201
202 # Hack f o r route d i sp l ay
203 rad ius = 2
204
205 # Plo t t ing l e s s then 1 p i x e l i s not p o s s i b l e
206 i f rad iu s < 1 :
207 cont inue
208
209
210 # Green t i l l Red depending on the s i g n a l
211 qua l i t y = ( s i g n a l − min s i gna l ) / ( max s ignal − min s i gna l )
212 c f i x e d = ( in t (255 .0 ∗ ( 1 . 0 − qua l i t y ) ) , i n t (255 .0 ∗ qua l i t y ) , 0)
213 c s t a r t = c f i x e d + (150 , )
214 c end = c f i x e d + (0 , )
215
216 # Hack f o r route d i sp l ay − Fixed c o l o r s and alpha ( no grad i ent )
217 c s t a r t = (0 ,255 ,0 ,150)
218 c end = (0 ,255 ,0 , 0 )
219
220 # Do p lo t e n t r i e s which do f a l l on the map , mind that we
221 # l i k e to get the ’ shadows ’ o f po in t s j u s t out s ide the map
222 i f x > (0 − rad ius ) and x < ( xdim + rad ius ) and y > (0 − rad ius ) and y < ( ydim + rad ius ) :
223 map layer . b l i t ( g rad i en t s . r a d i a l ( i n t ( rad ius ) , c s t a r t , c end ) , (x , y ) )
224 t3 = time . time ( )
225
226 # Display coo rd ina t e s and update acordenly
227 l a b e l = font . render ( ” lon :%7.5 f l a t :%7.5 f ” % ( cur r l on , c u r r l a t ) , 1 , (255 ,0 ,0 ) , (255 ,255 ,255) )
228 pygame . d i sp l ay . update ( s c r een . b l i t ( l abe l , ( 0 , 0 ) ) )
229
230 i f map changed or layer changed or zoom act ive :
231 i f zoom act ive :
232 #Avoid updating more than 100 mi l i s e conds at the time , as i t makes i t slow
233 i f time . time ( ) − l a s t zoom change < 0 . 1 :
234 cont inue
235 e l s e :
236 last zoom change = time . time ( )
237
238 map changed , layer changed = False , Fa l se
239 # Background
240 sc reen . f i l l ( (255 ,255 ,255 ,0 ) )
241
242 # Actual map
243 sc reen . b l i t ( map layer , ( 0 , 0 ) )
244
245
246 # Zoom laye r ( i f app l i c ab l e )
247 i f zoom act ive :
248 zoom di f f = ( zoom end [ 0 ] − zoom start [ 0 ] , zoom end [ 1 ] − zoom start [ 1 ] )
249 pygame . draw . r e c t ( screen , (255 ,0 ,0 ) , zoom start + zoom di f f , 2)
250
251 # Update sc r een
252 pr in t ”Map generat i on time : ” , t2 − t1
253 pr in t ” P lo t t ing a l l po in t s : ” , t3 − t2
254 pr in t ”Reso lut ion used : ” , r e s o l u t i o n
255 pr in t ”−−−−−−−−−−−−−−−−−−”
256 pygame . d i sp l ay . f l i p ( )
257 pygame . image . save ( screen , ’ sc reenshot−%s . png ’ % ( r e s o l u t i o n ) )
258 i f batch :
259 time . s l e ep (1)
260 break
261
262 pr in t ” Shutt ing down , p l e a s e wait . . . ”
263 pygame . qu i t ( )
264
265
266 i f name == ’ ma in ’ :
267 po in t s = {
268 (52 . 4 , 3 . 15 ) : 1 ,
269 }
270
271 make app ( po in t s )
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G ltrans-parser.py

ltrans-parser.py
1 #!/ usr /bin /env python
2 #
3 # LTRANS v1 . 0 parser , s t a t e changes sent over e f f i e n t l y
4 #
5 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
6 #
7
8 import argparse
9 import gz ip

10 import i t e r t o o l s
11 import l ogg ing
12 import re
13 import sys
14 import yaml
15
16 from decimal import Decimal , Inva l idOperat ion
17 from c o l l e c t i o n s import d e f au l t d i c t , Counter
18 from datet ime import datet ime
19
20 import pygame heatmap plot
21
22 #import matp lo t l ib
23 #matp lo t l ib . use ( ’GTKCairo ’ )
24 #pr in t matp lo t l ib . get backend ( )
25
26 import heatmap
27 import realmap
28
29 import matp lo t l ib . pyplot as p l t
30 import matp lo t l ib . t i c k e r as t i c k e r
31 import matp lo t l ib . dates as mdates
32 import numpy as np
33
34
35 # NOTSET = 0
36 # DEBUG = 10
37 # INFO = 20
38 # WARN = 30
39 # WARNING = 30
40 # ERROR = 40
41 # FATAL = 50
42 # CRITICAL = 50
43
44 logg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG)
45 l ogge r = logg ing . getLogger ( )
46
47 meta = { ’ timestamp ’ : 0}
48 s t a t e = {}
49
50 # ’ Recurs ive ’ metadata to s t o r e
51 # − type : [ int , f l o a t , s t r ing , l i s t ]
52 # − max : Maximum value
53 # − min : Minimum value
54 # − changes : Amount o f po int changed
55 s t a t s = {
56 ’ changes ’ : d e f a u l t d i c t ( i n t ) ,
57 ’ type ’ : d e f a u l t d i c t ( i t e r t o o l s . r epeat ( type (None ) ) . next ) ,
58 ’min ’ : d e f a u l t d i c t ( i t e r t o o l s . r epeat ( sys . maxint ) . next ) ,
59 ’max ’ : d e f a u l t d i c t ( i t e r t o o l s . r epeat ( sys . maxint ∗ −1) . next ) ,
60 ’ cho i c e s ’ : d e f a u l t d i c t ( s e t ) ,
61 ’ avg de l ta ’ : d e f a u l t d i c t ( i n t ) ,
62 ’ avg s t a r t ’ : d e f a u l t d i c t ( i n t ) ,
63 ’ count min ’ : d e f a u l t d i c t ( i t e r t o o l s . r epeat ( sys . maxint ) . next ) ,
64 ’ count max ’ : d e f a u l t d i c t ( i t e r t o o l s . r epeat ( sys . maxint ∗ −1) . next ) ,
65 ’ same ’ : d e f a u l t d i c t ( i n t ) ,
66 ’ e r r o r s ’ : d e f a u l t d i c t ( i n t ) ,
67 }
68
69 f l o a t r e = re . compile ( ’ ˆ\d+\.\d+$ ’ )
70 foobar = d e f a u l t d i c t ( l i s t )
71 l o n l a t = {}
72
73 de f make l i s t ( raw value , del im=’ , ’ ) :
74 r aw l i s t = raw value . s p l i t ( del im )
75 i f a l l (map( lambda x : x . i s d i g i t ( ) , r aw l i s t ) ) :
76 return map( int , r aw l i s t )
77 e l i f f l o a t r e . match ( r aw l i s t [ 0 ] ) :
78 return map( f l o a t , r aw l i s t )
79 e l s e :
80 return r aw l i s t
81
82 de f p a r s e f i e l d ( f i e l d , raw value ) :
83 ”””
84 Process f i e l d r e tu rn ing i t ’ s proces sed value
85 ”””
86 # timestamp f i l e i s ’ s p e c i a l ’ as i t i s a o f f s e t o f the r e gu l a r timestamp
87 # base , as f i e l d could both be in f i e l d array or f i e l d k=v pa i r s , make
88 # the pars ing g ene r i c
89 # XXX: We need metadata f o r conver t ion o f f i e l d s
90 i f f i e l d == ’ timestamp ’ :
91 return meta [ ’ timestamp ’ ] + in t ( raw value )
92 e l i f f i e l d == ’ w i f i : scan ’ :
93 return map( lambda x : x . s p l i t ( ’ / ’ ) , raw value . s p l i t ( ’ , ’ ) )
94 e l i f f i e l d == ’ gps : s a t s : t rack ’ :
95 return map( lambda x : x . s p l i t ( ’ : ’ ) , raw value . s p l i t ( ’ , ’ ) )
96 e l i f raw value . i s d i g i t ( ) :
97 return in t ( raw value )
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98 e l i f f l o a t r e . match ( raw value ) :
99 return f l o a t ( raw value )

100 e l i f ’ , ’ in raw value :
101 return make l i s t ( raw value , ’ , ’ )
102 e l i f ’ : ’ in raw value :
103 return make l i s t ( raw value , ’ : ’ )
104 e l s e :
105 return raw value
106
107
108 de f h a s p r e f i x ( f i e l d , p r e f i x a r r ay , empty ok=False ) :
109 ””” Return True i f the p r e f i x array i s found in f i e l d ”””
110 i f not p r e f i x a r r a y and empty ok :
111 return True
112 e l s e :
113 return any (map( lambda x : f i e l d . s t a r t sw i th (x ) , p r e f i x a r r a y ) )
114
115 de f zopen ( f i l ename ) :
116 ’ ’ ’ Open f i l e r e g a r d l e s s o f i t s compress ion ’ ’ ’
117 i f f i l ename . endswith ( ’ gz ’ ) :
118 return gz ip . open ( f i l ename , ’ rb ’ )
119 e l s e :
120 return open ( f i l ename , ’ r ’ )
121
122 de f p a r s e f i l e ( f i l ename , args ) :
123 ”””
124 Process f i l e and watch s p e c i a l keys f o r changes
125 ”””
126 with open ( ’ t e s t . dat ’ , ’w ’ ) as data fh :
127 with zopen ( f i l ename ) as fh :
128 l ogge r . i n f o ( ” Proces s ing %s” , f i l ename )
129 # Process the the header
130 header = fh . r e ad l i n e ( )
131 i f not header . s t a r t sw i th ( ’ l t r a n s=’ ) :
132 r a i s e IOError ( ” Inva l i d format ” )
133 f o r item in header . r s t r i p ( ) . s p l i t ( ’ ; ’ ) :
134 k , v = item . s p l i t ( ’= ’ ,2 )
135 meta [ k ] = p a r s e f i e l d (k , v )
136
137 # Get the f i e l d l i s t i n g
138 f i e l d l i s t = fh . r e ad l i n e ( ) . s t r i p ( ) . s p l i t ( ’ ; ’ )
139 f o r f i e l d in f i e l d l i s t :
140 s t a t e [ f i e l d ] = None
141
142
143 de f c h ang e f i e l d ( f i e l d , raw value ) :
144 o ldva lue = s t a t e [ f i e l d ] i f s t a t e . has key ( f i e l d ) e l s e None
145 value = p a r s e f i e l d ( f i e l d , raw value )
146
147 # According to the p ro toco l t h i s should only happen i f the value did
148 # change mul t ip l e t imes during 5 .0 −> 6 .0 −> 5 .0 f o r example
149 i f o ldva lue == value :
150 # logge r . debug (” F ie ld %s has same old and new value : %s ” , f i e l d , va lue )
151 s t a t s [ ’ same ’ ] [ f i e l d ] += 1
152 return
153
154 CHANGE PER TICK = 0.3
155 i f f i e l d == ’ gps : d i r ’ and type ( value ) in ( int , f l o a t ) and o ldva lue :
156 # Maak moge l i jke de l t a
157 #max delta = f l o a t ( s t a t e [ ’ timestamp ’ ] − s t a t s [ ’ a vg s t a r t ’ ] [ f i e l d ] ) ∗ s t a t s [ ’ avg de l ta ’ ] [ f i e l d ]
158 max delta = f l o a t ( s t a t e [ ’ timestamp ’ ] − s t a t s [ ’ a vg s t a r t ’ ] [ f i e l d ] ) ∗ CHANGE PER TICK
159 i f max delta > 0 and abs ( value − o ldva lue ) > max delta :
160 s t a t s [ ’ e r r o r s ’ ] [ f i e l d ] +=1
161 return
162 e l s e :
163 s t a t s [ ’ a vg s t a r t ’ ] [ f i e l d ] = s t a t e [ ’ timestamp ’ ]
164 #s t a t s [ ’ avg de l ta ’ ] [ f i e l d ] = abs ( ( value − o ldva lue ) ∗ CHANGE PER TICK)
165
166 # Add new value to the database
167 s t a t s [ ’ changes ’ ] [ f i e l d ] += 1
168 s t a t e [ f i e l d ] = value
169
170 i f h a s p r e f i x ( f i e l d , args . watchers ) :
171 l ogge r . debug ( ”Key %s , o ld : %s −> new : %s” , f i e l d , o ldvalue , va lue )
172 #data fh . wr i t e ( ’% s ’ % tate [ ’ timestamp ’ ] )
173 #fo r watch in args . watchers :
174 # foobar [ watch ] . append ( ( s t a t e [ ’ timestamp ’ ] , va lue ) )
175 #data fh . wr i t e ( ’ %s ’ % ( s t a t e [ f i e l d ] i f ( watch == f i e l d ) e l s e ’ ? ’ ) )
176 #data fh . wr i t e ( ’\n ’ )
177 #data fh . wr i t e ( ’% s %s\n ’ % ( s t a t e [ ’ timestamp ’ ] , s t a t e [ f i e l d ] ) )
178 #i f s t a t e . has key ( ’ gps : l a t ’ ) and s t a t e . has key ( ’ gps : lon ’ ) :
179 # data fh . wr i t e ( ’% s %s %s %s\n ’ % ( s t a t e [ ’ gps : l a t ’ ] , s t a t e [ ’ gps : lon ’ ] , s t a t e [ f i e l d ] ) )
180
181 # Ignore r e s e t f o r now
182 i f va lue == None :
183 return
184
185 i f type ( value ) == l i s t and type ( value [ 0 ] ) != l i s t :
186 s t a t s [ ’ cho i c e s ’ ] [ f i e l d ] = s e t ( s t a t s [ ’ cho i c e s ’ ] [ f i e l d ] ) | s e t ( value )
187 s t a t s [ ’ count min ’ ] [ f i e l d ] = min ( s t a t s [ ’ count min ’ ] [ f i e l d ] , l en ( value ) )
188 s t a t s [ ’ count max ’ ] [ f i e l d ] = max( s t a t s [ ’ count max ’ ] [ f i e l d ] , l en ( value ) )
189 e l i f type ( value ) in ( int , f l o a t ) :
190 i f not h a s p r e f i x ( f i e l d , args . exc lude ) :
191 foobar [ f i e l d ] . append ( ( s t a t e [ ’ timestamp ’ ] , va lue ) )
192 i f h a s p r e f i x ( f i e l d , args . watchers ) and not f i e l d in ( ’ gps : lon ’ , ’ gps : l a t ’ ) :
193 i f s t a t e [ ’ gps : lon ’ ] and s t a t e [ ’ gps : l a t ’ ] :
194 l o n l a t [ ( s t a t e [ ’ gps : lon ’ ] , s t a t e [ ’ gps : l a t ’ ] ) ] = value
195
196 # Set the maximum value and keep counters
197 i f va lue > s t a t s [ ’max ’ ] [ f i e l d ] :
198 s t a t s [ ’ count max ’ ] [ f i e l d ] = 1
199 s t a t s [ ’max ’ ] [ f i e l d ] = value
200 e l i f va lue == s t a t s [ ’max ’ ] [ f i e l d ] :
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201 s t a t s [ ’ count max ’ ] [ f i e l d ] += 1
202
203 # Set the minimum value and keep counters
204 i f va lue < s t a t s [ ’min ’ ] [ f i e l d ] :
205 s t a t s [ ’ count min ’ ] [ f i e l d ] = 1
206 s t a t s [ ’min ’ ] [ f i e l d ] = value
207 e l i f va lue == s t a t s [ ’min ’ ] [ f i e l d ] :
208 s t a t s [ ’ count min ’ ] [ f i e l d ] += 1
209
210 e l i f type ( value ) == s t r :
211 s t a t s [ ’ cho i c e s ’ ] [ f i e l d ] = s e t ( s t a t s [ ’ cho i c e s ’ ] [ f i e l d ] ) | s e t ( [ va lue ] )
212
213 # Find out i f t h i s i s the f i r s t time we have spotted t h i s key (DayOfBirth ?)
214 i f not s t a t s [ ’ type ’ ] . has key ( f i e l d ) :
215 #logge r . debug (” F i e ld %s i s o f type %s ” , f i e l d , type ( value ) . name )
216 s t a t s [ ’ type ’ ] [ f i e l d ] = type ( value )
217
218 # Star t p ro c e s s i ng the l i n e s
219 f o r l i n e in fh :
220 items = l i n e . r s t r i p ( ) . s p l i t ( ’ ; ’ )
221 # F i r s t get a l l the f i e l d va lues
222 f o r f i e l d in f i e l d l i s t :
223 value = items . pop (0)
224 i f va lue :
225 chang e f i e l d ( f i e l d , va lue )
226
227 # Next the key=value pa i r s
228 f o r item in items :
229 f i e l d , va lue = item . s p l i t ( ’= ’ ,2 )
230 chang e f i e l d ( f i e l d , va lue )
231
232 # Boolean f l a g s h id ing in a i n t e g e r output
233 f o r k in s t a t e . keys ( ) :
234 i f s t a t s [ ’min ’ ] [ k ] != s t a t s [ ’max ’ ] [ k ] and \
235 ( s t a t s [ ’ count min ’ ] [ k ] + s t a t s [ ’ count max ’ ] [ k ] ) == s t a t s [ ’ changes ’ ] [ k ] :
236 s t a t s [ ’ type ’ ] [ k ] = bool
237 s t a t s [ ’ cho i c e s ’ ] [ k ] = [ 0 , 1 ]
238
239 # Float / Int va lues with l im i t ed s e t o f cho i c e s and l o t o f changes are
240 # t e c h n i c a l l l y speaking l i s t s and/ or are ’ f l app ing ’ between two d i s c r e t e
241 # l e v e l s .
242 # XXX: This should be sugge s t i on s and not d e f i n i t i v e answers
243 f o r c ed r ange s = ( ’ gps : l a t ’ , ’ gps : lon ’ )
244 f o r k in s e t ( s t a t e . keys ( ) ) − s e t ( f o r c ed r ange s ) :
245 i f s t a t s [ ’ type ’ ] [ k ] in ( int , f l o a t ) and s t a t s [ ’ changes ’ ] [ k ] > 100 and foobar . has key (k ) :
246 x , y= z ip (∗ foobar [ k ] )
247 # Hack to make sure not run trough a l l i f l i s t i s very big
248 i f l en ( Counter (y [ : 1 0 0 ] ) . keys ( ) ) > 20 :
249 cont inue
250 # Make sure we have l e s s than XX cho i c e s
251 cnt = Counter (y )
252 i f l en ( cnt . keys ( ) ) <= 20 :
253 s t a t s [ ’ type ’ ] [ k ] = l i s t
254 s t a t s [ ’ cho i c e s ’ ] [ k ] = cnt . keys ( )
255
256 f o r k in s t a t e . keys ( ) :
257 i f s t a t s [ ’ type ’ ] [ k ] in ( int , f l o a t ) and s t a t s [ ’ changes ’ ] [ k ] > 100 and foobar . has key (k ) :
258 x , y= z ip (∗ foobar [ k ] )
259 # 1 s t d e r i v i t i v e
260 y1 = [ 0 . 0 ] + [ y [ i ] − y [ i −1] f o r i in range (1 , l en (y ) ) ]
261 #tmp = sor ted ( y1 ) [ i n t ( l en ( y1 ) ∗0 .1 ) :− i n t ( l en ( y1 ) ∗0 .1 ) ]
262 y1 avg = sum( y1 ) / l en ( y1 )
263
264 # 2nd d e r i v i t i v e
265 y2 = [ 0 . 0 ] + [ y1 [ i ] − y1 [ i −1] f o r i in range (1 , l en ( y1 ) ) ]
266 #tmp = sor ted ( y2 ) [ i n t ( l en ( y2 ) ∗0 .1 ) :− i n t ( l en ( y2 ) ∗0 .1 ) ]
267 y2 avg = sum( y2 ) / l en ( y2 )
268 #logge r . warn (”1 s t d e r i v a t i v e − min:%s avg:%s min:%s ” , min ( y1 ) , y1 avg , max( y1 ) )
269 #logge r . warn (”2nd d e r i v a t i v e − min:%s avg:%s min:%s ” , min ( y2 ) , y2 avg , max( y2 ) )
270
271 # Cleanup o f s t r i n g va lues
272 f o r k in s t a t e . keys ( ) :
273 i f s t a t s [ ’ type ’ ] [ k ] in ( s t r , l i s t ) :
274 s t a t s [ ’min ’ ] [ k ] = sys . maxint
275 s t a t s [ ’max ’ ] [ k ] = sys . maxint ∗ −1
276 s t a t s [ ’ count min ’ ] [ k ] = 0
277 s t a t s [ ’ count max ’ ] [ k ] = 0
278
279
280 # Print a l l s t a t e s found
281 with open ( f i l ename + ’ . meta ’ , ’w ’ ) as meta fh :
282 meta fh . wr i t e ( ” l t rans meta =1.0\n” )
283 k e y l i s t = s t a t e . keys ( ) i f not args . r e s u l t e l s e f i l t e r ( lambda x : h a s p r e f i x (x , args . r e s u l t ) , s t a t e .

keys ( ) )
284 f o r k in so r t ed ( k e y l i s t ) :
285 meta dict = {}
286 f o r t in so r t ed ( s t a t s . keys ( ) ) :
287 i f not s t a t s [ t ] [ k ] :
288 v = ’NaN ’
289 e l i f t == ’ type ’ :
290 v = s t a t s [ t ] [ k ] . name
291 e l i f t == ’ cho i c e s ’ :
292 v = ’ , ’ . j o i n (map( st r , s t a t s [ ’ cho i c e s ’ ] [ k ] ) )
293 e l s e :
294 v = s t a t s [ t ] [ k ]
295 meta dict [ t ] = v
296 l ogge r . l og ( l ogg ing . INFO i f h a s p r e f i x (k , args . watchers ) e l s e l ogg ing .DEBUG, ”key=%−30s f i e l d=%−10

s value=%s” ,k , t , v )
297 l ogge r . debug ( ”===” )
298
299 meta l ine = ’ ; ’ . j o i n ( [ ’ key=%s ’ % k ] + [ ”%s=%s” % x f o r x in so r t ed ( meta dict . i tems ( ) ) ] )
300 meta fh . wr i t e ( meta l ine + ”\n” )
301
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302
303 de f draw image ( ) :
304 i f args . g r id :
305 heatmap . draw ( l o n l a t )
306 e l i f a rgs . realmap :
307 realmap . draw heatmap ( l o n l a t )
308 e l i f a rgs . heatmap :
309 boundry = (
310 s t a t s [ ’min ’ ] [ ’ gps : lon ’ ] − 1 , s t a t s [ ’max ’ ] [ ’ gps : lon ’ ] + 1 ,
311 s t a t s [ ’min ’ ] [ ’ gps : l a t ’ ] − 1 , s t a t s [ ’max ’ ] [ ’ gps : l a t ’ ] + 1
312 )
313
314 pygame heatmap plot . make app ( l on l a t , boundry=boundry , min s i gna l=s t a t s [ ’min ’ ] [ a rgs . watchers [ 0 ] ] ,

max s ignal=s t a t s [ ’max ’ ] [ a rgs . watchers [ 0 ] ] , r e s o l u t i o n=args . r e s o l u t i on , batch=args . batch )
315 e l i f a rgs . p l o t or args . h i s t :
316 p r in t ” P lo t t ing a image o f keys %s” % args . watchers
317 p l t . c l o s e ( ’ a l l ’ )
318 f i g , ax = p l t . subp lo t s (1 )
319 f o r key in so r t ed ( s t a t e . keys ( ) ) :
320 i f not s t a t s [ ’ type ’ ] [ key ] in ( int , f l o a t ) :
321 cont inue
322 i f h a s p r e f i x ( key , args . exc lude ) :
323 cont inue
324 i f args . watchers and not h a s p r e f i x ( key , args . watchers ) :
325 cont inue
326 i f not foobar . has key ( key ) :
327 cont inue
328 i f s t a t s [ ’ e r r o r s ’ ] [ key ] > args . max errors :
329 l ogge r . e r r o r ( ”Not p l o t t i n g key %s due to many e r r o r s %s ( al lowed :%s ) ” , key , s t a t s [ ’ e r r o r s ’ ] [ key ] ,

args . max errors )
330 x , y= z ip (∗ foobar [ key ] )
331 y = np . array (y )
332 i f not y .max( ) :
333 cont inue
334 i f args . norm :
335 y = y / f l o a t (y .max( ) )
336 ## 1 s t d e r i v i t i v e
337 # y1 = [ 0 . 0 ] + [ y [ i ] − y [ i −1] f o r i in range (1 , l en (y ) ) ]
338 ##2nd d e r i v i t i v e
339 # y2 = [ 0 . 0 ] + [ y1 [ i ] − y1 [ i −1] f o r i in range (1 , l en ( y1 ) ) ]
340 i f args . h i s t :
341 ax . h i s t (y , l a b e l=key )
342 l ogge r . i n f o ( Counter (y ) )
343 e l s e :
344 x = map( lambda u : datet ime . utcfromtimestamp (u) , x )
345 ax . s tep (x , y , ’ .− ’ , l a b e l=key )
346 i f not args . h i s t :
347 f i g . autofmt xdate ( )
348 ax . g r id (True )
349
350 formatter = t i c k e r . EngFormatter ( p l a c e s=5)
351 ax . yax i s . s e t ma jo r f o rmat t e r ( fo rmatter )
352
353 # ax . xax i s . s e t ma jo r f o rmat t e r (mdates . DateFormatter ( ’%Y−%m−%d %H:%M:%S ’ ) )
354 # Shink current ax i s ’ s he ight by 10% on the bottom
355 box = ax . g e t p o s i t i o n ( )
356 ax . s e t p o s i t i o n ( [ box . x0 , box . y0 , box . width ∗ 0 . 8 , box . he ight ] )
357 # Put a legend below current ax i s
358 ax . legend ( l o c=’ cente r l e f t ’ , bbox to anchor =(1 , 0 . 5 ) )
359
360 #p l t . y l ab e l ( ’ | | ’ . j o i n ( so r t ed ( foobar . keys ( ) ) ) )
361 p l t . show ( )
362
363
364 i f name == ’ ma in ’ :
365 par se r = argparse . ArgumentParser ( d e s c r i p t i o n=’ Process some i n t e g e r s . ’ )
366 par se r . add argument ( ’ f i l e s ’ , metavar=’ f i l e ’ , type=str , nargs=’+’ , he lp=”Filename to parse ” )
367 par se r . add argument ( ’−−watchers ’ , ’−w ’ , type=str , he lp=’Watch changes in watcher keys ’ , a c t i on=’ append ’ ,

d e f au l t = [ ] )
368 par se r . add argument ( ’−−exc lude ’ , ’−x ’ , type=str , he lp=’Keys to i gnore in d i sp l ay and debug ’ , a c t i on=’ append

’ , d e f au l t = [ ] )
369 par se r . add argument ( ’−−r e s u l t ’ , ’−r ’ , type=str , he lp=’Only d i sp l ay summary f o r keys ’ , a c t i on=’ append ’ ,

d e f au l t = [ ] )
370 par se r . add argument ( ’−−qu i e t ’ , ’−q ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
371 par se r . add argument ( ’−−debug ’ , ’−g ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
372 par se r . add argument ( ’−−h i s t ’ , he lp=’Show histogram ’ , ac t i on=’ s t o r e t r u e ’ , d e f au l t=False )
373 par se r . add argument ( ’−−norm ’ , help=’ Normalize Graphs ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
374 par se r . add argument ( ’−−p lo t ’ , he lp=’Show graph p lo t ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
375 par se r . add argument ( ’−−gr id ’ , he lp=’Show lon / l a t graph p lo t ’ , a c t i on=’ s t o r e t r u e ’ , d e f au l t=False )
376 par se r . add argument ( ’−−realmap ’ , he lp=’Show lon / l a t graph p lo t at r e a l map ’ , ac t i on=’ s t o r e t r u e ’ , d e f au l t=

False )
377 par se r . add argument ( ’−−heatmap ’ , he lp=’Show lon / l a t graph p lo t at heat map ’ , ac t i on=’ s t o r e t r u e ’ , d e f au l t=

False )
378 par se r . add argument ( ’−−max−e r r o r s ’ , he lp=’Maximum of e r r o r s al lowd ’ , type=int , d e f au l t =100)
379 par se r . add argument ( ’−−s i n g l e ’ , he lp=”Plot every p i c tu r e i nd i v i dua l y ” , ac t i on=’ s t o r e t r u e ’ , d e f au l t=False )
380 par se r . add argument ( ’−−batch ’ , he lp=”No i n t e r a c t i v e d i sp l ay po s s i b l e ” , ac t i on=’ s t o r e t r u e ’ , d e f au l t=False )
381 par se r . add argument ( ’−−r e s o l u t i o n ’ , he lp=”Reso lut ion o f basemap” , d e f au l t=’ low ’ )
382 args = par se r . pa r s e a r g s ( )
383
384 i f args . qu i e t :
385 l ogge r . s e tLeve l ( l ogg ing .ERROR)
386 e l i f a rgs . debug :
387 l ogge r . s e tLeve l ( l ogg ing .DEBUG)
388 e l s e :
389 l ogge r . s e tLeve l ( l ogg ing . INFO)
390 f o r f i l ename in args . f i l e s :
391 p a r s e f i l e ( f i l ename , args )
392 i f args . s i n g l e :
393 draw image ( )
394
395 i f not args . s i n g l e :
396 draw image ( )
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H ltrans-filter.py

Example code of filtering values which cannot be used by for numeric statistics and analytics.
The input for this command requires a CSV converted LTRANS file.

ltrans-filter.py
1 #!/ usr /bin /env python
2 #
3 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
4 #
5 ’ ’ ’
6 F i l t e r out va lues which are non−i n t e r e s t i n g
7 ’ ’ ’
8
9 import sys

10 import csv
11 import l ogg ing
12 from c o l l e c t i o n s import d e f a u l t d i c t
13
14 l ogg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG, stream=sys . s t d e r r )
15 l ogge r = logg ing . getLogger ( )
16
17 f i e l d s = None
18 i n f i l e = ’ . . / l t r ans−data /00 :0d : b9 : 1 b : 57 : 10/ bu f f e r ed /1301529601. l t r a n s . csv ’
19
20 # Filename to parse
21 i f l en ( sys . argv ) > 1 :
22 i n f i l e = sys . argv [ 1 ]
23
24 # F i e l d s with t h i s names to s t o r e
25 i f l en ( sys . argv ) > 2 :
26 f i e l d s = sys . argv [ 2 : ]
27
28 c l a s s mixed ( s t r ) : pass
29
30 # Open f i l e and read headers
31 l ogg ing . i n f o ( ”Reading f i l e %s ” , i n f i l e )
32 c sv r eade r = csv . reader ( open ( i n f i l e , ’ r ’ ) )
33 headers = c sv r eade r . next ( )
34
35
36 de f c l a s s i f y ( value ) :
37 # Do not proce s s empty va lues
38 i f va lue == None or value == ’ ’ :
39 return None
40 e l i f va lue . i s d i g i t ( ) :
41 return in t
42 e l i f a l l (map( lambda x : x . i s d i g i t ( ) , va lue . s p l i t ( ’ . ’ , 1) ) ) :
43 return f l o a t
44 e l s e :
45 return s t r
46
47 # Walk through l i n e s , f o r every l i n e check type o f value
48 header type = d e f a u l t d i c t ( lambda : None )
49 f o r row in c sv r eade r :
50 pass
51 va lue type s = map( c l a s s i f y , row )
52 f o r (h , t ) in z ip ( headers , va lue type s ) :
53 i f t == None : cont inue
54 i f header type [ h ] == None :
55 header type [ h ] = t
56 e l i f header type [ h ] != t :
57 # Combine new type with e x i s t i n g type ( i f found )
58 header type [ h ] = mixed
59 pr in t ”Type−re−i d e n t i f i e d : %s %s” , header type [ h ] , t
60
61
62 # F i l t e r out columns which are not i n t e r e s t i n g
63 s t o r e h eade r s = [ ]
64 f o r h , t in header type . i t e r i t em s ( ) :
65 i f t in ( int , f l o a t ) :
66 s t o r e h eade r s . append (h)
67
68
69 l ogge r . i n f o ( ” Stor ing trimmed ve r s i on with keys %s” , so r t ed ( s t o r e h eade r s ) )
70 # Write r e s u l t to f i l e
71 c s v w r i t e r = csv . wr i t e r ( sys . stdout )
72
73 # Avoiding memory hop , re−read ing e n t r i e s
74 c sv r eade r = csv . reader ( open ( i n f i l e , ’ r ’ ) )
75
76 # F i l t e r extra f i e l d s i f needed
77 i f f i e l d s :
78 s t o r e h eade r s = f i l t e r ( lambda x : any (map( lambda y : y in x , f i e l d s ) ) , s t o r e h eade r s )
79
80 # Masking o f headers to keep
81 b = [ x in s t o r e h eade r s f o r x in headers ]
82 f o r row in c sv r eade r :
83 # F i l t e r out r e l evan t rows
84 row = map( lambda x : x [ 1 ] , f i l t e r ( lambda x : x [ 0 ] , z ip (b , row ) ) )
85 # Only output the rows which has output e n t r i e s
86 i f any ( row ) :
87 c s v w r i t e r . writerow ( row )
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I ltrans-expand.py

Example code of expanding the LTRANS CSV file, such that all fields gets filled in again.

ltrans-expand.py
1 #!/ usr /bin /env python
2 #
3 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
4 #
5 ’ ’ ’
6 Expand c e l l e n t r i e s which are miss ing
7 ’ ’ ’
8
9 import sys

10 import csv
11 import l ogg ing
12 from c o l l e c t i o n s import d e f a u l t d i c t
13
14 l ogg ing . bas i cCon f i g ( l e v e l=logg ing .DEBUG, stream=sys . s t d e r r )
15 l ogge r = logg ing . getLogger ( )
16
17 i n f i l e = sys . s td in
18
19 # Filename to parse
20 i f l en ( sys . argv ) > 1 :
21 i n f i l e = open ( sys . argv [ 1 ] , ’ r ’ )
22
23 # Open f i l e and read headers
24 l ogg ing . i n f o ( ”Reading f i l e %s ” , i n f i l e )
25 c sv r eade r = csv . reader ( i n f i l e )
26 headers = c sv r eade r . next ( )
27 heade r l en = len ( headers )
28
29 l ogge r . i n f o ( ” Stor ing expanded ve r s i on with keys %s” , so r t ed ( headers ) )
30 # Write r e s u l t to f i l e
31 c s v w r i t e r = csv . wr i t e r ( sys . stdout )
32
33 # Headers p l e a s e
34 c s v w r i t e r . writerow ( headers )
35
36 # F i l l c e l l s which are miss ing
37 prev row = csv r eade r . next ( )
38 # Make sure to wr i t e the row i f p o s s i b l e
39 i f l en ( f i l t e r (None , prev row ) ) == header l en :
40 c s v w r i t e r . writerow ( prev row )
41
42 # Process a l l remaining e n t r i e s
43 f o r row in c sv r eade r :
44 # Use old value in case o f blank f i e l d
45 new row = map( lambda x : x [ 0 ] i f x [ 0 ] e l s e x [ 1 ] , z ip ( row , prev row ) )
46
47 # We need to s t o r e the l a s t va lues f o r next i n t e r a t i o n
48 prev row = new row
49
50 # As soon we have a l l va lues f i l l e d , p r in t the l i n e
51 # NOTE : t h i s could po t e n i a l l y l eave a l l kind o f va lues miss ing , s i n c e i t
52 # requ i r e ALL va lues to appear ones , be f o r e output takes p lace
53 i f l en ( f i l t e r (None , new row ) ) == header l en :
54 c s v w r i t e r . writerow ( new row )
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J random-dots.gnu

random-dots.gnu
1 #!/ usr /bin / gnuplot
2 #
3 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
4 #
5 se t te rmina l pngca i ro notransparent enhanced font ” a r i a l , 10 ” f o n t s c a l e 1 .0 s i z e 1024 ,768
6 s e t output ’ random−dots . png ’
7
8 unset key ; unset border ; unset t i c s
9 s e t s i z e r a t i o −1

10
11 s e t samples 1000
12 p lo t ’ world . dat ’ with l i n e s l t 3 , \
13 ( rand (0) ∗ 160) − 80 with po int s pt 7 ps 1
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K radient-dots.gnu

radient-dots.gnu
1 #!/ usr /bin / gnuplot
2 #
3 # Draw po int s with rad iant
4 #
5 # In sp i r a t i o n : http ://www. gnup lot t ing . org / e l e c t ron−and−pos i t r on /
6 #
7 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
8 #
9

10 r e s e t
11
12 # png
13 s e t te rmina l pngca i ro s i z e 1024 ,768 enhanced font ’Verdana ,10 ’
14 s e t output ’ rad ient−dots . png ’
15 s e t yz e roax i s l i n e t yp e 0 l inew idth 1 .000
16
17 unset key ; unset border ; unset t i c s
18 s e t s i z e r a t i o −1
19 max = 50
20 s = 5
21
22 # Functions
23 s i z e (x , n) = s ∗(1−0.8∗x/n)
24 r (x , n) = f l o o r (19 .0∗ x/n)+221
25 g (x , n) = f l o o r (216 .0∗ x/n)+24
26 b(x , n) = f l o o r (209 .0∗ x/n)+31
27 posx (X, x , n) = X + 0.03∗x/n
28 posy (Y, x , n) = Y + 0.03∗x/n
29 red (x , n) = s p r i n t f ( ”#%02X%02X%02X” , r (x , n) , g (x , n) ,b(x , n) )
30
31 object number = 1
32
33 do f o r [ x=−150:150:10] {
34 # Draw pos i t r on and e l e c t r on
35 do f o r [ y=−60:60:10] {
36 # Draw c i r c l e s
37 s e t f o r [ n=0:max−1] ob j e c t n+object number c i r c l e \
38 at posx (x , n ,max/1 . 0 ) , posy (y , n ,max/1 . 0 ) s i z e s i z e (n ,max/1 . 0 )
39 s e t f o r [ n=0:max−1] ob j e c t n+object number \
40 f c rgb red (n ,max/1 . 0 ) f i l l s t y l e s o l i d noborder lw 0
41 object number = object number+max
42 }
43 }
44 p lo t ’ world . dat ’ with l i n e s l t 3
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L curve-fitting.r

curve-fitting.r
1 #! / usr /bin /Rscr ipt
2 #
3 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
4 #
5 png ( ’ curve−f i t t i n g−example . png ’ )
6 # Creat ing i n i t i a l datase t
7 s e t . seed (510)
8 l en <− 100
9 min <− −10

10
11 x <− r un i f ( len , min=min , max=10)
12 # Dummy func t i on to f o l l ow
13 y <− xˆ5 − 3∗xˆ4 + 3∗xˆ3 − 2∗xˆ2 −5 + rnorm ( len , 0 , 7000)
14 ds <− data . frame (x = x , y = y)
15
16 # Gauss−Newton
17 m <− n l s ( y ˜ I ( a∗xˆ5) + I (b∗xˆ4) + I ( c∗xˆ3) + I (d∗xˆ2) + I ( e∗x ) + f , data = ds , s t a r t = l i s t ( a=1, b=1, c=1, d

=1, e=1, f =1) , t r a c e = TRUE,
18 con t r o l=l i s t ( minFactor=0, maxiter=100 , warnOnly = TRUE) )
19 summary(m)
20
21 s <− seq (min , 100 , l ength = 1000)
22 dt <− s ˜ p r ed i c t (m, l i s t ( x =s ) )
23
24 # Plo t t ing the v a r i a b l e s
25 p lo t (y ˜ x , main = ”Guass−Newton Curve F i t t i n g ” , sub = ”Black : obse rva t i on s ; green : f i t ; red : t a r g e t ” , pch

=20)
26 gr id ( )
27
28 l i n e s ( s , s ˆ5 − 3∗ s ˆ4 + 3∗ s ˆ3 − 2∗ s ˆ2 −5, l t y = 2 , c o l = ” red ” )
29 l i n e s ( s , p r ed i c t (m, l i s t ( x = s ) ) , l t y = 1 , c o l = ” green ” )
30
31 dev . o f f ( )

82



M GNUmakefile

Various ways of calling the program, including the listing of extra packages required.

GNUmakefile
1 #
2 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
3 #
4 FILENR ?= 1
5 LTRANSFILE ?= $ ( s h e l l grep − l −m 1 vsat :SNR ‘ f i nd l t r ans−data −type f −name ’∗ . l t r an s ’ −exec l s −1t ’{} ’ \+‘

| head −$ (FILENR) | t a i l −1)
6
7 a l l :
8 . / s r c / l t r ans−par se r . py −−batch −−watcher vsat :SNR −−heatmap ${LTRANSFILE}
9

10 plot−route :
11 . / s r c / l t rans−par se r . py −−watcher gps : d i s t : sd −−heatmap ‘ cat t rack . txt ‘
12
13 f ind−r e l a t i o n :
14 . / s r c / l t rans− f i l t e r . py > bert . csv
15 . / s r c / l t rans−r e l a t i o n s . py
16
17 i n s t a l l :
18 yum i n s t a l l −y python−yaml pygame python−matp lo t l ib python−basemap python−basemap−data−h i r e s java −1.7.0−

openjdk
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N simple-search.sh

A very simple way of parsing the data to get the minimum and maximum values of certain
tags, without storing the data, every time these tags are required the full file has to be searched
again.

simple-search.sh
1 #!/ bin /sh
2 #
3 # Very s imple i d e n t i f i c a t i o n o f maximum and minimum values f o r s p e c i f i c keys .
4 #
5 # Rick van der Zwet <in fo@r ickvanderzwet . nl>
6 #
7
8 # Temponary s to rage l o c a t i o n
9 TFILE=‘mktemp ‘

10
11 # For a l l r equested f i l e s on CLI
12 f o r FILE in $ ∗ ; do
13 f o r KEY in gps : lon gps : l a t ; do
14 # Parse l t r a n s keys and f i nd s p e c i f i c keys
15 zcat $FILE | grep ’ˆ [0 −9 ]∗ [ 0 −9 ] ; ’ | t r ’ ; ’ ’\n ’ | grep ”$KEY” | awk −F= ’{ pr in t $2 } ’ | s o r t −n > $TFILE
16 # Display the r e s u l t
17 p r i n t f ”%s − %s − %15s − %15s\n” $FILE $KEY ‘ head −1 $TFILE ‘ ‘ t a i l −1 $TFILE ‘
18 done
19 done
20
21 # Cleanup when done
22 rm $TFILE
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O LTRANS Protocol Documentation

This included document will describe the LTRANS protocol documentation. The LTRANS docu-
mentation is written by Nick Hibma, AnyWi.com.
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ltrans protocol v1.0

Copyright 2008-2013, AnyWi Technolgies, Leiden, NL
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1. Introduction
This document describes a simple communication protocol for efficient communication of large 
quantities of sensor data.

This protocol has been developed by AnyWi. This documentation contains proprietary information 
and is provided within the context of a project for completion of that project. For licensing 
information please contact AnyWi Technologies, Leiden, the Netherlands.

The ltrans protocol defines one-way communication of key/value pairs from transmitter to receiver. 
It is intended to support a continuous flow of slowly changing sensors ('column fields') as well as 
transmission of events (key/value pairs or 'pairs').  The minimum update interval is 1 second.

Example:

ltrans=1.0;unitid=00:11:22:33:44:55:66;timestamp=1205306392
timestamp;lat;lon;vel;dir
34;50.75123;4.67843;0.0;186;active=0;descr=Text with spaces;sensor1=42
36;;;;;sensor1=43;newval=14

Communication starts with an identification line (ident line) being sent from transmitter to receiver, 
indicating the protocol version used, plus some additional information. Depending on the 
information to be transmitted the transmitter might need more information before it can proceed. 
The receiver can send this information by replying with its own ident line including the missing 
information as key/value pairs (this is the only time the receiver needs to send anything to the 
transmitter). Following that is the list of column fields that are going to be reported in every data 
line sent.

The first data line contains values for all known values. The second line contains updates to the 
first data line only (column fields), plus events (key/value pairs). Note the missing entries in the 2nd
through 4th column fields, indicating that these values have not changed. In this example 
timestamp, lat, lon, vel, and dir are considered context and active, descr, sensor1, and newval are 
considered events.

4/8
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2. Communication

2.1. Direction
Data flows in one direction only, from transmitter to receiver. The only exception is ident lines which
can be sent from client to server. The fields available there are dependent on the actual 
implementation.

The transmitter/receiver nomer indicates the transmitter and receiver of the data flow. The 
connection set-up is independet of that. In general however it is advisable to setup the connection 
in the same direction as the data flow to make sure the transmitter becomes aware of a dropped 
connection and reopens the connection if lost.

2.2. Process
(This assumes that a (TCP) connection has already been set up.)

1. The transmitter sends an ident line, including parameter values.

2. The receiver responds with its own ident line potentially passing parameter values, like a 
starting timestamp.

3. If the transmitter decides that its parameters have changed due to the information sent by 
the receiver it sends again an ident line with the changed/additional information; the 
process continues at step 2. Otherwise at step 4.

4. The fieldlist is sent from transmitter to receiver, identifying the information that is sent in the 
column fields at the start of each line. The client recognises the fieldlist by the lack of 
'ltrans=' (typical for ident lines) at the beginning of the line.

5. The first data line must be sent immediately, containing values for all known column fields 
and key/value pairs. Column fields with an unknown value are left empty. If no values are 
known an empty data line should be sent.

6. Additional data lines are sent if updates are available.

At any time the transmitter or receiver may close the connection indicating protocol error, an 
inability to handle the request or other error.

2.3. Format

2.3.1. Key/value format

Keys
Characters used in keys must be limited to:

'a'-'z'
'A'-'Z'
'0'-'9'
':' (colon)
'.' (period)
'_' (underscore)
Other characters may be acceptable depending on implementation but should not be used. ':' and 
'.' are assumed to indicate hierarchy, for example: 
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gps:lat
gps:lon
gps:sats:active

The following characters must NOT be used in keys:

'='
';' (semi-colon)
' ' (space)
',' (comma)
'\r' (CR)
'\n' (LF)

Values
The following characters must NOT be used in values:

\0
';'
\r
\n

Note
Any escaping of keys and values needs to be done at the application level, above the ltrans 
protocol level, where the data is produced. Injecting any of the 'must-not' characters in keys or 
values leads to undefined results. Ltrans protocol layers should discard or replace the unwanted 
characters above.

2.3.2. Ident line
The first line after connection setup is the identification line specifying the protocol version 
understood and identifying parameters for the connection:

ltrans=1.0;unitid=00:11:22:33:44:55:66;timestamp=1205306392

Note: 'timestamp' is handled specially: The 'timestamp' in the ident line sent by the transmitter is 
the starting timestamp. Any 'timestamp' field (either in a column field or key/value pairs) passed in 
each data line is relative to this value. If the 'timestamp' field in the ident line is not present, the 
value 0 is assumed for this initial timestamp.

A receiver must respond to an ident line by sending an ident line itself, echoing the information, 
and potentially including additional information if applicable to the communication.

In the case where fields sent in the first ident line need to be updated (most notably the timestamp 
field, if the reciever has specified a different starting timestamp), the transmitter can resend the 
ident line. The receiver can distinguish the ident line from the fieldlist line (below) by looking for the 
mandatory 'ltrans=' at the start of the ident line.

2.3.3. Fieldlist line
The next line is the fieldlist line, containing a list of keys that determine the column fields in each 
data line. Example:

timestamp;lat;lon;vel;dir
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indicates that in each data line transmitted the first 5 columns are column fields, with keys 
'timestamp', 'lat', 'lon', 'vel', 'dir'. See also the example above for the 'data line'.

To change the list of transmitted fields after the fieldlist has been sent the connection must be 
closed reopened with a new fieldlist. This can occur if the transmitter dynamically reconfigures 
itself for additional fields.

2.3.4. Data line
Every data line contains a fixed number of column fields followed by 0 or more key/value pairs. The
number of and names for the column fields is defined in the fieldlist line. The number of events is 
not limited. 

The first data line is sent immediately containing values for all known variables. If no columns 
where specified in the fieldlist, and no values are known, an empty line must be sent.

Example (first line, containing values for all known keys):

34;50.75123;4.67843;0.0;186;active=0;descr=Text with spaces;sensor1=42

Column fields are: 34, 50.75123, 4.67843, 0.0, 186. The remainder of the line is events. 
This results in the following data being transferred:

timestamp = 34 + 1205306392
lat = "50.75123"
lon = "4.67843"
vel = "0.0"
dir = "186"
active = "0"
descr = "Text with spaces"
sensor1 = "42"

Please note that all values are considered binary data, in most cases representable as strings, 
except 'timestamp' as the value of the 'timestamp' field in the ident line (or 0 if that is not present) is
added to the 'timestamp' field in every data line.

To compress the communication only updates are passed on. Example (second line, containing 
updates):

36;;;;;sensor1=43;newval=14

resulting in the following data

timestamp = 36 + 1205306392 # updated
lat = "50.75123" # unchanged
lon = "4.67843" # unchanged
vel = "0.0" # unchanged
dir = "186" # unchanged
active = "0" # unchanged
descr = "Text with spaces" # unchanged
sensor1 = "43" # updated
newval = "14" # new value

− '\n' is the line separator. Splitting the input on '\n' divides the input data into lines. '\n' cannot be 
included anywhere in the input other than as a line separator.

− '\r' (or any other control characters or high-ASCII) should not be transmitted anywhere in the 
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data to avoid communication problems over serial lines, or to confuse receivers parsing data 
coming from Windows and Unix hosts. Receivers should cope with this kind of input data 
nevertheless by ignoring these characters.

− ';' is the field separator. Splitting the line on ';' divides the line into the column fields and pairs. ';'
cannot be included anywhere in the line other than as a field separator.

− '=' is the key/value pair separator. a key/value pair should be split on the first '=' in the field. The
left part is the key, the part on the right, potentially containing additional '=' characters, is the 
value.

2.4. Transmitter
The transmitter keeps a list of key/value pairs. If one of the values has changed, the transmitter 
starts generating a new line. For each column field either the value is transmitted if it has changed 
or an empty field is transmitted if it hasn't. Each field is separated by a ';'. If any other key/value 
pairs need to be transmitted these are appended to the line preceding each by a ';'. The line is 
terminated with a '\n'.

2.5. Receiver
The receiver receives a line by waiting for an '\n' character. The '\n' character must be chopped off.

The received line must be split on ';'. The first fields are to be entered as the values for the keys in 
the fieldlist line if any value is present. An empty string is considered no value (compare to 'empty 
value'). Any fields following must be considered key/value pairs. Each key/value pair must include 
at least one '='. Splitting on the first '=' in the string separates the key from the value.

On any parsing error the connection should be dropped.

2.6. Implementation notes
− Line length is unlimited. If a line exceeds the amount of buffer space available the connection 

should be closed.

− The frequency of transmission should be once a second or less frequent. 
Note: Internally, between daemons this can be higher if that's more convenient.

− Timestamps are given relative to the timestamp in the ident line.

− If a column value needs to be set to empty this can be done through setting it as a key/value 
pair in the events.
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