
Universiteit Leiden

Opleiding Informatica

Finding correspondences in stereo image pairs

using an adaptive window comparison algorithm

Name: P. Moerkerk

Date: 13/08/2014

supervisor: Dr. M.S. Lew
2nd reader: Dr. E.M. Bakker

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

In context of the Bachelor’s Project as part of the Bachelor Computer Science curriculum of the Leiden
University this research in Computer Vision has been done. It has its focus on a correspondence finding
method in stereo images using an adaptive window algorithm. The proposed algorithm Bn uses a square
window support area and dynamically selects part of best matching n% of pixels for comparison aggrega-
tion. The performance of Bn is evaluated over a broad range of n and window sizes and related to SSD

using a subset of the Middlebury stereo data set. The influence on feature point selection and perform-
ance in disparity discontinuity regions are also researched. The results show that Bn does (on average)
not perform significantly better than SSD using the proposed feature point selection method. Another
conclusion is that the performance strongly dependent is on type of scene. In disparity discontinuous re-
gions Bn shows promising results with an possible average gain of 7% in correct prediction fraction. The
conclusions are substantiated using an in-depth research of behaviour with attempted explanation using
basic theory and several examples.

3

Contents

1 Introduction 7

1.1 Related work . 7

2 Theory 8

2.1 Epipolar geometry and image rectification . 8
2.2 Disparity and depth . 9
2.3 Correspondence problem . 9

2.3.1 Pixel matching metric . 11
2.3.2 Reference sum-of-square distances algorithm (SSD) 11
2.3.3 Proposed partially counting (best of) window comparison function (Bn) 11

2.4 Problem areas . 11
2.4.1 Plain areas and geometric distortion . 11
2.4.2 Feature point detection . 12
2.4.3 Regions of occlusion and disparity discontinuous regions 13

3 Implementation 16

3.1 Framework . 16
3.1.1 Input / output . 16

3.2 Performing disparity search . 16
3.2.1 Search region . 16
3.2.2 Feature point selection . 17
3.2.3 Window sizes and values of n for Bn . 17

3.3 Data set . 17
3.4 Evaluation methods . 17

3.4.1 Input domains for algorithms . 17
3.4.2 Missing ground truth data . 19
3.4.3 Correct disparity classification fraction . 19
3.4.4 Average deviation from true disparity . 20
3.4.5 Comparing the algorithms over the whole data set . 20

4 Results 21

4.1 Evaluation of Bn without feature point detection . 21
4.2 Evaluation of Bn (when using feature point detection) . 21

4.2.1 Overall performance . 21
4.3 Interpretation . 22

4.3.1 Overall performance gain . 22
4.3.2 In depth research of performance on single scenes . 22
4.3.3 In depth: pro’s and cons of Bn . 24

4.4 In-depth analysis on disparity discontinuous regions . 26
4.5 Comparison of optimal performance Bn on full range vs. disparity discontinuous area 27

5 Conclusion and Discussion 28

5.1 Selection of disparity discontinuities . 28
5.2 Optimizing Bn . 28
5.3 Unevaluated areas of interest . 28

6 Final word 29

A Table of images in dataset 31

B Code listing of C++ implementation of Bn algorithm 33

C Code listing of C++ implementation of feature point selection function 34

D Code listing of disparity discontinuity region mask creation 35

5

E Results of Bn when feature point detection is included 36

E.1 Correct classification fraction per sample pair . 36
E.2 Average error in predicted disparity per sample pair . 40

F Results of Bn when no feature point detection is done 45

6

1 Introduction

With increasing number of applications these days the need to derive 3D models of real scenes still grows. Think
about the development of autonomous driving vehicles like Google Self-Driving Car Project [16], autonomous
flying drones like HEXO+ or the rise in popularity of 3D movies and related display environments like 3D
cinema and television. As virtual reality makes a comeback with successful crowd funding project Oculus Rift
[15] the need to acquire 3D content also increases.
There are many different ways to capture 3D scenes, ranging from active methods using for example moving
light sources, time-of-flight lasers, structured light or ultrasound to passive methods using non-intrusive sensors
like CCDs to capture the scene. With the decreasing price of camera image sensors and (mobile) computing
power it is inevitable 3D reconstruction using images (in sequence or parallel) will be used in most (if not all)
of the previously mentioned applications.
As trivial it seems to humans to perceive depth, as tricky and difficult this is done with a machine. In the early
days of 3D reconstruction most of the focus was on deriving depth from stereo image pairs of static scenes.
For this application two images from a scene are made from slightly different positions, similar to human
perception. The pair of images is then processed using a comparison method to derive depth information.
More recent studies have also been focusing towards reconstruction from a sequence of images from a moving
camera through a (partly static) scene [6]. As computational power now permits it and the demand is getting
higher, most recent research is deriving 3D information in real time from sequences of (noisy) images from
dynamic changing environments like a car moving through traffic. This is a challenging task.
However in most image-based methods the crucial part of the reconstruction process is to determine point
correspondences between images. This project focuses on that challenge.

1.1 Related work

In “A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms” Scharstein and
Szeliski [1] present an excellent overview of methods for 2-frame stereo correspondence algorithms. Azaros,
Sirakoulis and Gasteratos augment their work in 2008 by giving a review with more emphasis on hardware
implementation methods in [2].
Both papers show that research in this field is done since at least before 1980. The number of papers presented
in this area are therefore numerous. An early example is [3] where Barnard and Thompson describe an iterative
way to match candidate points between two images.
Our research proposes a dynamically changing comparison window. Related research has been done, for example
in 1994 when Kanade and Okutomi present their research related to adaptive windows [5]. Their proposed
algorithm dynamically selects the window size based on intensity and disparity. In [7] Lotti and Giroudon present
a method (suggested by Kanade) which also dynamically adapts window size near disparity discontinuities and
near occlusions. They also change shape of the window (rectangular) but conclude that precise information
about the location of discontinuities needs to be known beforehand.
Methods that calculate disparities using multiple window sizes and select afterwards are also researched in
[11] and [12]. In [8] Yoon and Kweon describe a method using adaptive weighting of the window. They
calculate the weights of the pixels in the support region based on colour similarity and geometric proximity.
More recently Wang and Fu also used rectangular adaptive windows in combination with a new similarity
measurement function to improve upon SSD [9]. An extensive (comparative) study on adaptive support
windows is performed by Hosni, Bleyer and Gelautz [10].

7

Right viewLeft view

P

Ol
Or

Yl-axis

Xl-axis

Zl-axis

P'r
P'l

el er

epipolar plane

Figure 1: Epipolar geometry. Projections of a point P in both image planes lay on the epipolar plane.

2 Theory

2.1 Epipolar geometry and image rectification

In point correspondence algorithms, two images of the same scene of slightly different perspective are given
and the goal is to find equivalent points. These images can be described as projection planes in 3D space
between the scene and the centre of projection (O) of a camera. The intersection of lines from points in the 3D
space and the origin with this plane create the image. This is a somewhat simplified view, as real cameras have
a point-symmetric inverted projection behind the centre of projection and do not have a perfect projection
(as their lenses do not behave like a perfect pinhole model). But given that the images are corrected for lens
distortion, the projection can be simplified by this model. In this model if we take one point in one projected
image with centre of projection OL, this point, say PL can only originate from somewhere on a line O(L)−PL

in the scene (see Figure 1). When any point on this line is projected onto the another plane with centre of
projection OR, these points all lay on the a line in the other image, called he epipolar line (er). This fact can
be used when searching for a point: When searching for a projected point PL in one image, we have to search
the corresponding point (PR) on (only) a line in the other image. Symmetrically a line can be defined in the
first image by projecting back the epipolar line from the second image. One can see this creates a plane, called
the epipolar plane which contains all possible points which must have a projection on the two epipolar lines
on both images.
To optimise searching, the cameras (and/or images) can be aligned such that the epipolar lines are horizontal
and each vertically aligned [18]. This process is called rectification and results in co-planar images. The net

Right viewLeft view

P

Ol Or

Y-axis

X-axis

Zl-axis

el erP'l P'r

Figure 2: Rectified images. Both epipolar lines coincide which simplifies searching. Note that the epipolar
plane actually is (near) perpendicular to the image planes.

result after rectification is that points on each horizontal (scan) line of each image correspond with points
on the same horizontal line of the other image. For this research the images are assumed to be rectified and
aligned.

8

OrOl

P

z

B

P'rP'l

F
xl xr

d = xl-xr

Figure 3: Camera parameters focal length (F) and baseline (B) shown in relation to camera origins. P is
projected onto the two blue image planes. The disparity d is derived from the distances of the projections
from the edge of the projection planes: d = xl − xrxl

2.2 Disparity and depth

When humans perceive the world, since both eyes are a few centimetres apart, objects appear shifted hori-
zontally when comparing left and right view. That is, when the focus is at (near) infinity. The amount of
displacement of the projection of one feature point in one image with respect to projection of that point in
the other image is called disparity. This disparity d is inversely proportional to the distance z to the feature
point [4]:

d = BF ·
1

z

Figure 3 gives a graphical representation. Here B and F are camera parameters baseline and focal distance.
This means objects nearby have greater disparity value than objects further away.
If one would create a map of disparity for each point in the source image and translate these into for example
grey scale values the result can look like something like figure 4. Here light values indicate greater disparity
(and thus greater proximity to the camera).
In most real life situations there are areas visible in one image which cannot be seen by the other camera
because something (an object in closer proximity; which has a greater disparity) is obstructing the view. These
area’s are called regions of occlusion.

2.3 Correspondence problem

This project focuses on localised search algorithms. This means that for each interest point in the reference
image a corresponding point is sought in the target image. Global information, for example about neighbouring
disparity or derived information about object geometry is not used.
A general correspondence method can be described as having at least three parts [1]:

1. Evaluation of the matching metric

2. Aggregation of the metrics

3. Disparity deduction

To evaluate the matching metric, a function is defined to give an estimation of similarity (or dissimilarity) of
a single pixel comparison. Most often this is taken to be either the absolute difference (AD), squared distance
(SD) or normalised correlation in colour or intensity values. This function can be seen as a cost function.
For comparing a single point, it is inevitable include the surrounding area of the pixel in the comparison, as
single pixels do not hold enough information for finding a match (due to for example noise, resolution, pixel
depth). Thus comparison of points include some surrounding pixels called the support region. This leads to
the need for having an aggregate function to combine the comparison of pixels in this support region.
This research has its focus on the influence of this support region. A simple and straightforward region is a
square window around the pixel. A general used aggregate function is to simply take the sum of costs for all
pixels in the window (also known as the SSD function). A more elaborate way would be to use a Gaussian

9

Figure 4: Example of image pair and ground truth disparity maps. The upper two images show two views
of the Midd2 scene and the lower two the disparity maps. An example of an occluded area is visible on
the cushion, where the letter ‘U‘ in the word is fully visible in the left image and only partly in the right.

10

kernel to weigh each pixel before summing (based on distance from the centre point). This makes it possible
to put emphasis on matching pixels near the centre (feature) point.
The last step, determining the disparity is as simple as evaluating the window comparison function on a
range of possible disparities and select the point at the best of all evaluated disparities. For this the algorithm
calculates the cost for every single disparity value and selects the disparity with lowest cost.

2.3.1 Pixel matching metric

For the algorithms used the matching metric for two pixels P ,Q is a cost function given by the root of the
sum of squared distances of the three colour components (red R, green G and blue B):

dP,Q =

√

(PR −QR)
2
+ (PG −QG)

2
+ (PB −QB)

2

where PR,PG,PB mean the red, green and blue component values of pixel P , and QR,QG,QB likewise. This
metric can be seen as a cost function: an increasing value means less similarity.

2.3.2 Reference sum-of-square distances algorithm (SSD)

As mentioned before, this an aggregate function most used as standard reference. For each pair of points P

and Q, where P in the reference image and Q in the target (search) image, the matching cost function C is
given as the sum of squared distances (like in Section 2.3.1) of pixels in a square window of N×N surrounding
the points:

CSSD =
∑

i,j∈[⌊− 1

2
N⌋,⌊ 1

2
N⌋]

(

dP+(i,j) , Q+(i,j)

)2

This function is also used as the reference function in evaluating the researched Bn function.

2.3.3 Proposed partially counting (best of) window comparison function (Bn)

The proposed comparison function Bn is based on selecting a subset of pixels in the support region to count.
This subset is calculated to be n% of best matching pixels. The idea is to increase correctness in areas of
disparity jumps and occlusions. The cost function CBn

for a window comparison for Bn is given as:

CBn
=

∑

i,j∈[⌊− 1

2
N⌋,⌊ 1

2
N⌋]

(

selected · dP+(i,j) , Q+(i,j)

)2

where selected is defined to be 1 if dP+(i,j) , Q+(i,j) is part of n% of pixels with lowest cost per pixel (d) and
selected = 0 otherwise. In other words: Bn takes only the n% of all best matching pixels into account for
comparison. Observe that with n = 100% the function is equal to the SSD metric.

2.4 Problem areas

There are regions in images which can be defined as hard to match. A few of these type of regions are discussed
next.

2.4.1 Plain areas and geometric distortion

Areas in the picture that do not hold a great amount of distinctive information can not be easily matched
correctly, if at all. For example the window around a point on a non-textured (plain) surface with little color
gradient will match with all windows near that point (when the window fits within this plain area). These
points will only possibly match correct if the window size is big enough that details make it distinguishable
from neighbouring windows. This might suggest that increasing windows size is always better. However when
the real surface is slanted (not parallel with the image plane), these features that finally match the over-sized
window will lay far from the centre and most likely give a skewed disparity. Additionally, apart from the obvious
increasing computational costs associated with larger window sizes, another problem with increasing window
size is that it increases the chance of including a region of occlusion or disparity discontinuity within the
window (see also Section 2.4.3). To summarise areas with not a lot amount of information are hard to match
and there is a trade-off between small window size and large window size.

11

One way to overcome the first problem (information lacking areas), is to only focus on information rich areas.
Intuitively it seems there must be something specific, something unique in the window, what can be searched
for. One might calculate the entropy of a window, and use this value to determine the amount of information.
Another way to define a window that is distinguishable is to compare it with its neighbouring windows in the
same (source) image. If the used comparison function does not give a confident discrimination of this window
and its neighbours, it will most likely also not in the target image. (Or produce ambiguity whether to match
the neighbouring window)
A more simple approach is to define “information rich” points. We define points that are interesting to use for
comparison feature points or interest points. There is a slight nuance between a interesting region or interesting
point. An area with “information” does not have to contain specific interest points as the information might
be spread out over the window, but an area with some salient points definitely has information. People often
think about corners and edges when finding corresponding points. This leads to the basic idea to use an edge
detection algorithm to define interest points.

2.4.2 Feature point detection

For feature point detection a (variation on a) Sobel operator is used. In essence the Sobel operator is a
convolution that works on an intensity image in two directions. It is assumed that the image is a discretisation
of an intensity signal. The operator calculates the gradient magnitude of this signal in both horizontal and
vertical direction using two convolutions and combine these. The result is a gradient magnitude map: where
the intensity changes more quickly, the value is higher. To use this in practice two 5× 5 convolution matrices
(Figure 5) are used, one for horizontal orientation and one for vertical orientation.

Sv =













2 2 4 2 2
1 1 2 1 1
0 0 0 0 0

−1 −1 −2 −1 −1
−1 −2 −4 −2 −2













Sh =













2 1 0 −1 −2
2 1 0 −1 −2
4 2 0 −2 −4
2 1 0 −1 −2
2 1 0 −1 −2













Figure 5: Sobel 5× 5 convolution matrices. One horizontal (Sh) and one vertical (Sv) operator.

For this application the convolutions are done on each colour intensity channel (R,G,B) separately, which
results in six gradient intensity maps (with values ranging from −28× 255 to +28× 255):

SRh = ShBR

SGh = ShBG

SBh = ShBB

SRv = SvBR

SGv = SvBG

SBv = SvBB

A value θ is chosen to define a certain threshold for which the absolute gradient magnitude is high enough to
to define the point as an interest point. The results for each channel are combined using a binary OR operation
to derive a map of feature points:

IsFeaturePoint ⊢ (|SRh| > θ ∨ |SRv| > θ∨ |SGh| > θ∨ |SGv| > θ∨ |SBh| > θ∨ |SBv| > θ)

Thus if the (absolute gradient) in only one channel in only one direction is greater than the threshold value,
this marks the point as interest point.
Now to reflect back on the original idea that interest points must have something specific, some unique
information. This does not have to mean there is a sharp gradient change. One could imagine a region with
a very gradual change in intensity still having some unique pattern to match on. These points will be missed
as interest points. The opposite could also happen. A perfect horizontal line as separation between two plain
(intensity different) areas will be seen as a line of interest points, but in fact since the line expands horizontally
the area is similar in horizontal direction and precise horizontal matching is difficult (if not impossible) along
this line, similar to matching in a plain area. Additional research can be done to evaluate whether disregarding
the vertical Sobel operator does improve feature point selection.

12

2.4.3 Regions of occlusion and disparity discontinuous regions

When part of an image is a projection of a geometrically smooth surface the resulting region has a fluent change
in disparity. These are called disparity continuous areas. The opposite is where there is a sudden change in
depth (and hence disparity), for example at the border of objects. We hypothesise that the proposed Bn

method will not perform better on disparity continuous areas when compared to the reference SSD method,
since Bn takes a subset of pixels to take into account, thus reducing information density. This might result in
less optimal matching when applied to (disparity)continuous areas.
On the other hand Bn might perform better in areas where the disparity is not continuous, for example where
there is a sudden change in distance at the edge of an object. Figure 6 illustrates this hypothesis. This figure
shows a fragment of the Bowling scene, in which the left and right images are compared with each-other.
The centres of the windows (dashed lines) are aligned and should match. However the contents only partly
match as part of the window is occluded. In this particular case Bn (with n around 60%) should perform
better than SSD as then only the perfect matching (in the figure marked as green) part will count and should
evaluate to a low cost, making it the most likely match.

13

Figure 6: Example of non continuous disparity. Left and right images next to each other. Upper set: image
fragment and comparison window; middle set: annotated and lower set: true disparity. The windows have
partly perfect match (green area) and partly no match (red area).

One hard problem for any algorithm is that of occluded regions. Feature point selection (such as suggested in
Section 2.4.2) will not discriminate on occluded regions. If a feature point is chosen within a fully occluded
region and it thus is visible in one image but not in the other, any of the proposed search algorithms will fail
to derive a correct disparity, as those will only match on visible regions (and hence it will not be possible to
find a match in this case). One way to try to cope with these regions is to calculate for each found match
a confidence metric, for example the calculated difference, the significance of the differences with respect to
other differences for the same window or found disparity related to that of neighbouring interest points. Using
this extra information a kind of “failed match” (or low confidence) criteria could be applied to discard very
uncertain disparity predictions. As this is not done in the framework, it will inevitably lead to poor results in
those regions.

14

Figure 7: Data flow

15

Figure 8: Defining search region and performing search

3 Implementation

3.1 Framework

A basic framework to evaluate the algorithms is written in C++. Apart from the C standard libraries it is
using the SDL2 library for input/output of image files and graphics and a subset of STL to provide some
support for standard data structures. The implementation is made with readability and “tweakability” in mind.
It performs the proposed algorithms in a very naive, straightforward and unoptimised way and is intended to
do analysis of the point searching algorithms only. It is by no means optimised for performance in any way.
The functional layout basically consists of two classes which define two modes of operation. First one that
performs the algorithms, the other which does very basic analysis of the resulting data by comparing with
reference (ground truth) data. Some shell scripts augment the process to generate plot scripts for Gnuplot,
whose output is presented in Section 4.

3.1.1 Input / output

The framework expects input data to be organised as in the reference Middlebury data set; it automatically
searches, detects and reads input sets, including ground truth data. During disparity search a set of intermediate
result data (the disparity maps) is written to disk as image files. The result data is processed further with a
separate program invocation. This results in disparity histograms, which are processed even further to graphs
using Bash shell scripts. A graphical overview of the information flow is given in Figure 7.

3.2 Performing disparity search

First it must be noted that the disparity search is done in only one way: First a region is defined in the first
(left) image. For all points included in this region a single pass disparity search is done by searching in the other
(right) image. No reverse search (target to source) is done and thus no correlation between both searches is
done or anything like that. For each point the maximum searched disparity depth is 255, which is conform the
scene / camera setup and preprocessing of the source data set.

3.2.1 Search region

For each image pair a subset of pixels are processed. To avoid difficulties that arise at pixels near borders of
the images the search space is reduced to exclude a border larger than the size of the diameter of the largest
support zone. In this case this is done with a big margin of 26 pixels. Furthermore, on the side where images
do not overlap, the search is stopped at the distance of the maximum disparity range away from the reduced
border (see Figure 8). The resulting setup is that every point searched for has a full maximum size window of
pixels of support zone and searching can be done within the full possible disparity range in the other image.
This is to avoid possible bias in evaluating performance.

16

3.2.2 Feature point selection

The results include only pixels that are defined as interest points by the feature point detection as described in
Section 2.4.2. Using this method a mask is generated which is used to select these points for further processing.
The threshold value θ for determining the interest points is set (after visually checking the resulting masks)
at 255.

θ = 255

Appendix C shows the source code for the feature point selection and Figure 9 gives an indication of resulting
feature point masks.

3.2.3 Window sizes and values of n for Bn

The experiments are done for a broad amount of window sizes and percentages for Bn. Figure 10 shows two
tables with used windows sizes and percentages. These tables also indicate the reference number used in the
framework and naming of files. The windows are odd sized which puts the search feature point location in the
centre and range from 5× 5 to 25× 25. Appendix B shows the source of the Bn algorithm.

3.3 Data set

For evaluation of the algorithm a data set with rectified images and known disparity was needed. In 2002 D.
Scharstein and R. Szeliski at the Dept. of Math and Computer Science of Middlebury College, Vermont, USA,
have produced stereo correspondence software and have composed a reasonably sized (about 30 items) data
set with static indoor content. Using a different method (involving structured light; presented in [13]) they
derived ground truth (true disparity) data which is included with the data set.
For this project a subset of their data set, the ‘2005’ and ‘2006’ data sets are used. Each item in the original
data set consists of 7 photo views (each with a (slightly) different camera baseline, numbered 0 to 6), but only
for two angles (1 and 5) disparity data is given. The corresponding image pairs are used in this research. All
experiments are done on unmodified data of this data set. That is no scaling, blurring or other modification
of the data is done beforehand. Appendix A contains a table of used images.

3.4 Evaluation methods

3.4.1 Input domains for algorithms

To evaluate the quality of the algorithm and get idea on what areas the algorithms perform well analysis is
done on three different (input domain) pixel subsets:

1. Full pixel set

2. Feature points only

3. Feature points within regions of disparity discontinuity

The full pixel set includes all pixels regardless whether they are marked as feature points. This data was
gathered to get a general overview of the algorithms performance early on in the project. Although these
results gave a good insight into the algorithm initially, they were perceived as disappointing. That is why
the feature points only pre-selection was included. All of the subsequent work and analysis was done using
this feature point pre-selection. To get insight into the algorithms performance in true regions of disparity
discontinuity an extra evaluation was done.
The analysis section will include some results from the full pixel comparison, and more in depth results of the
feature point selection and regions of disparity discontinuity.
For each parameter the basic evaluation is a comparison of the predicted disparity to the reference (true)
disparity: For each predicted disparity pixel the distance between the known ground truth disparity and the
calculated disparity value is determined.
We define dtrueP the true disparity for some point P and d

predicted
P the predicted disparity. The disparity error

derrorP is defined as the distance between dtrueP and d
predicted
P :

derrorP =
∣

∣

∣
dtrueP − d

predicted
P

∣

∣

∣

17

Source image Resulting mask

Aloe

Flowerpots

Reindeer

Figure 9: Examples of feature point masks for three items. White means included as feature point.

18

ref # Window Size

0 5× 5
1 7× 7
2 9× 9
3 11× 11
4 13× 13
5 15× 15
6 17× 17
7 19× 19
8 21× 21
9 23× 23
10 25× 25

ref # n%

0 10
1 20
2 30
3 40
4 50
5 60
6 70
7 80
8 90

9/SSD 100

Figure 10: Included window sizes and values used for parameter n of Bn

Two different evaluation measures are calculated: the number of correct disparity predictions and the average
disparity error in predictions. This is done for all image pairs, a set of window sizes and a set of parameters
for Bn (see Figure 10).

3.4.2 Missing ground truth data

In some cases the ground thruth was not known. These points were omitted from the evaluation. The amount
of missing ground truth information is in order of several percent. A visual evaluation reveils the distribution
over the images: Some of these pixels lay on boundaries of disparity discontinuities, more inside occluded
regions and most within very dark regions. This seems to be consistent with the method used to obtain these
ground truth values (using structured light).
Without further analysis it is not possible to evaluate the impact of this missing data on the algorithms
evaluation. It is assumed that the amount of missing ground truth data is negligible, since it seems to be
spread over different interest area’s.

3.4.3 Correct disparity classification fraction

To get an rough estimation of performance measure the number of perfect classified pixels is counted. That
is, the number of disparity predictions that are less then some threshold value η difference from true disparity.

fraccorrect =

∑

p∈TP

(

derrorp < η
)

‖TP‖

Here TP is the set of points of which disparity is predicted and the true disparity is known.

TP = SearchRegion ∩ FeaturePoints ∩ KnownGroundTruthDisparity

The challenge here is to determine what a good threshold value η is. For this purpose a few histograms of
disparity error are made. The visual inspection of the disparity error histogram (the error distribution) might
indicate problems and it is used to choose η.

19

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250

#
 P

ix
e

ls

Error distance (px)

Histogram of disparity prediction error

Cloth4 w=17x17 n=80%

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200 250

#
 P

ix
e

ls

Error distance (px)

Histogram of disparity prediction error

Bowling1 w=21x21 n=60%

Figure 11: Histogram of deviation from true disparity. Shown is the amount of pixels as a function of offset
from true deviation. The two example histograms show typical disparity prediction error distribution.
Most pixels fall in range of 0 to 1. Sometimes there are other peaks which can be explained by matching
on repetitive patterns.

It is expected that the histogram shows that most pixels have no error (perfect prediction) and the amount of
pixels decrease with increasing deviation (error) value. A non zero peek of disparity error might indicate some
bias (offset) of all disparity values. Two typical histograms are shown in Figure 11. By visually inspecting these
and a lot of others the threshold for ’perfect classification’ η is taken to be 3.

η = 3px

This translates into an error margin of 3
255 or about 1.2%. This means that all disparity predictions which are

off by one or two pixels also count as perfect prediction. The reason to widen the error is somewhat arbitrary.
The right graph in Figure 11 shows a disparity peak at about 1 pixel, that is most predictions are off by one.
It is not inconceivable that this offset is result of noise in the input data and to make the measurement more
robust the threshold is chosen to compensate for possible noise in this way. In any case, it is a fair comparison
measure when consistently used over the data set.

3.4.4 Average deviation from true disparity

The second method in evaluating the algorithms is to calculate the average error in disparity prediction. This
is done simply by calculating the sum of all disparity errors divided by the total number of selected points

erroravg =
∑

P∈TP

derrorP

‖TP‖

Here P is again a search point and TP is the whole set of processed points.

3.4.5 Comparing the algorithms over the whole data set

Lastly the results of the analyses described in Section 3.4.4 and Section 3.4.3 are combined to produce two
overall measurements of the Bn method. This is done by aggregating the results by averaging over the whole
data set: The global correct classification fraction is taken as sum of all calculated fractions per item divided
by number of items in the data set. Likewise the global average error in disparity prediction is calculated as
the sum of average error for all items divided by the number of items. The results are shown in Section 4.2.1.

20

4 Results

4.1 Evaluation of Bn without feature point detection

The results of Bn per pair are shown in Appendix F. The global average overall performance is shown in Figure
12.

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

GLOBAL-AVERAGE

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

39

40

41

42

43

44

45

46

50 60 70 80 90 SSD

a
v
e

ra
g

e
 d

is
p

a
ri
ty

 e
rr

o
r

Bn n%

GLOBAL-AVERAGE

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 12: Overall performance: average fraction of correct pixels (left) and average error (in pixels)
(right)

The strict rising lines in the left graph show that performance for Bn increases with rising n for all window
sizes, with best performance at n = 100, which is equivalent with SSD. Likewise the right graph shows the
average error decreases when getting closer to SSD. This shows that SSD outperforms Bn on the dataset
when no feature point selection is done. The dominating factor in this situation is most likely the amount of
areas without much feature points, like discribed in Section 2.4.1. In these areas every pixel counts to get
a better match. Figure 9 shows that some of the images are very sparsely populated with feature points.
For these images the performance of Bn with n smaller than 100% is worse than SSD. This result was not
unexpected. That is why the rest of the research is based on performing Bn and SSD with feature point
detection.

4.2 Evaluation of Bn (when using feature point detection)

For all image pairs Bn (when using feature point selection) is evaluated. The graphs in Appendix E show the
results.

4.2.1 Overall performance

To evaluate the overall performance of the data set the average fraction of correct pixels over all items in the
data set is calculated and shown in figure 13.

21

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

GLOBAL-AVERAGE

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

35

35.5

36

36.5

37

37.5

38

38.5

39

39.5

40

50 60 70 80 90 SSD

a
v
e

ra
g

e
 d

is
p

a
ri
ty

 e
rr

o
r

Bn n%

GLOBAL-AVERAGE

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 13: Overall performance: average fraction of correct pixels (left) and average error (right)

This graph shows the optimal window size for SSD is 25× 25 with a correct prediction ratio of 58.5%. The
minimal average error for SSD is around 35.5 pixels with the same window size. The best parameters for Bn

are is the same window size of 25× 25 and n = 90 for a correct all-round prediction ratio of 58.7%. This is an
increase in correctness which is in the order of gain by increasing the window size. When viewing the global
average error the for Bn, the optimum window size is 23× 23 or 25× 25 with an average error of about 35.3
pixels, slightly less then SSD.

4.3 Interpretation

4.3.1 Overall performance gain

Results of the overall performance in figure 13 show the Bn algorithm performs slightly better at n=90%
than the reference SSD method for big window sizes (19 × 19 and higher). The performance gain on these
higher window size is about the same as an step increase in window size. The absolute best performance is
with window size 25× 25, n = 90%. This point also gives the highest relative gain to SSD of about 0.4%.
A lot can be said about the method to evaluate the performance. First the data set is relatively small. With
only 27 items, a few bad-performing items will skew the results. The data set has for some scenes a few
variations, which might skew the results further.
When inspecting the graphs per image pair, they clearly show a great amount of variation in performance.
This requires further investigation.

4.3.2 In depth research of performance on single scenes

When reviewing the single image result graphs (Appendix E) one can observe an great diversion of performance.
For this analysis we focus on the correct prediction fraction only, since the average error is strongly related.
We categorize roughly 3 kind of behavior.

1. There is an optimum n% for which Bn has best performance. These curves are mostly parabolic in
shape (see Figure 14). Aloe, Art, Cloth3 and Dolls are examples. In the case the optimum of Bn

is with bigger window size and the optimum of SSD is with smaller window size. It is interesting to
notice the crossover area where the order of window size flips around (low to high at lower n), (high to
low at higher n). In these cases Bn has an advantage. The scenes show complex shapes with little or
none plain areas and a lot of disparity discontinuities.

22

0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Aloe

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Cloth3

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Art

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 14: Typical examples where with increasing n the decrease in window size lead to better relative
performance. These graphs have an absolute optimum with lower n and bigger windows size. Observe
the smaller window size performance start low at low n but crosses over the higher window sizes to end
relatively high at high n (SSD).

2. The optimum n% is at SSD. These graphs show a characteristic strict rising line for all window sizes
(see Figure 15). Typical examples are Bowling2, Lampshade1, Monopoly and Plastic. Bn does
not have an advantage in these cases. In most of these case the windows size either does not really
make a difference or increasing is better. The scenes show simple big plain areas with little disparity
discontinuities.

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Bowling2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Lampshade1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Monopoly

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 15: Typical examples where increase in n leads to better performance, with best at n = 100=
SSD.

3. The last interesting type of graphs show an effect where window size seems to have a dominating effect
on all n: bigger window is better. Examples are Books, Midd1, Reindeer and Monopoly. In some
cases Bn has an advantage, but in the other it doesn’t. These scenes show some big plain areas, but
also a fair amount is disparity discontinuities. It seems that in some of these cases there might be some
kind of balance between the effects discribed in 1 and 2 (Midd2 and Reindeer). On the other hand
Books and Monopoly do not show that.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Books

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Midd2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

Reindeer

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 16: Typical examples where increase in window size leads to better relative performance unrelated
to n.

Most other scenes are a combination of the behaviours described above. Now that some typical behaviour is
shown, the next sections try to describe and uncover a bit of the reasons of this behaviour of Bn.

23

4.3.3 In depth: pro’s and cons of Bn

An illustrating example of the algorithm working well on Aloe is shown next. It shows the influence of Bnon
the amount of error near (disparity) edges. A graphical representation of correct vs. incorrect disparity is given
in Figure 17. Here the red and green tinted pixels indicate incorrect respectively correct disparity prediction.
The image shows a small part upper right corner of the Aloe scene; a textured background with two leaves in
front of it. The red ‘shadows’ are occluded areas created by the same leaves (left) of them. One can observe
the left red ‘shadow’ leaf (occlusion zone) is smaller with n = 40% and gets broader when increasing n to
100% (SSD). Also the incorrect edges around the real leaves get an increasingly thicker edge around them
with increasing n. This is probably the result of better matching of the window with n = 40%. On the edge
of objects and occluded areas the background can still get matched with lower n%, which results in smaller
prediction error.

n=40% n=60%

n=80% n=100%/SSD

Figure 17: Visual representation of performance on Aloe with window size 23×23 and n = 40%, 60%, 80%
and 100%(= SSD). Green, red and greyscale mean correct, incorrect and not evaluated pixels respectively.

The drawback of smaller n (which lead to greater prediction errors in continuous areas) is less evident. In the
middle of the left leaf there is a growing patch of incorrect pixels with smaller n, which is assumed to be this
drawback.
To evaluate the problems area where the algorithm does not work well a visual inspection of the Monopoly

scene is done.

24

n=40% n=60%

n=80% n=100%/SSD

Figure 18: Visual representation of performance on Monopoly with window size 23 × 23 and n =
40%, 60%, 80% and 100%(= SSD). Green, red and greyscale mean correct, incorrect and not evaluated
pixels respectively.

Figure 18 represents a section of the scene; a part of the game board. Around the icons and text on the
board a lot of errors can be seen which decrease when increasing n. The left edge in the image is a disparity
discontinuity of the board edge against the background. Unlike the edges in the Aloe scene there is no
observable increase in correctness at this edge.
Both phenomena could be explained by observing the surrounding area of these feature points: it is plain and
contains no feature points (hence the gray area – the points in this area are not marked as feature points
due to lack of information. A problem with the Bnalgorithm is revealed: if a feature point is inside a plain
area, this information rich feature point can be discarded by the algorithm. It will therefore reduce the window
searching problem to match only a plain area, which is known not to work well. (To put it another way: if
a plain window with a few interest points is selected and matched against a series of likewise plain windows
with no or little feature points, the likelihood of finding a good match is highest when disregarding the ’noisy’
feature points). The more slack the algorithm has with disregarding points (lower n) the more likely it is to
disregard important feature points.
The fact that the disparity discontinuous border does not increase performance is that most of the points near
this border are not marked as feature points. This is in contrast with the situation in the Aloe scene.
Another observation is the failure in the almost horizontal lines, which shows as the two horizontal red lines.
It is possible that the same argument holds partly, but then the SSD method should work better. In this
case the most likely cause is that since the area is a slightly tilted line (within a slanted area), the perspective
projection on the other camera makes a slightly different angle of line. When inspecting the true deviation, it
shows 5 a 6 pixels all over the line. Figure 19 shows the slight difference in slope. Both images have a relative
skew. Since the window size is square, the matching of the slightly different angle of lines will happen over a
small range of disparities. The algorithm will select the last one (and should select the middle one).

25

Early match Correct match Late match

Figure 19: Slanted line problem. Left image: upper and lower half of image show different camera angles.
For comparison purpose these images are aligned on the vertical black line. Right three figures: The green
line indicates the target line being matched with the red source line. Within the blue support window
there is no difference in SSD. The algorithm will select the last best matching window, which is either
late or early. Thus the slanted line results in an disparity match offset.

4.4 In-depth analysis on disparity discontinuous regions

To evaluate the algorithms performance on non-continuous regions only, one has to determine these regions.
For this analysis this is done using the known true disparity data with the following procedure: A Sobel edge
detection algorithm is ran on all disparity ground truth images. This results in lines where disparity is not
continuous. To select a region near the lines, the image is thresholded, Gaussian blurred and thresholded
again. These regions are used as a mask on the original true disparity data. An example of this process is
shown in figure 20. The right image shows the disparity values near the contours of the plant.
An observant viewer could notice most of the lines in the right image actually consists of two lines with
different shades of gray as a result of the disparity jump.
A practical problem with the original reference data is that, especially near edges, sometimes no disparity data
is given. These unknown disparity spots / regions are filled with average values of their surrounding area before
edge detection.

Figure 20: Steps in selecting interest areas for evaluating the Bn algorithm. The left image gives the
original true disparity image, the right the selected remaining parts.

These filtered ground truth disparity images are used instead of the original ground truth data and otherwise
the analysis is done the same way.
Allowing to evaluate the algorithm only on these interest areas, which are defined by the result of the disparity
search in the first place, is creating an as we dutch say a ‘kip-ei-probleem’, a ‘chicken-egg-problem’ when
implementing the algorithm for use on new data. A resolution is proposed in the next section.
The aggregated results are shown in Figure 21.

26

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

50 60 70 80 90 SSD

fr
a

c
ti
o

n
 o

f
c
o

rr
e

c
t
p

re
d

ic
te

d
 p

ix
e

ls

Bn n%

GLOBAL-AVERAGE

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

34.5

35

35.5

36

36.5

37

37.5

38

38.5

50 60 70 80 90 SSD

a
v
e

ra
g

e
 d

is
p

a
ri
ty

 e
rr

o
r

Bn n%

GLOBAL-AVERAGE

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 21: Overall performance of Bn when evaluated only near disparity discontinuities: average fraction
of correct pixels (left) and average error (right)

This graph shows the optimal window size for SSD is 7 × 7 with a correct prediction ratio of 44%. The
minimal average error for SSD is around 37.4 pixels with window size 23 × 23. The best parameters for Bn

are window size 19 × 19 and n = 60 for a correct all-round prediction ratio of 47.8%. This is an increase in
correctness of 4.8%. The minimal average error can be reduced to 34.8 with window size 23× 23 and n = 60.
This is a reduction of 7.2%.

4.5 Comparison of optimal performance Bn on full range vs. disparity dis-
continuous area

To conclude Figure 22 shows the best configuration of Bn vs. SSD related to the type of area it is used on.

40

45

50

55

60

Full range Disparity discontinuity zone

P
e
rc

e
n
t
c
o
rr

e
c
t
p
re

d
ic

ti
o
n

Bn vs. SSD on Total area and Disparity discontinuous zone

SSD

Bn

30

31

32

33

34

35

36

37

38

Full range Disparity discontinuity zone

A
v
e
ra

g
e
 e

rr
o
r

in
 p

re
d
ic

ti
o
n
 (

p
x
)

Bn vs. SSD on Total area and Disparity discontinuous zone

SSD

Bn

Figure 22: Representation of optimal performance of Bn vs. SSD on full range vs. disparity discontinuity
regions only. These graphs show the optimal average performance based on the determined optimal
parameters.
Full range parameters: Window sizes for both Bn and SSD on full range: 25× 25. n = 90%
Disparity dicontinuity zone parameters: Window size for SSD : 7× 7 Window size for Bn: 19× 19 and
n = 60%.

Both SSD and Bn perform worse in regions of disparity discontinuities, but Bnshows significant improvement
over SSD in those regions. The average error made by optimal Bn is even better than either SSD or Bnon
the full range.

27

5 Conclusion and Discussion

The results of the in depth analysis of algorithms performance per scene show that the performance of Bn

is greatly dependent on the type of scene. The algorithm has a potential to perform significantly better at
disparity prediction than SSD in scenes with mostly information rich areas (dense with feature points) and
many areas with disparity discontinuities. The gain in these situations can be attributed in particular to its
correct prediction rate in areas with disparity discontinuities. In these cases the gain is highest when using
large window sizes and n around 50%.
The drawback is that Bn will not perform better than SSD in scenes with less regions of disparity discon-
tinuities and will perform significantly worse in areas sparsely populated with feature points. In this case the
algorithm might disregard the feature points (information) that reside within the window and match using
non-feature point information only; which results in performance worse than SSD.
This divergence between both very good performance on one type of scenes and bad performance on other
type of scenes leads to mediocre performance when applied to the whole evaluated data set. On average the
best n is 90% with a performance gain of only 0.5%. This gain is marginal and it is therefore it is not really
suitable to use Bn without any knowledge about the type of scenes and/or predetermining regions.
The results of the performance of the algorithm in the regions of discontinuity show more promising results. An
increase in correct prediction ratio of 4.8% and a decrease of average error of more than 7% can be reached.
However, since the data set is rather small, further research may need to be done in order to evaluate whether
this holds in a general case.

5.1 Selection of disparity discontinuities

The best performance for Bn is gained in regions with known disparity discontinuity. This happens for example
at the edges of objects. This research created a laboratory situation where the disparity edges were known in
advance to evaluate the performance in these regions. When applying this in real life this information is not
yet known. One suggestion to resolve this problem is to use another algorithm (for example just SSD) first to
get an estimate of locations where the disparity jumps might occur and and fine-tune the edge regions with
the Bn method. Since the Bn method is shown promising to be successful in these regions, and since this will
most likely also disregard the regions where most error by Bn is made, we estimate the gain of this combined
method could be in order of 3− 5% on correct prediction ratio. Due to time and resource constraints this is
unfortunately not done and is left for future research.

5.2 Optimizing Bn

The issue with bad performance with windows with sparse feature points could be addressed by augmenting
the algorithm with feature point selection density criteria. The idea is that only windows densely populated
with feature points would be used. The amount of feature points could be related to the used n for Bn. For
example if n is 40%, this could mean that the window should have at least 40% feature points. Otherwise the
algorithm could ‘choose’ to avoid using all feature points in the window.
Another way could be to weigh the importance of single pixels somehow and disregard accordingly. Pixels
marked as feature point might be weighed and using this separate weight matrix make them less likely to be
excluded by Bn.
This idea leads to another idea which is based on the idea that regions to disregard are most likely connected
points. Bn includes or exclude pixels without regarding their distribution in the window.

5.3 Unevaluated areas of interest

The selection of pixels to discard by Bn is unrelated to the connectivity to the centre (main) feature point of
the window nor to each other. This makes it prone to match the wrong area. For example it can match on the
area around a wrong feature point which also resides in the window. In cases with a region of occlusion this is
no problem (these feature points will be occluded), but on disparity discontinuity edges where both edges are
visible this might occur. However, this is not yet really observed. Research in optimisation of Bn by including
connectness to the centerpoint and/or connectness between disregarded points is suggested.

28

6 Final word

When starting this project I had the ambition of creating an application that performed a reconstruction of a
(model of a) 3D scene using a series of perpectives (photographs) on this scene. My supervisor Dr. Michael
Lew suggested to focus on this point correspondence problem, which was in my eyes then an irrelevant, trivial
and tiny, detail of this challenge.
In the process of working on this project it became clear that I could not be more wrong. The amount of
research done on this area did overwhelm me with information and I did not really know where to begin and
what was relevant or not. This whole domain including its terminology and known do’s and don’ts was totally
unknown for me. Thinking of my original goal I finally just got started with writing some code to do something,
without really understanding the difficulties, thinking that I had found the solution.
In the subsequent period of time I learned that doing research is a cyclic process. One has to read literature
to use information that others provide, “building on the shoulders of giants”, but at the same time apply this
information to get a grasp of the meaning of this knowledge. And then dive back again into the literature.
With increasing understanding of the subject the literature reveils more and more secrets. Which then need to
be grasped again...
In the course of this research I have learned a lot about the basics in this problem domain and have seen some
very interesting work, which sparked a lot of ideas. But I also know that this is just the tip of the iceberg, it
is just the beginning and a lot of work in this field of research and cool application can still be done.
In the future I will be careful with making assumptions, as I have discovered that you can be almost sure that
the assumptions you make at the start of your research are probably wrong or at least not near complete nor
insightful. But thats what research is all about, right?
I want to thank Michael for showing me the way on my first trip into real research. His supervision gave me
not only direction but provided me with exactly enough to grasp on when I got stuck.

29

References

[1] Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspond-
ence algorithms. International journal of computer vision, 47(1-3), 7-42.

[2] Lazaros, N., Sirakoulis, G. C., & Gasteratos, A. (2008). Review of stereo vision algorithms: from software
to hardware. International Journal of Optomechatronics, 2(4), 435-462.

[3] Barnard, S. T., & Thompson, W. B. (1980). Disparity analysis of images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, (4), 333-340.

[4] Kanade, T., Kano, H., Kimura, S., Yoshida, A., & Oda, K. (1995, August). Development of a video-
rate stereo machine. In Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative
Robots’, Proceedings. 1995 IEEE/RSJ International Conference on (Vol. 3, pp. 95-100). IEEE.

[5] Kanade, T., & Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: Theory and
experiment. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(9), 920-932.

[6] Pollefeys, M., Koch, R., Vergauwen, M., & Van Gool, L. (2000). Automated reconstruction of 3D scenes
from sequences of images. ISPRS Journal of Photogrammetry and Remote Sensing, 55(4), 251-267.

[7] Lotti, J. L., & Giraudon, G. (1994, August). Adaptive window algorithm for aerial image stereo. In Spatial
Information from Digital Photogrammetry and Computer Vision: ISPRS Commission III Symposium (pp.
517-524). International Society for Optics and Photonics.

[8] Yoon, K. J., & Kweon, I. S. (2006). Adaptive support-weight approach for correspondence search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(4), 650-656.

[9] He, Y., Wang, P., & Fu, J. (2013, December). An Adaptive Window Stereo Matching Based on Gradient.
In 3rd International Conference on Electric and Electronics. Atlantis Press.

[10] Hosni, A., Bleyer, M., & Gelautz, M. (2013). Secrets of adaptive support weight techniques for local
stereo matching. Computer Vision and Image Understanding, 117(6), 620-632.

[11] Fusiello, A., Roberto, V., & Trucco, E. (1997, June). Efficient stereo with multiple windowing. In 2013
IEEE Conference on Computer Vision and Pattern Recognition (pp. 858-858). IEEE Computer Society.

[12] Kang, S. B., Szeliski, R., & Chai, J. (2001). Handling occlusions in dense multi-view stereo. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on (Vol. 1, pp. I-103). IEEE.

[13] Scharstein, D., & Szeliski, R. (2003, June). High-accuracy stereo depth maps using structured light. In
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference
on (Vol. 1, pp. I-195). IEEE.

[14] Geiger, A., Roser, M., & Urtasun, R. (2011). Efficient large-scale stereo matching. In Computer Vis-
ion–ACCV 2010 (pp. 25-38). Springer Berlin Heidelberg.

[15] Oculus Rift. http://www.oculusvr.com/rift/

[16] Google self driving car project. https://plus.google.com/+GoogleSelfDrivingCars/posts

[17] Fusiello, A., Trucco, E., & Verri, A. (2000). A compact algorithm for rectification of stereo pairs. Machine
Vision and Applications, 12(1), 16-22.

[18] Papadimitriou, V., & Dennis, T. J. (1996). Epipolar line estimation and rectification for stereo image
pairs. Image Processing, IEEE Transactions on, 5(4), 672-676.

[19] Kumar, S., Micheloni, C., Piciarelli, C., & Foresti, G. L. (2010). Stereo rectification of uncalibrated and
heterogeneous images. Pattern Recognition Letters, 31(11), 1445-1452.

30

A Table of images in dataset

Aloe Art Baby1 Baby2

Baby3 Books Bowling1 Bowling2

Cloth1 Cloth2 Cloth3 Cloth4

Dolls Flowerpots Lampshade1 Lampshade2

31

Laundry Midd1 Midd2 Moebius

Monopoly Plastic Reindeer Rocks1

Rocks2 Wood1 Wood2

32

B Code listing of C++ implementation of Bn algorithm

Algorithm 1 Bn aggregate window function and comparison

// returns sum of squared RGB dis tances
// max: 3∗255^2 = 195075
unsigned int stat ic RGBdist (P ixe l p ixe la , P ixe l p i x e lb) {

return (sqr (R(p i x e l a) − R(p ixe lb)) + sqr (G(p i x e l a) − G(p ixe lb))
+ sqr (B(p i x e l a) − B(p ixe lb))) ;

}

// compare a b lock of p i xe l s , but count only the bes t matching n% in 9 s teps
// for a window s i z e of NXN
b_n_res DisparityMapping : : bestncomparenxn (int const n , int const rx ,

int const ry , int const tx , int const ty) {
b_n_res r e s u l t s ;

stat ic unsigned long ssdsum ;
stat ic int v i ;
stat ic unsigned long ssd_values [25 ∗ 2 5] ; // s i z ed for max window s i z e

v i = 0 ;
for (int y = −(n / 2) ; y < ((n + 1) / 2) ; ++y)

for (int x = −(n / 2) ; x < ((n + 1) / 2) ; ++x)
ssd_values [v i++] = RGBdist (r e f [ry + y] [rx + x] ,

seek [ty + y] [tx + x]) ;

// sor t array
std : : s o r t (ssd_values , ssd_values + n ∗ n) ;

ssdsum = 0 ;
// sum only f i r s t n% (lowest) va lues
int s i = 0 ;
for (int c = 1 ; c < 10 ; c++) {

for (; s i < (n ∗ n ∗ c / 10) ; s i++)
ssdsum += ssd_values [s i] ;

r e s u l t s . n [c − 1] = ssdsum ;
}

return r e s u l t s ;
}

33

C Code listing of C++ implementation of feature point selection

function

Algorithm 2 Feature point selection algorithm (generates mask)

// returns true i f x > de l t a or x < −de l t a
stat ic bool thresh (int const x , int const de l t a) {

return (x < −de l t a | | x > de l t a) ;
}

// SobelFeatureMask generates mask image of o r i g i na l using a Sobel 5x5 kerne l convolut ion
// (255 ,255 ,255): i n t e r e s t point ; (0 ,0 ,0) : no i n t e r e s t point
Image∗ SobelFeatureMask (Image∗ o r i g i n a l) {

s i ze_t width = o r i g i n a l −>width ;
s i ze_t he ight = o r i g i n a l −>height ;

Image∗ r e s u l t = new Image (width , he ight) ;

stat ic const int sob_h [5] [5] = { { 2 , 2 , 4 , 2 , 2 } , { 1 , 1 , 2 , 1 , 1 } , { 0 ,
0 , 0 , 0 , 0 } , { −1, −1, −2, −1, −1 } , { −2, −2, −4, −2, −2 } } ;

stat ic const int sob_v [5] [5] = { { 2 , 1 , 0 , −1, −2 } , { 2 , 1 , 0 , −1, −2 } , {
4 , 2 , 0 , −2, −4 } , { 2 , 1 , 0 , −1, −2 } , { 2 , 1 , 0 , −1, −2 } } ;

for (int y = 2 ; y < he ight − 2 ; y++)
for (int x = 2 ; x < width − 2 ; x++) {

stat ic int res_hR , res_hG , res_hB ;
stat ic int res_vR , res_vG , res_vB ;

res_hR = res_hG = res_hB = 0 ;
res_vR = res_vG = res_vB = 0 ;

for (int dy = −2; dy < 3 ; dy++)
for (int dx = −2; dx < 3 ; dx++) {

res_hR += sob_h [dy + 2] [dx + 2]
∗ o r i g i n a l −>R[y + dy] [x + dx] ;

res_hG += sob_h [dy + 2] [dx + 2]
∗ o r i g i n a l −>G[y + dy] [x + dx] ;

res_hB += sob_h [dy + 2] [dx + 2]
∗ o r i g i n a l −>B[y + dy] [x + dx] ;

res_vR += sob_v [dy + 2] [dx + 2]
∗ o r i g i n a l −>R[y + dy] [x + dx] ;

res_vG += sob_v [dy + 2] [dx + 2]
∗ o r i g i n a l −>G[y + dy] [x + dx] ;

res_vB += sob_v [dy + 2] [dx + 2]
∗ o r i g i n a l −>B[y + dy] [x + dx] ;

}

const stat ic int tv = 255 ;
i f (thresh (res_hR , tv) | | thresh (res_hG , tv) | | thresh (res_hB , tv)

| | thresh (res_vR , tv) | | thresh (res_vG , tv)
| | thresh (res_vB , tv)) {

r e su l t −>R[y] [x] = 255 ;
r e su l t −>G[y] [x] = 255 ;
r e su l t −>B[y] [x] = 255 ;

} else {
r e su l t −>R[y] [x] = 0 ;
r e su l t −>G[y] [x] = 0 ;
r e su l t −>B[y] [x] = 0 ;

}
/∗ re su l t−>R[y] [x] = c l ip255 (res_hR/10);
r e su l t−>G[y] [x] = c l ip255 (res_hG/10);
r e su l t−>B[y] [x] = c l ip255 (res_hB/10);
∗/

}

return r e s u l t ;
}

34

D Code listing of disparity discontinuity region mask creation

Algorithm 3 GIMP code to select interest areas for evaluation

(d e f i n e (bp− f i l ter−edge f i l ename)
(gimp− f i le− load RUN−NONINTERACTIVE f i l ename f i l ename)

(l e t ((myimage (car (gimp− image− list))) (t e s t 1))
(l e t ((ba s e l aye r (car (gimp−image−get−active−layer myimage))))

(l e t (
(duplayer1 (car (gimp−layer−copy base l aye r 0)))
(duplayer2 (car (gimp−layer−copy base l aye r 0)))
(duplayer3 (car (gimp−layer−copy base l aye r 0))))

(gimp−image−add−layer myimage duplayer1 −1)
(gimp−image−add−layer myimage duplayer2 −1)
(gimp−image−add−layer myimage duplayer3 −1)
(gimp−threshold duplayer2 0 1)

(plug−in−gauss 1 myimage duplayer1 10 .0 10 .0 1)
(gimp−layer−set−mode duplayer2 MULTIPLY−MODE) ; mu l t ip ly
(gimp−layer−set−mode duplayer3 ADDITION−MODE)
(gimp−image−merge−down myimage duplayer2 0)
(l e t ((smoothed (car (gimp−image−merge−down myimage duplayer3 0))))

(gimp− layer− f latten smoothed) ; remove alpha
(plug−in−edge 1 myimage smoothed 5 .0 2 0) ; smear , sobe l
(gimp−threshold smoothed 40 255)
(plug−in−gauss 1 myimage smoothed 10 .0 10 .0 1)
(gimp−threshold smoothed 2 255)
(gimp−layer−set−mode smoothed MULTIPLY−MODE)
(gimp− f i le−save

1
myimage
(car (gimp−image−merge−down myimage smoothed EXPAND−AS−NECESSARY))
(car (gimp−image−get−filename myimage))
(car (gimp−image−get−filename myimage))

)
)

)
)

)
)

35

E Results of Bn when feature point detection is included

These are the results of Bn when feature point selection is done as described in Section 3.2.2.

E.1 Correct classification fraction per sample pair

For each individual item pair from the data set a graph is drawn of Bn using n = 10% to 100%, where
B100 = SSD. The graphs in Figures 23,24,25 and 26 show the fraction of perfect predicted disparity. The
used threshold η = 3; the margin for perfect classification is 2 pixels off.

36

0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Aloe

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Art

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Baby1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Baby2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Baby3

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Books

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.34

0.36

0.38

0.4

0.42

0.44

0.46

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Bowling1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Bowling2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 23: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

37

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.55

0.56

0.57

0.58

0.59

0.6

0.61

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth3

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth4

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.615

0.62

0.625

0.63

0.635

0.64

0.645

0.65

0.655

0.66

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Dolls

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Flowerpots

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Lampshade1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.34

0.36

0.38

0.4

0.42

0.44

0.46

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Lampshade2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 24: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

38

0.32

0.34

0.36

0.38

0.4

0.42

0.44

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Laundry

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Midd1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Midd2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.595

0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0.645

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Moebius

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Monopoly

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Plastic

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Reindeer

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Rocks1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 25: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

39

0.65

0.66

0.67

0.68

0.69

0.7

0.71

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Rocks2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Wood1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 26: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

E.2 Average error in predicted disparity per sample pair

The analysis of average error per image is shown in Figures 27,28, 29 and 30. The analysis is done like in
section 4.2.

40

26.5

27

27.5

28

28.5

29

29.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Aloe

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

38.5

39

39.5

40

40.5

41

41.5

42

42.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Art

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

29.5

30

30.5

31

31.5

32

32.5

33

33.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Baby1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

19

20

21

22

23

24

25

26

27

28

29

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Baby2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

35.5

36

36.5

37

37.5

38

38.5

39

39.5

40

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Baby3

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

40

41

42

43

44

45

46

47

48

49

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Books

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

48

49

50

51

52

53

54

55

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Bowling1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Bowling2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 27: Performance of Bnwith respect to n. Average error in predicted disparity shown for each pair
and 11 different window sizes.

41

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Bowling2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

28

28.5

29

29.5

30

30.5

31

31.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Cloth1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

55.5

56

56.5

57

57.5

58

58.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Cloth2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

24

24.5

25

25.5

26

26.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Cloth3

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

40

40.2

40.4

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Cloth4

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

32.4

32.6

32.8

33

33.2

33.4

33.6

33.8

34

34.2

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Dolls

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

41

41.5

42

42.5

43

43.5

44

44.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Flowerpots

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

39

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Lampshade1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 28: Performance of Bnwith respect to n. Average error in predicted disparity shown for each pair
and 11 different window sizes.

42

40.5

41

41.5

42

42.5

43

43.5

44

44.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Lampshade2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

41

42

43

44

45

46

47

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Laundry

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

36

37

38

39

40

41

42

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Midd1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

35

36

37

38

39

40

41

42

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Midd2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

34.5

35

35.5

36

36.5

37

37.5

38

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Moebius

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

10

15

20

25

30

35

40

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Monopoly

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

17

18

19

20

21

22

23

24

25

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Plastic

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

28

29

30

31

32

33

34

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Reindeer

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 29: Performance of Bnwith respect to n. Average error in predicted disparity shown for each pair
and 11 different window sizes.

43

32

32.5

33

33.5

34

34.5

35

35.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Rocks1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

29.5

30

30.5

31

31.5

32

32.5

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Rocks2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

39

40

41

42

43

44

45

46

47

50 60 70 80 90 SSD

a
v
e
ra

g
e
 d

is
p
a
ri
ty

 e
rr

o
r

Bn n%

Wood1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 30: Performance of Bnwith respect to n. Average error in predicted disparity shown for each pair
and 11 different window sizes.

44

F Results of Bn when no feature point detection is done

This shows the correct classification fraction for each image pair.

45

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Aloe

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Art

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.25

0.3

0.35

0.4

0.45

0.5

0.55

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Baby1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.25

0.3

0.35

0.4

0.45

0.5

0.55

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Baby2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Baby3

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Books

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Bowling1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Bowling2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 31: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

46

0.6

0.62

0.64

0.66

0.68

0.7

0.72

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth3

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Cloth4

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Dolls

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Flowerpots

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Lampshade1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Lampshade2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 32: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

47

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Laundry

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Midd1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Midd2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Moebius

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Monopoly

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Plastic

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.35

0.4

0.45

0.5

0.55

0.6

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Reindeer

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Rocks1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 33: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

48

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Rocks2

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

50 60 70 80 90 SSD

fr
a
c
ti
o
n
 o

f
c
o
rr

e
c
t
p
re

d
ic

te
d
 p

ix
e
ls

Bn n%

Wood1

Window size

5x5

7x7

9x9

11x11

13x13

15x15

17x17

19x19

21x21

23x23

25x25

Figure 34: Performance Bn with respect to n. Shown correct match fraction with η = 3 per image pair.
Each graph shows performance for all window sizes

49

