

Internal Report CS Bioinformatics Track 14-03 June 2014

Leiden University

Computer Science

Bioinformatics Track

Probubble: variant calling through the alignment of overlap
based de-novo assembly graphs

 Jasper Linthorst

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

MSc Thesis

June 3rd 2014
Pages 1– 12

Probubble: variant calling through the alignment of overlap-based
de-novo assembly graphs
Jasper Linthorst
Delft Bioinformatics Lab⇤, Delft University of Technology, Delft, The Netherlands
Defended on June 3rd 2014

ABSTRACT
The comparison of high-throughput sequencing data through an

imperfect reference genome is limiting the full potential of many
sequencing studies. Therefore, the ability to detect high quality
genetic variants without the intervention of a reference genome could
cause a paradigm shift in the way in which many sequencing studies
are currently interpreted. Different solutions are already available, but
all have their own limitations. They either don’t scale up to larger
numbers of samples or are structurally restricted by the application
of a de Bruijn graph. Here we present Probubble, an algorithm
that is aimed at detecting variations between multiple samples by
aligning overlap-based assembly graphs. On a simulated dataset,
it is shown that the method works better than the de Bruijn graph
based alternative. Furthermore, it is shown that in case of a highly
divergent reference genome, the direct comparison of two samples
through Probubble also results in improved variant calls over a
mapping-based approach.
Contact: jasper.linthorst@gmail.com

1 INTRODUCTION
Genetic variation for a great deal influences the phenotypical
differences between cells and entire organisms [1]. In order to
explain these differences, the capacity to detect genetic variation
at the level of the actual DNA sequence is of major importance.

Nowadays, the most common way to detect genetic variation
between two or more samples is to align the reads originating from
a high throughput sequencing experiment to a reference genome.
By allowing a limited amount of mismatches when aligning these
reads, variations with respect to a reference genome can then
be distinguished from errors by inspecting the pile-up of reads.
Such a mapping-based approach might work well in cases where
the reference sequence is closely related to the genome of the
samples at hand. However, it becomes problematic when there
is no reference genome available, or when the divergence from
the reference sequence increases. For example, with increasing
sequence divergence, structural variations are introduced. These
variations can introduce novel genomic sequence to the genome that
is absent from, or highly mutated with respect to, the reference
sequence. As a consequence, reads that originated from these
regions can no longer be properly aligned to the reference genome,
with the result that variations in these regions cannot be detected
(see Figure 1). In humans, these structural variations make up a
considerable amount of the total variation [14]. In [8] and [10] it
has also been shown, that large amounts of novel sequence can be
discovered when all reads of a whole genome sequencing (WGS)

⇤Delft Bioinformatics Lab: http://bioinformatics.tudelft.nl

experiment are considered. To counter this problem, mapping-
based approaches resort to local realignment and de-novo assembly
methods when read mapping fails [6]. However, only the partially
mapped reads are considered for this purpose, by which larger
variations, spanning unmapped reads are left out.

(a) Schematical representation of obtaining sequence reads from a
sample’s genome. Variations in the sample’s genome with respect to
the reference genome are indicated in red.

(b) A sample’s genome is more diverged from the reference genome.
Certain reads exceed the number of allowed mismatches (2 in this
example) for alignment to the reference genome. Mappable reads
are indicated in blue, unmappable reads are indicated in grey.

(c) A sample’s genome is even more diverged from the
reference genome, reads originating from the entire region become
unmappable, thus variants cannot be detected in this region.

Fig. 1: Divergence from a reference sequence results in unmappable
reads. In a mapping-based approach these reads cannot be used for
variant detection.

De-novo reconstruction of genomes can eliminate the need for a
mapping-based comparison as it reconstructs the original genome
just from the set of sequence reads (i.e. without the use of a
reference genome) using only the overlap information between the
reads. When multiple samples are assembled simultaneously [8],
variations between the samples emerge as bubble structures in the
resulting assembly-graphs. In this way, variations between samples
can be detected without the need to align individual reads to a
reference sequence.

c� The author. No rights reserved! 1

Jasper Linthorst

Various alternative approaches to variant calling have been
introduced over the past years [8, 10, 18] that do not depend on
directly aligning reads to a reference genome. In [8] complete
multi-sample (or colored) de Bruijn graphs are constructed, which
are subsequently analyzed for bubble structures in order to detect
variations. In [10] and [18] similar reference-free variant detection
methods are implemented (known as contrast assembly in Fermi
[10] and graph concordance in SGA [18]), that are based on a
pairwise comparison of two read-sets, but using an overlap based
de-novo assembly graph.

In [17] (Ch. 5, pg 98) it has been shown that, when compared
to a de Bruijn graph, string graphs [12] (based on overlapping
reads) yield better results with respect to variant detection in both
sensitivity and precision. This follows from the fact that a de Bruijn
graph does not reflect an optimal representation of the underlying
set of reads, i.e. reads are broken down into k-mers, by which
the long-range information that is contained in the reads is lost.
String graphs however, can be considered as a lossless and even
compressed representation of the individual reads. The efficiency
gains associated with the use of a de Bruijn graph allow the use
of Cortex to detect variations between more than two samples
simultaneously. This is a feature that makes it very useful with
respect to studying cohorts of samples, something that is currently
not easily possible using the methods as implemented in Fermi and
SGA: the creation of true multi-sample string graphs, for larger
genomes, quickly exceeds the limits of what is computationally
feasible in terms of memory usage. An important underlying reason
for that is that the creation of a multi-sample string graph always
depends on a single run of the assembler at which point all sequence
reads need to be kept in memory. This automatically limits the
total number of samples that can simultaneously be assembled into
a string graph, which is easily surpassed when considering large
genomes and current hardware.

Here we introduce ’Probubble’, a method that combines the use of
string graphs for variant calling with a scalable method for obtaining
multi-sample variation graphs. The proposed method is linear in
time and sub-linear in space with respect to the number of samples.
This is accomplished by an algorithm that enables the construction
of a variation aware graph that integrates multiple single-sample
string graphs obtained by individual de-novo assemblies. The
difficulty that needs to be overcome, is that in string graphs, unlike
de Bruijn graphs, nodes can differ in length and sequence. Since
different de Bruijn graphs essentially contain the same set of nodes,
the merging process of different de Bruijn graphs, as described by
Cortex [8], is much more straightforward: it involves the simple
addition of the edges from one graph to the other. In string graphs
this problem is more complex and can best be seen as a graph
alignment problem [3].

The algorithm presented here essentially performs a graph
alignment of two string graphs while allowing mutations to the
structure of the input graphs. Exact matches between the sequence
defined on the nodes in the graphs is used for this purpose. The
algorithm is divided into three main steps: preprocessing of the
input graphs, followed by a global and then a local merge step. The
final variant calling is performed by a bubble detection algorithm
which currently only detects ‘simple’ bubbles. In order to assess
the positioning of variants (i.e. with respect to genes), it is possible
to merge the graph with a linear reference sequence, so that its
coordinate system can be used.

2 METHODS
2.1 String graphs
Within a string graph the nodes in the graph correspond to unitigs
[12]. Unitigs are formed by assembling unique unambiguously
overlapping sequence reads, such that repetitive sequences within
the genome are collapsed into a single node. From this definition
it follows that (1) the sequence on every node in the graph cannot
be shorter than the length of the shortest read used to generate the
string graph, and (2) that every node in the graph defines a unique
sequence. Therefore every sequence with a length larger than the
longest read that was used to construct the graph must be unique
within the graph. The edges in these graphs correspond to overlaps
between unitigs. Unitigs can have overlapping sequence on the 5’
part (tail) and on the 3’ part (head). Since unitigs can originate from
either one of the two strands of DNA, 4 possible valid overlaps are
distinguished (see Figure 2).

a)

b)

c)

d)

Fig. 2: a head-to-tail b tail-to-head c head-to-head d tail-to-tail

The strand orientation of different unitigs can therefore be derived
from the annotations on the edges that connect them. Head-to-tail
and tail-to-head overlap (Figure 2a and 2b) can only occur when
both unitigs originate from the same strand and head-to-head and
tail-to-tail can only occur when unitigs originate from opposite
strands (Figure 2c and 2d).

Since all unambiguously overlapping reads have been merged
into unitigs, the remaining overlaps form joins and splits within the
bidirectional graph. The lengths of the corresponding overlaps are
modeled on the edges. An example of a string graph representation
built up of reads originating from a simulated diploid sample can be
seen in Figure 3.

In order to merge, or rather align, two string graphs, a method
for mapping nodes between two graphs is needed. Exact matches
between the sequences modeled on these nodes can be used for this
purpose. For various reasons (genomic variation between and within
samples, variations in read-depth, sequencing errors etc.) exact
matches between complete unitigs of two string graphs do not occur

2

Probubble

5'-GATCTGATAAGTCCCAGGACTTCAGGTGTACATGACCAGCGTTACGTGAACACTTCCTCCTTCAGGAACATTGCAGTGTACATGACCAGCGTTACGTGAAGTGGGCCTAAGTGCCTCCTCTCGGGACGTAAGTAGCGTGA-3'
3'-CTAGACTATTCAGGGTCCTGAAGTCCACATGTACTGGTCGCAATGCACTTGTGAAGGAGGAAGTCCTTGTAACGTCACATGTACTGGTCGCAATGCACTTCACCCGGATTCACGGAGGAGAGCCCTGCATTCATCGCACT-5'

5'-GATCTGATAAGTCCCAGGACTTCAGGTGTACATGACCAGCGTTACGTGAACACTTCCTCCTTCAGGAACATTGCAGTGTACATGACCAGCGTTACGTGAAGTGGGCCTAAGTGCATCCTCTCGGGACGTAAGTAGCGTGA-3'
3'-CTAGACTATTCAGGGTCCTGAAGTCCACATGTACTGGTCGCAATGCACTTGTGAAGGAGGAAGTCCTTGTAACGTCACATGTACTGGTCGCAATGCACTTCACCCGGATTCACGTAGGAGAGCCCTGCATTCATCGCACT-5'

(a) Both strands of two chromosomes of a simulated diploid sample.

GATCTGATAAGTCCCAGGACTTCAGGTGTACATGACCAGCGTTA

TAACGCTGGTCATGTACACTGCAATGTTCCTGAAGGAGGAAGTGTTCACGTAACGCTGGTCAT

GTGTACATGACCAGCGTTACGTGAA

TACTTACGTCCCGAGAGGAGGCACTTAGGCCCACTTCAC

TACTTACGTCCCGAGAGGATGCACTTAGGCCCACTTCAC

TCACGCTACTTACGTCCCGAGAGGAGCACTTAGGCCCACTTCACGTAACGCTGGTCAT

head to tail
tail to head
tail to tail
head to head

(b) String graph representation of 20bp reads originating from the two simulated chromosomes.

Fig. 3: String graph representation of reads originating from a simulated sample. Unitigs are written from 5’ to 3’ and originate from different
strands of the underlying chromosomes. Repetitive sequence is indicated in red, other colors are used to distinguish between different parts
of the underlying sequence. A heterozygous SNP generates a ‘simple’ bubble in the graph.

often. Therefore, it is necessary to find substring matches between
unitigs originating from both graphs. Suffix- and LCP arrays (see
Appendix 1 and 2) can be used to detect common substrings that
occur in both graphs in an efficient and scalable way.

2.2 Variation graphs
Assemblers like SGA and Fermi produce string graph data
structures as an intermediate result of the assembly process. String
graph generation is based on a parameter k

assembly

, indicating the
minimum length of a valid overlap. Transitive edges (or reducable
edges) are avoided by combining unambiguous overlapping reads
into unitigs. Steps that typically precede the output of a string
graph are the generation of indices and error correction. Steps
that typically follow after the generation of a string graph, are
graph cleaning and scaffolding. In the scaffolding step, the paired-
end information, if available, is used to determine a path through
the assembly graph, in order to output longer contigs. The graph
cleaning step is used to get rid of the abundance of edges that are
introduced by errors that could not be corrected for. Throughout the
work presented here, cleaned string graphs produced by Fermi were
used as an input for Probubble. In order to align (or merge) two
string graphs, graphs have to be converted to variation graphs in a
number of preprocessing steps.

For every edge in a string graph the overlapping sequence is
defined on both the source and the target node (see Figure 4a).
This causes a considerable amount of duplicated sequence with
respect to the underlying genome, and makes it unclear which part
of the underlying genomic sequence is covered by which unitig
(see colored sequence in Figure 3). It is important to remove these
redundant sequences from the graph, since the alignment algorithm
depends on unique exact matches between two graphs. If these

sequences would not be removed, no unique matches could be found
in the overlapping parts of unitigs, making the process of merging
and bubble detection later on much harder.

To reduce the amount of redundant sequence in the graph, unitig
nodes are broken at the positions where overlapping sequence
started and ended (Figure 4b). Next, the resulting unitig sequences
can be reconnected so that the paths through the graph eventually
spell the same sequences, but without any overlap defined on the
edges. All unused ‘tip’ nodes can then be removed from the graph
to get rid of most of the redundant sequence (Figure 4c).

By doing so, the resulting graph is no longer a strict representation
of the original string graph, since the overlap information is lost.
However, it does still represent all possible paths through the
original graph and thus still contains all bubble structures caused
by within sample variations.

After breaking and reconnecting the nodes in the graph, all
neighboring nodes have a similar alignment (the overlap for every
edge is the same, namely 0). In order to further reduce the amount
of redundant sequence, bubbles and repeat structures are simplified
by merging common pre- and suffixes. This is done by adding the
sequence defined on all neighboring nodes on one end of a unitig,
to a prefix tree (also called a Trie). The leaves of the prefix Tree
are then reconnected to the rest of the graph (see Figure 5a to 5e).
This is done for every node in the graph until no more paths can
be merged. Paths are only merged when the neighbors are not inter-
connected and there are no other edges leaving the node at the same
end.

2.3 Global merge
After preprocessing two string graphs, their resulting variation
graphs can be merged. The process of merging starts by finding the

3

Jasper Linthorst

k=4

k=6

k=5

k=4

 CGGTGTACCTATACGA

GGACGTAGCGTAGCGGT TACGATTACGTGATG

 AGCGGTGTACTTATACG

(a) A ‘simple’ bubble structure in a string graph
(ignoring strand orientation). Edges between unitigs
indicate sequence overlap, a parameter k indicates the
number of overlapping base pairs.
 CGGT GTACCTA TACGA

GGACGTAGCGT AG CGGT TACG A TTACGTGATG

 AGCGGT GTACTTA TACG

(b) Nodes are broken at the start and endpoint of every
overlap.
 CGGT GTACCTA TACGA

GGACGTAGCGT AG CGGT TACG A TTACGTGATG

 AGCGGT GTACTTA TACG

(c) Broken nodes are reconnected corresponding to the
overlap that was defined on them before.
 C

GGACGTAGCGTAGCGGTGTAC TATACGATTACGTGATG

 T

(d) Redundant sequence is further reduced by merging
common pre- and suffixes in a prefix tree, see Figure
5a to 5e.

Fig. 4: Preprocessing steps performed on a ‘simple’ bubble
structure.

longest common substrings (LCS) between the two graphs, as can be
derived from the constructed suffix- and LCP array (see Appendix
1 and 2). During the global merge, all unitigs are compared to each
other until no more common substrings can be found that are longer
than the predefined threshold k

global

. Since the size of the matching
sequence between the two graphs can be seen as an indication of
how unique a match is, matches are processed in order of length.
After a longest common substring S is detected the originating
nodes are ‘broken’ (see Figure 4b) and the parts corresponding to
S are merged (see Figure 6). Subsequently, S and all substrings
of S are masked within the suffix array, such that the next longest
common substring cannot be a substring of S. The process of
masking values is simple and can be achieved in linear time, without
recomputing the entire LCP array.

This process is repeated until no more exact matching substrings
of a length longer than k

global

exist within the two graphs. Since in
a string graph all repetitive sequences longer than the read length
are collapsed into unitigs, we know that every sequence longer
than the length of the underlying reads has to be unique within the
graph. Therefore, the value of k

global

should be picked in such a
way that it is larger than the largest read length of the underlying

CA
CCA
CCC
CCG

U1 U2
CGG

GGG

(a) Bubble structure with redundant sequence enclosed
between Unitig1 (U1) and Unitig 2 (U2).

C

C

A G

A

C

r

(b) The 3’ neighbors of U1 (‘CA’,‘CCA’,‘CCC’,‘CCG’)
are added to a prefix tree. Nodes merging paths are
indicated in red.

A
A
C
G

U1 C C U2
CGG

GGG

(c) Bubble structure obtained by reconnecting the leaves
of the prefix tree.

A
A
C
G

U1 C C U2
C

G
GG

(d) Bubble structure obtained after fitting a prefix tree on
U2.

A

C
G

U1 C C U2
C

G
GG

(e) Bubble structure obtained after fitting a prefix tree on
the newly created ‘C’ node. Final result, no more pre- or
suffixes can be merged.

Fig. 5

reads, to make sure that only unique matches are found and the
risk of misalignment is minimized. Nodes in the resulting graph
can now be divided into one out of three different nodes: nodes
specific to sample one, nodes specific to sample two and nodes that
are common to both sample one and sample two.

4

Probubble

Sample 2Sample 1

(a) The preprocessed variation graphs of sample 1 (yellow) and
sample 2 (green). Heterozygous variations within sample 1 and
form different bubble ‘simple’ structures. A repeat node causes both
graphs to form a loop.

Partition A

Partition B

Partition C

(b) Exact matching stretches of sequence, larger than k

global

,
are detected and merged into blue nodes. Graph partitioning is
performed to extract subgraphs for further local merging.

(c) Local merging resulted in two additional ‘simple’ bubble
structures, exposing two homozygous variations between sample 1
and sample 2. An indel and a SNP.

Fig. 6: Schematic overview of the different graphs resulting from
6a) assembly, 6b) global merging and 6c) local merging. Blue nodes
represent ‘merged’ nodes and contain sequence shared between
sample 1 and sample 2. The size of the nodes indicates the length of
the associated sequence.

2.4 Local merge
After performing a global merge of the two graphs, a graph is
obtained in which large unmerged bubble-like structures still occur

(see Figure 6). The local merge step is aimed at collapsing these
structures in order to obtain smaller bubbles that are interpretable
as individual variations. To do this, the graph is segmented into
multiple smaller graph structures. This segmentation is obtained by
doing a breadth-first search from every merged node in the graph.
During this search the orientation of nodes relative to the node from
which the search was initiated is kept. The search is stopped when
another merged vertex is detected. All traversed unmerged nodes
are then considered as a subgraph that are identified by the node
that was used to start the search.

Next, for every subgraph a specific suffix array and corresponding
LCP array are constructed and the longest common substring for
every partition is extracted. Since repeats can cause subgraphs to be
overlapping, the exact matches are first added to a list and ordered
by length. Then matches are sequentially processed from the largest
to the shortest exact match and graphs are aligned in a similar
way as during the global merge. When a node is encountered that
was already part of a previously processed match, the alignment is
skipped.

After merging, the graphs are partitioned again. This process is
repeated until no more exact matching substrings are found that
are longer than the predefined k

local

. Theoretically, a value of 1
could be used for k

local

, but to prevent small-scale misalignments
and the resulting formation of complex bubbles in highly variable
and/or repeat-rich parts of the genome, a slightly bigger value (eg.
5) was found to give better results. After this process, non-matching
nodes contain the actual variations between the two graphs and are
characterized by bubble-like structures (see Figure 7)).

Finally, a bubble-smoothing step is performed that is similar to the
process described under preprocessing where a prefix tree is fitted
in order to merge similar pre- and suffixes. This makes sure that the
number of alleles contained in each ‘simple’ bubble is limited.

2.5 Bubble detection
The resulting graph after the local merge step contains different
bubble structures for different sequence variations. SNPs and indels
form different bubbles (see Figure 9). Sequence variations that are
in close proximity of other variations or repeat regions within the
same sample can cause more complicated bubbles. For example,
in the case of a diploid organism, when two heterozygous SNPs
are located in close proximity of one another the sequence in
between the two variants is contained in the bubble structure.
When merging these ‘big’ bubble structures with a different
sample that does not have this combination of alleles on either
chromosome, a more complicated bubble occurs (see Figure 8).
Similar, bur far more complex bubble structures can occur when
simultaneously assembling multiple samples, or when assembling
variations in repetitive regions. These bubble structures can become
very complex, and therefore hard to reduce to a comprehensive set
of individual variant calls.

The actual variant calling as implemented here is therefore limited
to the detection of ‘simple’ bubbles, as shown in Figure 9. ‘Simple’
bubbles are defined as bubbles that can be detected by traversing
edges in one specific direction, for a maximum of two ‘hops’, as
seen from the merged node. When two or more paths cross each
other within these two ‘hops’, a bubble is detected. Previously
mentioned ‘big’ bubbles do not always generate ‘complex’ bubble

5

Jasper Linthorst

1

2

3 4
5

6

1

6

2/5

34

(a) High-level representation of the local merge steps
described from 7b to 7e.

1 6

2
3

4

5

T

T

G
C

A

CGTACGTA

CGTACGTA

CGTGTGTTTAGGCACGTA CGTAGTTATGTGCATTATA

(b) Suffix and LCP array are constructed for unmerged
nodes 2,3,4 and 5.

1 6

2
3

4

5

T

T

G
C

A

CGTACGTA

CGTACGTA

CGTGTGTTTAGGCACGTA CGTAGTTATGTGCATTATA

(c) The longest common substring is found between node
2 and node 5. Nodes are broken so that the exact matching
parts can be aligned.

1 6

3

4
2/5

T

T

G
C

A

CGTACGTACGTGTGTTTAGGCACGTA CGTAGTTATGTGCATTATA

(d) A merged node ‘2/5’ is created. The node is
reconnected to all the neighbors of nodes 2 and 5.

1 6

3

4

2/5
T

G

C

A

CGTACGTACGTGTGTTTAGGCACGTA CGTAGTTATGTGCATTATA

(e) The graph is partitioned again. No more substrings
longer than k

local

can be detected. Prefix tree fitting
(see Figure 5) eventually simplifies the second bubble
structure by merging nodes 3 and 4.

Fig. 7: Steps involved in the local merge of partition A (see Figure
6b).

structures in the merged graph. In these cases, they can be detected,
and subsequently the two branches of the bubble are aligned against
each other using the Needleman-Wunsch alignment [13]. The
following alignment is then translated into a set of variant calls.

Sample 1

Sample 2

...AGTGTACGTTTACG...

...TGTGTACGTTTACG...

...AGTGTACGTTTACC...Chromosome A

Chromosome B

Chromosome A

Chromosome B ...AGTGTACGTTTACG...

T A

CG

Fig. 8: Example of a more complicated bubble caused by side-by-
side heterozygous mutations.

Bubbles do not always correspond to sequence variation. In the
case of a longer inexact repeat sequence, a bubble structure can
be formed within the same sample, without actually representing a
heterozygous variation. However, when samples are then merged,
it is expected that the same bubble structure will form in the
next sample, resulting in a merged bubble structure for which all
branches are seen in both samples. The bubble detection algorithm
that was implemented here, does recognize these bubbles, and does
not call variants in these cases.

2.6 Multiple samples
The graphs obtained by preprocessing and merging can be used
for subsequent merge steps. In this way multi-sample graphs can
be obtained in a modular way. Within these multi-sample variation
graphs, bubble structures can be detected. These bubble structures
can then be analyzed to characterize the kind of variation and to
determine the genotype (see Figure 9). By merging a graph with a
reference sequence (if available), the coordinate system defined by
the reference sequence can be used to assess the location of variants
with respect to their vicinity to for example genes.

��������
�������	
�������

���������	
�������	�

���������

���������	�

�����

����������������

��������������

Fig. 9: Example of a multi-sample variation graph. Bubbles
correspond to between and within sample variations. Colored tips
in the graph correspond to errors, or variations for which only one
valid overlap was observed.

6

Probubble

Since merging or aligning two graphs is a heuristic process, the
end result is not guaranteed to be optimal. The merging process is
more likely to produce an optimal alignment of two graphs when
the amount of sequence variation, or distance, between the two
underlying samples is limited. In order to produce an optimally
aligned multi-sample variation graph it is therefore advised to merge
samples in a specific order. Methods, as described in [19], can be
used to obtain a hierarchical clustering of samples without using
a reference sequence to compare them. The obtained hierarchical
clustering can then in turn be used in order to derive the optimal
merging strategy. In this work, no further considerations are given
to the order in which samples are merged, since variations in the
datasets used here were uniform randomly distributed throughout
the genome, and these effects are only expected to be of influence
when merging large numbers of samples that contain some form of
population structure.

2.7 Implementation details
A concept of the algorithm was implemented under the name
Probubble. The actual program is split-up into three stages:
preprocessing, merging and bubble detection. In the preprocessing
stage, the cleaned output of Fermi [10] is loaded into a common
graph structure (iGraph, [5]) and the steps, as outlined under
preprocessing, are performed. The merge stage takes the input of
two preprocessed graphs (or previously merged variation graphs)
and outputs the resulting merged graph. A linear reference sequence
can also be merged with a variation graph. In the bubble detection
stage, ‘simple’ bubbles (as shown in Figure 9) are detected by
traversing the graph. If a reference sequence was merged with the
variation graph, the coordinate system of the reference sequence is
used in order to position variants. Resulting variant calls are written
to a VCF-file.

3 RESULTS
To assess the performance of Probubble, genomes were simulated
based on 2.5MB of chromosome 22 of the human genome (hg19),
in which different variations were introduced. Variations were
subdivided into single nucleotide polymorphisms (SNPs) and indels.
The proportion of SNPs and indels was set at a fixed rate of 90% and
10% respectively [4]. The simulated indel lengths were sampled
from a Zipfian distribution with ↵ = 1.65 [2]. The total number
of variations was determined by a mutation rate parameter mu,
indicating the fraction of mutations with respect to the length of the
initial template genome. A value of 0.001 was used as a typical value
for the mutation rate parameter [4], indicating an average of one
mutation in every 1000 base pairs. From these simulated genomes,
Illumina 100bp paired-end reads, with a mean insert-size of 500
base pairs, were simulated using dwgsim 1. These read sets were
then assembled into string graphs and cleaned using Fermi [10].

The construction of the de-novo assembly graphs and the read
simulation, prior to the actual merging algorithm, influences the
success of graph-based variant detection. Two important parameters
that influence the resulting string graphs are the read-depth coverage
and the read-length overlap. For the conducted experiments, typical
values of 40x coverage and an overlap of 50bp were used.

1 http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Main Page

3.1 Comparison of mapping and assembly-based
callers

A first experiment was devised in order to compare Probubble to a
mapping-based approach and the de Bruijn graph based reference-
free variant caller Cortex. For the mapping-based approach the
haplotype caller, as implemented in the Genome Analysis Toolkit
(GATK) [6] was used in combination with the BWA-mem read
aligner [11]. This variant caller can best be seen as a hybrid
variant caller, since it locally performs de-novo assembly of partially
aligned reads in order to be able to detect longer inserts. Cortex was
used with default settings for quality filtering and two k-mer graphs
for k = 31 and k = 61.

To compare the performance of the variant callers, simulated
datasets were construfcted with an increasing mutation rate.
Variants were subsequently called using the different algorithms.
For GATK this means that reads were aligned to the reference
sequence and subsequent variant calls were made by analyzing the
pile-up of reads. For Cortex four de Bruijn graphs were constructed,
two for the reference sequence (with k = 31 and one for k = 61),
and two for the readset. Cortex then merges the resulting De Bruijn
graphs (with corresponding values for k) and then detects bubbles
in both graphs to call variants. Probubble merges a single de-
novo assembly graph with the linear reference sequence in order to
detect bubbles and call variations. The performance of the different
algorithms was assessed based on the recall and precision measure,
indicating the number of correctly detected SNPs and indels (see
Figure 10).

It can be seen that the mapping-based approach outperforms
both assembly-based methods and that Probubble performs better
than Cortex when considering the variations of a single sample
with respect to a reference sample. Investigation of the graphs
shows that the better performance of GATK over Probubble can
be mainly attributed to the fact that variations do not always form
‘simple’ bubbles in the assembly graphs, which mainly can be
attributed to two reasons: 1) close by heterozygous variants and 2)
formation of tip nodes. Variations that occur in close proximity of
other heterozygous variants or repetitive areas can result in complex
bubble structures, whereas high coverage tip nodes are created when
suboptimal coverage limits the number of observed overlaps that
satisfy the overlap threshold. With an increase in mutation rate,
the fraction of complex bubbles also increases. That’s why both
reference-free based methods show a steep decline in performance
when the mutation rate increases. The difference in performance
between Cortex and Probubble has to be attributed to the fact that
Cortex makes use of a less informative De Bruijn graph structure.

3.2 Most missed calls are heterozygous
It is important to note that the false negative, or missed variant
calls of Probubble are mainly comprised of heterozygous variations.
Considering the 2 to 1 ratio of the number of simulated heterozygous
versus homozygous variants, one would expect to see a similar
distribution of false negative variant calls. Figure 11 shows that
false negatives are biased towards heterozygous variant calls. This
supports the explanation that most variant calls are missed, because
of either complex bubble formation or open bubbles due to lacks of
overlapping reads. Which was commonly observed to happen with
heterozygous variations (Section 2.5).

7

Jasper Linthorst

Fig. 10: Single run recall and precision measures of the different
methods on a dataset with an increasing mutation rate.

3.3 Comparison of mapping- and assembly-based
callers on longer indels

Further investigation of the missed calls shows that the GATK
performs very well at shorter mutations. For longer indels,
Cortex and Probubble outperform GATK’s haplotype caller. We
investigated the performance of the different methods on varying
indel sizes, by sampling the indel sizes from a uniform distribution
between 1 and 300, instead of the Zipfian distribution. The results
of this experiment are shown in Figure 12.

Probubble and Cortex, show consequent performance on the
entire range of indel sizes. GATK only performs well on short
indels. Probubble performs slightly better than Cortex overall,
with the exception of the precision in the 150bp-210bp range.
This dip is caused by a failed Needleman-Wunsch alignment of
a ‘big’ bubble, causing an increase in false positive variant calls.
Multiple repetitions of the experiment would probably flatten out
this observation.

(a) (b)

(c)

Fig. 11: Composition of missed calls by a: Cortex, b: GATK and
c: Probubble. Only Probubble deviates from the expected 2/3 of
missed heterozygous calls.

����
����	

�������	

Fig. 12: Variant calling performance of the different methods, based
on variations of increasing indel sizes.

3.4 Probubble outperforms GATK when dealing
with distant reference genomes

The initial motivation for developing the reference-free variant
caller was that mapping-based variant detection becomes problematic
when there is no closely related reference genome available.
Therefore we conducted a simulation experiment which mimics
the absence of a closely related reference-genome. First a diverged
haploid genome (R0) was generated on the basis of the initial
reference genome (R) with a mutation rate mu, see also Figure 13.
This diverged reference genome (R0) was then used to create two
samples (S0 and S1) with a fixed mutation rate of 0.0005, such that

8

Probubble

the distance between the two samples would approximate the typical
mutation rate of 0.001 (see Figure 13).

R R'

S0

S1

0.
00
1

0.
00
05

mu

0.0005

R R'

S0

S1

0.
00
1

0.
00
05

mu

0.0005

Fig. 13: Schematical representation of the setup of the experiment.
The distance between the reference genome R and the diverged
reference genome R

0 increases by incrementing the mutation rate
parameter mu. Other distances are fixed.

Next, reads were sampled from S0 and S1. These reads were
then assembled and the resulting string graphs were merged using
Probubble. The merged graph was then used to detect bubbles.
Performance was validated directly against the diverged reference
genome, R0.

For the mapping-based approach, the reads originating from S0
and S1 were aligned to the reference genome R. The insertions
and deletions introduced by the creation of R0 were tracked, so that
calls made on R could still be traced to a location on R

0. Then all
calls that could be attributed to the creation of R0 were filtered out.
The remaining calls were expected to contain the actual variations
between S0 and S1, and only those were therefore evaluated in order
to assess the performance.

To shorten the running time of the experiment, Cortex was not
evaluated. Previous experiments already showed that Probubble
outperformed Cortex and no changes with respect to this behaviour
were expected here.

Figure 14 shows the recall and precision for this diverged
reference genome experiment. The reference-free comparison
indeed remains stable and the mapping-based performance declines
when the mutation rate increases. An increasing mutation rate for
the diverged genome causes that more and more reads originating
from the diverged sequences S0 and S1 cannot be mapped back to
the reference genome, because they are simply too different. As
a result, the mapping-based approach can’t call variants in these
unmapped regions. Reference-free methods do not suffer from this
as they compare the diverged genomes (S0 and S1) directly to each
other: the unmapped regions are now contained in the de-novo
string graph and variants can be called when merging the graphs.
Furthermore, the mapping based approach suffers from an increase
in partially mapped reads, causing an increase in the number of false
positive calls.

3.5 Merging multiple samples
Probubble is specifically designed to merge multiple graphs in a
scalable way. Therefore we setup an experiment to test its behavior
when merging an increasing amount of samples. For this, we
simulated a series of samples with respect to a short template
sequence (50000bp), each having a fixed mutation rate of 0.001.
Samples were merged in a random sequential order. To assess the
quality of merging two graphs, after each merge step we inspected

Fig. 14: Variant calling performance (averaged over three runs)
based on the direct comparison of graphs using Probubble stays
constant, while the performance of the mapping-based approach
declines when the divergence of the reference increases.

the number of nodes that defined sequence that was observed in
all merged samples. These nodes we’ll define as ’common’ nodes,
since they define sequence that is common to all samples in the
graph, i.e. the grey nodes in Figure 9.

Figure 15 shows the increase in ‘common’ nodes. From this figure
one can observe that while more samples are merged in the same
graph, the total number of common nodes increases. This is due to
the fact that every time an additional sample is merged, the new
graph needs to incorporate all the variations of the new sample
(which in our simulation are independent from the previous). Thus,
each variation contained in the graph to be merged, introduces a
break-up of an existing merged node, creating a new bubble in
the resulting merged graph. As a consequence, this (on average)
creates an additional merged node for every variation that is added
to the graph. We indeed observe that the number of common nodes
increases linearly with the number of merged samples.

When misalignments start to occur it is expected that the linear
increase in ‘common’ nodes will be converted into a decrease in

9

Jasper Linthorst

‘common’ nodes. Figure 15 shows that these effects start to show
when +/-25 samples are merged. This shows that the total number
of variations to be held within one graph is limited. Note that
the mutation rate in our simulations were uniformly distributed for
every sample and independent from the other samples, which is not
a realistic case for real genomes. We expect most variations within
a populations of samples to be common, thus dependent, and as
a result we expect that the actual number of samples that can be
merged in reality is much larger.

Fig. 15: Increase in the number of nodes that define sequence that is
seen in all samples, while sequentially adding more samples.

4 DISCUSSION
We introduced a new approach to variant calling using overlap-
based de-novo assembly graphs. We have shown that our method,
called Probubble, outperforms the de Bruijn graph based alternative
Cortex using its default settings when applied on simulated datasets.
This is mainly attributed to the fact that a de Bruijn graph
representation introduces more repetitive nodes in the assembly
graph then strictly necessary when considering the entire set of reads
as opposed to a string graph. These unnecessary repetitive elements
in the de Bruijn graph increase the number of ‘confounded bubbles’
[9] with respect to a string graph representation, causing the method
to be unable to detect all introduced variations.

We clearly showed the benefit of a reference-free variant calling
approach (over a mapping-based version) when variations need to be
detected in a genome for which no closely related reference genome
is available. We showed that this already is the case for diverged
genomes with a mutation rate of more than 0.01. Todays most
powerful mapping-based variant caller, the GATK haplotype caller,
cannot cope with such diverged samples since it is hampered too
much by not being able to detect indel variations that are longer than
the read length. Even the local de-novo assembly does not help, as
it still depends on partially mapped reads that for large inserts map
only at the flanks of the insert and are apparently not long enough
to reconstruct the entire insert. All of this shows great promise
for reference-free variant calling. As we showed that our method,
Probubble, scales linear in time with respect to the number of

comparable samples (as opposed to string graph based alternatives,
like contrast assembly) and outperforms de Bruijn graph based
approaches in terms of variant-calling, we have made an important
step towards the detection of variants with a totally new approach.

It is important to note that only GATK used the paired-end
information that was included in the simulated readset. We expect
that both reference-free variant callers will improve when they
include the paired-end information in their de-novo assembly. On
the other hand, it is important to realize that de-novo based methods
generally will need higher read coverages than mapping-based
approaches, which currently will hamper their routine application.

The current implementation of Probubble is not capable of
handling complex bubbles that arise when multiple different variants
are in close proximity of each other (or at flanks of repeat
regions) or in tip nodes (arising from limited coverage). More
advanced preprocessing steps, such as aligning the branches of ‘big’
heterozygous bubbles, and better bubble detection algorithms will
resolve this. However, it is still an open issue on how to convert
complex bubbles to actual variant calls.

The current implementation also is only suitable for a rather small
dataset. This might not grasp the complexities of full genomes
completely. Therefore, the performance has to be re-assessed on
larger datasets when there is a more efficient implementation of
Probubble.

The reported precision and recall are biased by the composition
of the dataset. That is, we simulated single nucleotide variations
and indels but variations like inversions, translocations and copy-
number variations were not simulated since they are not detectable
by the variant callers considered here. Also, the simulated insertions
consisted of random DNA sequence which reduces the probability
that longer insertions cause repeat nodes in the graph (something
that in reality is likely to happen with longer insertions [15]).
Therefore, the results represented here with respect to the detection
of longer indels might be over-optimistic.

Probubble assumes an equal copy-number for sequence matches
between unitigs of two assembly graphs. This is not always the case,
since sequence variation between samples can cause a stretch of
sequence to be repetitive in one sample, but not in the other. With the
current algorithm, these stretches of sequence are (falsely) mapped
on top of each other, leading to additional repeat structures. When
this situation can be detected beforehand, it can be used to, instead
of creating them, resolve repeat nodes in the merged graph.

Much of the work presented here is not final, and no real data
has been addressed, but beyond that, an important step has been
made towards the reference-free comparison of complete genomes
of large numbers of samples. Something that most definitely is a
challenge for the very near future.

REFERENCES
[1]B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson. Molecular

Biology of the Cell. Garland Science, New York, 5th edition, 2008.
[2]R. A. Cartwright. Problems and solutions for estimating indel rates and length

distributions. Molecular biology and evolution, 26(2):473–480, November 28
2008.

[3]C. Clark and J. Kalita. A comparison of algorithms for the pairwise alignment of
biological networks. Bioinformatics, May 2014.

[4]. G. P. Consortium. A map of human genome variation from population-scale
sequencing. Nature, May 2011.

10

Probubble

[5]G. Csardi and T. Nepusz. The igraph software package for complex network
research. InterJournal, Complex Systems:1695, 2006.

[6]M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl,
A. A. Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J.
Fennell, A. M. Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, and
D. A. . M. J. Daly. A framework for variation discovery and genotyping using
next-generation dna sequencing data. Nature Genetics, 43(5):491–498, May 2011.

[7]J. Fischer. Inducing the lcp-array. CoRR, abs/1101.3448, 2011.
[8]Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly

and genotyping of variants using colored de bruijn graphs. Nature, 44(2):226–32,
January 8 2012.

[9]Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly
and genotyping of variants using colored de bruijn graphs. Supplement, 2012.

[10]H. Li. Exploring single-sample snp and indel calling with whole-genome de novo
assembly. Bioinformatics, 28(14):1838–1844, July 15 2012.

[11]H. Li and R. Durbin. Fast and accurate long-read alignment with burrows-wheeler
transform. Bioinformatics (Oxford, England), 26(5):589–595, Mar. 2010.

[12]E. W. Myers. The fragment assembly string graph. Bioinformatics, 21(2):79–85,
January 2005.

[13]S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–453, Mar. 1970.

[14]A. W. Pang, J. R. MacDonald, D. Pinto, J. Wei, M. A. Rafiq, D. F. Conrad,
H. Park, M. E. Hurles, C. Lee, J. C. Venter, E. F. Kirkness, S. Levy, L. Feuk,
and S. W. Scherer. Research towards a comprehensive structural variation map of
an individual human genome. Genome Biology, 11(5), May 2010.

[15]J. Sebat. Large-scale copy number polymorphism in the human genome. Science,
305(5683):525–528, July 2004.

[16]A. M. S. Shrestha, M. C. Frith, and P. Horton. A bioinformatician’s guide to
the forefront of suffix array construction algorithms. Briefings in Bioinformatics,
15(2):138–154, Mar 2014.

[17]J. T. Simpson. Efficient sequence assembly and variant calling using compressed
data structures. PhD thesis, University of Cambridge, September 2012.

[18]J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Research, 22(3):549–556, Mar. 2012.

[19]K. Song, J. Ren, G. Reinert, M. Deng, M. S. Waterman, and F. Sun. New
developments of alignment-free sequence comparison: measures, statistics and
next-generation sequencing. Briefings in Bioinformatics, 15(3):343–353, May
2014.

11

Jasper Linthorst

Appendix
1 THE SUFFIX ARRAY
In order to quickly search large amounts of sequence data, there are
two main indexing approaches: suffix trees and suffix arrays [16].
Because of recent advances in the efficient construction of suffix
arrays using induced sorting techniques [16] and the relatively large
memory footprint of suffix trees, suffix arrays are now found at the
heart of many popular sequence-based bioinformatics applications.
Suffix arrays can also be used in order to find the longest common
substring in a set of sequences. In the case described here, these
sequences originate from the unitigs of the two string graphs that
are to be merged.

To be more precise: Let U
i

denote the sequence that is defined on
a unitig and let Ū

i

be its reverse complement. All characters in the
sequences originate from the ordered alphabet ⌃ = {A,C,G, T}.
To index these sequences in a suffix array, all unitigs and their
reverse complements are concatenated and separated by sentinels.
The resulting text can be denoted as T = [U1$, Ū1$, ..., Un

$, Ū
n

$],
where n is the total number of unitigs to be indexed and $ is
a unique sentinel character that is lexicographically lower than
all other characters in ⌃. Since the unitigs of the first graph are
concatenated into T before the unitigs of the second graph, the
sentinel at position � indicates the boundary between the graphs,
where � is equal to two times the number of unitigs in the first
graph. The substring of T ranging from i to j is denoted by T

i...j

,
for 1 i j n. The substring T

i

...

n

is called the i’th suffix

of T and is denoted by S

i

. Since sentinels are unique, the string
S

i

is terminated when a sentinel is encountered. The suffix array
SA[1, n] of T is a permutation of the integers in [1, n], such that
S

SA[i�1] <

lex

S

SA[i] for all 1 < i n. In other words, SA

describes the lexicographical order of suffixes (see Figure 16).

2 THE LCP ARRAY
The longest common prefix array (LCP) can be seen as a
supplementary data structure to the suffix array, and describes the
length of the longest common prefix between S

SA[i] and S

SA[i+1]

for LCP

i

, where LCP0 has a fixed value of �1 (see Figure 16).
From the LCP array it is easy to derive the longest common
substring that is found in both sets of unitigs. By looking at
argmax(LCP), to make sure that this substring is observed in
both graphs, the following constraint SA

argmax(LCP) > � Y
SA

argmax(LCP)�1 > � has to be true. Various linear time
algorithms have recently been proposed [7] to efficiently calculate
the LCP array alongside the construction of the suffix array. For
the alignment of two assembly graphs the algorithm proposed here
uses exact matching stretches of sequence between two graphs. The
LCP array is used for this purpose. From this requirement it follows
that it is not necessary to calculate every value of the LCP array,
since the algorithm is constrained to finding the longest common
substring that occurs in both graphs. So that suffixes that originated
from the same graph do not need to be compared against each other.
In the example outlined in Figure 16, this means that the calculation
of the LCP for indices 1, 3, 9, 6, 7 and 12 could be skipped.

12

Probubble

Fig. 16: Example of four unitig sequences (GTACG, GTA, CGTACA and TAT) originating from two string graphs (indicated with blue
and red). Longest common valid substring starts at positions 0 and 11 in T and has a length of 4. For clarity, reverse complements of the
sequences have been left out.

13

