
Internal Report 2013-05 May 2013

Universiteit Leiden

Opleiding Informatica

On GPU Fourier Transformations

for

a Thesis

Giso Dal

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

ON GPU FOURIER TRANSFORMATIONS

by

GISO DAL, BSc.

THESIS

Presented to the Faculty of the Graduate School of

Leiden University

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Leiden Institute of Advanced Computer Science

LEIDEN UNIVERSITY

March 28, 2013

Abstract

The Fourier Transform is one of the most influential mathematical equations of our time.

The Discrete Fourier Transform (DFT) (which is equal to the Fourier Transform for sig-

nals with equally spaced samples) has been improved by a more efficient algorithm called

the Fast Fourier Transform contributed by Cooley-Tukey[8] and Gentlemen-Sande[11]. Im-

provements since then have primarily been focused on hardware correspondence.

The terms memory wall and power wall restrict CPUs from increasing their performance

the way they have in the past. CPUs can only increase the number of cores, following the

example of graphics cards and increasing parallelization. Developments like CUDA have

made it possible to program GPUs the way one would a CPU. Publications on optimization

of FFTs on GPUs have primarily been focused on overlapping data transfer and computa-

tion, and multi-dimensional FFTs. As a multi-dimensional FFT consists for 1-dimensional

FFTs along each dimension, we focus on optimizing the 1-dimensional case and propose a

method to run the FFT algorithm on multiple GPUs having minimized communication.

iii

Table of Contents

Page

Abstract . iii

Table of Contents . iv

Chapter

1 Introduction . 1

2 The Fourier Transform . 3

2.1 Discrete Fourier Transform . 3

2.1.1 Complex Numbers . 4

2.1.2 Trigonometric Interpolation . 5

2.1.3 Twiddle Factors . 6

2.1.4 The Procedure . 8

2.2 Fast Fourier Transform . 9

2.2.1 Decimation-in-time . 9

2.2.2 Decimation-in-frequency . 13

2.2.3 FFT Output Rearrangement . 15

2.2.4 Butterflies . 17

2.2.5 Variants . 19

2.3 Multi-Dimensional Fourier Transform . 20

3 GPU Optimizations . 21

3.1 GPU Architecture . 22

3.1.1 Hardware Architecture . 22

3.1.2 Thread Execution . 24

3.1.3 Global Memory . 26

3.1.4 Shared Memory . 28

3.1.5 Constant and Texture Memory . 29

iv

3.2 Combining the FFT and GPU . 30

3.2.1 Thread-Level-Parallelism . 30

3.2.2 Data Input . 32

3.2.3 Pre-calculating Twiddle Factors . 39

3.2.4 Instruction-Level-Parallelism . 41

3.2.5 Solving DFTs on a Streaming Multiprocessor 44

3.2.6 Data Output . 47

3.2.7 Multi-GPU FFT . 49

4 Results . 51

4.1 Theoretical Gain . 51

4.2 Algorithm Comparison . 54

4.2.1 Elemental Components . 54

4.2.2 The Giants . 58

4.3 Future Work . 63

4.4 Conclusion . 68

v

Chapter 1

Introduction

The Discrete Fourier Transform (DFT) in the field of signal processing is the equivalent

of the continuous Fourier Transform for signals of which samples are separated by equal

intervals. The Fast Fourier Transform (FFT) proposed by Cooley-Tukey[8] is a method

to calculate the DFT reducing the computational complexity from O(n2) to O(n log n).

Their method would later become known as decimation-in-time and the FFT proposed by

Gentlemen-Sande[11] would become known as decimation-in-frequency. Increased perfor-

mance since then would primarily rely on the exploitation of hardware architectures.

Developments like Compute Unified Device Architecture (CUDA) by NVIDIA has brought

graphics cards in reach of developers and researchers. It is a parallel computation platform

and programming model. Using this model, algorithms formally developed for the CPU

can be redesigned for GPUs. The FFT is not a textbook applicant for GPU optimization

due to its data dependencies throughout the algorithm, revealing it to be less parallel in

nature than desirable. The GPU can however accommodate the needs of the FFT with its

unique memory architecture outperforming CPUs with the use of many threads and high

bandwidth.

Work has been done on the overlapping of data transfer and computation for 3-dimensional

FFTs[21, 27, 13], we show how this can be done for multi-GPU FFTs with the aid of the

proposed distributed butterflies. A more straightforward approach motivated by NVIDIA’s

best practice guide[2] are the memory usage optimizations proposed by [12]. Yet these

contributions should be standard by now. Multi-dimensional FFTs seem to be a hard topic

1

because the memory architecture of the GPU does not perform well when accessing data

along the rows of different dimensions. [26, 17, 16, 7, 12] tackle this issue by optimizing

memory locality through bank-conflict reduction and transposing the data as the calcula-

tions progress along each dimension. Publications for multi-GPU implementations of the

FFT are scarce, but [7] proposes a method to calculate a 3-dimensional FFT with a com-

plex web of CUDA, PThread, MPI en Infiniband IB/verbs.

We contribute to this field of research the following:

• We discuss a CUDA FFT implementation from scratch. In order to develop an

efficient FFT implementation we must first dive into the architecture and rely on

GPU characteristic information as revealed by [24, 15] and NVIDIA[2].

• We optimize the FFT by using a higher radix, requiring less global memory accesses.

• Most work has been done on multi-dimensional FFTs. We propose a method of

calculating a large n-dimensional FFT on multiple GPUs without synchronization

nor data sharing during the algorithm.

• Computation is moved to faster memories as much as possible, including the L2 cache

which to the best of our knowledge has not been done yet.

We start with the mathematical background of the Discrete Fourier Transform and the Fast

Fourier Transform in Chapter 2. Chapter 3 consists of two major sections. Section 3.1 will

discuss the hardware architecture Fermi [2, 3, 4] and how the CUDA framework maps to

this architecture. Section 3.2 discusses a FFT implementation in great detail and how it is

influenced by the Fermi architecture. We finish with results and comparisons in Chapter 4.

2

Chapter 2

The Fourier Transform

The Fourier transform has many applications. In general, it tries to separate noise from

repeating cyclic patterns in some given data x. We speak of Fourier frequency f , if x

contains a cyclic pattern which repeats f times. In other words, it transforms a function

of time to a function of frequency. As the Fourier transform is reversible, we can always

return to the original function.

We start by describing the Discrete Fourier Transform in Section 2.1, in which we also give

some required mathematical background on complex numbers and trigonometry to under-

stand the inner workings of Fourier transform algorithms. The Fast Fourier Transform will

be described in Section 2.2, including some known variants and a mathematical explanation

through an example. Finally, Section 2.3 will show how to perform and multi-dimensional

Fourier Transform.

2.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is an invertible, linear transformation of time com-

plexity O(n2)[25].

F : Cn −→ Cn,

where C is the set of complex numbers.

Given data set x = {x0, x1, . . . , xN−1}, withN = |x|. WithX = {X0, X1, . . . , Xr, . . . , XN−1}

3

the DFT of x is denoted X = DFT(x). Equation 2.1 shows the mathematical representation

of the DFT and Equation 2.2 its inverse.

Xr =
N−1∑
l=0

x` · ωr`N , (2.1)

xn =
1

N

N−1∑
r=0

Xr · ωr`N , (2.2)

with r = {0, . . . , N − 1}, ωr`N = e−i2π
r`
N , e the base of natural logarithm and i =

√
−1.

Complex numbers and trigonometry play an important part in these equations. The fol-

lowing sections discuss the mathematical background to give an understanding of how to

implement the DFT algorithm.

2.1.1 Complex Numbers

Let R be the set of real numbers and C be the set of complex numbers. Complex numbers

were introduced to solve polynomial equations having no solution in R. C contains numbers

of the form a + ib, where a, b ∈ R and i =
√
−1. Operators have to be defined to be able

to do calculations with these numbers. For any φ = a + ib ∈ C, let φr refer to its real

part a and let φi refer to its imaginary part b. Let φ, ψ ∈ C, equations 2.3 to 2.8 define

complex inverse, multiplicative inverse, addition, subtraction, division and multiplication,

respectively.

φ = −φr +−iφi. (2.3)

φ−1 =
φr − iφi
φ2
r + φ2

i

. (2.4)

φ+ ψ = (φr + ψr) + i(φi + ψi). (2.5)

φ− ψ = (φr − ψi) + i(φi − ψi). (2.6)

φ

ψ
=

(φr · ψr + φi · ψi) + (φi · ψr − φr · ψi)
ψ2
r + ψ2

i

. (2.7)

φ · ψ = (φr · ψi − φi · ψr) + i(φr · ψi + φi · ψr). (2.8)

4

It will become clear that Fourier transform algorithms only use complex multiplication,

addition and subtraction.

2.1.2 Trigonometric Interpolation

Interpolation is a technique used where data points are mapped to points within the range

of the given data. Take constant interpolation for example, where data points within the

given data and a certain range get the same value. Figure 2.1 shows examples for constant,

linear and polynomial interpolation.

Figure 2.1 Interpolation examples

(a) Constant Interpolation (b) Linear Interpolation (c) Polynomial Interpolation

It should now be clear what the purpose of interpolation is. Trigonometric interpolation[20]

refers to polynomial interpolation of functions consisting of the sum of cosines and sines

for a given period. It is suited for highly periodic functions. An example of a trigonometric

interpolation method is the DFT.

The Fourier transform algorithms map to an Imaginary domain. To show the relation

between the imaginary points or complex numbers and to visualize them, we need to use

Euler’s formula[18], which establishes the relationship between the trigonometric functions

and the complex exponential function. Euler’s formula states that, for any real number ρ:

eiρ = cos ρ+ i sin ρ, (2.9)

5

where e is the base of the natural logarithm, i =
√
−1, and cos and sin are the trigonometric

functions cosine and sine respectively, with the argument ρ given in radians. Figure 2.2

shows an example of how to plot a complex number. It consists of real axis R and an

imaginary axis I.

Figure 2.2 Visualizing complex numbers

cos ρ

sin ρ

ρ

I

R

eiρ = cos ρ+ i sin ρ

Let φ be a complex number. The relationship between trigonometric functions and complex

numbers can be shown as follows:

eφ = eφr+iφi = eφreiφi , and eiφi = cosφi + i sinφi (2.10)

Thus, R(eφ) = eφr + cosφi and I(eφ) = eφr sinφi. This will be used to partially solve

Equation 2.1 in the following section.

2.1.3 Twiddle Factors

The ω values in Equation 2.1 and 2.2 are also known as twiddle factors [11]. The term was

proposed by Gentleman-Sande in 1966 to describe the trigonometric constant coefficients

used in Fourier transform algorithms. It became widely accepted and has been used in

6

many papers since then.

The twiddle factors can be rewritten into a trigonometric form with the aid of Euler’s

formula (Equation 2.9):

ωr`N = e−i2π
r`
N = cos−2π

r`

N
+ i sin−2π

r`

N
. (2.11)

In Section 2.1.4 we use Equation 2.11 to create a function calculating the twiddle factors.

Trigonometric function calls are expensive and can be reduced due to the periodic nature

the twiddle factors. Twiddle factors are symmetric and are equally spaced when visualizing

them like in Figure 2.2. This shows through trigonometric identities that if a+ib is a twiddle

factor, then ±a ± ib and ±b ± ia are also twiddle factors. In addition, the following rules

hold for any N :

ω0
N = 1 + i0, (2.12)

ωr`N = ωr` ± αN
N = ωr` mod N

N , (2.13)

where α ∈ N and α ≥ 0. This information was utilized in an algorithm proposed by

Singleton[22] for certain N . Obviously, the outcome of a Fourier transform also has sym-

metry. Thus we can reduce the number of operations given this information.

7

2.1.4 The Procedure

Algorithm 2.1 shows the translation from the mathematical representation of the DFT

(Equation 2.1) to pseudo code.

Algorithm 2.1 Discrete Fourier Transform

. x is the input array

function Twiddle(r`,N)

c← −2π r`
N

return cos(c) + i sin(c)

end function

procedure DFT(x)

N ← |x|

for r ← 0 to N do

Xr ← 0

for `← 0 to N do

Xr ← Xr + x` ∗Twiddle(r`,N)

`← `+ 1

end for

r ← r + 1

end for

return X

end procedure

8

2.2 Fast Fourier Transform

The Fast Fourier Transform (FFT) takes advantage of the symmetric property of twiddle

factors. Thereby, the number of calculation required are reduced and this results in a com-

putational complexity of O(n log n)[14].

The FFT variant proposed by Cooley and Tukey[8] is most commonly used. It employs a

divide and conquer strategy, which partitions a DFT into smaller and smaller DFTs. This

algorithm will be used to explain the FFT. The term radix is used to indicate in how many

partitions the DFT is split at each decimation step. Take a radix-2 algorithm for example.

Given data set of size N = 8, it will be split in 2, creating 2 DFTs of size N / 2 = 4. We

decimate again and get 4 DFTs of size 2. This process continues until all DFTs are of size

1. It implies that a radix-2 Cooley-Tukey can only work with 2n data sizes, and radix-r

can only work with rn data sizes. There are two main approaches to calculate the FFT,

called decimation-in-time (DIT) and decimation-in-frequency (DIF). We discuss these in

Section 2.2.1 and 2.2.2 including mathematical derivations. We then show how to handle

the output produced by the FFT in Section 2.2.3 and show some known variants of the

FFT in Section 2.2.5.

2.2.1 Decimation-in-time

Given data set x = {x0, x1, . . . , xN−1}, with N = |x|. X = {X0, X1, . . . , Xr, . . . , XN−1}

gives the Fast Fourier Transform of x denoted by X = FFT (x). As an example we will

use a radix-P algorithm with an input data set of size N = 12 and calculate the FFT by

P sub-DFTs (X0, X1, X2) of size N
P

, with P = 3. Note that the size of the input to a

traditional radix-3 algorithm must be 3n.

Decimation-in-time and and decimation-in-frequency are mirrored versions of each other.

The difference between DIT and DIF can be seen in the derivation from the general DFT

9

formula (Equation 2.1). Remember that we want three partitions:

Xr =
N−1∑
`=0

x`ω
r`
N

=

N
3
−1∑

k=0

x3k+0ω
r(3k+0)
N +

N
3
−1∑

k=0

x3k+1ω
r(3k+1)
N +

N
3
−1∑

k=0

x3k+2ω
r(3k+2)
N

= ω0r
N

N
3
−1∑

k=0

x3k+0ω
r(3k)
N + ω1r

N

N
3
−1∑

k=0

x3k+1ω
r(3k)
N + ω2r

N

N
3
−1∑

k=0

x3k+2ω
r(3k)
N

= ω0r
N

N
3
−1∑

k=0

x3k+0ω
rk
N
3

+ ω1r
N

N
3
−1∑

k=0

x3k+1ω
rk
N
3

+ ω2r
N

N
3
−1∑

k=0

x3k+2ω
rk
N
3
,

with r = {0, 1, . . . , N − 1}. We can now isolate our three sub-DFTs.

X0
r =

N
3
−1∑

k=0

x3k+0ω
rk
N
3

X1
r =

N
3
−1∑

k=0

x3k+1ω
rk
N
3

X2
r =

N
3
−1∑

k=0

x3k+2ω
rk
N
3
,

with r = {0, 1, . . . , N
3
−1}. Note that some twiddle factors are missing. They will participate

in the calculation at a later stage we refer to as the combination step. We can first calculate

the sub-DFTs and combine them afterward with the missing twiddle factors. From the

previous derivation we can conclude that the input to each sub-DFT is determined by:

X0
r ← x3r+0,

X1
r ← x3r+1,

X2
r ← x3r+2,

with r = {0, 1, . . . , N/3 − 1}. We can now choose to solve the sub-DFTs with the DFT

algorithm described in Section 2.1 or follow the Cooley-Tukey algorithm, and continue

10

decimating. The size of each sub-DFT is now N
3

= 4, which means we cannot continue

radix-3, because 4 is not dividable by 3. We can however continue radix-2, taking two more

steps, or radix-4, taking on more step. This technique is called mixed-radix, on the count

of using different radixes consecutively to decimate the DFT. More FFT variants will be

discussed in Section 2.2.5. Also note that if input size is N , then the FFT radix-N would

be the original DFT. Equation 2.14 is a generalization for the isolation into sub-DFTs for

any P .

Xm
r =

N
P
−1∑

k=0

xPk+mω
rk
N
P
, (2.14)

with m = {0, 1, . . . , P − 1}.

Lets look at the combination step. Due to the periodic phase of each sub-DFT, we can

conclude that Xm
r ≡ Xm

r+N
3

≡ Xm
r+ 2N

3

. This means that the output is:

Xr+ 0N
3

= ω
0(r+ 0N

3
)

N X0
r + ω

1(r+ 0N
3

)

N X1
r + ω

2(r+ 0N
3

)

N X2
r ,

Xr+ 1N
3

= ω
0(r+ 1N

3
)

N X0
r + ω

1(r+ 1N
3

)

N X1
r + ω

2(r+ 1N
3

)

N X2
r ,

Xr+ 2N
3

= ω
0(r+ 2N

3
)

N X0
r + ω

1(r+ 2N
3

)

N X1
r + ω

2(r+ 2N
3

)

N X2
r ,

with r = {0, 1, . . . , N
3
− 1}. A generalized version of these formulas for P partitions is:

Xr+mN
P

=
P−1∑
l=0

N
P
−1∑

k=0

xPk+lω
rk
N
P

ωrlN , (2.15)

with m = {0, 1, . . . , P − 1}. Figure 2.3 shows the DIT approach partially for a radix-3

algorithm, how the input data is moved to the respective sub-DFT including the combi-

nation step. The structure is recursive in nature, meaning that inside the DFT node the

same structure arises. Whenever twiddle factors are shown, it means that the data value

must be multiplied with it.

11

Figure 2.3 DIT Fourier Transform

x0

x1

x2

x3

x4

x5

x6

x7

x8

x0

x3

x6

x4

x7

x10

x2

x5

x8

DFT X0

DFT X1

DFT X2

X0

X1

X2

X3

X4

X5

X6

X7

X8

x9

x10

x11

X9

X10

X11

x9

x1

x11

ω0·0
12 +

ω0·1
12

ω0·2
12

12

2.2.2 Decimation-in-frequency

As mentioned before, decimation-in-frequency is the mirrored version of decimation-in-

time. It does the combination step at the beginning. Again we start from Equation 2.1

and use P = 3 to derive the first step with the DIF approach:

Xr =
N−1∑
`=0

xlω
r`
N

=

1N
3
−1∑

k= 0N
3

xkω
rk
N +

2N
3
−1∑

k= 1N
3

xkω
rk
N +

3N
3
−1∑

k= 2N
3

xkω
rk
N

=

N
3
−1∑

k=0

xk+ 0N
3
ω
r(k+ 0N

3
)

N +

N
3
−1∑

k=0

xk+ 1N
3
ω
r(k+ 1N

3
)

N +

N
3
−1∑

k=0

xk+ 2N
3
ω
r(k+ 2N

3
)

N

= ω
0N
3
r

N

N
3
−1∑

k=0

xk+ 0N
3
ωrkN + ω

1N
3
r

N

N
3
−1∑

k=0

xk+ 1N
3
ωrkN + ω

1N
3
r

N

N
3
−1∑

k=0

xk+ 2N
3
ωrkN

= ω0r
3

N
3
−1∑

k=0

xk+ 0N
3
ωrkN + ω1r

3

N
3
−1∑

k=0

xk+ 1N
3
ωrkN + ω2r

3

N
3
−1∑

k=0

xk+ 2N
3
ωrkN

=

N
3
−1∑

k=0

(
xk+ 0N

3
ω0r
3 + xk+ 1N

3
ω1r
3 + xk+ 2N

3
ω2r
3

)
ωrkN ,

with r = {0, 1, . . . , N − 1}. Now instead of interleaved input, we have consecutive input,

but the output is interleaved. The input is determined by:

Xm
r ← {x 0N

3
+r, x 1N

3
+r, x 2N

3
+r},

13

with m = {0, 1, . . . , 3} and r = {0, 1, . . . , N
3
− 1}. The output thus is:

X3r+0 =

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+0)
3 + xk+ 1N

3
ω
1(3r+0)
3 + xk+ 2N

3
ω
2(3r+0)
3

)
ω
(3r+0)k
N

=

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+0)
3 + xk+ 1N

3
ω
1(3r+0)
3 + xk+ 2N

3
ω
2(3r+0)
3

)
ω0k
N ω

3rk
N

=

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+0)
3 + xk+ 1N

3
ω
1(3r+0)
3 + xk+ 2N

3
ω
2(3r+0)
3

)
ω0k
N ω

rk
3

X3r+1 =

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+1)
3 + xk+ 1N

3
ω
1(3r+1)
3 + xk+ 2N

3
ω
2(3r+1)
3

)
ω
(3r+1)k
N

=

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+1)
3 + xk+ 1N

3
ω
1(3r+1)
3 + xk+ 2N

3
ω
2(3r+1)
3

)
ω1k
N ω

3rk
N

=

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+1)
3 + xk+ 1N

3
ω
1(3r+1)
3 + xk+ 2N

3
ω
2(3r+1)
3

)
ω1k
N ω

rk
3

X3r+2 =

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+2)
3 + xk+ 1N

3
ω
1(3r+2)
3 + xk+ 2N

3
ω
2(3r+2)
3

)
ω
(3r+2)k
N

=

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+2)
3 + xk+ 1N

3
ω
1(3r+2)
3 + xk+ 2N

3
ω
2(3r+2)
3

)
ω2k
N ω

3rk
N

=

N
3
−1∑

k=0

(
xk+ 0N

3
ω
0(3r+2)
3 + xk+ 1N

3
ω
1(3r+2)
3 + xk+ 2N

3
ω
2(3r+2)
3

)
ω2k
N ω

rk
3

with r = {0, 1, . . . , N
3
− 1}. The outcome of one step of this equation is the input to each

sub-DFT. A generalization for the input of P sub-DFTs is:

Xm
r ←

(
P−1∑
l

xr+ lN
P
ω
l(Pr+m)
P

)
ωmlN , (2.16)

with m = {0, 1, . . . , P − 1} and r = {0, 1, . . . , N
P
− 1}. When looking at the example of

three partitions and at the data needed by X0 we see:

14

X0
0 ← {x 0N

3
+0, x 1N

3
+0, x 2N

3
+0}

X0
1 ← {x 0N

3
+1, x 1N

3
+1, x 2N

3
+1}

X0
... ← . . .

X0
P−1 ← {x 0N

3
+P−1, x 1N

3
+P−1, x 2N

3
+P−1}

Figure 2.5 shows the decimation-in-frequency approach partially. Here also, the data values

need to be multiplied with the twiddle factors.

Figure 2.4 DIF Fourier Transform

x0

x1

x2

x3

x4

x5

x6

x7

x8

DFT X0

DFT X1

DFT X2

X0

X3

X6

X9

X1

X4

X7

X10

X2

x9

x10

x11

X5

X8

X11

ω0·0
3 ω0

12

ω0·1
3

ω0·2
3

+ X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

2.2.3 FFT Output Rearrangement

We have seen in the previous sections that the input or output of a FFT algorithm is not

in natural order, depending on the approach we use. Furthermore, each decimation causes

the output to become more out of order. Lets look at a DIF FFT radix-2 example. It can

15

only be used on 2n sized data, we choose N = 23. We have in total log2 8 = 3 decimations,

or steps. A unique relationship reveals itself with radix-2. When binary encoding the data

positions, we can see that the output is bit-reversed, regardless of the approach used.

Figure 2.5 DIF data ordering

x0

x1

x2

x3

x4

x5

x6

x7

X
′
0

X
′
2

X
′
4

X
′
6

X
′
1

X
′
3

X
′
5

X
′
7

X
′
0

X
′
4

X
′
2

X
′
6

X
′
1

X
′
5

X
′
3

X
′
7

X0

X4

X2

X6

X1

X5

X3

X7

Step 1 Step 2 Step 3

000

001

010

011

100

101

110

111

000

100

010

110

001

010

011

111

Step 1 will partition the data into two parts of size 4, Step 2 will create 4 partitions of size

2, finishing off with Step 3 creating 8 partitions of size 1. The input does not have to be in

natural order. We could also feed the radix-2 algorithm bit-reversed input, and it will come

out in natural order! To handle a more general case, Algorithm 2.2 will show the stepwise

reordering of data (shown in Figure 2.5) for any radix-r algorithm. The reordering can also

be done in just one step.

16

Algorithm 2.2 Reorder data stepwise

. X is the input array

. r is the radix

. N ← |X|

function reorder(X, r, N)

for S ← N to 1 do

for offset← 0 to N do

for i← 0 to S do

T [offset+ (i mod r) · S
r

+ i
r
]← X[offset+ i]

i← i+ 1

end for

offset← offset+ S

end for

X ← T

S ← S/r

end for

end function

2.2.4 Butterflies

The term butterfly refers to the phase of the computation that combines sub-DFTs or

decimates the DFT into sub-DFTs. The name comes from the shapes that emerge when

looking at the data-flow diagram of a FFT. Figure 2.6 shows data accesses for a DIF radix-2

algorithm. Butterfly shapes are most recognizable at step 3.

17

Figure 2.6 DIF radix-2 data access

x0

x1

x2

x3

x4

x5

x6

x7

X
′
0

X
′
2

X
′
4

X
′
6

X
′
1

X
′
3

X
′
5

X
′
7

X
′
0

X
′
4

X
′
2

X
′
6

X
′
1

X
′
5

X
′
3

X
′
7

X0

X4

X2

X6

X1

X5

X3

X7

Step 1 Step 2 Step 3

Gentleman-Sande [11] have made these butterflies computationally more efficient for decimation-

in-frequency, by precalculating twiddle factors and incorporating them in the calculation.

We will only cover the radix-2 case. To solve one butterfly we get the two equations:

X0
` = (x` · ω0

2 + x`+N
2
· ω0

2)ω0
N , (2.17)

X1
` = (x` · ω0

2 + x`+N
2
· ω1

2)ω`N , (2.18)

with ` = {0, 1, . . . , N
2
− 1}. We can simplify this, because ω0

2 = 1 + i0 and ω1
2 = −1 + i0,

thus we get the butterfly in Figure 2.7.

Figure 2.7 DIF radix-2 butterfly

x`

x`+N
2

x` + x`+N
2

(x` − x`+N
2

)ω`N

Analogously, Cooley-Tukey [8] optimized the butterflies for decimation-in-time, resulting

in Figure 2.8.

18

Figure 2.8 DIT radix-2 butterfly

X0

X1

X0 +X1 · ω`N

X0 −X1 · ω`N

We could do this trick for all radix-r algorithms, but the twiddle factors don’t always

evaluate that nicely. Radix-2 and radix-4 are optimal, as their twiddle factors do not

contain values from R, but from N (the set of natural numbers).

2.2.5 Variants

There are variants to the FFT, as Section 2.2.1 hinted towards. When talking about the

algorithms, we refer to the DIF approach. The radix-r algorithm needs input of size rn.

At each step, the DFT is decimated into r sub-DFTs. The limited data sizes it can handle

are very restricting, which brings us to mixed-radix. We do not have to always decimate

into the same number of sub-DFTs. We can change r to whatever we want at each step,

as long as the DFT size is dividable by r. Termination is the same as for radix-r and the

allowed data sizes are less restricting, namely 2n · 3m · 4o · 5p · There is a different

approach called Split-radix [9], which uses a composition of radixes at one step. A FFT of

size N = 8 can be solved by a radix-2 algorithm, but it can also be solved by splitting it

into sub problems of size 2, 2 and 4, solving it by respective radix-r algorithms.

19

2.3 Multi-Dimensional Fourier Transform

We have seen the 1-dimensional mathematical representation of the DFT in Section 2.1.

The equation for the n-dimensional case is as follows:

Xr =
N−1∑
`=0

x`ω
r`
N , (2.19)

where x is n-dimensional data of size N1 × N2 × · · · × Nn, r = (r1, r2, . . . , rn), N =

(N1, N2, . . . , Nn), ` = (`1, `2, . . . , `n), ωr`N = e−i2π
r`
N , e the base of natural logarithm and

i =
√
−1. In other words, 1-dimensional DFTs are performed along each dimension. Let

us consider a 2-dimensional example:

X(r1, r2) =

N2−1∑
`2=0

N1−1∑
`1=0

x(`1, `2)ω
`1r1
N1

ω`2r2N2
, (2.20)

with x the 2-dimensional input data of size N1 × N2. Obviously, this DFT can be solved

by a FFT algorithm, given the appropriate derivation as shown in Section 2.2.

20

Chapter 3

GPU Optimizations

There are two ways to improve performance of any algorithm: improve its time complexity

and/or make it architecture specific. The later takes the host architecture into account in

(re-)designing the algorithm. We will use the GPU as the host architecture. Our approach

to improve the Fast Fourier Transform is to take as much knowledge into account as possi-

ble. Popular FFT algorithms like FFTW[10] (for CPU) and NVIDIA’s FFT[5] (for GPU)

both have an optional preparation step. When invoked, the algorithm is optimized with

the knowledge present at the time. This takes time and is therefore only advisable when

running batches of the same size FFTs. We will tempt to do the same.

To make an algorithm architecture specific, we must first understand the architecture. A

GPU architecture is described in Section 3.1. We will then continue to describing opti-

mizations to the FFT specific to the presented architecture in Section 3.2.

21

3.1 GPU Architecture

The architecture of choice is one called Fermi [2, 3, 4] from NVIDIA. They make a distinc-

tion between different Fermi architectures with the term compute capability. We will use

compute capability 2.0 from now on. The manner in which we will run software is defined

by NVIDIA’s Compute Unified Device Architecture (CUDA), which is a parallel program-

ming framework that extends the C programming language. Today, also C++ is supported.

We first show a global overview of the architecture in Section 3.1.1. Threads running on

this architecture have certain restrictions which will be discussed in Section 3.1.2. Sections

3.1.3 through 3.1.5 describe the different types of memory and how to use them optimally.

3.1.1 Hardware Architecture

Figure 3.1 shows the Fermi architecture partially. Only the parts are shown that are

of interest in this document. The GPU has components called Streaming Multiprocessors

(SM), which contain a certain number of cores. SMs cannot access each others local storage

but can all access global memory.

22

Figure 3.1 Fermi architecture

GPU

Interconnect

Core

Core

Core

Core

Core Core

Core Core

LD/ST

.

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

. . .

SFU

SFU

SFU

SFU

Register File

L1 Cache/Shared Memory

Global

Memory

SM

SM

SM

SM

SM

SM

. . .

A SM has four Special Function Units (SFU) dedicated to perform instructions such as sin,

cosine, square root, etc. One instruction per thread, per clock, is executed on each SFU.

Threads are scheduled in batches of 32, thus it will take 8 clock cycles. A SM also has 16

load and store (LD/ST) units. Each unit calculates a source or destination address in one

clock cycle, after which the data is either store or loaded by the same unit. There is also

a 64KB configurable L1 cache. The user can choose between two configurations:

• 16KB Shared memory - 48KB L1 cache

• 48KB Shared memory - 16KB L1 cache

The L1 cache can only be accessed by the SM it is located on. A larger 768KB L2 cache is

reachable from each SM. The dynamics of data-flow are addressed in Section 3.1.2, which

shows the capabilities of threads.

23

3.1.2 Thread Execution

A CUDA kernel entails a function including all functions it depends on, much like C

programming with its main function and depending functions. A kernel can therefore be

seen as a standalone application. Each kernel is executed by a user specified number of

threads with the following structure. A grid is an at most 3-dimensional structure consisting

of blocks. In turn, blocks are an at most 3-dimensional structure consisting of threads. This

structure is visualized in Figure 3.2, taking as an example a 2× 3 grid and block structure.

Figure 3.2 CUDA thread structure

Block (0,0) Block (1,0)

Block (2,1)Block (1,1)Block (0,1)

Block (2,0)

Grid

Thread (0,0) Thread (1,0)

Thread (2,1)Thread (1,1)Thread (0,1)

Thread (2,0)

Block (0,1)

Each level has a set of restrictions. Blocks are distributed to SMs and a block is executed

as a whole on a SM. When multiple blocks are executed on the same SM, they have to

24

share the resources. Blocks can only exchange information through global memory, whereas

threads can exchange information through shared memory if they reside within the same

block. Threads within a block are executed in batches of 32, called warps. It is always

advisable to therefore execute the function with a multiple of 32 threads. When talking

about threads, an apparent issue is synchronization. CUDA provide such functionality,

yet it is limited to threads within a block. Block synchronization can only be achieved at

function termination or by implementing it through global memory. Figure 3.3 shows all

the data transfer capabilities and restrictions.

Figure 3.3 CUDA memory model

Grid

Block Block

Thread

Shared Memory

Registers

Local

Thread

Registers

Local

Thread

Shared Memory

Registers

Local

Thread

Registers

Local

Global Memory

Constant Memory

Texture Memory

There is a limit to how many threads can be executed concurrently, because resources on

a SM are shared by all threads running on it. Threads can use a maximum of 64 registers

each. Mind that as functions grow more complex, the number of registers required to run

it also increases. Some parameters that restrict thread occupancy are shown in Table 3.1.

25

Table 3.1 thread restricting parameters

Max number of threads per block 1024

Max number of blocks per SM 8

Max number of threads per SM 1536

Max amount of shared memory per SM 48KB

Max amount of 32-bit registers per SM 32KB

Max resident threads per SM 1536

Max resident blocks per SM 8

Max resident warps per SM 48

Max amount of 32-bit registers per thread 63

3.1.3 Global Memory

Global memory is a virtual address space of which the values initially reside in off-chip

DRAM. It is the biggest and slowest memory on the GPU. Accesses are optimized by a

cache hierarchy much like CPUs have, consisting of a Level-2 (L2) and Level-1 (L1) caches.

Each SM has its own L1 cache, which other SMs cannot access. The L2 cache is bigger,

slower and each SM has access to it. Communication between SMs is fastest through this

cache. When a thread requests a variable from global memory (when it is not already in a

register), it will look for it in L1. If it is there we speak of a cache hit, otherwise it is a cache

miss and we request the variable from the next memory in the hierarchy, the L2 cache. If

it is not in the L2 cache we must go through DRAM. A variable in global memory can thus

reside in DRAM, L2, L1 or a register. When a cache is full, values need to be evicted to make

room for others. When evicting a value, it is written to the next memory in the hierarchy.

We will be working with arrays of data. An array element will get evicted when (1) the

cache is full and (2) it is has not been accessed the longest. Writes to global (or shared)

memory are only guaranteed to be visible by other threads after performing memory fence

functions or synchronization functions like __threadfence_block(), __threadfence(), or

__syncthreads(). When the volatile keyword is used, the compiler assumes the value can

26

be accessed at any time. All accesses will thus compile to actual memory read or write

instructions. A cache line is 128 bytes and maps to a 128 byte aligned segment in global

memory, which can be fully utilized by a parallel access mechanism. Note that typical data

types like single precision floating point values take up 4 bytes. A cache line can thus hold

32 values. Given data set x = {x0, x1, . . . , xN−1}, with N = |x|, global memory access is

said to be coalesced when 32 threads access data, and thread τ accesses elements xτ+32µ,

where µ = {0, 1, . . . , N
32
− 1}. This is more amply shown in Figure 3.9, where threads

Γ = {τ0, τ1, . . . , τ31} access memory addresses.

Figure 3.4 Coalescing examples for global memory access

Addresses

. . .

. . .

. . .

. . .

. . .

. . .

Threads

128

132

136

140

242

248

252

256

τ0

τ1

τ2

τ3

τ28

τ29

τ30

τ31

(a) Coalesced

Addresses

. . .

. . .

. . .

. . .

. . .

. . .

Threads

128

132

136

140

242

248

252

256

τ0

τ1

τ2

τ3

τ28

τ29

τ30

τ31

(b) Not coalesced

Addresses

. . .

. . .

. . .

. . .

. . .

. . .

Threads

128

132

136

140

242

248

252

256

τ0

τ1

τ2

τ3

τ28

τ29

τ30

τ31

(c) Not coalesced

As you can see from Figure 3.9, the data segments must also be aligned to 128 bytes.

When caching in both L1 and L2, the accesses are performed with 128-byte transactions. If

accesses are limited only to L2, then they are performed with 32-byte transactions reducing

over-fetching in case of scattered access patterns. The lifespan of data stored in global

27

memory lasts the execution of the entire program. On a side note, local memory is the

same as global memory and is thus managed the same way. The only difference consists of

the use of a different virtual address space.

3.1.4 Shared Memory

Shared memory resides on-chip and is used to shared data among threads within a block.

It consists of 32 banks, which each have 32-bit bandwidth. When an array is stored,

consecutive 4-byte elements are stored in consecutive banks. We speak of a bank conflict

when multiple threads access a different element in the same bank. Figure 3.5 shows when

conflicts occur.

Figure 3.5 Bank conflicts in shared memory

Banks

. . .

. . .

. . .

. . .

Threads

β0

β1

β2

β3

β28

β29

β30

β31

τ0

τ1

τ2

τ3

τ28

τ29

τ30

τ31

(a) Conflict free

Banks

. . .

. . .

. . .

. . .

Threads

β0

β1

β2

β3

β28

β29

β30

β31

τ0

τ1

τ2

τ3

τ28

τ29

τ30

τ31

(b) Conflict free

Banks

. . .

. . .

. . .

. . .

Threads

β0

β1

β2

β3

β28

β29

β30

β31

τ0

τ1

τ2

τ3

τ28

τ29

τ30

τ31

(c) (Not) conflict free

Figure 3.5a obviously has no conflicts. Figure 3.5b has a scattered access pattern, but also

28

has no conflicts. Figure 3.5c however brings an additional mechanism to light. Shared

memory has the ability to broadcast when the same data element within a bank is accessed

by multiple threads, thus not resulting in a bank conflict. Yet we do have a conflict if

multiple threads access different elements in the same bank. Reducing bank conflict will

increase performance. In contrast to global memory, the lifespan of data stored in shared

memory only lasts the execution of a block running the function.

3.1.5 Constant and Texture Memory

Two storage facilities have not yet been discussed, namely constant memory and texture

memory. Constant memory is 64KB, which has a broadcast functionality much like shared

memory. It is located however in device memory just like global memory, and thus share

the same access time. Each SM does have a constant cache of 8KB. Texture memory has

different limits regarding different textures. A 1-dimensional CUDA array has a maximum

width of 65536 elements for example. It caches neighboring elements when an access is

done, thus is optimized for walking through an array for example. It could be said that

constant memory is optimized for temporal locality and texture memory is optimized for

spacial locality.

29

3.2 Combining the FFT and GPU

The FFT is a data access intensive algorithm. Using fast memory when available is of

the essence. Global memory is the entry point of the GPU and is therefore unavoidable.

It has an access time of between the 400 to 800 clock cycles, for a maximum bandwidth

of 128 bytes (a cache line). Registers have an access time of 22 clock cycles in case of a

back-to-back register dependency, where the current instruction is using the output of the

previous instruction. Shared memory consists of 32 banks. Each bank has a bandwidth of

32 bits per two clock cycles. These differences become much greater with a higher compute

capability. Optimizing data access therefore means migrating accesses from global memory

to shared memory or registers. We will focus our efforts on optimizing the 1-dimensional

FFT. Any optimization for the 1-dimensional FFT also holds for the multi-dimensional

FFT, because it consists of 1-dimensional FFTs along each dimension. Per dimension,

each 1-dimensional FFT can run in parallel as seen in Section 2.3.

Each stage of the algorithm is discussed starting with the explanation in what ways the

computations can be divided among threads in Section 3.2.1. The way input data is

processed is discussed in Section 3.2.2. We then continue with how to minimize and optimize

instructions in sections 3.2.3 through 3.2.4. We then solve the remainder of the FFT

in Section 3.2.5 and handling the output in Section 3.2.6. We finish with an approach

calculating the FFT in multiple GPUs in Section 3.2.7

3.2.1 Thread-Level-Parallelism

The way the FFT can be parallelized is dictated by the abundance of data dependencies

like the ones shown in Figure 2.5. There are data dependencies between each step of the

algorithm, thus Step 1 must be executed before Step 2 and so on. This requirement has

to be met only partially. Figure 3.6 shows an example of how to divide the labor among

threads given these dependencies for a N = 8 DIF radix-2 FFT. The threads can run

30

concurrently without interaction with each other, because they only depend on the input

data. We will use the example for the remainder of this chapter.

Figure 3.6 Parallelized DIF radix-2

Thread 2

Thread 1

x0

x1

x2

x3

x4

x5

x6

x7

X
′
0

X
′
2

X
′
4

X
′
6

X
′
1

X
′
3

X
′
5

X
′
7

X
′
0

X
′
4

X
′
2

X
′
6

X
′
1

X
′
5

X
′
3

X
′
7

X0

X4

X2

X6

X1

X5

X3

X7

Step 1 Step 2 Step 3

X0

X1

X2

X3

X4

X5

X6

X7

There are ways to increase the number of threads used in Figure 3.6. We could do the

division of labor at a later step, giving the opportunity to create more threads. We could use

more threads initially, either idling a percentage of the threads or increase communication

between them, or we could use a higher radix at the first step. In fact, the output element

at each step can be calculated in parallel. Measures regarding data dependencies need to be

added in this case. When scheduling threads on a CPU, a typical approach is to run each

thread on a different core. The data processed by each thread is half the input size given the

previous example. This is to big workload for a thread running on a GPU due to restricting

parameters given in Section 3.1.2. The Fermi architecture explained in Section 3.1 clearly

shows that threads can exchange data on a SM via shared memory and that data exchange

between SMs goes through global memory, which is much slower. To keep data exchange

between SMs to a minimum, imagine the threads in Figure 3.6 being SMs on a GPU. Each

31

SM would only be dependent on the input data. Figure 3.7 shows the division of labor for

two blocks (running on different SMs) with threads T = {τ0, τ1, τ3, τ4}. Threads within a

block must synchronize at each step to obey data dependency restrictions.

Figure 3.7 Division of labor for GPU

Block 1

Block 0

x0

x1

x2

x3

x4

x5

x6

x7

τ0

τ1

τ2

τ3

τ0

τ1

τ2

τ3

τ0

τ1

τ2

τ3

τ0

τ1

τ2

τ3

τ0

τ1

τ2

τ3

τ0

τ1

τ2

τ3

Step 1 Step 2 Step 3

X0

X1

X2

X3

X4

X5

X6

X7

The following sections will break this approach down and discuss optimizations for each

stage of the algorithm.

3.2.2 Data Input

The input data is originally stored in global memory and must be transferred to shared

memory on the respective SM. The manner in which this is done greatly influences per-

formance. The FFT is an example of having a simple-strided access pattern, where each

access is for the same number of bytes and the pointer address is incremented with the

same amount between accesses. To fully use a cache line, we must do a coalesced memory

access as described in Section 3.1.3. For our host architecture, we say that elements are

accessed in stride-ρ when a warp accesses 4-byte elements and the distance between element

32

addresses is ρ · 4. By this definition, access is coalesced in case of a stride-1 access pattern

and is ρ times slower in case of a stride-ρ access pattern. For demonstration purposes from

now on, let a warp consist of 4 threads and let a cache line be of bandwidth 16 bytes.

Figure 3.8 gives a strided access pattern example with input data x = {x0, x1, . . . } on the

left and a cache line on the right of each figure.

Figure 3.8 Cache line usage in case of strided access patterns

x0
x1
x2
x3
x4
x5
x6

x0
x1
x2
x3

x7
. . .

(a) Stride-1: part 1

x0
x1
x2
x3
x4
x5
x6

x4
x5
x6
x7x7

. . .

(b) Stride-1: part 2

x0

x1

x2

x3

x0

x1

. . .

(c) Stride-2: part 1

x0

x1

x2

x3

x2

x3

. . .

(d) Stride-2: part 2

It follows from Section 2.2 that a DIT radix-r FFT has a stride-r access pattern. For

this reason we choose the DIF approach. Although a single thread has a stride-N
r

access

pattern, when put together in a warp, we get coalesced access. A complex data element

consists of a real and imaginary part represented by real numbers. We could store the

4-byte numbers consecutively, creating 8-byte elements. This situation is comparable to a

stride-2 access pattern. For a thread to read a complex number it must do two memory

accesses. The number of threads being able to read concurrently is thereby divided by two.

For this reason it is advisable to create an array holding the real parts and an array holding

the imaginary parts. As resources are limited per SM, we won’t copy all the input data to

shared memory, we will do the first step of the algorithm and reduce the size of the data

by the radix used. Figure 3.8 shows an example for a N = 16 DIF radix-2 FFT.

33

Figure 3.9 Stride-1 example for DIF radix-2 FFT

Global Memory

Cache Line

Shared Memory

(a) Legend

SM

SM

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x0

x1

x2

x3

x0

x1

x2

x3

x0

x1

x2

x3

(b) Action 1

SM

SM

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x4

x5

x6

x7

x0

x1

x2

x3

x4

x5

x6

x7

x0

x1

x2

x3

x4

x5

x6

x7

(c) Action 2

SM

SM

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x8

x9

x10

x11

X
′
0

X
′
2

X
′
4

X
′
6

x4

x5

x6

x7

X
′
1

X
′
3

X
′
5

X
′
7

x4

x5

x6

x7

ω0
2

ω0
2

ω0
2

ω0
2

ω1
2

ω1
2

ω1
2

ω1
2

(d) Action 3

This continues until all elements in global memory have been read and processed. Note

that not all necessary computations are visible in Figure 3.9d. They were discussed in

Section 2.2.2. With this approach, the data is read coalesced and only once from global

memory and the entries in the L2 cache are re-used for every SM. Optimally this should

be done by a broadcast mechanism, sending data in one go to all SMs. Unfortunately,

34

NVIDIA did not implement this for global memory as threads would have to be synchro-

nized globally. At each radix-r step of the algorithm this will cost (r − 1)N L2 accesses,

but the way the data is accessed gives the opportunity to easily overlap computation and

host to GPU data transfer. Not all data needs to be present when the computation starts.

We could for instance send half the data and start the algorithm, meanwhile sending the

second half. Each radix-r butterfly is calculated in r stages. We refer to this computation

type as distributed butterflies. While each 128-bit data access is serialized, computation

is parallelized. Data transfer is relatively very costly between host and GPU, thus there

is a balance to be found when to apply this method. It is, however, transparent how to

implement this on multiple GPUs (substituting SM in Figure 3.9 with GPU). The only de-

pendency would be on the input data. No inter GPU communication is therefore required

and each GPU would simply compute a part of the FFT. This also holds for SMs of course.

Keep in mind that each GPU would generate interleaved output data. The method can

also be used when then GPU has insufficient memory to hold the data. The FFT can be

calculated by successive calls to the GPU.

Figure 3.10 shows a different approach that reads the input from global memory one time

and has no need to re-use the L2 cache. Global synchronization and a write-back to global

memory are required at each step of the algorithm (until the DFTs can fit on a SM), because

each SM produces input for another SM. The computations shown in Figure 3.10d is one

(unoptimized) radix-2 butterfly which can be calculated by one or two threads. When r

threads are used to compute a radix-r step, shared memory must be used and each value

is read r times. Computation will be parallelized in this case. When 1 thread is used,

values are read 1 time when using registers or shared memory, but the computation will

be serialized. When registers are used, there are a couple of things to keep in mind. Using

more registers reduces the number of threads that can execute the algorithm as resources

must be shared. Registers cannot hold an array that is accessed dynamically, thus an easy

indexing scheme is not possible. Variables in registers need to be explicitly called when

35

they are needed, increasing complexity of the code itself and making it less flexible. In turn,

it is hard to guarantee no bank conflicts when using shared memory. Though accesses are

coalesced as the cache line is fully used, we can conclude from Figure 3.10a and 3.10b that

overlapping data transfer from host to GPU and computation is considerably harder, as

access are strided and less predictable.

Figure 3.10 Example for DIF radix-2 FFT

Global Memory

Cache Line

Shared Memory or registers

(a) Legend

SM

SM

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x0

x1

x2

x3

x0

x1

x2

x3

x8

x9

x10

x11

x8

x9

x10

x11

(b) Action 1

SM

SM

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x0

x1

x2

x3

x8

x9

x10

x11

x4

x5

x6

x7

x12

x13

x14

x15

x4

x5

x6

x7

x12

x13

x14

x15

(c) Action 2

SM

SM

X ′0

X ′2

X ′4

X ′6
x4

x5

x6

x7

X ′1

X ′3

X ′5

X ′7
x12

x13

x14

x15

ω0
N

ω3
N

x0

x1

x2

x3

x8

x9

x10

x11

x4

x5

x6

x7

x12

x13

x14

x15

+ ω0
2

ω0
2

ω0
2

ω1
2+

(d) Action 3

36

In any case, it is wise to have data aligned in favor of cache lines to optimize accesses.

The way this works for one step is to align the data in a previous step though padding.

Let a cache line be of σ-byte bandwidth and the first step will be of radix-r. Aligned data

q = {q0, q1, . . . , qj, . . . , qN} is created from input data x = {x0, x1, . . . , xj, . . . , xN} with the

following re-indexing scheme.

qj ← xp · j
s

+ j mod s, (3.1)

where s = N
r

and p = σ · d s
σ
e. Padding can be done by a simple algorithm using Equa-

tion 3.1, but the fastest way to realize this is to use a CUDA function cudaMallocPitch

which allocates a 2D array of which each row is padded by a specified amount. An align-

ment alternative is to transfer the data from CPU to the GPU in pieces of size N
r

(when

the first step is radix-r), because CUDA automatically aligns each new variable or array.

We do have to pass all the pointers to the variables or arrays as arguments.

To retain coalesced access for multiple steps we must go through shared memory as an

intermediate step. This is shown by Algorithm 3.1.

37

Algorithm 3.1 Coalesced access on misaligned data

. x is the input array in global memory

. n is the sub-DFT size

. N is the input size

. ID is the thread identification nr

. THREADS is the total nr of threads

function READ(x, xshared,offset, n)

offset mod = offset mod 32

for i← ID to n+ offset mod : i = i+ THREADS do

j = i− offset mod

if j ≥ 0 then

xshared[i] = x[offset+ j]

end if

end for

end function

procedure FFT(x, n, N)

xshared

for offset← 0 to N : offset = offset+ n do

READ(x, xshared, offset, n)

// calculate n sized fft from offset to offset+n

// write back coalesced

end for

end procedure

38

3.2.3 Pre-calculating Twiddle Factors

Time can be saved by pre-calculating twiddle factors. These can be used to create optimized

butterflies as seen in Section 2.2.4 or just as replacement for the computation otherwise to

be done. This can possibly cost time. Instead of calculating the twiddle factor, you will

need to do a memory access. Depending on the location of the data, this could actually

slow the algorithm down. φ will represent a data element, in our case a complex number.

Complex numbers consist of two part. A real and an imaginary part, represented by φr

and φi, respectively. The appropriate twiddle factor will be represented by ω, and also

consists of a real and imaginary part. We now demonstrate the multiplication of an input

data element with the twiddle factor, or in general, two complex numbers. The definition

was given in Section 2.1.1.

φ = ω · φ,

φr = ωr · φr − ωi · φi,

φi = ωi · φr + ωr · φi.

This multiplication can be rewritten or simplified in occurrence of 1, -1 or 0, i.e. multiplying

with 0 is zero, etc. Table 3.2 shows the rewritten multiplications in case we know one of

these values is encountered.

39

Table 3.2 Simplified complex multiplications

Real Imaginary

ωr ωi φr 6= 0 φi 6= 0 φr 6= 0 φi 6= 0

0 0 0 0

0 1 0 − φi φr

0 -1 0 + φi -φr

0 * 0 − ωi · φi ωi · φr
1 0 φr 0 + φi

1 1 φr − φi φr + φi

1 -1 φr + φi -φr + φi

1 * φr − ωi · φi ωi · φr + φi

-1 0 -φr 0 − φi

-1 1 -φr − φi φr − φi

-1 -1 -φr + φi -φr − φi

-1 * -φr − ωi · φi ωi · φr − φi

* 0 ωr · φr 0 + ωr · φi
* 1 ωr · φr − φi φr + ωr · φi
* -1 ωr · φr + φi -φr + ωr · φi
* * ωr · φr − ωi · φi ωi · φr + ωr · φi

We can further optimize the table if we know we are dealing with real input data and

eliminate additional multiplications, subtractions and additions. The output of one step of

a FFT algorithm is complex data, thus we can only take advantage of the knowledge that

we are using real data at the first step of the algorithm. This can be used as a counter

weight against increasing the radix (and thus the complexity) at the first step to reduce

SM interactions.

40

3.2.4 Instruction-Level-Parallelism

A factor in the performance of a warp is instruction-level-parallelism (ILP). There are two

ways of holding up a warp or consecutive warps: data dependencies and branch instructions.

The following simple example of instructions cannot be executed at the same time, because

there is a data dependency between instruction (1) and (3): variable a is used in the third

instruction to determine the value of d.

(1) a = b

(2) c = c+ 1

(3) d = a+ b

Data dependencies cannot be prevented in case of the FFT, but branch instructions can be

kept to a minimum. CUDA offers the ability to let each thread in a block execute different

instructions. As each thread executes the same code, this is done by branching on thread

ID. How this thread ID is determined is up to the programmer. Table 3.3 contains the

CUDA build-in variables that can be used for identification purposes, of which the value is

determined at run-time. The value d must be substituted for x, y or z.

Table 3.3 CUDA run-time indexing

gridDim.d Number of blocks on d-axis of grid

blockDim.d Number of threads on d-axis of block

blockIdx.d d-coordinate of current block

threadIdx.d d-coordinate of current thread

Section 3.2.1 and 3.2.2 shows how we can choose a radix-r for the first step and divide the

data over r blocks. Figure 3.9 shows that each SM performs different calculations. This can

be achieved by branching on block ID. Branching instruction are conditional instructions

that control the flow of execution (an if-statement, while-loop, for-loop, etc.). The following

example assumes the same setup as in Section 3.2.1 and shows the calculations to be done

by a block, not a thread.

41

Algorithm 3.2 DIF radix-2 FFT with branching

if blockIdx.x == 0 then

X0 ← x0...N
2
−1 · ω0

2

X0 ← X0 + xN
2
...N · ω0

2

X0 ← X0 · ω0
N

else if blockIdx.x == 1 then

X1 ← x0...N
2
−1 · ω0

2

X1 ← X1 + xN
2
...N · ω1

2

X1 ← X1 · ω0...N
2

N

end if

The CUDA indexing scheme can be used to remove the branching instructions (if-statements),

which creates the following algorithm.

Algorithm 3.3 DIF radix-2 FFT without branching

j ← blockIdx.x

Xj ← x0...N
2
−1 · ω0

2

Xj ← Xj + xN
2
...N · ω

j
2

Xj ← Xj · ωj·0...
N
2

N

This can be broken apart to create the instructions a thread would execute. In turn, thread

IDs can be used for this purpose. For loops or similar instructions are required to loop

over 0 . . . N
2

. Branching instructions can hurt run time if the threads within a warp follow

a different execution path, as execution will be serialized in this case.

Data alignment as been discussed in Section 3.2.2. Again we use a warp size of 4 and a

16-byte cache line. When data is not aligned in favor of cache lines we get non-coalesced

access. Not only that, we also need a branch instruction to stop over-fetching and we also

miss align threads T = {τ0, τ1, τ2, τ3}. This is illustrated in Figure 3.11 on input data of

size N = 6 on which we perform radix-2 (at the first step).

42

Figure 3.11 Aligning data and threads

x0
x1
x2
x3
x4
x5

x0

x2
x3

τ0
τ1
τ2
τ3

x1

(a) Not aligned 1

x0
x1
x2
x3
x4
x5

x4
x5

τ0
τ1
τ2
τ3

(b) Not aligned 2

x0
x1
x2

x3
x4
x5

x0

x2

x1

τ0
τ1
τ2
τ3

(c) Aligned 1

x0
x1
x2

x3
x4
x5

x3

x5

x4

τ0
τ1
τ2
τ3

(d) Aligned 2

With the aligned data we can use thread τ0 to fulfill the data dependency between elements

x0 and x3, and thread τj for elements xj and xj+N
2

. In the end, we discard the value τ3 has

calculated. Aligning data thus adds simplicity and reduces branch instructions and register

usage. As a result of this approach, the number of threads we use must be a multiple of a

cache line size.

As an example of seemingly hidden ILP, we have added Algorithm 3.4. In a previous state,

we have stored values from global or shared memory into the register array R. For an array

to comprise of register, the indexing must be done by constant values or must not depend

on variables determined at run time. Illustrated is a radix-2 butterfly where the twiddle

factors have been pre-calculated and stored in constant memory (Wr and Wi). The run

time should be the same for each algorithm, but the algorithms on the right is around

20% faster. The underlying assembly must be different, thus always be on the lookout for

hidden instruction-level-parallelism.

43

Algorithm 3.4 ILP radix-2 butterfly

// . . . some computat ions

for (int p = 0 ; p < 2 ; p++) {

r e a l Rr = 0 ;

r e a l Ri = 0 ;

for (int i = 0 ; i < 2 ; i++) {

int ind = (p∗ i)%2;

Rr += R[i] [0] ∗ Wr[ind] [2]

− R[i] [1] ∗ Wi[ind] [2] ;

Ri += R[i] [0] ∗ Wi[ind] [2]

+ R[i] [1] ∗ Wr[ind] [2] ;

}

// . . . some computat ions

// . . . wr i t e back Rr and Ri

}

// . . . some computat ions

for (int p = 0 ; p < 2 ; p++) {

r e a l Rr = 0 ;

r e a l Ri = 0 ;

for (int i = 0 ; i < 2 ; i++) {

int ind = (p∗ i)%2;

Rr += R[i] [0] ∗ Wr[ind] [2] ;

Rr −= R[i] [1] ∗ Wi[ind] [2] ;

Ri += R[i] [0] ∗ Wi[ind] [2] ;

Ri += R[i] [1] ∗ Wr[ind] [2] ;

}

// . . . some computat ions

// . . . wr i t e back Rr and Ri

}

3.2.5 Solving DFTs on a Streaming Multiprocessor

Like a divide-and-conquer strategy, we create sub-DFTs from a DFT with one or multiple

steps of a FFT algorithm as we discussed in the previous sections. Typically, multiple differ-

ent butterflies are needed when continuing to solve the sub-DFTs with the FFT algorithm.

One of the most restricting factors on the number of threads you can run concurrently is the

number of registers they require. The more complex and comprehensive CUDA functions

or kernels become, the more registers they require to run. It is for this reason that we need

to keep things simple. An alternative would be to launch CUDA kernels sequentially, and

divide function operations among them. Spread out the instructions as it were. However,

this is a costly thing to do. There is an initialization cost when launching kernels and

synchronization is required between them to ensure one is finished when another begins.

Kernels can run concurrently, but they must then share resources, defeating the purpose

44

of creating multiple kernels in the first place. A solution to keeping kernels simple is to

take advantage of compile time optimizations. If we know the problem size, we can sim-

ply produce the right butterflies and put them in the kernel. We can then maximize the

number of threads that will execute the kernel and thus maximize concurrency. Note that

a higher radix uses more registers. The number of registers used by a kernel is determined

by the function with the highest register count. The weakest link in the chain, sort of

speak. Lower radixes are then run with less threads as you normally would. To put it

in perspective, each SM can run 1536 threads and has 32K 32-bit registers. Each thread

would only be able to make use of 32·1000
1536

≈ 21 registers when running at full occupancy,

31 register at 2
3

occupancy and 63 registers (the maximum, see table 3.1) at 1
3

occupancy.

Global memory access has been optimized in Section 3.2.2, we now look at shared memory

access on SMs. In particular when a DFT is smaller than the shared memory available,

in which case no communication between SMs is required to complete the FFT algorithm.

When dealing with 2-dimensional input data, we perform 1-dimensional FFTs along each

dimension. To optimize data accesses, we must transpose the matrix when switching from

one dimension to the next. Optimizing the transpose with CUDA programming is dis-

cussed in [19]. It also shows how padding data can increase shared memory bandwidth

in case where it reduces bank conflicts. Let M be a 32x32 matrix which is stored such

that consecutive row elements are stored in consecutive banks. Remember we have 32

banks. When a column of M is accessed, we access different data elements within the

same bank, resulting in conflicts. The accesses are serialized as a result. By padding M

to be a 32x33 matrix, accesses will be spread out over all available banks as element (0,0)

will be in bank 0, element (1,0) will be in bank 1, element (2,0) will be in bank 2, and so on.

Two values need to be combined in a radix-2 butterfly. Processing the two values must

therefore be done by one thread. Figure 3.12 shows three thread configuration propositions.

45

Figure 3.12 Thread configuration

x0
x1
x2
x3
x4
x5
x6
x7

τ0
τ1
τ2
τ0
τ1
τ2
τ0
τ1

τ0
τ1
τ2
τ0
τ1
τ2
τ0
τ1

τ0
τ1
τ2
τ0
τ1
τ2
τ0
τ1

(a)

x0
x1
x2
x3
x4
x5
x6
x7

τ0
τ1
τ2
τ0
τ0
τ1
τ2
τ0

τ0
τ1
τ0
τ1
τ0
τ1
τ0
τ1

τ0
τ0
τ0
τ0
τ0
τ0
τ0
τ0

(b)

x0
x1
x2
x3
x4
x5
x6
x7

τ0
τ1
τ2
τ0
τ0
τ1
τ2
τ0

τ0
τ1
τ0
τ1
τ2
τ0
τ2
τ0

τ0
τ0
τ1
τ1
τ2
τ2
τ0
τ0

(c)

Let a warp contain 3 threads, exactly the number of threads (τ0, τ1, τ2) we use to execute the

algorithm. We choose an awkward number of threads compared to the input data size, as

this situation will likely occur in practice. DFTs are separated by thick lines. Figure 3.12a

will loop threads over the data, calculating distributed butterflies. Each thread calculates

a part of the radix-2 butterfly, requiring twice the number of data accesses. This grows

linearly as the radix gets higher. We need three warps to execute, and we have one idle

thread in the final warp. Figure 3.12b puts thread 0 at the start of every DFT. Each full

butterfly is calculated by one thread. Data is read only one time from shared memory,

but as DFTs decrease in size, the number of warps required increases. Figure 3.12c mixes

the previous two and loops the threads with on restriction. A butterfly must be calculated

by one thread. As can be seen, always avoiding bank conflicts is not trivial and perhaps

impossible. We therefore leave this as future work. Two factors that way in on bank conflict

reduction is the number of threads chosen to execute the algorithm (yet we have little room

to experiment as we need to keep the warp size in mind along with all other restricting

factors previously discussed) or data padding. To compare, Figure 3.12a always has full

shared memory bandwidth, but needs more warps and more data accesses. Figure 3.12c

needs the fewest warps, the least data accesses, but eventually produces bank conflicts and

serialized accesses. As we only have 32 banks and are working with much larger data sets,

the conflicts occur at a very late and short state. Figure 3.12c would be the preferred

method with low radixes as computations in comparison to accesses are low.

46

3.2.6 Data Output

As seen in Section 2.2.2, the output of a DIF FFT with naturally ordered input is interleaved

after one step. The interleaving of data can be prevented, but this requires an additional

buffer of which the size is equal to the input size and it requires the use of shared memory

to do coalesced global memory accesses. We take advantage of the shared memory bank

system to first order the data residing on each SM after all steps have finished. We then

have interleaved output that needs to be written back to global memory before it leaves

the GPU. The first step of the algorithm has determined how interleaved this output is,

i.e. radix-r will result in r partitions of interleaved data and writing it back without

extra measure results in stride-r access pattern and thus a r times slower write-back than

optimal. We take radix-2 as an example in Figure 3.13 and reduce the size of a cache line

for demonstration purposes to 8 bytes.

47

Figure 3.13 Interleaved radix-2 output write-back

Global Memory

Cache Line

Shared Memory

(a) Legend

SM

SM

X0

X2

X0

X2

X0

X2

X4

X6

X1

X3

X5

X7

(b) Action 1

SM

SM

X0

X2

X4

X6

X1

X3

X5

X7

X5

X7

X0

X2

X4

X6

X1

X3

X5

X7

(c) Action 1’

SM

SM

X0

X2

X4

X6

X1

X3

X5

X7

X0

X2

X1

X3

X0

X2

X1

X3

X1

X3

X5

X7

(d) Action 2

SM

SM

X0

X2

X4

X6

X4

X6

X5

X7

X4

X6

X5

X7

X0

X2

X1

X3

X1

X3

X5

X7

(e) Action 2’

SM

SM

X0

X1

X2

X3

X4

X5

X6

X7

X0

X1

X6

X7

X0

X1

X2

X3

X4

X5

X6

X7

(f) Action 3

We first write the interleaved output to global memory coalesced with action 1. Note that

N
r2

elements per SM are copied back and forth which can be avoided. Action 2 then copies

elements to their respective SM, also coalesced. Before action 3, we sort the elements with

the advantage of using shared memory and finally write them to global memory.

48

3.2.7 Multi-GPU FFT

Let us consider the case using 2 GPUs and 2-dimensional input data. Figure 3.14b would

be the standard way of dividing data among GPUs. Each would calculate the FFT along

the x-axis of half the data. Then, the GPUs need to be synchronized after which they must

share data. Depending on the architecture, this can be very costly. Think for instance of

a setup where GPUs are connected to different hosts. The cost of inter GPU data sharing

goes up as inter host data sharing is required to do so. The remainder is quite simple as

the transformed data is transposed for access efficiency reasons and the transformations

are done along the second dimension.

Of total run time, 38.8% is spend on inter GPU communication according to the imple-

mentation presented in [7]. This cost was reduced by the use of multiple data streams,

proposed by [21]. The method introduced by Figure 3.9 can be used the perform a multi-

GPU FFT as illustrated by Figure 3.14b. Each GPU would produce interleaved output

which thus needs to be combined at a later stage. This can be prevented. Lets consider

a one GPU implementation and a radix-2 butterfly. Thread 0 would produce the outputs

X0 and X1, which would be stored at index 0 and N
2

. Instead, these must be stored at

index 0 and 1. In order to do so, we must go through shared memory (in order to write

coalesced to global memory) and we must use an additional buffer at least the size of the

currently being processed FFT (to prevent writing to index 1 by thread 0 before it is read

by thread 1). Immediately visible in Figure 3.14 is the absence of inter GPU data sharing.

The additional computation time required calculating a distributed butterfly outweighs the

cost of global synchronization and data sharing, as specially when communication cost is

high. This scenario would not work for single GPU implementations as the communication

cost between SMs through the L2 cache is too low.

49

Figure 3.14 Multi-GPU FFT approaches

Original data set

Transformed along 1 dimension

Transformed along 1 dimension

Transformed along 2 dimensions

(a) Legend

y

x

2

1

GPU 1

GPU 2

(b) Normal butterflies

y

x

21

GPU 1

GPU 2

(c) Distributed butterflies

50

Chapter 4

Results

This chapter tries to give an insight into the approaches discussed in Section 3.2. The

theoretical gain is discussed with a low level explanation in Section 4.1. We go one to

show the comparison between some well known algorithms in Section 4.2. For testing we

have used NVIDIA GTX 480 graphics cards. It has 16 streaming multiprocessors (SMs) of

which 15 can be used by a CUDA program.

We start with the discussion on theoretical gain of using higher radix butterflies in Sec-

tion 4.1, based on the knowledge of NVIDIA documentation. We then compare our work

to some well known algorithms in Section 4.2. Future work is discussed in Section 4.3,

followed by the conclusion in Section 4.4.

4.1 Theoretical Gain

NVIDIA does not disclose on many architectural details and also hides the operations that

are truly executed when running a CUDA program. Even NVIDIA’s (pseudo-)assembly

PTX is not the actual assembly that is run on the GPU. Access times and access policies

are also barely discussed. Thus ultimately, many programs must be written to thoroughly

map the behavior of the architecture. Table 4.1 is the result of the attempt to do so. The

programs resulting in these values have been written to the best of our knowledge and

might not be totally accurate and must therefore only be used as an indication. We can see

that the L2 cache is approximately 4x faster than DRAM (L2 cache miss). The L2 cache

on the Kepler GK110 offers up to 2x of the bandwidth per clock cycle available in Fermi

51

and it is twice as large[6]. This would likely result in a higher performance regarding the

FFT algorithm.

Table 4.1 GForce GTX 480 warp data access times

Strategy Clock cycles

L1 hit 18

L2 hit 248

atomic operation L2 hit 580

atomic operation L2 hit 2x conflict 590

atomic operation L2 hit 4x conflict 600

L2 miss 1060

atomic operation L2 hit 8x conflict 1140

atomic operation L2 miss 1360

atomic operation L2 miss 2x conflict 1380

atomic operation L2 miss 4x conflict 1490

atomic operation L2 miss 8x conflict 1900

atomic operation L2 hit 16x conflict 2200

atomic operation L2 miss 16x conflict 2980

atomic operation L2 hit 32x conflict 3910

atomic operation L2 miss 32x conflict 4680

We will first look at the costs of two butterflies and compare them to data access times.

The method described by Figure 3.10 which applies a step of a DIF radix-r FFT will be

used to compared a four step DIF radix-2 FFT and a one step DIF radix-16 FFT, because

that would result in the same amount ans same sized DFTs. Table 4.2 holds the cost of

several operations according to [3], which we will use in the comparison.

52

Table 4.2 Operation cost compute capability 2.0

Operation
Operations per clock cycle

per SM
Clock cycles per warp

single precision floating

point addition, subtraction

and multiply

32 1

32-bit integer addition, sub-

traction and compare
32 1

32-bit integer multiply 16 2

32-bit floating point sine

and cosine
4 8

This is of course not accurate as we have influential factors like back-to-back register depen-

dencies taking 22 clock cycles[3] and access latencies that possibly can be hidden by other

calculations and pipe-lining given the right conditions, but we will use it as an indication.

It takes 23808 clock cycles to process all optimized radix-2 butterflies in four steps. A radix-

16 step without pre-calculating twiddle factors leads to 88704 clock cycles. Pre-calculating

twiddle factors costs to 63954 clock cycles, which is a considerable reduction by 28%. The

higher radix butterfly is favored by roughly 57% when adding the cost of global memory

access time previously calculated. When the ratio of the number of instructions with no

off-chip memory operands to the number of instruction with off-chip memory operands is

low, more warps are required to hide data access latency[3]. When this ratio is 30, 20 warps

are required to hide all access latency (48
20

occupancy). The radix-16 approach has a 84%

better overlap than the radix-2 approach. Using a higher radix thus improves the overlap

between data access and computation, and because access latency is poorly hidden in the

first place, it should yield a performance improvement.

53

4.2 Algorithm Comparison

The graphics card in the experiments is represented by the NVIDIA GTX 480 (177.4 GB/s

bandwidth) with CUDA Toolkit 5.0 and compute capability 2.0. The CPU is represented

by an Intel Xeon E5620 (25.6 GB/s bandwidth).

We start with experiments for the elemental components of a GPU FFT implementation in

Section 4.2.1. Section 4.2.2 will make an analysis of two well known FFT implementations

and compare them with our implementation.

4.2.1 Elemental Components

Important parts in every kernel are the synchronization method and access patterns. Ta-

ble 4.1 focuses on the later. We have used a radix-2 butterfly and tried three different

access methods. All patterns access global memory in a coalesced fashion. Say we run the

kernel with 512 threads and 15 blocks. Interleaved refers to the access pattern where the

first 512 values (of each sub-DFT) are accessed by the first block, the second 512 values

are accessed by the second block, etc. Not interleaved is when the first block accesses the

first 15th of the data, the second block accesses the second 15th of the data, etc. Interleaved

and looped is the same as interleaved, but the start of each sub-DFT does not have to be

accessed by the first block. It thereby divides the work better among multiple blocks when

sub-DFTs get smaller.

54

Figure 4.1 Access patterns comparison

0.1

0.3

0.5

0.7

0.9

300000 800000

R
u
n

T
im

e
(m

s)

N

interleaved
not interleaved

interleaved and looped 17.2

17.6

18

18.4

2.95e+7 3.0e+7

R
u
n

T
im

e
(m

s)

N

interleaved
not interleaved

interleaved and looped

At the beginning we see little difference between the approaches. Though, as the sub-DFT

sizes get smaller interleaved and looped is a preferred method. Yet, due to additional con-

trol code, this method is slower otherwise. We see that interleaved is better in the long

run. We will use this approach in further implementations.

We have tried to map synchronization behavior with the radix-2 kernel which runs at 21

registers when optimized. Table 4.2 shows the results. Each example consists of a keyword

in or out, which refers to synchronization being done inside or outside the kernel, and 2

numbers representing the kernel launch configuration. The first number equals the number

of threads used and the second equals the number of block used.

Figure 4.2 Optimized radix-2 kernel synchronization cost

0.1

0.15

0.2

40000 80000 120000160000

R
u
n

T
im

e
(m

s)

N

out 512-15
in 512-15

out 1024-15
in 1024-15
out 512-30

in 512-30
out 768-30

14

14.15

14.3

2.5e+7 3.0e+7

R
u
n

T
im

e
(m

s)

N

out 1024-15
in 1024-15
out 512-30

in 512-30

55

When occupancy is equal (the kernels are configured to launch with the same number of

threads) we see that synchronization is preferred inside the kernel. As the global synchro-

nization function used for this experiment is very basis, perhaps some adjustments can be

made to further optimize the run time.

Lets now consider at different butterfly implementations. Pre-calculated (PC) substitutes

nearly all trigonometric function calls with constant memory calls. Optimized (O) is when

the trigonometric function calls are substituted by floating point values, and when a 0, -1

or 1 is encountered the values are optimized out. This approach results in the Gentleman-

Sande butterfly shown in Figure 2.7. Butterflies have also been developed for purely real

(R) input values, which was shown in Table 3.2. The only kernel that can achieve full

occupancy is the optimized radix-2 kernel. As many real numbers are inserted in the code

when the radix goes up (including control code), this method is slow for higher radix as

it consumes too many registers resulting in register spilling. The higher radix achieved

without spilling is the pre-calculated radix-16, running at 63 registers. Table 4.3 compares

a radix-2 butterfly at different occupancies. Higher compute capability graphics cards allow

kernels to use more registers. Future work would include further increasing radix and see

where the threshold lies when the use of a higher radix is less beneficial.

Figure 4.3 Radix-2 pre-calculated vs optimized

5

15

25

5e+6 1.5e+7 2.5e+7

R
u
n

T
im

e
(m

s)

N

O 512-15
O 1024-15
O 512-30

PC 512-15
PC 1024-15
PC 512-30

13

14

15

2.4e+7 2.6e+7 2.8e+7

R
u
n

T
im

e
(m

s)

N

O 1024-15
O 512-30

PC 1024-15
PC 512-30

We see in the long run that the optimized version beats the pre-calculated version, but

56

barely. It is an indication that the SMs are not running at maximum throughput. The

configuration missing is the full occupancy radix-2 butterfly which has the best run time

and will therefore be used to test and see if a higher radix is indeed faster. This is done

in Figure 4.4. Data sizes have been chosen to be as fair as possible, i.e., every SM, block

and thread does the same amount work and all accesses are coalesced. The comparison is

between four radix-2 steps and one radix-16 step, as each creates the same sized sub-DFTs

in the end.

Figure 4.4 radix-2 head to head with radix-16

0.2

0.6

1

1.4

1.8

500000 1500000 2500000

R
u
n

T
im

e
(m

s)

N

radix-16 PC

radix-16 O

radix-16 OPC

radix-16 RO

radix-16 RPC

radix-2 O

The optimized radix-16 butterfly is much slower than the radix-2 butterfly. The previous

discussion on optimized butterflies should be enough to explain why this butterfly uses

too many register and that its run time is influenced by register spilling. The interesting

butterflies are radix-16 PC and OPC as they run the full calculation and beat the full

occupancy radix-2 butterfly at only 1
3

occupancy. The performance improvement can be

explained by the following: the radix-2 kernel must access global memory more times and

the SMs are not running at max throughput. Results have been put together in Table 4.3

57

Table 4.3 Performance increase radix-16 vs radix-2, in percentages

Radix-16 butterfly AVG MAX

Pre-calculated 4.74 15.29

Optimized and pre-calculated 15.86 31.35

Real input optimized 113.95 120.49

Real input optimized and pre-calculated 19.38 32.05

NVIDIA’s FFT implementation CUFFT is optimized for data sizes of the form 2a · 3b · 5c ·

7d[5]. Figure 4.4 suggests that this form must be extended to 2a ·3b ·5c ·7d ·11e ·13f as higher

radixes are less costly (for big data input sizes which don’t allow L2 cache optimizations).

4.2.2 The Giants

The most well known FFT algorithms out there are FFTW and CUFFT. We have used

FFTW 3.3.2 and CUFFT from CUDA Toolkit 5.0. Figure 4.5 shows the run time of the

preparation and calculation of the transform by the two algorithms.

58

Figure 4.5 CUFFT and FFTW comparison

0
10
20
30
40
50
60
70

0 50000 100000 150000 200000

R
u
n

T
im

e
(m

s)

N

CUFFT

(a) CUFFT

0
10
20
30
40
50
60
70

0 50000 100000 150000 200000

R
u
n

T
im

e
(m

s)

N

FFTW

(b) FFTW

0
10
20
30
40
50
60
70

0 50000 100000 150000 200000

R
u
n

T
im

e
(m

s)

N

CUFFT
FFTW

(c) Bezier curve

0
10
20
30
40
50
60
70

0 50000 100000 150000 200000

R
u
n

T
im

e
(m

s)

N

CUFFT
FFTW

(d) Bezier curve of points below original

berzier curve

Surprisingly, we see that CUFFT performs worse than FFTW on average. We do see that

CUFFT is the fastest in particular data sizes. Yet out of all tested data sizes only 14.67%

performs well. This means that 85.33% performs poorly and only 10.15% of these data

sizes are primes. Figure 4.6 shows how run times should look like in terms of data accesses

when a DFT was used.

59

Figure 4.6 Memory accesses compared to radix used

200000

600000

1000000

200 400 600 800

M
em

or
y

A
cc

es
se

s

N

DFT
radix-(N/2)
radix-(N/3)
radix-(N/4)

From this we conclude that a DFT was not used to calculated the bad performing data

sizes. CUFFT uses an implementation of Bluestein’s algorithm which can calculate a FFT

of arbitrary data size with complexity O(n log n)[23]. There are many data sizes that can

be calculated faster. Lets consider size N = 210432. CUFFT’s run time is 69.04 ms using

Bluestein. It can also be calculated with the following decimation step sequence: 2-2-2-

2-2-2-2-2-2-3-137, resulting in a lower run time. Some of these data sizes are shown in

Figure 4.7. Mind that the trailing radix-137 decimation has been calculated using a simple

DFT implementation and is responsible for about 94% of the total run time. This can be

further optimized.

Figure 4.7 My fft vs CUFFT

0

40

80

120

230000 255000 280000

R
u
n

T
im

e
(m

s)

N

CUFFT
My FFT

60

In the end the same conclusions can be taken as the developers of CUFFT have, with re-

gard to their faster run times. All tests and implementations have lead to comparable run

times, which are therefore not shown. Some contributing factors in developing an optimized

FFT implementation are: (1) move as much of the computation as possible to registers;

(2) do more work per thread to increase bandwidth and throughput at low occupancy; (3)

put each butterfly in its own kernel, it must otherwise run at a lower occupancy than it

normally would; (4) have separate kernels for aligned and misaligned global memory data;

(5) Use synchronization within the kernel as much as possible, still obeying (3) and (4);

(6) use a different kernel for different sub-DFT sizes. Initially large FFTs must be handled

with a breath-first approach. As soon as a sub-DFT becomes smaller than the L2 cache

size switch to depth-first, as the L2 cache would optimally be re-used. This again applies

to sub-DFT sizes of less than the shared memory on a SM, allowing to do the remaining

calculations only using shared memory.

There are exceptions. One could think about putting multiple butterflies in one kernel,

such that when sub-DFT sizes decrease to fit in shared memory, on could continue many

steps while only using shared memory. Ultimately, each data size has an optimal solution.

Up until now we have seen the behavior of CUFFT running on one GPU. Figure 4.8

compares CUFFT running on one and two GPUs. CUFFT can run on multiple GPUs with

the method described in Section 3.2.7. If computation is long enough, using multiple GPUs

will yield shorter run times. To make a fair comparison we have chosen input sizes of the

form: (1) it conforms to CUFFTs recommended input form 2a ·3b ·5c ·7d; (2) all input sizes

must be dividable by 2; (3) no bigger than 32 million points. We will be using 2 GPUs,

thus the input size must be dividable by 2 and if the by CUFFT fastest calculated input

sizes yield shorter run times, then other input sizes will yield shorter run times as they take

longer to compute.

61

Figure 4.8 Using multiple GPUs

20

60

100

140

5000000 17500000 30000000

R
u
n

T
im

e
(m

s)

N

CUFFT 1 GPU

CUFFT 2 GPUs

Very small data sizes perform better on 1 GPU. As the size grows we see that the use of 2

GPU leads to a performance increase. The maximum performance gain over all calculated

data sizes is 1.39x, and 1.23x on average. This means that other data sizes have even

higher gains using multiple GPUs.

62

4.3 Future Work

A trend has been set where CPU and GPU architectures grow towards each other. CPUs

gain more cores and GPUs have a full hierarchical caching mechanism. Global memory ac-

cesses that resort to DRAM on a L2 cache miss are the single most costly operations on the

GPU. Reducing them is key in performance. One way to do so is choosing a higher radix

at each step. Using a higher radix increases the computational complexity but reduces the

number of steps required to complete the FFT algorithm and thus reducing the number

of access to global memory. Increasing radix has a limit of course, as the cost of higher

computation complexity stops outweighing the benefit of reduced global memory accesses

at some point.

Another way to reduces cache misses is to move computation away from DRAM as much as

possible, and concentrate efforts more toward faster memories like L1, L2, shared memory

and registers. At each step of a FFT we get smaller DFTs. If such a DFT can fit into

L2, there is no need to write back to DRAM for the remainder of the algorithm for that

DFT, then continuing on to the next DFT like depth-first approach. Obviously the more

non-DRAM memory we have, the less we need to access DRAM. We can extend L2 with

shared memory and write back and forth between them with registers. We only use a few

register for this so we can keep thread occupancy as high as possible. This is shown in

Figure 4.9.

63

Figure 4.9 L2 cache extension

L2 Cache

Registers

Shared Memory

(a) Legend

SM

. . .

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x0 x1 x2

. . .

(b) Action 1

SM

. . .

x6

x7

x8

x3

x4

x5

x6

x7

x8

x9

x10

x11

x0 x1 x2

. . .

(c) Action 2

SM

. . .

x6

x7

x8

x3

x4

x5

x0

x1

x2

x9

x10

x11

x0 x1 x2

. . .

(d) Action 3

SM

. . .

x6

x7

x8

x3

x4

x5

x0

x1

x2

x9

x10

x11

x3 x4 x5

. . .

(e) Action 4

This continues until all elements have been swapped. There are operations not visible in

Figure 4.9. Lets assume a 12-byte cache line (three values) for the previous example. One

cannot simply write to specific locations in the L2 cache. Old cache lines get evicted and

are replaced by new ones. By normal behavior the approach would not work: action 1

accesses x0 though x2 and will therefore not be evicted when writing x6 through x8. In

stead, x3 through x5 will be evicted, resulting in cache misses in the future. To fix this,

we need to use two eviction policies at the same time. Parallel Thread Execution (PTX) is

the assembly version for NVIDIA’s CUDA. It allows the programmer to have more control.

PTX can be generated by passing the ptx flag to NVIDIA’s nvcc compiler, allowing the

programmer to see what optimizations the compiler has done. The caching policy can be

chosen at compile time and is used throughout execution. PTX allows to change this policy

on a per access basis. This can be done by writing inline-PTX assembly straight into the

CUDA C program[1]. In our case we need to set the evict-first flag as action 1 ensuring

the right cache line gets evicted when writing to L2. This then also works when SMs are

64

not synchronized. In the case though where the dirty bit is set, data needs be written back

to DRAM. This can be avoided by using the same mechanism, except we won’t swap the

data, but only the values.

If a data size is chosen less than the L2 size, this should mean that whatever radix we use,

we only resort to DRAM once, and use the L2 cache for the remainder of the computations

(between steps). The technique just described and the technique described by Figure 3.10

depend on this information. NVIDIA Visual Profiler (NVVP) was used to investigate the

amount of L2 cache misses. From the portion of the computation that assumes the get

only cache hits, actually got 89% cache misses. Figure 4.10 shows access times increase

due to cache misses much earlier than the L2 cache size of 768KB. This means other data

is stored on the L2 cache than just our array or we are not allowed to use the full L2 cache.

Figure 4.10 L2 cache hit analysis

140000 160000 180000 200000 220000 240000

A
cc

es
s

T
im

e

N

L2 Access Time

The dashed line indicates the size of the L2 cache. N represents the array size consisting

of 4-byte elements and access time refers to average access time of a warp. We see access

time go up at around 180000 (indicating cache misses), which is less than the size of the

65

L2 cache. Choosing data sizes greater than this would therefore result in a misalignment

of data regarding the FFT algorithm: the first element has been evicted by the time the

last will be written. When the first element is accessed at the next step, it will result in

a cache miss. This behavior goes on like a cascading affect, explaining the high miss rate.

We have much less cache control than we would have on a CPU, yet each new graphics

card has bigger and faster caches making it more and more important. The ability to per-

form page locking or in this case cache line locking for instance, would lead to performance

improvements for certain applications. Unfortunately, cache locking is not supported by

PTX. Yet if it were, ignoring this threshold would likely lead to a decrease in performance

as the unaccounted space is probably used by the 16th SM to manage the others and is

therefore necessary.

The approach described by Figure 3.9 would not be beneficial on a single GPU. When cal-

culating distributed butterflies, (r − 1)N L2 cache accesses are required when performing

a radix-r step. We have previously concluded that data accesses are by far the most time

consuming operations when calculating a butterfly. The L2 cache is not nearly fast enough

to compete with serialized computations. This should therefore be used in a multi-GPU

situation, as relatively extremely expensive communication between GPUs is completely

eliminated.

Many CPU algorithms have been optimized in favor of caches. As GPU caches grow

larger, so does their importance in optimization. The algorithm has the characteristic

that by increasing computational complexity, the number of data access to global memory

required goes down. NVIDIA provides hints on how to optimize performance of CUDA

applications. These hints mainly regard access latency hiding by computation. In data

access intensive applications this can be difficult or even impossible. Improving the use of

caches is beneficial in these cases as access time drops and thereby influences total run time.

The FFT algorithm is an example where every data element is manipulated multiple times,

66

increasing the usefulness of caching. When GPU caching capabilities increase further as

they have until now, we can start with a whole new series of optimizations as we have seen

with the CPU.

67

4.4 Conclusion

Applications can be optimized by improving computational complexity and/or rely on the

exploitation of hardware architectures. With the arrival of programmable graphics cards,

many applications are left to be optimized. The Fast Fourier Transform has seen several run

time improvements since the use of GPUs. We have seen that the use of a higher radix but-

terfly, although increasing computational complexity, reduces run time compared to a lower

radix butterfly. CUFFT performs well on data input sizes of the form 2a ·3b ·5c ·7d. Results

suggests that performance is increased when this is extended to the form 2a·3b·5c·7d·11e·13f

for large data sizes.

In the relatively small field of multi-GPU FFT implementations, [7] and [21] have optimized

inter GPU communication. We have proposed a multi-GPU FFT implementation without

inter GPU communication nor synchronization and have seen performance increases of up

to 1.39x using 2 GPUs, compared to CUFFT’s fastest run times using only 1 GPU. With

regard to caching, it seems that the CUDA platform is not yet mature enough for optimiza-

tions at the level we have seen on the CPU. We have proposed a method that simulates

cache line locking. There is a relatively small window in which this is applicable in the

FFT algorithm but it does produce a performance increase when used right.

Run times of CUFFT have been analyzed, which seems to perform considerably worse

when their recommended input form is not met. We have taken a few bad performing non

prime data input sizes and improved their run time. Looking at the amount of different

optimizations and launch configurations we conclude that ultimately, there is an optimal

solution for each FFT input size.

68

References

[1] Using inline ptx assembly in cuda, 2011. http://mlso.hao.ucar.edu/ hao/acos/sw/cu-

da/doc/Using Inline PTX Assembly In CUDA.pdf.

[2] Cuda c best practices guide, 2012. http://docs.nvidia.com/cuda/cuda-c-best-

practices-guide/index.html.

[3] Cuda c programming guide, 2012. http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html.

[4] Nvidia’s fermi: The first complete gpu computing architecture, 2012.

http://www.nvidia.com/object/fermi-architecture.html.

[5] Nvidia’s fft implementation cufft, 2012. http://docs.nvidia.com/cuda/cufft/index.html.

[6] Nvidia’s next generation cuda compute architecture: Kepler gk110, 2012.

[7] Y. Chen, X. Cui, and H. Mei. Large-scale fft on gpu clusters. ICS ’10 Proceedings of

the 24th ACM International Conference on Supercomputing, 2010.

[8] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex

fourier series. Mathematics of Co imputation, 19:297–301, 1965.

[9] P. Duhamel and H. Hollmann. Split radix fft algorithm. Electronics Letters, 20:14–16,

1984.

[10] M. Frigo and S. G. Johnson. Fftw: An adaptive software architecture for the fft.

In Proceedings of 1998 IEEE International Conference Acoustics Speech and Signal

Processing, 3:1381–1384, 1998.

69

[11] W. M. Gentleman and G. Sande. Fast fourier transforms: for fun and profit. Proceeding

AFIPS ’66 (Fall) Proceedings of the November 7-10, fall joint computer conference,

pages 563–578, 1966.

[12] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High per-

formance discrete fourier transforms on graphics processors. SC ’08 Proceedings of the

2008 ACM/IEEE conference on Supercomputing, 2008.

[13] Z. Lili, S. Zhang, M. Zhang, and Z. Yi. Streaming fft asynchronously on graphics

processor units. International Forum on Information Technology and Applications

(IFITA), 2010.

[14] C. V. Loan. Computational Framework for the Fast Fourier Transform. Society for

Industrial and Applied Mathematics PhiladelSociety for Industrial and Applied Math-

ematics Philadelphiaphia, 1992.

[15] J. Lobeiras, M. Amor, and R. Doallo. Fft implementation on a streaming architecture.

Distributed and Network-Based Processing (PDP), 2011 19th Euromicro International

Conference on Parallel, 2011.

[16] A. Nukada. Bandwidth intensive 3d fft kernel for gpus using cuda. International Con-

ference for High Performance Computing, Networking, Storage and Analysis, pages

1–11, 2008.

[17] A. Nukada and S. Matsouka. Auto-tuning 3-d fft library for cuda gpus. ICS ’10

Proceedings of the 24th ACM International Conference on Supercomputing, 2010.

[18] W. Rudin. Real and Complex Analysis. Tata McGraw-Hill, 3rd edition edition, 2006.

[19] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in cuda, 2009.

[20] A. Sharma and A. K. Varma. Trigonometric interpolation. Duke Mathematical Journal,

32:341–357, 1965.

70

[21] C. P. D. Silva, L. F. Cupertino, D. Chevitarese, M. A. C. Pacheco, and C. Bentes.

Exploring data streaming to improve 3d fft implementation on multiple gpus. Com-

puter Architecture and High Performance Computing Workshops (SBAC-PADW),

2010 22nd International Symposium on, 2010.

[22] R. Singleton. An algorithm for computing the mixed radix fast fourier transform.

Audio and Electroacoustics, IEEE Transactions on, 17:93–103, 1969.

[23] P. Swarztrauber. Bluestein’s fft for arbitrary n on the hypercube. Parallel computing,

pages 6–7, 1991.

[24] V. Volkov. Better performance at lower occupancy.

http://www.cs.berkeley.edu/ṽolkov/volkov10-GTC.pdf.

[25] S. Winograd. Arithmetic Complexity Of Computations. Society for Industrial & Ap-

plied Mathematics, 1987.

[26] J. Wu and J. Jaja. Optimized strategies for mapping three-dimensional ffts onto cuda

gpus. Innovative Parallel Computing, pages 1–12, 2012.

[27] F. Xu and K. Mueller. Real-time 3d computed tomographic reconstruction using

commodity graphics hardware. Physics in Medicine and Biology, 52:3405 3419, 2007.

71

