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Abstract

The Vehicle Routing Problem is an extensively studied, NP-hard problem with numerous real-world 
applications, due to its super-polynomial time complexity exact approaches are infeasible, and so over 
the years metaheuristics have been used, such as the Genetic Algorithm(GA) and the Multiple Ant 
Colony Systems(MACS). 

This paper extends the research on the Hybrid GA of Wink et al. and MACS-DVRPTW of van Veen et 
al. These approaches require a relatively large number of parameters, which in turn determines their 
effectiveness.  In  the  past  years,  methods  have  arisen  capable  of  automatically  determining  good 
parameter configurations, one of them being the Sequential Parameter Optimization Toolbox, which 
will also be discussed in this paper. In addition to solving all known problems optimally or within 2% 
of the optimum, SPOT aids in getting a better understanding of the parameters used by each algorithm.
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Chapter 1 

Introduction

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization problem, 
which is concerned with the optimal design of routes to be used by a fleet of vehicles to serve a set of  
geographically dispersed customers. 

In the past years stronger and stronger algorithms emerged, trying to solve the VRP, some of which 
were successful in determining better solutions. Even so, one rule that holds true for all algorithms is 
the large number of parameters that influences their performance. With this in mind, this paper will 
focus  in  determining  the  efficiency  and  challenges  of  using  an  open-source  parameter  tuning 
mechanism, SPOT. 

In order to evaluate SPOT’s performance in tuning algorithms for the VRP, we shall test its robustness  
on two state of the art algorithms: the Hybrid-GA implemented by Wink et al. [43] and the MACS-
DVRPTW of van Veen et al. [40].

The remainder of this work is structured as follows. First Chapter 2 will introduce Parameter Tuning. 
Then Chapter 3 offers an introduction to Vehicle Routing Problem. Following Chapter 4 presents the 
Meta-GA. Chapter 5 presents the second algorithm the MACS-DVRPTW. In Chapter 6 the tuning 
approach, SPOT will be described. The Experimental Setup is given in Chapter 7. Chapter 8 presents 
the results. Chapter 9 concludes this thesis. 
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Chapter 2

Parameter Tuning

Even though,  methods for  automatic  parameter  setting have emerged for  more than 30 years,  till  
recently most of the parameter setting was conducted manually. The change came as a result of the  
increased demand for a fast estimation of good parameter values [36]. 

Landgraaf et al. [15], state that there are two different methods in setting parameters values, and that is  
parameter tuning, which takes place before the beginning of the algorithm, and parameter control, that 
takes place during the run of the algorithm. Due to the nature of the algorithms to be tuned, in this  
paper we will focus our attention on parameter tuning.

Although parameter  tuning  was  chosen  as  the  approach for  parameter  setting,  it  has  a  drawback 
regardless of the method used (e.g. Meta-GA) in determining feasible parameter values, this is due to  
its inability to efficiently cope with the dynamic and adaptive nature of the metaheuristic algorithms. 
And so, the use of fixed parameters that do not change their values during the run of the algorithm may 
lead to lower performance. 

Furthermore, it is considered, that different parameter values can be better at different stages of the  
evolutionary process[16].  For  example,  larger mutation steps  can have a  positive impact  on early 
generations, by aiding the exploration of the search space and at the opposite end, small mutation steps 
might  be  more  efficient  in  later  generations.  A solution  to  this  problem would  be  to  replace  the 
parameters with functions that change their values over time. 

It is widely accepted that the parameter values of all metaheuristic algorithms are of utmost importance 
as they have a significant impact on the algorithm's performance.  However, finding feasible parameter  
values has several aspects, which makes it difficult in general:

• Parameter settings depend on each problem instance, such that a good configuration for one 
dataset may not lead to good results for another.

• Metaheuristics employ interrelated variables,  whose values depend on each other.  And so,  
tuning the parameters independently is not considered a feasible solution.

• In most cases the search space is extremely large due to several facts: primarily, an algorithm 
depends on many parameters,  which have a wide region of interest,  and at times they are  
sensitive to change.

• There is little knowledge regarding the influence of different parameters on the final result and 
the use of estimations offered by various theories are not always accurate.

When examining parameter tuning, Smit et al. [33] denoted the existence of three different layers. The 
first and also the lowest layer is the application layer and it corresponds to the problem, in our case the 
vehicle routing problem (VRP). The second, is the  algorithm layer, representing the algorithm that 
aims to find optimal solutions for the VRPs. The top layer, tuning layer is the tuning method, which 
tries to find good parameter settings for the algorithm layer. The entire scheme can be seen as two 
different optimization problems, to which we can refer to as problem solving and parameter tuning. A 
schematic overview of the parameter tuning hierarchy is available in Figure 2.0.
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Figure 2.0 The three layer experimental setup. The left column represents the  control flow, and the 
right column the information flow.

Parameter tuning [17] is comprised of two main tasks, the first one is determining the parameter sets 
that  return the highest  possible  performance.  This  task can be seen as  exploitation of  knowledge 
regarding the parameter values. The second task is characterized by the accumulation of information  
on robustness, which implies exploration of the parameter space. 

Every parameter tuning method is defined by a different balance between exploitation and exploration,  
and focuses on different types of robustness. This in turn leads to the differentiation of four main  
approaches. One that is mainly focused in achieving the best parameter, sets e.g. Meta-EAs, the second 
is focused in providing information e.g. sampling. And the other two approaches are a combination of  
both, for example screening and model-based approaches.  

As our aim is to tune algorithms that solve the VRP, Golden et al.  [19] state that the capabilities of 
metaheuristics  are  greater  than  that  of  classical  heuristics.  More  precisely,  the  focus  will  be  on 
population based metaheuristics, that make use of multiple solutions to search for an optimal result. 
Examples of such population based metaheuristics, are Swarm Intelligence, that mimic the collective 
behaviour of decentralized, self-organized  systems (e.g. ants). Another broad category of population 
based metaheuristics are the Evolutionary Algorithms, which make use of nature inspired procedures 
such as mutation, reproduction and selection, to iteratively evolve solutions.

In the following two subsections we will focus our attention to the particulars of parameter tuning in  
the fields of Evolutionary Algorithms (EAs) and Swarm Intelligence (SI). 
 

2.1 Parameter Tuning in Evolutionary Algorithms 

EAs  are  a  class  of  metaheuristic  algorithms  that  are  most  commonly  used  to  solve  NP-hard 
optimisation problems. They can be described as a set of steps for identifying good results in a limited 
amount of time. 

Even though there are many different evolutionary algorithms, we can describe EAs by considering a 
population  of  individuals  within  a  given  environment  characterized  by  few  resources,  which 
determines the process of natural selection, also known as survival of the fittest.  This in turn triggers 
a rise in the population's fitness values. This process can be artificially simulated, by considering an 
optimization  function  that  has  to  be  maximised.  Then  we  can  arbitrarily  create  a  population  of 
candidate solutions, to which we apply a fitness measure to determine the best candidates that will be  
selected to produce the next generation. Following, the selected individuals will suffer recombination 
and mutation. 

The recombination operator is mainly applied to two or more individuals (parents) resulting in one or 
more individuals (offspring). The second operator, mutation is applied to only one individual resulting 
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in an altered version of himself. By applying recombination and mutation to the parents, this leads to 
the conception of a population of new individuals. Who will be evaluated based on their fitness values 
and depending on the selection mechanism/strategy will compete for a place in the new generation.  
The entire process can be repeated until an individual with sufficient quality is found or a previously 
set stopping criteria is reached.
A formal description of evolutionary algorithms is outlined in Algorithm 2.1.

Algorithm 2.1 Pseudocode generic EA

// Initialization
t←0
initpopulation ( Pt )
evaluate ( Pt )

// Main loop
while stop condition not met do

Pt
′ ←selectparents ( Pt )

recombine ( Pt
′ )

mutate ( Pt
′ )

evaluate ( Pt
′ )

Pt+1 ← select ( Pt
′ )

t←t + 1 
end while 

One of the main challenges in the field of Evolutionary Computing (EC), is determining appropriate 
parameter  values  for  EAs.  As  stated  previously,  researchers  concur  on  the  importance  of  good 
parameter values towards improving the performance of metaheuristic algorithms. 
Nevertheless, the research is relatively limited, in terms of the studies conducted, on the effect of  
parameters  on the  EA's  performance  and on  the methods  of  tuning  these parameters.  So far,  the 
parameter values were largely selected by conventions (mutation success should be according to 1/5 
rule), and based on experimental comparisons conducted on small scale tests.

Now that  we briefly described the evolutionary algorithms,  we will  focus on the state  of  the  art  
parameter tuning methods. In order to decide upon a tuning method, we will examine the literature, 
and make a summary of the most commonly used and better reviewed alternatives. As it is beyond the 
scope of this thesis, we will not go in too much detail regarding the description or comparison of the 
methods.   

Eiben et al. [17] conducted one of the most extensive research on parameter tuning for evolutionary 
algorithms, concluded in a comparison table (Appendix 1) of the previously identified four different  
parameter tuning approaches. The results in this paper and other papers concur that the Meta-GA[36]
[15], REVAC[5][7][15][34][36], F-RACE[5][7] and SPOT[5][7][34][36] are one of the most efficient  
tuning methods for  EAs.  Meta-GA and REVAC are  Meta-EAs,  where the  former  is  an enhanced 
approach. F-RACE is a screening method and SPOT is an iterative model-based method. 

2.2 Parameter Tuning in Swarm Intelligence

A swarm is defined as a big population of homogeneous and simple agents that interact locally with 
themselves,  and the surrounding environment,  they lack central  control  and the knowledge of the 
global status of the swarm or its primary goal.  Swarm-based algorithms have recently appeared as a 
group of  nature  inspired,  population  based  algorithms  that  are  able  to  determine  fast  and  robust 
solutions to several NP-hard problems.  Swarm Intelligence (SI) can be defined as a method used to 
mimic the collective behaviour of social swarms, such as ant colonies, honey bees, and bird flocks.  
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Even  though,  swarm individuals  are  fairly  uncomplicated  with  limited  abilities  of  their  own,  by 
successfully interacting with each other and using certain behavioural patterns they can achieve far  
greater tasks. This interaction amongst individuals is either direct or indirect. The former one takes 
place with the aid of visual or audio stimuli (e.g. the “dance” of honey bees). And on the other hand 
indirect interaction, takes place when individuals guide themselves based on the changes done to the 
environment by other individuals (e.g. pheromone deposit by ants). This paper will focus on the later. 

When considering parameter tuning in SI, we have to research tuning approaches that work on the sub-
field of interest, in our case Ant Colony Optimization (ACO), which will be discussed in greater detail 
in Chapter 5. Yuan et al. [44] mentions CALIBRA, F-RACE, SPOT and REVAC as tuning methods for 
ACOs.  

2.3 Comparison and Selection of Parameter Tuning Approaches

In this subsection we will offer a short description, of the tuning methods that were mentioned as a  
feasible approach for both Evolutionary Algorithms and Swarm Intelligence. Then we will offer our  
decision upon the selected method that will be used in our analysis. 

Relevance Estimation and Value Calibration (REVAC) [37] is an Estimation of Distribution Algorithm 
(EDA) that measures maximized entropy in the continuous domain. More precisely REVAC works by 
finding parameter vectors with high utility, collects the values of entropy for different utilities, and it  
creates a distribution for each parameter that indicates the expected utility of parameter values.

F-RACE  [5] is inspired from racing algorithms,  a method that iteratively evaluates a given set of 
candidate  configurations  on  a  stream  of  instances.  And  uses  Friedman's  rank  test  to  eliminate  
unsuitable candidate solutions. 

SPOT  [8]  is  an  implementation  of  the  Sequential  Parameter  Optimization  (SPO)  framework,  a 
heuristic which makes use of classical and statistical methods to improve the performance of search 
algorithms by building meta models based on the data collected from the exploration of the search 
space. 

Literature research showed that all three methods proved to be efficient, however REVAC and SPOT,  
stand out. In terms of picking one over the other, we will consider the following aspects:

• Ability to tackle both numerical and categorical variables 
• Ability to conduct multi-criteria optimization 
• Flexibility towards tuning both EAs and ACOs
• Keep computational cost as low as possible
• Ease of implementation
• Offer detailed information about the parameter's influence on performance

In [17] Eiben et al., argues that there are few tuning methods capable of reducing tuning effort, such as  
SPOT and REVAC, where tuning effort is viewed as the product between the number of parameter sets  
to be tested and the number of algorithm iterations. 

Two  drawbacks  of  REVAC,  are  according  to  Smit  et  al.  [32]  its  inability  to  handle  parameter 
interactions  (no  joint  distributions  for  multiple  parameters)  and  that  it  cannot  be  used  for  tuning 
categorical parameters. Which is in contrast to Yuan et al. [44] who declared that REVAC can handle 
both numerical and categorical parameters. Yuan et al. also argues that SPOT is not able to handle  
categorical variables while Bartz et al [5] stated that it can, by encoding the variables as numerical  
values. In later papers[6][7][8] it is mentioned that SPOT uses factors to specify categorical variables.
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In a comparative study [34] SPOT proved to be a high quality parameter tuner as it  was able to 
determine good parameter values comparable to the ones found by Meta-EAs, plus it offers invaluable 
information through its resulting models.  
Furthermore, SPOT includes methods to cope with stochastically disturbed results and it  has been 
proven to be able to run on various metaheuristics including newer approaches such as algorithmic 
chemistries and particle swarm optimization.  Also underlining SPOT flexibility [5], it can be used in 
fields  such  as: bioinformatics,  water-resource  management,  mechanical  engineering,  biogas  plant 
simulation, shipbuilding and quality control.

According to Bartz et al. [9], the main differences between SPOT and other tuning approaches are that, 
SPOT is able to maintain a relatively low computational cost while determining good parameter sets. A 
time constraint which in most cases rules out grid computing, local search methods and even Met-EAs.  
Furthermore, it offers detailed information that allows the user to learn, which is optional as the tuning  
process  can run automatically.  And probably the most  significant  difference is  that  SPOT can be 
applied in an algorithmic manner, it requires the specification of very few parameters and no major  
programming effort.

Based on the research conducted, we decided to use SPOT as a tuning method. Besides the previously 
mentioned factors, we considered SPOT also for the availability of its extensive documentation, the  
fact that it able to run in both Windows and Linux environments, and finally its ability to cope with  
algorithms implemented in relatively every programming language, in our case C and Visual C# (tests 
were done for JAVA also).  

2.4 Research Objective

The main objective of this research is to determine the effectiveness of automated parameter tuning by 
testing SPOT on two different algorithms: Hybrid GA and MACS-DVRPTW, algorithms that try to 
solve the CVRP and DVRPTW respectively. This can be distributed among the following points:

Performance: 
• Is MSPOT able to match or improve the parameters found by the Meta-GA of Wink et al.  

[43]? 
• Is SPOT able to match or improve manually tuned parameter sets for MACS-DVRPTW of van  

Veen [40]? 

Time: 
• Is MSPOT able to match or improve the time it took the Meta-GA to achieve good results? 

Robustness: 
• Do the parameter sets obtained by SPOT perform consistently? 

Information:
• Is it possible to find a better understanding of the parameters used by each algorithm?

To our knowledge, no research had been conducted in testing the usefulness of a tuning algorithm over 
two different metaheuristics coming from separate fields of natural computing, which are solving two 
different  VRPs.  And  as  such,  we  do  believe  that  the  results  of  this  report  will  offer  a  better  
understanding of parameter tuning in general and be a motivation for further studies.
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Chapter 3 

Vehicle Routing Problem

According to Golden et al  [20] the Vehicle Routing Problem (VRP) is a well known combinatorial 
optimization problem, which is concerned with the optimal design of routes to be used by a fleet of 
vehicles to serve a set of geographically dispersed customers. 

From the moment it was first proposed more than 50 years ago, numerous papers have been dedicated  
to the precise and approximate solution of the many variants of this problem. Such as the Capacitated 
VRP (CVRP), in which a homogeneous fleet of vehicles is available and the only constraint is the 
capacity of the vehicles, or the VRP with Time Windows (VRPTW), where customers may be served 
within a given time interval and the schedule of the vehicle routes needs to be discover. Figure 3.0  
depicts an example of the VRP with the optimal solution on the right.

Figure 3.0: VRP example

[38] [26] In terms of complexity, the VRP is considered to be NP-hard and generalizes the Travelling 
Salesman Problem (TSP), which calls for the discovery of a minimum-cost circuit that visits all the 
vertices of G (a Hamiltonian circuit). 

A problem which can be resolved using a polynomial-time algorithm (worst case complexity O(nk) ), 
is considered to be of complexity class  P, which stands for polynomial time. A decidable decision 
problem whose solutions can be checked in polynomial time and its polynomial-time algorithm is 
unknown, falls under complexity class NP (non-deterministic polynomial time). Moreover, a problem 
is considered NP-hard if any problem in NP can be reduced to it in polynomial time.

Many approaches have been proposed for such problems, most of which simulate  natural processes, 
e.g. biological evolution or ant colonies [24].  

[27] As the VRP is a NP-hard problem, solving it optimality is not always possible within the limited  
computing time; in this situation, the solution should involve heuristic and meta-heuristic methods that 
can yield high-quality solutions in limited time. 
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3.1 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is considered the basic VRP, and its mathematical 
model is defined on a graph G(V , E)  where:

• G is complete and symmetric.
• n is the number of customers.
•  v={v 0 , v1 , ... ,v n}  is  the  set  of  all  vertices  with  depot  v 0 .The  set  of  all  customers 
corresponds to V−v0 .
• E={(vi ,v j)∈V :i≠ j}  is the set of all edges.
• d (vi ):i∈{1,. .. ,n}  denotes the demand for customer i.

• cij=δ(vi ,v j)=√∣v ix
−v jx

∣2+∣vi y
−v jy

∣2 is the travel cost between vertices Ri , v j .

  cij=c ji  and Cost (S )=∑
j=1

m

Cost (R i)  hold in CVRP.

• Ri : i∈{1,. .. ,m}=(v0 , vi1
, ... ,v ik (i )

, v0)  is a route for one vehicle.
Each route starts and ends at the depot.
• S={R1 , ... ,Rm}  is the set containing all routes, forming the solution.

• Cost (Ri)= ∑
j=1

k ( i)−1

(ci j i j+ 1
)+ c0i1

+ cik (i) 0  is the travel cost for Ri .

• Every customer is visited exactly once by one vehicle:
  ∀ i(vi∈V−v 0⇒∃ j : vi∈R j∧∄ j≠k : v i∈R j∧vi∈Rk)

• Total demand in routes does not exceed vehicle capacity K:

  ∀ i∈{1,. .. ,m}:(∑
j=1

ik

d (vi
j
)⩽K )

The  goal  is  to  minimize  the  total  travel  distance,  thus  the  objective  function  is  to  be  
minimized.

  Cost (S )=∑
j=1

m

Cost (R i)

All vehicles have identical capacity,  Q, and the number of vehicles is not determined a priori.  The 
CVRP consists in determining a set of vehicle routes (a) starting and ending at the depot, and such that 
(b) each customer is visited exactly once, (c) the total demand of any vehicle route does not exceed Q, 
(d) the total cost of all routes is minimized.
As a solution for the CVRP, this paper will focus on the Meta-Genetic Algorithm of Wink et al. [43],  
further discussed in Chapter 4.

3.2 Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) it  is based on the CVRP, and it  has 
associated with each vertex v i∈V  not only a demand qi≥0  but also a service time si≥0  and a time 
window [ei , li ] . The depot has both the quantity (q0)  and the service time (s0)  equal to zero[29]. 

A viable solution for the VRPTW is defined as a set of routes that satisfy the following constraints: (a) 
each route starts and ends at the depot, (b) each customer is visited exactly once by a vehicle, (c) the  
total demand of customers in any route does not exceed Q and (d) the service of each customer is  
started between ei  and li .

As the analysis in this report is based on the work of van Veen et al. [40], it is important to state that  
the travelling distance and the travelling time of a route are equivalent, as in this case the travelling 
time does not include waiting time and service time. 
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3.3 Dynamic Vehicle Routing Problem with Time Windows

The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW), is characterized [25] [30] by 
the fact that not  all the necessary information for planning the routes is known to the user when the  
routing  process  starts  and  the  information  is  bound  to  change  after  the  initial  routes  have  been 
constructed.

DVRPs' are also referred to as real time or online vehicle routing problems [22], and they can be  
dynamic in various ways [40], for instance dealing with changing travelling times, addition or deletion 
of nodes. The algorithm that we shall analyse in a later chapter focuses on the addition of nodes to the 
initial problem.   

[22] Solutions to this  type of problem range from linear programming to meta-heuristics,  as it  is  
beyond  the  scope  of  this  thesis,  we  will  only focus  on  van  Veen  et  al.  [40]  algorithm:  MACS-
DVRPTW (Chapter 5).    

3.4 Real world applications 

[27] The VRP has drawn enormous interests from many researchers during the last decades because of 
its essential role in task sequencing, planning of distribution systems and logistics in many sectors 
such as parcel delivery, transportation of goods, snow ploughing. Furthermore, transportation is an 
active part in all stages of the production and distribution systems amounting up to 20% of the final 
cost of goods [38]. 

Based on the previous statement, it is fair to say that efficient routing solutions can save companies 
both time and money, and so, the market for efficient routing software is far from being saturated. A 
fact also proven by the extensive research into VRP, by a Norwegian research institute, SINTEF, which 
developed a software called Spider, coupled to real maps, thereby creating a usable solver for real  
world applications  [21].  The software also runs problem instances  from research literature,  which  
enables performance comparisons.
Another  example is  Xtreme  Route  [51],  a  commercially available  software which works  on both 
research problem instances and actual maps, [43] and apparently holds the record for a large number of 
problem instances used in literature.

9



Chapter 4 

Meta Genetic Algorithm
The focus of this chapter will be on the Meta-GA of Wink et al. [43]. The goal of their implementation 
was to develop an algorithm that could efficiently solve the CVRP, while at the same time offer the  
possibility to automatically determine good parameter sets. 

The work of Wink et al. answered the following questions, which we shall cover in Section 4.3: 
• Is the Meta-GA able to match or improve manually tuned parameter sets?

• Is the Meta-GA able to match or improve the time it takes to manually tune a parameter set?

• Do the parameter sets obtained by the Meta-GA perform consistently?

Before proceeding with their actual implementation we shall first offer a short introduction to GAs 
(Section 4.1) and the implemented Hybrid GA (Section 4.2).

This chapter will focus only on the key principles of the algorithm, in order to offer to the reader an 
understanding of the task. However, for a full description of the algorithm, please see Wink et al. [43].

4.1 Classical Genetic Algorithm

[18]Evolutionary Algorithms are metaheuristics inspired by Darwin's evolutionary theory, and they are 
used to determine solutions to combinatorial optimization problems through a repetitive process that  
aims to improve candidate solutions with the aid of genetically inspired operators.

Algorithm 4.1 Pseudocode Genetic Algorithm

// Initialization
t←0
initpopulation ( Pt )
evaluate ( Pt )

// Main loop
while stop condition not met do

Pt
′ ←selectparents ( Pt )

Pt
″ ←recombine ( Pt

′ , pc )
Pt
‴ ←mutate ( Pt

″ , pm )
evaluate Pt

‴

Pt +1 ← select ( Pt
‴ )

t←t + 1 
end while 

A subclass of Evolutionary Algorithms, the Genetic Algorithm (GA) is an adaptive strategy and a 
global  optimization  technique.  It  is  inspired  by  population  genetics  including  heredity  and  gene 
frequencies  [10].  The  GA uses  operators  like  recombination,  mutation  and  selection  to  improve 
candidate solutions and the evolution takes place at the population level. An outline is depicted in  
Algorithm 4.1.
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In most cases the genetic operators are not capable to run on the natural representation of candidate  
solutions,  the  phenotype space,  and so encoding/decoding is used to translate the phenotypes into 
genotypes. The translation is a simple conversion from integer to binary and the other way around.     

4.1.1 Characteristics and Parameters 

The initialization phase is defined by randomly generating individuals and evaluating them. 
In the selection phase there is the option whether to include in the next generation, only the new 
offspring(λ) or to also add the originating parents(μ). The situation in which only the new offspring are 
included is called a comma strategy and the other a plus strategy. 
Figure4.1.1 Depicts a situation in which the algorithm had stopped in local optimum. A situation that 
can be avoided by using a comma strategy that permits intermediate deterioration by forgetting highly 
fit individuals.

Figure 4.1.1 Local Optimum

The population size, also plays an important role in finding good solutions. A population that is too 
small may not be able to search enough of the solution space and λ should be chosen greater than μ to 
allow diversity.

Another parameter that influences the quality of solutions is the selective pressure, which emphasises  
on choosing the best individuals. A commonly used selection mechanism that offers increased control 
in selective pressure is tournament selection. It works by selecting the best individual from a randomly 
chosen pool of K individuals picked from the population. 
In their algorithm Wink et al. [43], coupled tournament selection with ranking-based selection that 
offered even more control. The operator is outlined in Algorithm 4.1.1

Algorithm 4.1.1 Tournament selection with ranking

choose randomly K (the tournament size) individuals from the population 
choose the best individual from the pool with probability p
choose the second best individual with probability p ∗ (1− p)
choose the third best individual with probability p ∗ (1− p)2

and so on...
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4.2 Hybrid Genetic Algorithm

In order to solve the CVRP, Wink et al. [43], introduced a Hybrid GA (HGA), different from the before  
mentioned Classical GA, the difference lies in the modified individual representations.  The algorithm 
is outlined in Algorithm 4.2

Algorithm 4.2 Pseudocode Hybrid Genetic Algorithm.

// Initialization
t←0
initpopulation ( Pt )

// Main loop
while stop condition not met do

Pt
′ ←recombine ( Pt , pc )

Pt
″ ←mutate ( Pt

′ , pm )
Pt
‴ ←optimize  ( Pt

″ , pm )
Pt +1 ← select ( Pt

‴ )
t←t + 1 

end while 

The most natural representation for a CVRP solution is a set of routes where each route starts and ends  
at the depot and contains the customers in the order they are visited. In VRP there are two common 
approaches in the permutation-based genotype design [43]. 

First one consists in encoding the phenotype by concatenating the customers in a single permutation 
and then,  decoding is  reached by assigning customers  to  vehicles.  However,  this  approach is  not 
capable to individually represent all possible phenotype, as after encoding/decoding, in some cases the 
result is different from the initial phenotype.  

Wink et al. [43] used the second approach in terms of representation where genotype = phenotype. 
Meaning that the need for encoding/decoding functions was removed, however it implied the usage of 
specialized operators. 
Such a system that uses other heuristics, domain knowledge or existing algorithms is referred to as 
hybrid  evolutionary systems [2]  and they are  considered to  be part  of  the  class  of  ‘hybrid meta-
heuristics’ [39].

In  order  to  outline  the  distinctiveness  of  the  HGA,  following  we  shall  shortly  describe  the 
implemented Local  Search Heuristics  (Section  4.2.1),  Initialization (Section  4.2.2),  Recombination 
(Section 4.2.3), Mutation (Section 4.2.4), Optimization (Section 4.2.5) and Selection (Section 4.2.6).

4.2.1 Local Search Heuristics

2-Opt [12], is a typical local search algorithm that basically removes intersections in routes with the 
goal  of  reducing  the  operational  cost.  It  works  by  checking  all  pairs  of  non-adjacent  edges  for  
intersections. In the case that they do intersect 2-Opt, reorganizes the edges and so creating a route  
without intersections. The complexity is O(n2) since all pairs of edges are checked within each route.

Push Forward Insertion Heuristic (PFIH) [35], is an efficient method to create feasible solutions for 
any VRP by considering an infinite number of vehicles. PFIH works on lists of unrouted customers,  
whereupon creating a new route; firstly the most distant customer is inserted, followed by the most  
cost-efficient and feasible vertex whether it is a customer or a depot (in this is case a new route is  
created).  PFIH is outlined in Algorithm 4.2.1
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Algorithm 4.2.1 Tournament selection with ranking

i ← 1
while any unrouted customers do
     if Route i is empty then
       Find most distant customer and append it to Route i
    else
          vertex ← most cost-efficient insertion (feasible customers or depot)
          if  vertex is a customer then
              Append customer to Route i
          else
               i ← i + 1
          end if
    end if
end while

4.2.2 Initialization

Kallel et al [23] stated that Initialization plays an important role in achieving good result using GAs, 
due to the fact that bad Initialization in the best case scenario it will increase the time to solution,  
whereas in the worst case scenario it could even prevent the convergence towards the global optimum.
 
Random initialization,  a  random CVRP solution  is  created  using  exhaustive  routing  by assigning 
customers to routes whilst capacity constraint is not broken.

Bearing initialization, used to steer the initial population towards a promising area in the search space. 
It is done by arranging the individuals from the initial solution in the direction of a ‘butterfly’ pattern. 
Starting at  a certain bearing (i.e.  00,  north) from the depot,  the operator then scans clockwise for 
customers who are added exhaustively into the routes, without violating constraints [43]. In order to  
avoid the creation of duplicate individuals, different start bearings are used for each individual. The  
pseudocode is available in Algorithm 4.2.2

Algorithm 4.2.2 Bearing initialization

Require: 0 ≤ StartBearing < 360
Calculate bearing for each customer as seen from the depot
Order the customers by bearing as seen from the depot
Starting from StartBearing, exhaustively create routes

4.2.3 Recombination

Best  Cost  Route  Crossover  (BCRC),  while  checking  for  constraints  this  operator  tries  to 
simultaneously minimize the number of vehicles and cost. In this process two parents generate two 
offspring, by selecting one route from each parent whose customers are afterwards removed from the  
other parent. 
The removed customers are sequentially re-inserted in the most cost-efficient location. In case of a 
stalemate (identical insertion costs in two or more positions), a random location is chosen from those 
positions. The operator is able to generate a new route when there are no viable insertion places, or if  
generating a new route results in the minimal increased travel distance.

Alvarenga Crossover (AX) [1], when creating the new offspring this operator tries to take as much 
complete routes as possible from both parents. Basically AX, generates an offspring resembling both 
parents equally, although this is largely dependent on the problem set. Moreover, if a route with many 
customers  (pertaining  to  a  large  problem  set  with  few  vehicles)  is  inserted  into  the  offspring,  
frequently no other route is possible for insertion any more. In this case, a large number of customers 
have to be routed using PFIH, which eventually will not yield good results.
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4.2.4 Mutation

Merge routes, starts by unrouting the customers of a random number of randomly selected routes and 
reinserts  them  using  the  PFIH  operator.  The  merge  routes  operator  is  most  efficient  in  initial  
populations due to the fact that solutions display a relatively large number of overlapping routes in the 
early stages of the runs.  However after the solutions have evolved, the operator is not capable of 
providing improvements in many occasions. 

Adjacent reorder, this operator works by selecting a random customer and then identifying the nearest 
customer in another route. Followed by unrouting all customers in both routes and re-inserting them, 
using PFIH. And so two routes will be merged and they are most probably adjacent, which is precisely 
where the solution has a high likelihood of being improved.

4.2.5 Optimization

The currently studied GA has an additional step, optimization, where each individual is optimized 
using the 2-Opt heuristic.

4.2.6 Selection

Tournament selection is used, where q>1  individuals are chosen randomly from the population, out 
of that pool the best individual is being selected. Tournaments are being held for each individual of the 
new population.  In this study,  the tournament  selection operator was extended by implementing a 
ranking-based selection within the  pool.  Furthermore,  the  operator is  used only for selecting new 
individuals for the next generation. 

4.3 Meta-GA 

The performance of algorithms is directly proportional with the quality of the set of parameters used.  
In most cases, determining good configurations can be troublesome as most algorithms make use of  
many parameters, which in turn, results in an exponentially larger number of possible configurations. 
A feasible approach in setting these parameters is to make use of “best practises” and a trial and error  
method, which is very time consuming.

Clune et al [11], proposes the use of a Meta-GA (GA within a GA) for the investigation of promising 
parameter settings with the goal of creating a self adaptive algorithm. This method was first used by 
Mercer and Sampson in 1978 and a more extensive investigation was conducted by Grefenstette 8 
years later. 

The  Meta-GA works  by  optimizing  parameter  values,  these  values  are  encoded  using  a  binary 
representation, and so for every parameter set, the Meta-GA sees a single individual. Whose, fitness  
value  is  evaluated  by  executing  the  lower  level  GA with  the  parameter  set  that  belongs  to  the  
individual.  As in the case of a classical  GA, the individual  with the highest  fitness value will  be 
selected for  the  next  generation and when selected there  is  a  chance it  will  undergo mutation or 
crossover.

The Meta-GA proposed by Wink et al., was implemented as a classical GA, that worked on the Hybrid 
GA described in Section 4.2. The implementation made use of classical  operators such as 1-point 
crossover and bit-flip mutation together with a classical tournament selection. That left, population 
size, selection strategy and tournament size as the only parameters to be set for the Meta-GA.
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In order to keep the bit-string of the genotype as short as possible, the parameters where encoded using 
step sizes. For example in the case of μ by using a step size of 2n  on a parameter range of [8 : 1024] 
resulted in an encoding of only 3 bits. Table 4.3 outlines the entire list of parameters, their range and 
step sizes.

Table 4.3 Meta-GA parameter coding
Parameter Range Step size Bits

μ 8 : 1024 2n 3

Selection Strategy Comma or Plus selection - 1

λ 2μ : 5μ μ 2

Recombination Operator BCRC or Alvarenga - 1

Mutation Operator Merge routes or Adjacent reorder - 1
Pmutation 0.3 : 0.9 0.2 2

Tournament size 2 : 17 - 4

Initialization operator Random or Bearing - 1

Bit-string 15

The maximum number of generations was not considered for tuning based on the assumption that it 
should depend on the population size and it was set to 100,000/λ.

Using the set-up outlined in this section, the Meta-GA was able to match and at times even exceed 
manually tuned parameter sets,  but only for problem instances up to 100 customers, as the running 
time for large instances was too long, reaching up to several days.

Another strength of Wink et al. Meta-GA is its ability to match and even improve the time it takes to 
manually tune a parameter set. Considering the situation that there is no prior knowledge on parameter 
settings, the algorithm can return in approximately 15 hours for a problem set of up to 80 customers a 
parameter configuration that yields a solution within 1% of the optimum.  

Thirdly,  the  results  of  the  Meta-GA are  consistent  as  it  has  been  proven,  that  running  the  same 
parameter set on the Hybrid GA will return good results. 
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Chapter 5 

Ant Colony Optimization: MACS-DVRPTW
In this chapter we shall discuss the MACS-DVRPTW algorithm of van Veen et al. [40] proposed as a  
solution to the DVRPTW problem with different degrees of dynamism. Furthermore, this is considered 
to be the first ACO algorithm that solves the DVRPTW problem.

Due to the limited research on the topic, it is hard to compare the results of the algorithm on the 
DVRPTW with results from other papers. And so, we will compare our results only with those of van 
Veen et al. [40]

Before  proceeding  with  the  actual  implementation  of  the  algorithm  we  shall  first  offer  a  short  
introduction to Ant Colony Optimization (5.1) and MACS-VRPTW (5.2).

This chapter will focus only on the key principles of the algorithm, in order to offer the reader an  
understanding of the task, however for a full description of the algorithm please see van Veen et al.  
[40].

5.1 Ant Colony Optimization 

Ant colony optimization is part of the larger field of swarm intelligence, a relatively new approach to  
problem solving, a system inspired by the social behaviour of insects and other animals. In particular,  
ants have inspired a number of methods and techniques among which are the ant algorithms[28]. In 
real  life  ants  coordinate  their  activities  through  a  form  of  indirect  communication  mediated  by 
modifications of the environment, called stigmergy.  For example, foraging ants deposit a chemical 
(pheromone) on the ground, which increases the probability that other ants will follow the same path.

One of the most successful example of an ant algorithm is the general purpose optimization technique 
known as ant colony optimization (ACO). ACO algorithms can be used to solve not only static but 
also dynamic combinatorial optimization problems[14]. The algorithm works by mirroring the self-
organizing principles which determine the coordinated behaviour of foraging ants, in order to organise  
the cooperation of societies of artificial agents to solve computational problems.
A schematic representation of the foraging ants behaviour is illustrated in Figure 5.1

Figure 5.1 Schematic representation of ant behaviour. 
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An informal description of the ACO algorithm is given by Dorigo et al. [14], who describes it as the 
interaction  of  three  main  procedures:  ConstructAntsSolutions,  UpdatePheromones, and 
DaemonActions.

The first procedure, ConstructAntsSolutions, controls a population of ants that simultaneously and in 
an unsynchronised fashion, visits adjacent states of the problem by travelling through neighbour nodes 
of the problem’s construction graph. They move based on a random local decision policy that makes 
use of pheromone trails and heuristic information. In this way, ants gradually create solutions to the 
problem in question. The moment an ant has created a solution, or during its development, the ant 
evaluates the (incomplete) solution that will afterwards be used by the UpdatePheromones mechanism 
to decide how much pheromone to deposit.

In  the  second process,  UpdatePheromones,  the  pheromone  trails  are  changed.  Their  value  can  be 
increased, as ants deposit pheromone on the components or connections they use, or lowered, as a 
result of pheromone evaporation. The deposit of new pheromone increases the probability that those 
components or connections that were used by a large number of ants and which produced a very good 
solution will be reused by future ants. On the other hand, pheromone evaporation applies a helpful  
form of forgetting,  and as a result  it  avoids the premature convergence of the algorithm toward a 
suboptimal region, therefore enabling the exploration of new areas of the search space.

The DaemonActions mechanism is used to implement coordinated actions which cannot be performed 
by single ants. An example of such an action is the activation of a local optimization method, or the  
accumulation  of  global  information  that  can  be  used  to  determine  the  usefulness  of  depositing 
additional pheromone to bias the search process from a non-local perspective. From a practical point  
of view, the daemon is capable to observe the solution found by every ant in the colony and select one 
or a few ants, mainly those that created the most promising solutions, and then allow them to deposit  
more pheromone on the components/connections they used.

An outline of the ACO pseudocode is available in Algorithm 5.1. The construct  ScheduleActivities 
does  not  specify how the  three  processes  described  earlier, are  scheduled  or  synchronized.  More 
precisely it does not state whether they should be run in parallel,  independent,  or if some kind of 
synchronization among them is required. Therefore, the designer has the freedom to specify how these 
three procedures should interact, taking into consideration the characteristics of the problem at hand.

Algorithm 5.1 Pseudocode ACO algorithm.

procedure ACOMetaheuristic
       ScheduleActivities
             ConstructAntsSolutions
             UpdatePheromones
             DaemonActions % optional
       end-ScheduleActivities
end-procedure

5.1.1 Ant Colony System

[41] The basic ACO algorithm, the Ant System(AS) and its variants, have been successfully used on 
numerous  optimization  problems,  such  as  the  TSP,  task  scheduling,  optimal  path  planning,  load 
balancing and routing in telecommunication networks. 

The  two  primary  phases  of  the  AS  algorithm constitute  the  ants’  solution  construction and  the 
pheromone  update.  [14]  A good practice  in  initializing  the  pheromone  trails  is  setting  them to  a 
somewhat higher value than the foreseen amount of pheromone deposited by the ants in one iteration; 
this value can be estimated with the following equation: 
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∀(i , j) , τij=τ0=m /Lnn

With:
τo   : starting pheromone value
Lnn : length of the nearest neighbour tour 

m : number of ants
ij : represents the index corresponding to vertex (i, j)

The reasoning behind it,  is that if the starting pheromone value  τo  is too low, then the search is 
rapidly biased by the first  tours generated by the ants,  which it  will  steer the exploration towards  
inferior  zones  of  the  search space.  On the other  hand,  if  the  values  are  too high,  then too many 
iterations will be wasted until pheromone evaporation reduces enough pheromone values, in order for  
the pheromone added by ants to be able to bias the search.

The solution construction, can be implemented in two different way, by using a parallel or sequential 
solution construction. In the former implementation, at every step all the ants in the colony move from 
their current position to the next one, while in the former implementation an ant creates a tour before  
the next one starts to build another one. In the AS case, the implementation options are considered  
equal [41] in the sense that they do not significantly alter the algorithm’s behaviour. However, this 
does not hold true for other ACO algorithms such as Ant Colony System (ACS).

In terms of pheromone update, once all the ants have determined their solutions, the pheromone trails  
are updated. Firstly the pheromone values on all arcs are decreased by a constant factor, and then  
pheromone is added on the arcs the ants have crossed in their tours. In general, arcs that are used by 
larger numbers of ants and which are a part of shorter tours, will receive more pheromone and so will 
be more likely to appear in future iterations of the algorithm.

In contrast to Dorigo et al. [14], who states that ACS differs from AS in three main ways, van Ast et al.  
[41] mentions four differences, which will be now be summarized.

Firstly, the ACS algorithm implements a local pheromone update step, in order to avoid premature 
convergence to less favourable solutions, a step which occurs for each ant after each iteration within a 
trial, and it is defined by the following equation:
τij=(1−ρ)τij+ρ τ0 , 

With:
ρ   : pheromone evaporation, defined over the interval (0,1) 

During  the  trial,  the  local  pheromone  update  step,  reduces  the  attractiveness  of  visited  solution 
components in order to direct the ants towards less visited components.

Secondly, ACS makes uses of a global best update rule in terms of updating the global pheromone. 
Meaning that the solution with the highest fitness, found since the beginning of the algorithm is going 
to  be  used  to  update  the  pheromone  variables  at  the  end of  the  tour.  This  method used  in  ACO 
algorithms has proven to considerable speed up the convergence to the best solution.

Thirdly, the global pheromone update is executed just for the (i, j) pairs that are part of the global 
optimum solution.  Meaning that  not  all  pheromone  levels  are  evaporated,  just  the  ones  that  also 
receive a pheromone deposit.

Furthermore, the pheromone deposit is adjusted by ρ . As a result of the current and the previously 
mentioned two differences, the global pheromone update rule becomes:

τij={(1−ρ) τij+ρ∑
k=1

m

Δ τij
k , if (i , j)∈T *

τij                             , otherwise    
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Where Δ τij
k=1 /L*

With:
T *   : best tour found so far
L*  : length of tour T *

Δ τij
k : quantity of pheromone deposited by an ant k on vertex (i, j)

m : number of ants

[13] Another notable difference between ACS and AS, consists in the decision rule used by ants during 
the construction process, called pseudorandom proportional rule. Which states that the probability for 
an ant to move from point  i to point  j depends on a randomly assigned variable q, from the interval 
[0, 1], and a parameter q0 .

5.2 MACS-VRPTW

In Section 4.2 we introduced the Hybrid GA of Wink et al. [43], as a state of the art solution for the 
CVRP. In this section we will focus on van Veen's et al. [40] implementation of the Multiple Ant 
Colony System for the VRPTW (MACS-VRPTW), the algorithm is considered the most successful 
ACO for solving the VRPTW. As stated in Section 3.2, the VRPTW has two objective functions: to  
reduce the number of vehicles and the second, to reduce the total travel time. The antecedent has  
priority, as a solution with fewer vehicles and higher travel time is chosen over a solution with lower 
travel time but a higher number of vehicles. A schematic overview of the algorithm is outlined in 
Figure 5.2.

Figure 5.2: Overview of the MACS-VRPTW

As can  be  depicted  from Figure  5.2,  MACS-VRPTW optimizes  a  multiple  objective  function  by 
coordinating two colonies, ACS-TIME and ACS-VEI, one for each objective. ACS-TIME, seeks to 
reduce the total travel time, while at the same time, colony ACS-VEI searches for a solution with 
fewer vehicles. Both colonies are based on the same solution construction procedure, similar to the one  
used by ACS. Furthermore, the two colonies run in parallel, while creating independent pheromone 
trails,  nonetheless,  they  do  collaborate  by  exchanging  information  through  mutual  pheromone 
updating. 

ACS-VEI  uses  an  array  IN,  in  order  to  give increased priority to  those nodes that  had  not  been 
included in previous tours. At the same time it makes use of T VEI  to keep track of the best solution, 
which may not always integrate all nodes. 
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On the other hand ACS-TIME is not using a colony best solution, and it does not work with infeasible 
solutions, and it executes a local search procedure (Cross Exchange) to improve the solution.   

Cross Exchange was implemented by van Veen et al., in such a way that MACS-VRPTW could handle 
hard time window constraints. Another adjusted method is the nearest neighbour heuristic, firstly the  
constraints on capacity and time windows are checked to avoid infeasible tours and secondly a limit on 
the maximum number of vehicles is passed to the function. 

The algorithm begins with a feasible solution  T * , generated using the nearest neighbour heuristic. 
This solution is then optimized using the two colonies and when ACS-VEI finds a feasible solution 
with less vehicles, both colonies are restarted with the new reduced number of vehicles. 

The pseudocode of the ACS-VEI and ACS-TIME can be found in Algorithms 5.2.1 and 5.2.2.

Algorithm 5.2.1 Pseudocode ACS-VEI(v)

Input: v is the maximum number of vehicles to be used
Given: n is the number of nodes

// Initialization 
Pheromones are initialized to τ0  
IN initialized to 0
T VEI  ← NearestNeigbour(v)

// Main loop 
while stop condition not met do

 for each ant k do
   T k ←ConstructTour(k, IN)

       for every nodes i∉T k  do
               INi=INi+1
        end for

Update local pheromone on edges of T k  
T k ←InsertMissingNodes(k)

end for

Find ant l with most visited nodes
if nodes in T l  > nodes in T VEI  then

T VEI  ← T l

IN ← 0
if T VEI  feasible then

return T VEI  to MACS-VRTW
end if

end if

Update global pheromone with T *  using: τij=(1−ρ) τij+ρ∑
k=1

m

Δ τij
k ,∀(i , j)∈T *

Update global pheromone with T VEI  using: τij=(1−ρ) τij+ρ∑
k=1

m

Δ τij
k ,∀(i , j)∈T VEI

end while
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Algorithm 5.2.2 Pseudocode for the ACS-TIME(v) algorithm.

Input: v is the maximum number of vehicles to be used
Given: n is the number of nodes

// Initialization 
Pheromones are initialized to τ0  

// Main loop
while stop condition not met do

 for each ant k do
T k ←ConstructTour(k, 0)

Update local pheromone for edges of T k  
T k ←InsertMissingNodes(k)

if T k  is a feasible tour then
          T k ←LocalSearch(k)
end if

end for

Find feasible ant l with smallest tour length
if ∃ l : T l  is feasible and Ll  < L*  then
        send T l  to MACS-VRTW
end if

Update global pheromone with T *  using: τij=(1−ρ) τij+ρ∑
k=1

m

Δ τij
k ,∀(i , j)∈T *

end while

5.3 MACS-DVRPTW

MACS-DVRPTW, is based on MACS-VRPTW adapted to solve the Dynamic VRPTW. As there is no 
prior knowledge of such an algorithm, the description will be solely based on van Veen et al.[40].The 
motivation to study the algorithm and implement an optimization method for it, is based not only on its 
novelty and the problem it solves, but also because of its different implementation. The algorithm was 
written in C on a Linux environment. 

In  order  to  solve  the  DVRPTW van  Veen  et  al.,  implemented  a  method  to  simulate  a  form of  
dynamism,  by introducing  the  concept  of  a  working  day of  T wd  seconds.  Which  implies  that  a 
percentage of the total nodes will be excluded and given an available time at which they will become 
visible, the percentage represents the dynamism of the DVRPTW.   

At the start of the algorithm a tentative tour is created with the available nodes, which will be updated  
during the simulation in order  to  constantly hold a solution to the current  problem.  The dynamic 
problem is split into nts  static problems, which are solved sequentially, this is achieved by dividing 
the working day T wd  by nts . When a previously excluded node becomes available it is introduced 
into the tentative solution, the moment the following static problem starts.   
The dynamism of problems makes it difficult to find and keep track of an optimal solution. In MACS-
DVRPTW and MACS-VRPTW, the collective memory of the colony is reset each time the colony is 
restarted and so van Veen et al. made use of a pheromone preservation( γ ) variable to store some part 
of the pheromone trails when the colonies are restarted. Now the pheromone levels are adjusted using 
the following formula: τij=(1−γ) τij+γ τ0 . 

MACS-DVRPTW has the same objectives as MACS-VRPTW, to reduce the total time and the number 
of  vehicles.  MACS-DVRPTW,  starts  by  reading  the  problem  instance  and  initializing  the  data 
structures, followed by creating a starting solution with the nodes available. Afterwards when a time  
slice starts, the newly available nodes are inserted using the InsertMissingNodes function. 
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Then  the  process  continues  by (re)starting,  ACS-VEI  and  ACS-TIME.  A pseudocode  of  MACS-
DVRPTW is outlined in Algorithm 5.3.

Algorithm 5.3 Pseudocode MACS-DVRPTW

// Initialization
T *  ← NearestNeighbour(n)
τ0  ← 1/nLnn

Initialize time t=0
Initialize available nodes n
Start counting CPU time t
Activate ACS-VEI (v-1)
Activate ACS-TIME (v)

// Main loop 
while t<T wd  do

v ←get_vehicles( T * )
while ACS-VEI and ACS-TIME active and time-step not over do
           Wait an improved solution T from ACS-VEI or ACS-TIME

                    if get_vehicles(T) < v then
                               kill ACS-TIME and ACS-VEI

end if
v ←get_vehicles(T)
T * ← T

end while

if time-step over then
if new part of T *  is defined or new nodes are available then

kill ACS-TIME and ACS-VEI
Update available nodes n
Insert new nodes into T *

Commit to nodes in T *

end if
end if

if colonies not active then
Activate ACS-VEI (v-1)
Activate ACS-TIME (v)

end if

return T *

    end while
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Chapter 6

Sequential Parameter Optimization Toolbox

As we have already outlined in the previous chapters the algorithms to be tuned, in this chapter we will  
focus on the Sequential Parameter Optimization Toolbox (SPOT), as the method for tuning. 

Before proceeding with the description of SPOT, we will first offer a description of the Sequential 
Parameter Optimization framework on which SPOT is based.

6.1 Sequential Parameter Optimization

Definition [4], Sequential Parameter Optimization (SPO) is a framework for tuning and understanding 
of  algorithms  by  active  experimentation.  This  approach  makes use  of  methods  both  from 
computational statistics and exploratory data analysis, like  design of experiments(DOE) and  design 
and analysis of computer experiments (DACE). SPO can be interpreted as a  search heuristic,  that 
optimizes the performance of non–deterministic algorithms. The basic framework of SPO consists of a 
12 step process outlined in Table 6.2. 

Table 6.2 SPO framework [31].

1
2
3
4

5
6
7
8
9

10
11
12

Pre-experimental planning
Scientific claim
Statistical hypothesis
Specification of the

- optimization problem
- constraints
- initialization method
- termination method
- algorithm main factors
- initial experimental design
- performance measure

Experimentation
Statistical modelling of data and prediction
Evaluation and visualization
Optimization
Termination: If the obtained solution is good enough, or the maximum number of iterations has 
been reached, go to step 11
Design update and go to step 5
Rejection/acceptance of the statistical hypothesis
Objective interpretation of the results from step 11

The DOE method relies on three steps: screening, modelling and optimization, where every step uses 
different experimental designs. The classic approach towards the design of experiments uses elements  
like linear regression models, however the shortcomings of this approach rely on the assumption that  
observation errors are independent. As these assumptions are only speculative SPO, uses a stochastic 
process model, DACE-Kriging, that helps predict unknown values and can be applied to interpolate 
results from extensive simulations.  
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[9] Algorithm design ( DA ) and problem design ( DP ) are the key elements of the SPO methodology. 
DA  defines ranges of values for the algorithm's variables, in other words a design point  xa∈DA  

represents a vector with the particular set of settings of the studied algorithm. On the other hand DP  
specifies  the  variables  related  to  the  optimization  problem (e.g.  number  of  function  evaluations). 
Together the two elements DA  and DP  form the experimental design D. 

Determining good design points depends highly on the regression model used, however, identifying a 
feasible  model  depends  on  the  design  points,  creating  what  it  is  known as  the  chicken  and  egg 
problem.  In  the  area  of  parameter  tuning  for  random search  algorithms,  research  has  proven the 
superiority of space design filling over classical factorial designs. One example of a space design 
filling model,  is  Latin hypercube designs (LHD), and it  was integrated by SPO due to its ease of 
implementation and understanding. However, LHD has not been proven to have superiority over other 
models from its category, just over a number of simple random sampling designs.  

6.2 Sequential Parameter Optimization Toolbox

[3][5] Sequential parameter optimization toolbox (SPOT) is one possible implementation of the SPO 
framework.  SPOT, uses the available budget  (e.g. number of function evaluations) in a sequential  
manner, such that it guides the search by building one or several meta models from the information  
gathered from the exploration of the search space. 

The meta models are used to predict new design points and they are refined gradually, in order to 
improve knowledge about the search space. SPOT, copes with noise by improving confidence and it 
applies exploratory data analysis to learn from the tuning process. The tuning can take place both in an  
interactive or automated fashion. 

The SPOT method is comprised of two phases, particularly the first is building the model and the 
second is the sequential improvement. A formal description can be viewed in Algorithm 6.2.

In the first phase a population of initial designs is determined from the algorithm's parameter space and 
then the algorithm is run k times for each design. The second phase is characterized by a loop of the 
following processes: 

• A model based on the obtained data is build or updated. 
• The predicted utility of the generated large number of design points is computed by sampling 

the model. 
• The best design points are chosen and then the algorithm is run k+1  times for each of them. 
• The  new design  points  are  added  to  the  population  and  the  loop  is  restarted  unless  the 

termination criteria is reached. 

The variable k is incremented in each run, and it is used to identify the number of repetitions for every 
design.  In  order  to  obtain  a  comparable  number  of  repetitions  the  best  design  points  are  rerun. 
Sequential  approaches  are  considered  to  be  more  efficient  than  approaches  that  evaluate  the 
information in one step, as they require a small number of function evaluations. 

In  order  to  determine  the  correlation  between the  algorithm's  input  and  its  output,  SPOT uses  a 
sequentially improved model, which has two main functions. The first, allows SPOT to find feasible 
parameters.  And  the  second,  determines  the  interaction  between  variables,  which  facilitates  the 
understanding of how the algorithm works on a particular problem or how changes in this problem 
impacts the output. In terms of prediction models, regression and Kriging models or a combination of  
the two are the most commonly used, nevertheless, SPOT allows for the usage of large number of meta 
models.
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Pseudocode SPOT

//phase 1, building the model
let A be the tuned algorithm
generate an initial population X={x̄1 , ... , x̄m}  of m parameter vectors
let k=k 0  be the initial number of tests for determining estimated utilities
for each x̄∈X  do

run A with x̄  k times to determine the estimated utility y of x̄
end for each

//phase 2, using and improving the model
while termination criterion not true do

let ā  denote the parameter vector from X with best estimated utility
let k the number of repeats already computed for ā
build prediction model f based on X  and {y1 , ... , y∣X∣}
generate a set X ′  of l new parameter vectors by random sampling
for each bar x∈X ′  do

calculate f ( x̄)  to determine the predicted utility f ( x̄)  of x̄
end for each
select set  X″ of d parameter vectors from X ′  with best predicted utility ( d≪ l )
run A with ā  once and recalculate its estimated utility using all k+1  test results (improve 
confidence)
let k=k+1
run A k times with each x∈X″  to determine the estimated utility x̄
extend the population by X=X∪X″

end while

SPOT uses simple text  files as interfaces from the algorithm to the statistical  tools.  The files are  
divided in two sections, files that the user needs to provide and the files belonging to the SPOT output.  
A schematic overview of the files and their interaction with SPOT and the algorithm is available in 
Figure 6.3.

The input files that the user has to specify are as follow:
-  Algorithm design (APD) files are used to specify the constant parameters used by the algorithm.  
However, APD files are not compulsory, and in our situation we are not going to make use of them as 
the parameters are already defined in the algorithms.
- Region of interest (ROI) files define the region over which the algorithm parameters are tuned. SPOT 
supports even categorical  variables (e.g.  the recombination operator),  and they can be encoded as 
factors. In the Hybrid GA case we would have BCRC or AX recombination.
-  Configuration  files (CONF) are used to define SPOT specific parameters, such as the number of  
evaluations or the prediction model.  Parameters without an assigned value will  receive the default 
value. In the case that the file mode is disabled, this information will be stored in the config variable.

If the file mode is enabled SPOT creates the following output files:
-  Design  file (DES)  specify  D A 's.  They  are  created  automatically  by  SPOT  and  used  by  the 
optimization algorithm.
- Result file (RES), as the name, it stores the results of running the algorithm. These files are used in 
statistical evaluations and visualizations. SPOT uses RES files to generate prediction models.
- Best file (BST) stores the best results found in each sequential step, and they provide direct access to 
progress information.
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Figure 6.2 Overview of the SPOT files.

Following we will describe the 6 tasks that can be performed by SPOT.
1. Initialize. This is normally the first step during experimentation, and it generates an initial design. 
Before this step the user has to create the ROI and APD files and specify SPOT’s parameters using a 
CONF file. When defining a project it is suggested to use the same base-name for CONF, ROI, and 
APD, however it is not compulsory, as one APD file can be used for different projects.
2. Run. In this task the optimization algorithm begins with configurations from the generated design,  
and additional information from the algorithms'  DP  is also used. The step ends with results being 
written in the RES file.
3. Sequential step. Based on information from the RES file, a new design will be determined. This step 
is characterized by use of a prediction model. SPOT provides different prediction models, and we will 
use: spotPredictForrester for the Hybrid GA and spotPredictRandomForest for the MACS-DVRPTW.
In the situations  when only few algorithms runs are  possible,  and the focus is  on efficiency it  is 
possible to integrate user-defined models into SPOT.
4. Report. By using the information from the RES file, analysis can be generated. New report methods 
can easily be added as the information is stored in files. SPOT is equipped with scripts to conduct  
regression analysis and plots such as histograms, scatter plots, plots of the residuals, etc.
5.  Automatic mode. As the name, the second and the third tasks, run and sequential, are performed 
automatically after an initialization for a user defined number of times.
6. Meta mode. This allows the tuning process to be repeated for a number of different configurations. 
For instance, tuning can be conducted for various starting points,  several dimensions, or randomly 
chosen problem instances.

6.2.1 SPOT Multi-Criteria Optimization

In most  cases industrial  optimization problems,  have more than one quality criteria.  For example, 
besides  the  result  itself,  many optimization problems,  have  the  computational  time  as  the  second 
criteria for performance. This is due to the fact that, time-consuming evaluations limit the optimization 
processes to a small number of evaluations.

In the past decade methods for multi-criteria optimization(MCO) emerged as a solution for problems 
with more than one quality criterion [45]. At the same time, it became necessary to use these MCO 
techniques together with optimization methods that require a small number of function evaluations. 
Extended research has been conducted in  combining MCO and surrogate model  optimization,  for  
example Voutchkov et al. [42] introduced a multi-criteria approach to sequentially improve surrogate 
models, tested on simple multi-criteria functions with a small number of function evaluations. 
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[46]  Multi  criteria  SPOT (MSPOT) is  similar  to  Voutchkov et  al.  approach,  however  it  does  not 
employ any form of expected improvement,  or  other forms of using the variance for exploration.  
MSPOT employs the surrogate models of the different objectives by making use of a multi-criteria 
optimization algorithm like SMS-EMOA or NSGA2; in our tests we used the former one. 

This approach returns a population of promising points,  where one or more of these points is/are  
selected in order to be used on the actual target function. This selection is based on non-dominated  
sorting and the individual hyper volume contribution. In order to avoid clustering of solutions in the 
objective space, the known points are tested again on the surrogate model.
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Chapter 7 

Experimental Setup and System Description

This section elaborates on the SPOT implementation details regarding the two algorithms meant to 
solve the CVRP and the DVRPTW respectively. The Hybrid GA was developed in Visual C# and the 
MACS-DVRPTW was implemented in C under a Linux environment. 

7.1 Implementation Hybrid GA

As described in Chapter 2, the experimental setup consist of a three layer architecture, and Figure 7.1  
outlines the hierarchy of our first implementation. 

Figure 7.1 Experimental hierarchy MSPOT-HGA

7.1.1 Application Layer

On the application layer we have chosen, the 9 CVRP problems used by Wink et al. [43] in their tests  
of the Meta-GA. The size of the problems ranges from 60 to 80 clients, out of which 5 are clustered 
and 4 dispersed. A problem instance holds the coordinates and demands of all nodes. The distances  
between nodes are in Euclidean distance, however in order for the total travel distance to remain an 
integer, the distances are rounded to the nearest integer. 

7.1.2 Algorithm Layer

On the algorithm level we used the HGA, described in Section 4.2. The actual implementation of the 
algorithm made use of multi-threading, allowing for a parallel iteration over λ  individuals for each of 
the following steps: recombination, mutation, optimization, evaluation, and selection. This was one of 
the factors that greatly improved the HGA's performance.

In order to facilitate the interaction between SPOT and HGA, as previously depicted in Figure 6.2., 
firstly we created a new C# program(ConsoleProgram.cs) within the HGA, which is able to compile  
the algorithm with the parameter settings received from SPOT. 
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7.1.3 Tuning Layer

On the tuning layer we used a modified version of SPOT, more precisely MSPOT[46], a method for 
multi-criteria optimization. SPOT is implemented as an R package and to our knowledge, no prior 
research was conducted using this approach on an optimization algorithm implemented in Visual C#.
This raised the problem of how to link R with C#, to this end we researched the following methods:  
R.NET [49], R(D)COM[48], SWIG [50]. However, these methods were not robust enough, and so 
another approach was required. After a lengthy trial and error process, the solution came in the form of 
two simple callStrings added to the SPOT's interface which set the connection to the algorithm. 

# compiles the algorithm with the two required libraries
callString1 <- paste("csc ConsoleProgram.cs /r:Logic.dll /r:Data.dll")
callcs <-system(callString1, intern= TRUE)

# runs the algorithm with the currently tested parameter set
callString2 <- paste("ConsoleProgram", mu, lambda, ts, pm, ro, mo, io, ss )
y <-system(callString2, intern= TRUE)

In order to efficiently configure SPOT for a multi-criteria optimization process,  it  is  important  to  
choose a surrogate model based on the nature of the problem. As CVRP is a continuous problem with 
continuous parameters, it is considered that a Kriging model such as spotPredictForrester is the best 
option.  Even  so,  spotPredictForrester,  has  its  limitations  when  tuning  categorical  or  boolean 
parameters. 

An alternative approach, would be to tune the categorical parameters first, using a tree based model 
spotPredictRandomForest, and afterwards do a second run with the Kriging model to optimize the rest  
of  the  parameters.  This  approach did  not  yield  better  results,  moreover  our  goal  was  not  just  to 
determine  good  parameter  settings  but  also  to  get  a  better  understanding  of  the  parameters. 
Additionally we choose nsga2[45] as an optimization algorithm, and left Latin Hypercube Sampling, 
as the default method to optimize the model. 

MSPOT was given a budget of 100 test evaluations, with an initial design size of 20. Each initial 
design point  was set  for  2 repeats and the sequential  one for 3,  totalling a number  40 individual 
configurations.

In our implementations we did not use a ROI file to define the region of interest, or any other file, as 
we  implemented the necessary commands  within the  R script.  The entire  R script  is  available  in 
Appendix 2.

As can be seen from Table 7.1.3, the HGA made use of four categorical parameters, theoretically they 
should  have  been  encoded  as  factors,  however,  for  consistency and  to  avoid  any clash  with  the 
algorithm's implementation they were set as integers. Furthermore, the step sizes are handled by the 
console program, for example the value for Pmutation  is achieved using the following formula: 
Pmutation=2 pm+1 , where pm∈[1,4 ]  is the value sent by MSPOT. 
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  Table 7.1.3 Region of interest for the HGA
Variable Name Lower Upper Type Values HGA Step size

μ 3 10 INT 8 : 1024 2n

Selection Strategy 0 1 INT Comma or Plus selection -

λ 2 5 INT 2μ : 5μ μ

Recombination Operator 0 1 INT BCRC or Alvarenga -

Mutation Operator 0 1 INT Merge routes or Adjacent reorder -
Pmutation 1 4 INT 0.3 : 0.9 0.2

Tournament size 2 17 INT 2 : 17 -

Initialization operator 0 1 INT Random or Bearing -

7.2 Implementation MACS-DVRPTW

Figure 7.2 Experimental hierarchy SPOT-MACS-DVRPTW

7.2.1 Application Layer

We have tested SPOT, on 15 VRPTW from Solomon[35]. More precisely we choose the 9 R1 and 6 
RC1 problems, where R has randomly placed nodes and RC has both randomly and clustered nodes. 
As  mentioned  in  Section  5.3,  the  benchmark  problems  were  modified  with  the  goal  to  simulate  
different degrees of dynamism, by adding an availability time to each node.  

7.2.2 Algorithm Layer

On the algorithm level we used MACS-DVRPTW, described in Section 5.3. The algorithm returns a 
detailed overview of the progress achieved by each of the two colonies(ACS-VEI and ACS-TIME), 
together with the distance and the number of vehicles of the best solution found.

Although informative, the output could not be interpreted by SPOT. Eliminating the extra text was 
straightforward,  however  as  the  solution  itself  is  comprised  of  both  the  time  and  the  number  of 
vehicles.  We had to  convert  the  two values  into  one  single  number,  achieved by multiplying  the 
number of vehicles with 104

and added the time to this value, resulting in a number like this: 191652 
where the first two digits represent the number of vehicles (19) and the rest the actual time (1652).

MACS-DVRPTW, was created as a collection of C programs and libraries that were compiled using a 
Makefile, which made it impossible for SPOT to assign parameter values directly to the program. To 
this end we created another C program (Bridge.c) that receives the parameters from SPOT and writes 
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them in a file(Parameters.dat), which the modified program.c can read and pass on to the algorithm in 
order to determine a solution. 
 

7.2.3 Tuning Layer

To  optimize  MACS-DVRPTW,  we  made  use  of  a  single  criteria  optimization  SPOT,  whose 
configuration is very much alike that of MSPOT, and we will only underline the differences. 
The connection with the application is done with the aid of four callStrings, grouped as two pairs. Each 
pair is preceded by a change of directory due to the fact that Bridge.c had to be placed in another 
folder as it clashed with Makefile, resulting in an error. The entire R script is available in Appendix 3.

setwd("/home/chill/Ma/Bridge/") 
callString1 <- paste("gcc -o write Bridge.c")
call1 <-system(callString1, intern= TRUE)

callString2 <- paste("./write", iNumAnts, iRho, iAlpha, iBeta, iQZero, iPheromonePreservation)
call2 <-system(callString2, intern= TRUE)

setwd("/home/chill/Ma/") 
callString3 <- paste("make")
callcs <-system(callString3, intern= TRUE)

callString4 <- paste("./main")
y <-system(callString4, intern= TRUE)

#callstring1  and  callstring2,  compiles  the  Bridge.c  program  and  then  writes  the  current  
parameter set into the Parameter.dat file, and callstring3 and callstring4 compiles and runs the  
algorithm 

As  MACS-DVRPTW  was  set  to  run  for  100  seconds  of  CPU  time,  running  a  single  criteria  
optimization  was  a  better  choice  as  the  running  time  will  always  stay  the  same.  Therefore,  
spotPredictRandomForest, became a more feasible approach for the surrogate model. Additionally we 
choose cmaes[6] to optimize on the surrogate model. 

SPOT was given a budget of 200 test evaluations, with an initial design size of 30. Each initial design 
point  was  repeated  3  times  and the  sequential  one  for  4  times,  totalling  a  number  57  individual 
configurations. 

Table 7.2.3 Region of interest for the MACS-DVRPTW
Variable Lower Upper Type

m 5 100 INT
ρ 0 1 FLOAT
α 1 5 INT
β 1 5 INT
q0 0 1 FLOAT
γ 0 1 FLOAT

Where β  is the influence of heuristic value on probability to be incorporated in tour
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Chapter 8

Results
This chapter  contains  the  results  achieved by MSPOT and SPOT on the Hybrid GA and MACS-
DVRPTW,  respectively.  Experimental  runs  are  performed  to  get  a  better  understanding  of  the 
parameters and how altering them affects the final result. Each section offers the final results of both 
implementations.

8.1 Results MSPOT-HGA

As can be seen from Table 8.1, MSPOT-HGA results are on average less than 0.6% over the optimum, 
results which are slightly worse than those of the Hybrid GA or the Meta-GA. However, the running 
time for MSPOT-HGA is less than half of that of the Meta-GA. 

Table 8.1 Final results MSPOT-HGA
Problem Hybrid GA Meta-GA MSPOT-HGA

Instance Optimum Results Over 
Optimum

Result Time Over 
Optimum

Result Time Over 
Optimum

A-n62-k8 1288 1300 0.93% 1288 10h - 1300 4.1h 0.93%

A-n63-k9 1616 1627 0.68% 1616 10h - 1616 3h -

A-n64-k9 1401 1411 0.71% 1405 10h 0.29% 1414 4.3h 0.93%

A-n69-k9 1159 1159 - 1159 10h - 1159 4.8h -

A-n80-k10 1763 1766 0.17% 1764 15h 0.06% 1784 5.6h 1.19%

B-n63-k10 1496 1523 1.8% 1497 10h 0.07% 1517 3.8h 1.4%

B-n64-k9 861 861 - 861 10h - 863 4.5h 0.23%

B-n68-k9 1272 1286 1.1% 1273 10h 0.08% 1275 6.6h 0.24%

B-n78-k10 1221 1221 - 1221 15h - 1222 6.9h 0.08%

When running MSPOT for a multi-criteria optimization, we used  computational time as the second 
criteria.  The  tests  proved  that  such  an  approach  is  not  really  needed,  as  the  results  for  the 
computational time never influenced the final solution due to its small variations between different 
configurations. We can conclude that different parameter settings do not influence the time it takes the 
algorithm to optimize the CVRP.

In their tests Wink et al. used an AMD Phenom II X4 940, 3.0 GHz CPU, a processor that outperforms 
an  Intel i3 330M, 2.13 GHZ CPU which was used for the tests in this paper. According to  [47] the 
AMD processor has a 3711 CPU Mark whereas the Intel has only a 1811 CPU Mark, although we can 
not state for certain that the former processor performs twice as good, it is fair to say that it has twice  
as many cores which aids with the parallel threading of the HGA implementation. 

The difference in processing power might not influence the quality of the results too much but it will 
definitely allow MSPOT to finish its evaluations faster, a fact proven by the up 50% increase in the 
time it took us to optimize a problem instance using the HGA. Overall, we consider that using a more 
powerful processor will allow MSPOT to run a larger number of evaluations in the same amount of 
time, which in turn raises the probability of achieving better results.
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8.2 Results SPOT-MACS-DVRPTW

As can be seen from Table 8.2, the parameter sets found with SPOT, perform on average with 2%  
worse than the best found results by MACS-DVRPTW. The running time for all problems was of 5.7 
hours. 

Table 8.2.1 Final results SPOT-MACS-DVRPTW

Problem MACS-DVRPTW SPOT-MACS-DVRPTW

Instance No Vehicles Result m/ ρ / α / β / q0 / γ No Vehicles Result Over Best Solution

r101 19 1650 23/ 0.1/ 3/ 2/ 0.8/ 0.6 19 1652 0.12%

r102 17 1486 25/ 0.6/ 4/ 5/ 0.4/ 0.5 17 1488 0.13%

r103 13 1292 27/ 0.1/ 4/ 2/ 0.1/ 0.2 13 1333 3.17%

r104 10 986 13/ 0.1/ 3/ 2/ 0.9/ 0.5 10 1008 2.23%

r105 14 1377 33/ 0.3/ 3/ 3/ 0.4/ 0.5 14 1403 1.9%

r106 12 1259 18/ 0.2/ 5/ 4/ 0.4/ 0.7 12 1291 2.54%

r107 10 1119 16/ 0.2/ 4/ 4/ 0.1/ 0.8 10 1150 2.77%

r108 9 974 7/ 0.1/ 3/ 4/ 0.8/ 0.7 10 967 N/A

r109 11 1211 18/ 0.1/ 2/ 4/ 0.6/ 0.1 11 1242 2.55

rc101 14 1696 35/ 0.0/ 3/ 2/ 0.6/ 0.2 14 1703 0.41%

rc102 13 1477 9/ 0.5/ 4/ 4/ 0.2/ 0.8 13 1484 0.05%

rc105 14 1540
5/ 0.3/ 2/ 3/ 0.6/ 0.9 13 1667 -

7/ 0.5/ 2/ 3/ 0.6/ 0.9 14 1568 1.82%

rc106 12 1384 9/ 0.5/ 4/ 4/ 0.2/ 0.8 12 1396 0.87%

rc107 11 1232 14/ 0.3/ 3/ 4/ 0.4/ 0.7 11 1230 -0.16%

rc108 10 1139 9/ 0.5/ 4/ 4/ 0.2/ 0.8 10 1150 0.97%

According to van Veen et al. [40] the Cross Exchange local search can at times produce a tour with an 
empty vehicle, which happens for rc103 and rc104, making it impossible for SPOT to tune.
 
In their tests van Veen et al. also made use of a more powerful processor (Intel i5, 3.2 GHz CPU), 
which also has a CPU Mark above 3000. In this situation we are convinced that the quality of the  
results is directly proportional with the speed of the processor, as the MACS-DVRPTW was set to run 
for 100 seconds of CPU time. By calculating the difference in processing speed, Intel i5 is capable to  
do up to 50% more calculations per second. 

Besides finding good parameter sets, SPOT offers an overview of the parameters that had the greatest 
impact towards good results (Figure 8.2.1), and also their progress (Figure 8.2.2). By comparing the 
schematic outputs of different problems we can get a better understanding of which parameters have 
the greatest impact on the algorithm's performance. In the case of RC problems: β  followed by γ  or 
m have the greatest impact.
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Figure 8.2.1  Final  output  of  the  RC107.0.0 problem instance.  (VARX4 is  the  4th variable  in  the 
sequence: m/ ρ / α / β / q0 / γ )

Figure 8.2.2 Progress Overview. 
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Chapter 9

Conclusion and Outlook

The focus of this thesis is to determine the effectiveness of automated parameter tuning by testing 
SPOT on two different algorithms: HGA and MACS-DVRPTW, algorithms that try to solve the CVRP 
and DVRPTW respectively. By answering the five questions defined in Section 2.4, we will outline the  
effectiveness of this approach.

Is MSPOT able to match or improve the parameters found by the Meta-GA of Wink et al.[43]? 
No, it is not, as the results are on average less than 0.5% over the results achieved by the Meta-GA. 
However, as specified in Section 8.1, the processor used in Wink et al.'s tests is up to twice as powerful 
as the one used to test the implementation presented in this paper. With this in mind we consider that in 
order to accurately determine the gap in performance between the two approaches testing SPOT on an  
evenly performant computing system is imperative. 

Is SPOT able to match or improve manually tuned parameter sets for MACS-DVRPTW of van  Veen 
[40]? 
The answer is also no, the results being on average 2% worse than the results achieved with the default  
parameters. We consider that this might be due to the same issue, the processor performance, in this  
situation being even more emphasised by the fact that the algorithm was set to run for 100 seconds  
CPU time. With much lower processor speed (up to 50%), the algorithm is stopped at an earlier stage  
in its optimization. In order to confirm our results we also suggest testing our implementation with a 
better system.   

Is MSPOT able to match or improve the time it took the Meta-GA to achieve good results? 

Yes, MSPOT managed to achieve high-quality results in only half the time of the Meta-GA, with only 
200 evaluations instead of 310.

Do the parameter sets obtained by SPOT perform consistently? 
Yes, they do, as tests proved that running the algorithms with the parameters found with SPOT returns  
good results.

Is it possible to find a better understanding of the parameters used by each algorithm?
We consider that by analysing and comparing the graphical representation generated by SPOT, we can 
determine which parameters have the greatest impact on the performance of the algorithm based on the  
type of problem used.

To summarize, we consider that SPOT, has a strong potential to determine good parameter settings for 
various algorithms regardless of the type of problem used. Although, our tests failed to prove SPOT's 
ability to achieve optimum parameters, it did however show that it is capable to achieve good settings 
in half the time of a Meta-GA approach.

In order to determine the concrete utility of SPOT, more tests need to be done on a more performant  
computer, or at least allowing it to run for the same duration as the Meta-GA. 
In terms of configuration, using MSPOT on the CVRP was blunt, however using it with the second 
objective as the standard deviation of the vector of solutions it might determine better results[45]. For 
this purpose we do suggest another set of tests with this particular configuration on both algorithms.
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Appendices 

Appendix 1

Extensive comparison tuning approaches [17]
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Appendix 2

SPOT interface to HGA

rm(list=ls());
require(SPOT)
setwd("D:/vrp/Vehicle Routing Problem/ConsoleApplication/")

ptm <- proc.time()
callString1 <- paste("csc ConsoleProgram.cs /r:Logic.dll /r:Data.dll")
callcs <-system(callString1, intern= TRUE)

#now define a target function for SPOT
tGA <- function(pars){  

#the tuned parameters:
 mu<- round (pars [1])

      lambda<-round (pars[2]) 
      ts<-round (pars [3])
      pm<-round (pars [4])
      ro<- round (pars [5])
      mo<- round (pars [6])
      io<- round (pars [7])
      ss<- round (pars [8])
      

    #now start ES and record used time as well as best function value
ti<-as.numeric(system.time({
                

                     callString2 <- paste("ConsoleProgram", mu, lambda, ts, pm, ro, mo, io, ss )
                     y <-system(callString2, intern= TRUE)

          print(c(mu, lambda, ts, pm, ro, mo, io, ss ))}
                      ))[1]
     

return(c(as.numeric(y),ti)) #Y1 is the best value reached, Y2 is the time used}

#define region in which parameters of GA are tuned 
roi<spotROI(c(3,2,2,1,0,0,0,0),c(10,5,17,4,1,1,1,1), 
type=c("INT","INT","INT","INT","INT","INT","INT","INT")) 

#define further settings for SPOT
config <- list( alg.func=tGA, #target of SPOT
                alg.roi=roi, #region of interest of SPOT 

    seq.predictionModel.func="spotPredictForrester", #a kriging surrogate model
                #seq.predictionModel.func="spotPredictRandomForest",
                #seq.predictionModel.func="spotPredictEarth",
                seq.predictionOpt.func="spotParetoOptMulti", #optimize surrogate models
                #seq.predictionOpt.func="spotPredictOptMulti",
                #seq.predictionOpt.method="sms-emoa",#optimize surrogate model with sms-emoa
                seq.predictionOpt.method="nsga2", #optimize surrogate model with nsga2 
                seq.predictionOpt.budget=2000, #1000 evaluations of surrogate models 
                seq.predictionOpt.psize=20, #population size of sms-emoa or nsga2
                io.verbosity=3, #create some text output
                spot.ocba=T, #no optimal computational budget allocation
                spot.fileMode = T, #  RES, DES, BST files are created 
                auto.loop.nevals = 100, # the number of times the GA is run
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                seq.design.oldBest.size=2, #number of old points to repeat in each step
                seq.design.new.size=1, #number of new points to evaluate
                seq.design.size = 2000, #large candidate design evaluated on surrogate
                init.design.size = 20,  #number samples in initial design
                seq.design.maxRepeats = 3, #maximum number of evaluations of a design point
                init.design.repeats  = 2, #number of evaluations of each initial design point
                spot.seed = 125)
                #init.design.func = "spotCreateDesignLhd",
                

#run SPOT (this might take some time, depends on your machine)
res <- spot(spotConfig=config)

#look at results (raw)
res$alg.currentResult

#pareto optimal parameters found (pareto set):
res$mco.par

#pareto front:
res$mco.val

proc.time() - ptm

rm(list=ls());
require(SPOT)
#setwd("D:/vrp/Vehicle Routing Problem/ConsoleApplication/")

ptm <- proc.time()

Appendix 3

SPOT interface to MACS-DVRPTW

#now define a target function for SPOT
tGA <- function(pars){  

#the tuned parameters:
      iNumAnts <- round (pars [1], digits = 1)
      iRho<- round (pars[2], digits = 1)
      iAlpha<-round (pars [3], digits = 1)
      iBeta<-round (pars [4], digits = 1)
      iQZero<- round (pars [5], digits = 1)
      iPheromonePreservation<- round(pars [6], digits = 1)
      #io<- round (pars [7])
      #ss<- round (pars [8])
     #signif(x, digits = 6) 

    #now start ES and record used time as well as best function value
#ti<-as.numeric(system.time({
             
             

setwd("/home/chill/Ma/Bridge/") # to be able to write the desired values in the txt file
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callString1 <- paste("gcc -o write Bridge.c")
call1 <-system(callString1, intern= TRUE)

callString2 <- paste("./write", iNumAnts, iRho, iAlpha, iBeta, iQZero, iPheromonePreservation)
call2 <-system(callString2, intern= TRUE)

setwd("/home/chill/Ma/") # reason for a different folder is incompatibility with the above Bridge.c
callString3 <- paste("make")
callcs <-system(callString3, intern= TRUE)

callString4 <- paste("./main")
y <-system(callString4, intern= TRUE)

         
         
         print(c(iNumAnts, iRho, iAlpha, iBeta, iQZero, iPheromonePreservation))

                      #))[1]
     

#return(c(as.numeric(y),ti)) #Y1 is the best value reached, Y2 is the time used
        #return(as.numeric(y)) }
        return(y) }

#define region in which parameters of Macs-DVRTW are tuned 
roi  <-  spotROI(c(5,0,1,1,0,0),c(100,1,5,5,1,1),type=c("INT","FLOAT","INT","INT",  "FLOAT", 
"FLOAT")) 
#roi <- spotROI(c(10,1),c(100,5),type=c("INT","INT")) 

#define further settings for SPOT
config <- list( alg.func=tGA, #target of SPOT
                alg.roi=roi, #region of interest of SPOT 

#seq.predictionModel.func="spotPredictForrester", #a kriging surrogate model
                seq.predictionModel.func="spotPredictRandomForest",
                #seq.predictionModel.func="spotPredictEarth",
                #seq.predictionOpt.func="spotParetoOptMulti", #optimize surrogate models
                seq.predictionOpt.func="spotPredictOptMulti",
                seq.predictionOpt.method="cmaes",
                #seq.predictionOpt.method="sms-emoa",#optimize surrogate model with sms-emoa
                #seq.predictionOpt.method="nsga2", #optimize surrogate model with nsga2 
                seq.predictionOpt.budget=2000, #2000 evaluations of surrogate models 
                seq.predictionOpt.psize=20, #population size of cmaes
                io.verbosity=3, #create some text output
                spot.ocba=F, #no optimal computational budget allocation
                spot.fileMode = T, #  RES, DES, BST files are created 
                auto.loop.nevals = 200, # the number of times the algorithm is run
                seq.design.oldBest.size=2, #number of old points to repeat in each step
                seq.design.new.size=1, #number of new points to evaluate
                seq.design.size = 2000, #large candidate design evaluated on surrogate
                seq.design.maxRepeats = 4, #maximum number of evaluations of a design point
                init.design.func = "spotCreateDesignLhd",
                init.design.size = 30,  #number samples in initial design
                init.design.repeats  = 3) #number of evaluations of each initial design point
                #spot.seed = 125)
                
#run SPOT (this might take some time, depends on your machine)
res <- spot(spotConfig=config)
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#look at results (raw)
res$alg.currentResult

#pareto optimal parameters found (pareto set):
res$mco.par

#pareto front:
res$mco.val

proc.time() - ptm
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