

Internal Report 2013-04

Universiteit Leiden

Computer Science

 Sequential Parameter Tuning of Algorithms
for the Vehicle Routing Problem

Name: Alexandru Florian Gaiu
Student-no: 1053396

Date: 13/02/2013

1st supervisor: Dr. M.T.M. Emmerich
2nd supervisor: Prof. Dr. T.H.W. Bäck

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

The Vehicle Routing Problem is an extensively studied, NP-hard problem with numerous real-world
applications, due to its super-polynomial time complexity exact approaches are infeasible, and so over
the years metaheuristics have been used, such as the Genetic Algorithm(GA) and the Multiple Ant
Colony Systems(MACS).

This paper extends the research on the Hybrid GA of Wink et al. and MACS-DVRPTW of van Veen et
al. These approaches require a relatively large number of parameters, which in turn determines their
effectiveness. In the past years, methods have arisen capable of automatically determining good
parameter configurations, one of them being the Sequential Parameter Optimization Toolbox, which
will also be discussed in this paper. In addition to solving all known problems optimally or within 2%
of the optimum, SPOT aids in getting a better understanding of the parameters used by each algorithm.

Contents

1 Introduction 1

2 Parameter Tuning 2

2.1 Parameter Tuning in Evolutionary Algorithms ..3

2.2 Parameter Tuning in Swarm Intelligence..4

2.3 Comparison and Selection of Parameter Tuning Approaches...5

2.4 Research Objective...6

3 Vehicle Routing Problem 7

3.1 Capacitated Vehicle Routing Problem..8

3.2 Vehicle Routing Problem with Time Windows...8

3.3 Dynamic Vehicle Routing Problem with Time Windows..9

3.4 Real world applications ...9

4 Meta Genetic Algorithm 10

4.1 Classical Genetic Algorithm...10

4.1.1 Characteristics and Parameters ...11

4.2 Hybrid Genetic Algorithm..11

4.2.1 Local Search Heuristics...12

4.2.2 Initialization...13

4.2.3 Recombination...13

4.2.4 Mutation..14

4.2.5 Optimization..14

4.2.6 Selection..14

4.3 Meta-GA ..14

5 Ant Colony Optimization: MACS-DVRPTW 16

5.1 Ant Colony Optimization ...16

5.1.1 Ant Colony System..17

5.2 MACS-VRPTW...19

5.3 MACS-DVRPTW...21

I

6 Sequential Parameter Optimization Toolbox 23

6.1 Sequential Parameter Optimization..23

6.2 Sequential Parameter Optimization Toolbox..24

6.2.1 SPOT Multi-Criteria Optimization..26

7 Experimental Setup and System Description 28

7.1 Implementation Hybrid GA..28

7.1.1 Application Layer..28

7.1.2 Algorithm Layer..28

7.1.3 Tuning Layer...29

7.2 Implementation MACS-DVRPTW...30

7.2.1 Application Layer..30

7.2.2 Algorithm Layer..30

7.2.3 Tuning Layer...31

8 Results 32

8.1 Results MSPOT-HGA..32

8.2 Results SPOT-MACS-DVRPTW...33

9 Conclusion and Outlook 35

10 Bibliography 36

11 Appendices 39

Appendix 1...39

Appendix 2...40

Appendix 3...41

II

Chapter 1

Introduction

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization problem,
which is concerned with the optimal design of routes to be used by a fleet of vehicles to serve a set of
geographically dispersed customers.

In the past years stronger and stronger algorithms emerged, trying to solve the VRP, some of which
were successful in determining better solutions. Even so, one rule that holds true for all algorithms is
the large number of parameters that influences their performance. With this in mind, this paper will
focus in determining the efficiency and challenges of using an open-source parameter tuning
mechanism, SPOT.

In order to evaluate SPOT’s performance in tuning algorithms for the VRP, we shall test its robustness
on two state of the art algorithms: the Hybrid-GA implemented by Wink et al. [43] and the MACS-
DVRPTW of van Veen et al. [40].

The remainder of this work is structured as follows. First Chapter 2 will introduce Parameter Tuning.
Then Chapter 3 offers an introduction to Vehicle Routing Problem. Following Chapter 4 presents the
Meta-GA. Chapter 5 presents the second algorithm the MACS-DVRPTW. In Chapter 6 the tuning
approach, SPOT will be described. The Experimental Setup is given in Chapter 7. Chapter 8 presents
the results. Chapter 9 concludes this thesis.

1

Chapter 2

Parameter Tuning

Even though, methods for automatic parameter setting have emerged for more than 30 years, till
recently most of the parameter setting was conducted manually. The change came as a result of the
increased demand for a fast estimation of good parameter values [36].

Landgraaf et al. [15], state that there are two different methods in setting parameters values, and that is
parameter tuning, which takes place before the beginning of the algorithm, and parameter control, that
takes place during the run of the algorithm. Due to the nature of the algorithms to be tuned, in this
paper we will focus our attention on parameter tuning.

Although parameter tuning was chosen as the approach for parameter setting, it has a drawback
regardless of the method used (e.g. Meta-GA) in determining feasible parameter values, this is due to
its inability to efficiently cope with the dynamic and adaptive nature of the metaheuristic algorithms.
And so, the use of fixed parameters that do not change their values during the run of the algorithm may
lead to lower performance.

Furthermore, it is considered, that different parameter values can be better at different stages of the
evolutionary process[16]. For example, larger mutation steps can have a positive impact on early
generations, by aiding the exploration of the search space and at the opposite end, small mutation steps
might be more efficient in later generations. A solution to this problem would be to replace the
parameters with functions that change their values over time.

It is widely accepted that the parameter values of all metaheuristic algorithms are of utmost importance
as they have a significant impact on the algorithm's performance. However, finding feasible parameter
values has several aspects, which makes it difficult in general:

• Parameter settings depend on each problem instance, such that a good configuration for one
dataset may not lead to good results for another.

• Metaheuristics employ interrelated variables, whose values depend on each other. And so,
tuning the parameters independently is not considered a feasible solution.

• In most cases the search space is extremely large due to several facts: primarily, an algorithm
depends on many parameters, which have a wide region of interest, and at times they are
sensitive to change.

• There is little knowledge regarding the influence of different parameters on the final result and
the use of estimations offered by various theories are not always accurate.

When examining parameter tuning, Smit et al. [33] denoted the existence of three different layers. The
first and also the lowest layer is the application layer and it corresponds to the problem, in our case the
vehicle routing problem (VRP). The second, is the algorithm layer, representing the algorithm that
aims to find optimal solutions for the VRPs. The top layer, tuning layer is the tuning method, which
tries to find good parameter settings for the algorithm layer. The entire scheme can be seen as two
different optimization problems, to which we can refer to as problem solving and parameter tuning. A
schematic overview of the parameter tuning hierarchy is available in Figure 2.0.

2

Figure 2.0 The three layer experimental setup. The left column represents the control flow, and the
right column the information flow.

Parameter tuning [17] is comprised of two main tasks, the first one is determining the parameter sets
that return the highest possible performance. This task can be seen as exploitation of knowledge
regarding the parameter values. The second task is characterized by the accumulation of information
on robustness, which implies exploration of the parameter space.

Every parameter tuning method is defined by a different balance between exploitation and exploration,
and focuses on different types of robustness. This in turn leads to the differentiation of four main
approaches. One that is mainly focused in achieving the best parameter, sets e.g. Meta-EAs, the second
is focused in providing information e.g. sampling. And the other two approaches are a combination of
both, for example screening and model-based approaches.

As our aim is to tune algorithms that solve the VRP, Golden et al. [19] state that the capabilities of
metaheuristics are greater than that of classical heuristics. More precisely, the focus will be on
population based metaheuristics, that make use of multiple solutions to search for an optimal result.
Examples of such population based metaheuristics, are Swarm Intelligence, that mimic the collective
behaviour of decentralized, self-organized systems (e.g. ants). Another broad category of population
based metaheuristics are the Evolutionary Algorithms, which make use of nature inspired procedures
such as mutation, reproduction and selection, to iteratively evolve solutions.

In the following two subsections we will focus our attention to the particulars of parameter tuning in
the fields of Evolutionary Algorithms (EAs) and Swarm Intelligence (SI).

2.1 Parameter Tuning in Evolutionary Algorithms

EAs are a class of metaheuristic algorithms that are most commonly used to solve NP-hard
optimisation problems. They can be described as a set of steps for identifying good results in a limited
amount of time.

Even though there are many different evolutionary algorithms, we can describe EAs by considering a
population of individuals within a given environment characterized by few resources, which
determines the process of natural selection, also known as survival of the fittest. This in turn triggers
a rise in the population's fitness values. This process can be artificially simulated, by considering an
optimization function that has to be maximised. Then we can arbitrarily create a population of
candidate solutions, to which we apply a fitness measure to determine the best candidates that will be
selected to produce the next generation. Following, the selected individuals will suffer recombination
and mutation.

The recombination operator is mainly applied to two or more individuals (parents) resulting in one or
more individuals (offspring). The second operator, mutation is applied to only one individual resulting

3

Tuning Layer

Algorithm Layer

Application Layer

optimizes

optimizes

parameter tuning

problem solving

Tuning Layer

Algorithm Layer

Application Layer

algorithm quality

solution quality

in an altered version of himself. By applying recombination and mutation to the parents, this leads to
the conception of a population of new individuals. Who will be evaluated based on their fitness values
and depending on the selection mechanism/strategy will compete for a place in the new generation.
The entire process can be repeated until an individual with sufficient quality is found or a previously
set stopping criteria is reached.
A formal description of evolutionary algorithms is outlined in Algorithm 2.1.

Algorithm 2.1 Pseudocode generic EA

// Initialization
t←0
initpopulation (Pt)
evaluate (Pt)

// Main loop
while stop condition not met do

Pt
′ ←selectparents (Pt)

recombine (Pt
′)

mutate (Pt
′)

evaluate (Pt
′)

Pt+1 ← select (Pt
′)

t←t + 1
end while

One of the main challenges in the field of Evolutionary Computing (EC), is determining appropriate
parameter values for EAs. As stated previously, researchers concur on the importance of good
parameter values towards improving the performance of metaheuristic algorithms.
Nevertheless, the research is relatively limited, in terms of the studies conducted, on the effect of
parameters on the EA's performance and on the methods of tuning these parameters. So far, the
parameter values were largely selected by conventions (mutation success should be according to 1/5
rule), and based on experimental comparisons conducted on small scale tests.

Now that we briefly described the evolutionary algorithms, we will focus on the state of the art
parameter tuning methods. In order to decide upon a tuning method, we will examine the literature,
and make a summary of the most commonly used and better reviewed alternatives. As it is beyond the
scope of this thesis, we will not go in too much detail regarding the description or comparison of the
methods.

Eiben et al. [17] conducted one of the most extensive research on parameter tuning for evolutionary
algorithms, concluded in a comparison table (Appendix 1) of the previously identified four different
parameter tuning approaches. The results in this paper and other papers concur that the Meta-GA[36]
[15], REVAC[5][7][15][34][36], F-RACE[5][7] and SPOT[5][7][34][36] are one of the most efficient
tuning methods for EAs. Meta-GA and REVAC are Meta-EAs, where the former is an enhanced
approach. F-RACE is a screening method and SPOT is an iterative model-based method.

2.2 Parameter Tuning in Swarm Intelligence

A swarm is defined as a big population of homogeneous and simple agents that interact locally with
themselves, and the surrounding environment, they lack central control and the knowledge of the
global status of the swarm or its primary goal. Swarm-based algorithms have recently appeared as a
group of nature inspired, population based algorithms that are able to determine fast and robust
solutions to several NP-hard problems. Swarm Intelligence (SI) can be defined as a method used to
mimic the collective behaviour of social swarms, such as ant colonies, honey bees, and bird flocks.

4

Even though, swarm individuals are fairly uncomplicated with limited abilities of their own, by
successfully interacting with each other and using certain behavioural patterns they can achieve far
greater tasks. This interaction amongst individuals is either direct or indirect. The former one takes
place with the aid of visual or audio stimuli (e.g. the “dance” of honey bees). And on the other hand
indirect interaction, takes place when individuals guide themselves based on the changes done to the
environment by other individuals (e.g. pheromone deposit by ants). This paper will focus on the later.

When considering parameter tuning in SI, we have to research tuning approaches that work on the sub-
field of interest, in our case Ant Colony Optimization (ACO), which will be discussed in greater detail
in Chapter 5. Yuan et al. [44] mentions CALIBRA, F-RACE, SPOT and REVAC as tuning methods for
ACOs.

2.3 Comparison and Selection of Parameter Tuning Approaches

In this subsection we will offer a short description, of the tuning methods that were mentioned as a
feasible approach for both Evolutionary Algorithms and Swarm Intelligence. Then we will offer our
decision upon the selected method that will be used in our analysis.

Relevance Estimation and Value Calibration (REVAC) [37] is an Estimation of Distribution Algorithm
(EDA) that measures maximized entropy in the continuous domain. More precisely REVAC works by
finding parameter vectors with high utility, collects the values of entropy for different utilities, and it
creates a distribution for each parameter that indicates the expected utility of parameter values.

F-RACE [5] is inspired from racing algorithms, a method that iteratively evaluates a given set of
candidate configurations on a stream of instances. And uses Friedman's rank test to eliminate
unsuitable candidate solutions.

SPOT [8] is an implementation of the Sequential Parameter Optimization (SPO) framework, a
heuristic which makes use of classical and statistical methods to improve the performance of search
algorithms by building meta models based on the data collected from the exploration of the search
space.

Literature research showed that all three methods proved to be efficient, however REVAC and SPOT,
stand out. In terms of picking one over the other, we will consider the following aspects:

• Ability to tackle both numerical and categorical variables
• Ability to conduct multi-criteria optimization
• Flexibility towards tuning both EAs and ACOs
• Keep computational cost as low as possible
• Ease of implementation
• Offer detailed information about the parameter's influence on performance

In [17] Eiben et al., argues that there are few tuning methods capable of reducing tuning effort, such as
SPOT and REVAC, where tuning effort is viewed as the product between the number of parameter sets
to be tested and the number of algorithm iterations.

Two drawbacks of REVAC, are according to Smit et al. [32] its inability to handle parameter
interactions (no joint distributions for multiple parameters) and that it cannot be used for tuning
categorical parameters. Which is in contrast to Yuan et al. [44] who declared that REVAC can handle
both numerical and categorical parameters. Yuan et al. also argues that SPOT is not able to handle
categorical variables while Bartz et al [5] stated that it can, by encoding the variables as numerical
values. In later papers[6][7][8] it is mentioned that SPOT uses factors to specify categorical variables.

5

In a comparative study [34] SPOT proved to be a high quality parameter tuner as it was able to
determine good parameter values comparable to the ones found by Meta-EAs, plus it offers invaluable
information through its resulting models.
Furthermore, SPOT includes methods to cope with stochastically disturbed results and it has been
proven to be able to run on various metaheuristics including newer approaches such as algorithmic
chemistries and particle swarm optimization. Also underlining SPOT flexibility [5], it can be used in
fields such as: bioinformatics, water-resource management, mechanical engineering, biogas plant
simulation, shipbuilding and quality control.

According to Bartz et al. [9], the main differences between SPOT and other tuning approaches are that,
SPOT is able to maintain a relatively low computational cost while determining good parameter sets. A
time constraint which in most cases rules out grid computing, local search methods and even Met-EAs.
Furthermore, it offers detailed information that allows the user to learn, which is optional as the tuning
process can run automatically. And probably the most significant difference is that SPOT can be
applied in an algorithmic manner, it requires the specification of very few parameters and no major
programming effort.

Based on the research conducted, we decided to use SPOT as a tuning method. Besides the previously
mentioned factors, we considered SPOT also for the availability of its extensive documentation, the
fact that it able to run in both Windows and Linux environments, and finally its ability to cope with
algorithms implemented in relatively every programming language, in our case C and Visual C# (tests
were done for JAVA also).

2.4 Research Objective

The main objective of this research is to determine the effectiveness of automated parameter tuning by
testing SPOT on two different algorithms: Hybrid GA and MACS-DVRPTW, algorithms that try to
solve the CVRP and DVRPTW respectively. This can be distributed among the following points:

Performance:
• Is MSPOT able to match or improve the parameters found by the Meta-GA of Wink et al.

[43]?
• Is SPOT able to match or improve manually tuned parameter sets for MACS-DVRPTW of van

Veen [40]?

Time:
• Is MSPOT able to match or improve the time it took the Meta-GA to achieve good results?

Robustness:
• Do the parameter sets obtained by SPOT perform consistently?

Information:
• Is it possible to find a better understanding of the parameters used by each algorithm?

To our knowledge, no research had been conducted in testing the usefulness of a tuning algorithm over
two different metaheuristics coming from separate fields of natural computing, which are solving two
different VRPs. And as such, we do believe that the results of this report will offer a better
understanding of parameter tuning in general and be a motivation for further studies.

6

Chapter 3

Vehicle Routing Problem

According to Golden et al [20] the Vehicle Routing Problem (VRP) is a well known combinatorial
optimization problem, which is concerned with the optimal design of routes to be used by a fleet of
vehicles to serve a set of geographically dispersed customers.

From the moment it was first proposed more than 50 years ago, numerous papers have been dedicated
to the precise and approximate solution of the many variants of this problem. Such as the Capacitated
VRP (CVRP), in which a homogeneous fleet of vehicles is available and the only constraint is the
capacity of the vehicles, or the VRP with Time Windows (VRPTW), where customers may be served
within a given time interval and the schedule of the vehicle routes needs to be discover. Figure 3.0
depicts an example of the VRP with the optimal solution on the right.

Figure 3.0: VRP example

[38] [26] In terms of complexity, the VRP is considered to be NP-hard and generalizes the Travelling
Salesman Problem (TSP), which calls for the discovery of a minimum-cost circuit that visits all the
vertices of G (a Hamiltonian circuit).

A problem which can be resolved using a polynomial-time algorithm (worst case complexity O(nk)),
is considered to be of complexity class P, which stands for polynomial time. A decidable decision
problem whose solutions can be checked in polynomial time and its polynomial-time algorithm is
unknown, falls under complexity class NP (non-deterministic polynomial time). Moreover, a problem
is considered NP-hard if any problem in NP can be reduced to it in polynomial time.

Many approaches have been proposed for such problems, most of which simulate natural processes,
e.g. biological evolution or ant colonies [24].

[27] As the VRP is a NP-hard problem, solving it optimality is not always possible within the limited
computing time; in this situation, the solution should involve heuristic and meta-heuristic methods that
can yield high-quality solutions in limited time.

7

3.1 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is considered the basic VRP, and its mathematical
model is defined on a graph G(V , E) where:

• G is complete and symmetric.
• n is the number of customers.
• v={v 0 , v1 , ... ,v n} is the set of all vertices with depot v 0 .The set of all customers
corresponds to V−v0 .
• E={(vi ,v j)∈V :i≠ j} is the set of all edges.
• d (vi):i∈{1,. .. ,n} denotes the demand for customer i.

• cij=δ(vi ,v j)=√∣v ix
−v jx

∣2+∣vi y
−v jy

∣2 is the travel cost between vertices Ri , v j .

 cij=c ji and Cost (S)=∑
j=1

m

Cost (R i) hold in CVRP.

• Ri : i∈{1,. .. ,m}=(v0 , vi1
, ... ,v ik (i)

, v0) is a route for one vehicle.
Each route starts and ends at the depot.
• S={R1 , ... ,Rm} is the set containing all routes, forming the solution.

• Cost (Ri)= ∑
j=1

k (i)−1

(ci j i j+ 1
)+ c0i1

+ cik (i) 0 is the travel cost for Ri .

• Every customer is visited exactly once by one vehicle:
 ∀ i(vi∈V−v 0⇒∃ j : vi∈R j∧∄ j≠k : v i∈R j∧vi∈Rk)

• Total demand in routes does not exceed vehicle capacity K:

 ∀ i∈{1,. .. ,m}:(∑
j=1

ik

d (vi
j
)⩽K)

The goal is to minimize the total travel distance, thus the objective function is to be
minimized.

 Cost (S)=∑
j=1

m

Cost (R i)

All vehicles have identical capacity, Q, and the number of vehicles is not determined a priori. The
CVRP consists in determining a set of vehicle routes (a) starting and ending at the depot, and such that
(b) each customer is visited exactly once, (c) the total demand of any vehicle route does not exceed Q,
(d) the total cost of all routes is minimized.
As a solution for the CVRP, this paper will focus on the Meta-Genetic Algorithm of Wink et al. [43],
further discussed in Chapter 4.

3.2 Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) it is based on the CVRP, and it has
associated with each vertex v i∈V not only a demand qi≥0 but also a service time si≥0 and a time
window [ei , li] . The depot has both the quantity (q0) and the service time (s0) equal to zero[29].

A viable solution for the VRPTW is defined as a set of routes that satisfy the following constraints: (a)
each route starts and ends at the depot, (b) each customer is visited exactly once by a vehicle, (c) the
total demand of customers in any route does not exceed Q and (d) the service of each customer is
started between ei and li .

As the analysis in this report is based on the work of van Veen et al. [40], it is important to state that
the travelling distance and the travelling time of a route are equivalent, as in this case the travelling
time does not include waiting time and service time.

8

3.3 Dynamic Vehicle Routing Problem with Time Windows

The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW), is characterized [25] [30] by
the fact that not all the necessary information for planning the routes is known to the user when the
routing process starts and the information is bound to change after the initial routes have been
constructed.

DVRPs' are also referred to as real time or online vehicle routing problems [22], and they can be
dynamic in various ways [40], for instance dealing with changing travelling times, addition or deletion
of nodes. The algorithm that we shall analyse in a later chapter focuses on the addition of nodes to the
initial problem.

[22] Solutions to this type of problem range from linear programming to meta-heuristics, as it is
beyond the scope of this thesis, we will only focus on van Veen et al. [40] algorithm: MACS-
DVRPTW (Chapter 5).

3.4 Real world applications

[27] The VRP has drawn enormous interests from many researchers during the last decades because of
its essential role in task sequencing, planning of distribution systems and logistics in many sectors
such as parcel delivery, transportation of goods, snow ploughing. Furthermore, transportation is an
active part in all stages of the production and distribution systems amounting up to 20% of the final
cost of goods [38].

Based on the previous statement, it is fair to say that efficient routing solutions can save companies
both time and money, and so, the market for efficient routing software is far from being saturated. A
fact also proven by the extensive research into VRP, by a Norwegian research institute, SINTEF, which
developed a software called Spider, coupled to real maps, thereby creating a usable solver for real
world applications [21]. The software also runs problem instances from research literature, which
enables performance comparisons.
Another example is Xtreme Route [51], a commercially available software which works on both
research problem instances and actual maps, [43] and apparently holds the record for a large number of
problem instances used in literature.

9

Chapter 4

Meta Genetic Algorithm
The focus of this chapter will be on the Meta-GA of Wink et al. [43]. The goal of their implementation
was to develop an algorithm that could efficiently solve the CVRP, while at the same time offer the
possibility to automatically determine good parameter sets.

The work of Wink et al. answered the following questions, which we shall cover in Section 4.3:
• Is the Meta-GA able to match or improve manually tuned parameter sets?

• Is the Meta-GA able to match or improve the time it takes to manually tune a parameter set?

• Do the parameter sets obtained by the Meta-GA perform consistently?

Before proceeding with their actual implementation we shall first offer a short introduction to GAs
(Section 4.1) and the implemented Hybrid GA (Section 4.2).

This chapter will focus only on the key principles of the algorithm, in order to offer to the reader an
understanding of the task. However, for a full description of the algorithm, please see Wink et al. [43].

4.1 Classical Genetic Algorithm

[18]Evolutionary Algorithms are metaheuristics inspired by Darwin's evolutionary theory, and they are
used to determine solutions to combinatorial optimization problems through a repetitive process that
aims to improve candidate solutions with the aid of genetically inspired operators.

Algorithm 4.1 Pseudocode Genetic Algorithm

// Initialization
t←0
initpopulation (Pt)
evaluate (Pt)

// Main loop
while stop condition not met do

Pt
′ ←selectparents (Pt)

Pt
″ ←recombine (Pt

′ , pc)
Pt
‴ ←mutate (Pt

″ , pm)
evaluate Pt

‴

Pt +1 ← select (Pt
‴)

t←t + 1
end while

A subclass of Evolutionary Algorithms, the Genetic Algorithm (GA) is an adaptive strategy and a
global optimization technique. It is inspired by population genetics including heredity and gene
frequencies [10]. The GA uses operators like recombination, mutation and selection to improve
candidate solutions and the evolution takes place at the population level. An outline is depicted in
Algorithm 4.1.

10

In most cases the genetic operators are not capable to run on the natural representation of candidate
solutions, the phenotype space, and so encoding/decoding is used to translate the phenotypes into
genotypes. The translation is a simple conversion from integer to binary and the other way around.

4.1.1 Characteristics and Parameters

The initialization phase is defined by randomly generating individuals and evaluating them.
In the selection phase there is the option whether to include in the next generation, only the new
offspring(λ) or to also add the originating parents(μ). The situation in which only the new offspring are
included is called a comma strategy and the other a plus strategy.
Figure4.1.1 Depicts a situation in which the algorithm had stopped in local optimum. A situation that
can be avoided by using a comma strategy that permits intermediate deterioration by forgetting highly
fit individuals.

Figure 4.1.1 Local Optimum

The population size, also plays an important role in finding good solutions. A population that is too
small may not be able to search enough of the solution space and λ should be chosen greater than μ to
allow diversity.

Another parameter that influences the quality of solutions is the selective pressure, which emphasises
on choosing the best individuals. A commonly used selection mechanism that offers increased control
in selective pressure is tournament selection. It works by selecting the best individual from a randomly
chosen pool of K individuals picked from the population.
In their algorithm Wink et al. [43], coupled tournament selection with ranking-based selection that
offered even more control. The operator is outlined in Algorithm 4.1.1

Algorithm 4.1.1 Tournament selection with ranking

choose randomly K (the tournament size) individuals from the population
choose the best individual from the pool with probability p
choose the second best individual with probability p ∗ (1− p)
choose the third best individual with probability p ∗ (1− p)2

and so on...

11

4.2 Hybrid Genetic Algorithm

In order to solve the CVRP, Wink et al. [43], introduced a Hybrid GA (HGA), different from the before
mentioned Classical GA, the difference lies in the modified individual representations. The algorithm
is outlined in Algorithm 4.2

Algorithm 4.2 Pseudocode Hybrid Genetic Algorithm.

// Initialization
t←0
initpopulation (Pt)

// Main loop
while stop condition not met do

Pt
′ ←recombine (Pt , pc)

Pt
″ ←mutate (Pt

′ , pm)
Pt
‴ ←optimize (Pt

″ , pm)
Pt +1 ← select (Pt

‴)
t←t + 1

end while

The most natural representation for a CVRP solution is a set of routes where each route starts and ends
at the depot and contains the customers in the order they are visited. In VRP there are two common
approaches in the permutation-based genotype design [43].

First one consists in encoding the phenotype by concatenating the customers in a single permutation
and then, decoding is reached by assigning customers to vehicles. However, this approach is not
capable to individually represent all possible phenotype, as after encoding/decoding, in some cases the
result is different from the initial phenotype.

Wink et al. [43] used the second approach in terms of representation where genotype = phenotype.
Meaning that the need for encoding/decoding functions was removed, however it implied the usage of
specialized operators.
Such a system that uses other heuristics, domain knowledge or existing algorithms is referred to as
hybrid evolutionary systems [2] and they are considered to be part of the class of ‘hybrid meta-
heuristics’ [39].

In order to outline the distinctiveness of the HGA, following we shall shortly describe the
implemented Local Search Heuristics (Section 4.2.1), Initialization (Section 4.2.2), Recombination
(Section 4.2.3), Mutation (Section 4.2.4), Optimization (Section 4.2.5) and Selection (Section 4.2.6).

4.2.1 Local Search Heuristics

2-Opt [12], is a typical local search algorithm that basically removes intersections in routes with the
goal of reducing the operational cost. It works by checking all pairs of non-adjacent edges for
intersections. In the case that they do intersect 2-Opt, reorganizes the edges and so creating a route
without intersections. The complexity is O(n2) since all pairs of edges are checked within each route.

Push Forward Insertion Heuristic (PFIH) [35], is an efficient method to create feasible solutions for
any VRP by considering an infinite number of vehicles. PFIH works on lists of unrouted customers,
whereupon creating a new route; firstly the most distant customer is inserted, followed by the most
cost-efficient and feasible vertex whether it is a customer or a depot (in this is case a new route is
created). PFIH is outlined in Algorithm 4.2.1

12

Algorithm 4.2.1 Tournament selection with ranking

i ← 1
while any unrouted customers do
 if Route i is empty then
 Find most distant customer and append it to Route i
 else
 vertex ← most cost-efficient insertion (feasible customers or depot)
 if vertex is a customer then
 Append customer to Route i
 else
 i ← i + 1
 end if
 end if
end while

4.2.2 Initialization

Kallel et al [23] stated that Initialization plays an important role in achieving good result using GAs,
due to the fact that bad Initialization in the best case scenario it will increase the time to solution,
whereas in the worst case scenario it could even prevent the convergence towards the global optimum.

Random initialization, a random CVRP solution is created using exhaustive routing by assigning
customers to routes whilst capacity constraint is not broken.

Bearing initialization, used to steer the initial population towards a promising area in the search space.
It is done by arranging the individuals from the initial solution in the direction of a ‘butterfly’ pattern.
Starting at a certain bearing (i.e. 00, north) from the depot, the operator then scans clockwise for
customers who are added exhaustively into the routes, without violating constraints [43]. In order to
avoid the creation of duplicate individuals, different start bearings are used for each individual. The
pseudocode is available in Algorithm 4.2.2

Algorithm 4.2.2 Bearing initialization

Require: 0 ≤ StartBearing < 360
Calculate bearing for each customer as seen from the depot
Order the customers by bearing as seen from the depot
Starting from StartBearing, exhaustively create routes

4.2.3 Recombination

Best Cost Route Crossover (BCRC), while checking for constraints this operator tries to
simultaneously minimize the number of vehicles and cost. In this process two parents generate two
offspring, by selecting one route from each parent whose customers are afterwards removed from the
other parent.
The removed customers are sequentially re-inserted in the most cost-efficient location. In case of a
stalemate (identical insertion costs in two or more positions), a random location is chosen from those
positions. The operator is able to generate a new route when there are no viable insertion places, or if
generating a new route results in the minimal increased travel distance.

Alvarenga Crossover (AX) [1], when creating the new offspring this operator tries to take as much
complete routes as possible from both parents. Basically AX, generates an offspring resembling both
parents equally, although this is largely dependent on the problem set. Moreover, if a route with many
customers (pertaining to a large problem set with few vehicles) is inserted into the offspring,
frequently no other route is possible for insertion any more. In this case, a large number of customers
have to be routed using PFIH, which eventually will not yield good results.

13

4.2.4 Mutation

Merge routes, starts by unrouting the customers of a random number of randomly selected routes and
reinserts them using the PFIH operator. The merge routes operator is most efficient in initial
populations due to the fact that solutions display a relatively large number of overlapping routes in the
early stages of the runs. However after the solutions have evolved, the operator is not capable of
providing improvements in many occasions.

Adjacent reorder, this operator works by selecting a random customer and then identifying the nearest
customer in another route. Followed by unrouting all customers in both routes and re-inserting them,
using PFIH. And so two routes will be merged and they are most probably adjacent, which is precisely
where the solution has a high likelihood of being improved.

4.2.5 Optimization

The currently studied GA has an additional step, optimization, where each individual is optimized
using the 2-Opt heuristic.

4.2.6 Selection

Tournament selection is used, where q>1 individuals are chosen randomly from the population, out
of that pool the best individual is being selected. Tournaments are being held for each individual of the
new population. In this study, the tournament selection operator was extended by implementing a
ranking-based selection within the pool. Furthermore, the operator is used only for selecting new
individuals for the next generation.

4.3 Meta-GA

The performance of algorithms is directly proportional with the quality of the set of parameters used.
In most cases, determining good configurations can be troublesome as most algorithms make use of
many parameters, which in turn, results in an exponentially larger number of possible configurations.
A feasible approach in setting these parameters is to make use of “best practises” and a trial and error
method, which is very time consuming.

Clune et al [11], proposes the use of a Meta-GA (GA within a GA) for the investigation of promising
parameter settings with the goal of creating a self adaptive algorithm. This method was first used by
Mercer and Sampson in 1978 and a more extensive investigation was conducted by Grefenstette 8
years later.

The Meta-GA works by optimizing parameter values, these values are encoded using a binary
representation, and so for every parameter set, the Meta-GA sees a single individual. Whose, fitness
value is evaluated by executing the lower level GA with the parameter set that belongs to the
individual. As in the case of a classical GA, the individual with the highest fitness value will be
selected for the next generation and when selected there is a chance it will undergo mutation or
crossover.

The Meta-GA proposed by Wink et al., was implemented as a classical GA, that worked on the Hybrid
GA described in Section 4.2. The implementation made use of classical operators such as 1-point
crossover and bit-flip mutation together with a classical tournament selection. That left, population
size, selection strategy and tournament size as the only parameters to be set for the Meta-GA.

14

In order to keep the bit-string of the genotype as short as possible, the parameters where encoded using
step sizes. For example in the case of μ by using a step size of 2n on a parameter range of [8 : 1024]
resulted in an encoding of only 3 bits. Table 4.3 outlines the entire list of parameters, their range and
step sizes.

Table 4.3 Meta-GA parameter coding
Parameter Range Step size Bits

μ 8 : 1024 2n 3

Selection Strategy Comma or Plus selection - 1

λ 2μ : 5μ μ 2

Recombination Operator BCRC or Alvarenga - 1

Mutation Operator Merge routes or Adjacent reorder - 1
Pmutation 0.3 : 0.9 0.2 2

Tournament size 2 : 17 - 4

Initialization operator Random or Bearing - 1

Bit-string 15

The maximum number of generations was not considered for tuning based on the assumption that it
should depend on the population size and it was set to 100,000/λ.

Using the set-up outlined in this section, the Meta-GA was able to match and at times even exceed
manually tuned parameter sets, but only for problem instances up to 100 customers, as the running
time for large instances was too long, reaching up to several days.

Another strength of Wink et al. Meta-GA is its ability to match and even improve the time it takes to
manually tune a parameter set. Considering the situation that there is no prior knowledge on parameter
settings, the algorithm can return in approximately 15 hours for a problem set of up to 80 customers a
parameter configuration that yields a solution within 1% of the optimum.

Thirdly, the results of the Meta-GA are consistent as it has been proven, that running the same
parameter set on the Hybrid GA will return good results.

15

Chapter 5

Ant Colony Optimization: MACS-DVRPTW
In this chapter we shall discuss the MACS-DVRPTW algorithm of van Veen et al. [40] proposed as a
solution to the DVRPTW problem with different degrees of dynamism. Furthermore, this is considered
to be the first ACO algorithm that solves the DVRPTW problem.

Due to the limited research on the topic, it is hard to compare the results of the algorithm on the
DVRPTW with results from other papers. And so, we will compare our results only with those of van
Veen et al. [40]

Before proceeding with the actual implementation of the algorithm we shall first offer a short
introduction to Ant Colony Optimization (5.1) and MACS-VRPTW (5.2).

This chapter will focus only on the key principles of the algorithm, in order to offer the reader an
understanding of the task, however for a full description of the algorithm please see van Veen et al.
[40].

5.1 Ant Colony Optimization

Ant colony optimization is part of the larger field of swarm intelligence, a relatively new approach to
problem solving, a system inspired by the social behaviour of insects and other animals. In particular,
ants have inspired a number of methods and techniques among which are the ant algorithms[28]. In
real life ants coordinate their activities through a form of indirect communication mediated by
modifications of the environment, called stigmergy. For example, foraging ants deposit a chemical
(pheromone) on the ground, which increases the probability that other ants will follow the same path.

One of the most successful example of an ant algorithm is the general purpose optimization technique
known as ant colony optimization (ACO). ACO algorithms can be used to solve not only static but
also dynamic combinatorial optimization problems[14]. The algorithm works by mirroring the self-
organizing principles which determine the coordinated behaviour of foraging ants, in order to organise
the cooperation of societies of artificial agents to solve computational problems.
A schematic representation of the foraging ants behaviour is illustrated in Figure 5.1

Figure 5.1 Schematic representation of ant behaviour.

16

An informal description of the ACO algorithm is given by Dorigo et al. [14], who describes it as the
interaction of three main procedures: ConstructAntsSolutions, UpdatePheromones, and
DaemonActions.

The first procedure, ConstructAntsSolutions, controls a population of ants that simultaneously and in
an unsynchronised fashion, visits adjacent states of the problem by travelling through neighbour nodes
of the problem’s construction graph. They move based on a random local decision policy that makes
use of pheromone trails and heuristic information. In this way, ants gradually create solutions to the
problem in question. The moment an ant has created a solution, or during its development, the ant
evaluates the (incomplete) solution that will afterwards be used by the UpdatePheromones mechanism
to decide how much pheromone to deposit.

In the second process, UpdatePheromones, the pheromone trails are changed. Their value can be
increased, as ants deposit pheromone on the components or connections they use, or lowered, as a
result of pheromone evaporation. The deposit of new pheromone increases the probability that those
components or connections that were used by a large number of ants and which produced a very good
solution will be reused by future ants. On the other hand, pheromone evaporation applies a helpful
form of forgetting, and as a result it avoids the premature convergence of the algorithm toward a
suboptimal region, therefore enabling the exploration of new areas of the search space.

The DaemonActions mechanism is used to implement coordinated actions which cannot be performed
by single ants. An example of such an action is the activation of a local optimization method, or the
accumulation of global information that can be used to determine the usefulness of depositing
additional pheromone to bias the search process from a non-local perspective. From a practical point
of view, the daemon is capable to observe the solution found by every ant in the colony and select one
or a few ants, mainly those that created the most promising solutions, and then allow them to deposit
more pheromone on the components/connections they used.

An outline of the ACO pseudocode is available in Algorithm 5.1. The construct ScheduleActivities
does not specify how the three processes described earlier, are scheduled or synchronized. More
precisely it does not state whether they should be run in parallel, independent, or if some kind of
synchronization among them is required. Therefore, the designer has the freedom to specify how these
three procedures should interact, taking into consideration the characteristics of the problem at hand.

Algorithm 5.1 Pseudocode ACO algorithm.

procedure ACOMetaheuristic
 ScheduleActivities
 ConstructAntsSolutions
 UpdatePheromones
 DaemonActions % optional
 end-ScheduleActivities
end-procedure

5.1.1 Ant Colony System

[41] The basic ACO algorithm, the Ant System(AS) and its variants, have been successfully used on
numerous optimization problems, such as the TSP, task scheduling, optimal path planning, load
balancing and routing in telecommunication networks.

The two primary phases of the AS algorithm constitute the ants’ solution construction and the
pheromone update. [14] A good practice in initializing the pheromone trails is setting them to a
somewhat higher value than the foreseen amount of pheromone deposited by the ants in one iteration;
this value can be estimated with the following equation:

17

∀(i , j) , τij=τ0=m /Lnn

With:
τo : starting pheromone value
Lnn : length of the nearest neighbour tour

m : number of ants
ij : represents the index corresponding to vertex (i, j)

The reasoning behind it, is that if the starting pheromone value τo is too low, then the search is
rapidly biased by the first tours generated by the ants, which it will steer the exploration towards
inferior zones of the search space. On the other hand, if the values are too high, then too many
iterations will be wasted until pheromone evaporation reduces enough pheromone values, in order for
the pheromone added by ants to be able to bias the search.

The solution construction, can be implemented in two different way, by using a parallel or sequential
solution construction. In the former implementation, at every step all the ants in the colony move from
their current position to the next one, while in the former implementation an ant creates a tour before
the next one starts to build another one. In the AS case, the implementation options are considered
equal [41] in the sense that they do not significantly alter the algorithm’s behaviour. However, this
does not hold true for other ACO algorithms such as Ant Colony System (ACS).

In terms of pheromone update, once all the ants have determined their solutions, the pheromone trails
are updated. Firstly the pheromone values on all arcs are decreased by a constant factor, and then
pheromone is added on the arcs the ants have crossed in their tours. In general, arcs that are used by
larger numbers of ants and which are a part of shorter tours, will receive more pheromone and so will
be more likely to appear in future iterations of the algorithm.

In contrast to Dorigo et al. [14], who states that ACS differs from AS in three main ways, van Ast et al.
[41] mentions four differences, which will be now be summarized.

Firstly, the ACS algorithm implements a local pheromone update step, in order to avoid premature
convergence to less favourable solutions, a step which occurs for each ant after each iteration within a
trial, and it is defined by the following equation:
τij=(1−ρ)τij+ρ τ0 ,

With:
ρ : pheromone evaporation, defined over the interval (0,1)

During the trial, the local pheromone update step, reduces the attractiveness of visited solution
components in order to direct the ants towards less visited components.

Secondly, ACS makes uses of a global best update rule in terms of updating the global pheromone.
Meaning that the solution with the highest fitness, found since the beginning of the algorithm is going
to be used to update the pheromone variables at the end of the tour. This method used in ACO
algorithms has proven to considerable speed up the convergence to the best solution.

Thirdly, the global pheromone update is executed just for the (i, j) pairs that are part of the global
optimum solution. Meaning that not all pheromone levels are evaporated, just the ones that also
receive a pheromone deposit.

Furthermore, the pheromone deposit is adjusted by ρ . As a result of the current and the previously
mentioned two differences, the global pheromone update rule becomes:

τij={(1−ρ) τij+ρ∑
k=1

m

Δ τij
k , if (i , j)∈T *

τij , otherwise

18

Where Δ τij
k=1 /L*

With:
T * : best tour found so far
L* : length of tour T *

Δ τij
k : quantity of pheromone deposited by an ant k on vertex (i, j)

m : number of ants

[13] Another notable difference between ACS and AS, consists in the decision rule used by ants during
the construction process, called pseudorandom proportional rule. Which states that the probability for
an ant to move from point i to point j depends on a randomly assigned variable q, from the interval
[0, 1], and a parameter q0 .

5.2 MACS-VRPTW

In Section 4.2 we introduced the Hybrid GA of Wink et al. [43], as a state of the art solution for the
CVRP. In this section we will focus on van Veen's et al. [40] implementation of the Multiple Ant
Colony System for the VRPTW (MACS-VRPTW), the algorithm is considered the most successful
ACO for solving the VRPTW. As stated in Section 3.2, the VRPTW has two objective functions: to
reduce the number of vehicles and the second, to reduce the total travel time. The antecedent has
priority, as a solution with fewer vehicles and higher travel time is chosen over a solution with lower
travel time but a higher number of vehicles. A schematic overview of the algorithm is outlined in
Figure 5.2.

Figure 5.2: Overview of the MACS-VRPTW

As can be depicted from Figure 5.2, MACS-VRPTW optimizes a multiple objective function by
coordinating two colonies, ACS-TIME and ACS-VEI, one for each objective. ACS-TIME, seeks to
reduce the total travel time, while at the same time, colony ACS-VEI searches for a solution with
fewer vehicles. Both colonies are based on the same solution construction procedure, similar to the one
used by ACS. Furthermore, the two colonies run in parallel, while creating independent pheromone
trails, nonetheless, they do collaborate by exchanging information through mutual pheromone
updating.

ACS-VEI uses an array IN, in order to give increased priority to those nodes that had not been
included in previous tours. At the same time it makes use of T VEI to keep track of the best solution,
which may not always integrate all nodes.

19

MACS-VRTW

ACS-VEI

Artificial Ants

Multiple Objectives

Single Solutions

ACS-TIME

Artificial Ants

Single Objectives

On the other hand ACS-TIME is not using a colony best solution, and it does not work with infeasible
solutions, and it executes a local search procedure (Cross Exchange) to improve the solution.

Cross Exchange was implemented by van Veen et al., in such a way that MACS-VRPTW could handle
hard time window constraints. Another adjusted method is the nearest neighbour heuristic, firstly the
constraints on capacity and time windows are checked to avoid infeasible tours and secondly a limit on
the maximum number of vehicles is passed to the function.

The algorithm begins with a feasible solution T * , generated using the nearest neighbour heuristic.
This solution is then optimized using the two colonies and when ACS-VEI finds a feasible solution
with less vehicles, both colonies are restarted with the new reduced number of vehicles.

The pseudocode of the ACS-VEI and ACS-TIME can be found in Algorithms 5.2.1 and 5.2.2.

Algorithm 5.2.1 Pseudocode ACS-VEI(v)

Input: v is the maximum number of vehicles to be used
Given: n is the number of nodes

// Initialization
Pheromones are initialized to τ0
IN initialized to 0
T VEI ← NearestNeigbour(v)

// Main loop
while stop condition not met do

 for each ant k do
 T k ←ConstructTour(k, IN)

 for every nodes i∉T k do
 INi=INi+1
 end for

Update local pheromone on edges of T k
T k ←InsertMissingNodes(k)

end for

Find ant l with most visited nodes
if nodes in T l > nodes in T VEI then

T VEI ← T l

IN ← 0
if T VEI feasible then

return T VEI to MACS-VRTW
end if

end if

Update global pheromone with T * using: τij=(1−ρ) τij+ρ∑
k=1

m

Δ τij
k ,∀(i , j)∈T *

Update global pheromone with T VEI using: τij=(1−ρ) τij+ρ∑
k=1

m

Δ τij
k ,∀(i , j)∈T VEI

end while

20

Algorithm 5.2.2 Pseudocode for the ACS-TIME(v) algorithm.

Input: v is the maximum number of vehicles to be used
Given: n is the number of nodes

// Initialization
Pheromones are initialized to τ0

// Main loop
while stop condition not met do

 for each ant k do
T k ←ConstructTour(k, 0)

Update local pheromone for edges of T k
T k ←InsertMissingNodes(k)

if T k is a feasible tour then
 T k ←LocalSearch(k)
end if

end for

Find feasible ant l with smallest tour length
if ∃ l : T l is feasible and Ll < L* then
 send T l to MACS-VRTW
end if

Update global pheromone with T * using: τij=(1−ρ) τij+ρ∑
k=1

m

Δ τij
k ,∀(i , j)∈T *

end while

5.3 MACS-DVRPTW

MACS-DVRPTW, is based on MACS-VRPTW adapted to solve the Dynamic VRPTW. As there is no
prior knowledge of such an algorithm, the description will be solely based on van Veen et al.[40].The
motivation to study the algorithm and implement an optimization method for it, is based not only on its
novelty and the problem it solves, but also because of its different implementation. The algorithm was
written in C on a Linux environment.

In order to solve the DVRPTW van Veen et al., implemented a method to simulate a form of
dynamism, by introducing the concept of a working day of T wd seconds. Which implies that a
percentage of the total nodes will be excluded and given an available time at which they will become
visible, the percentage represents the dynamism of the DVRPTW.

At the start of the algorithm a tentative tour is created with the available nodes, which will be updated
during the simulation in order to constantly hold a solution to the current problem. The dynamic
problem is split into nts static problems, which are solved sequentially, this is achieved by dividing
the working day T wd by nts . When a previously excluded node becomes available it is introduced
into the tentative solution, the moment the following static problem starts.
The dynamism of problems makes it difficult to find and keep track of an optimal solution. In MACS-
DVRPTW and MACS-VRPTW, the collective memory of the colony is reset each time the colony is
restarted and so van Veen et al. made use of a pheromone preservation(γ) variable to store some part
of the pheromone trails when the colonies are restarted. Now the pheromone levels are adjusted using
the following formula: τij=(1−γ) τij+γ τ0 .

MACS-DVRPTW has the same objectives as MACS-VRPTW, to reduce the total time and the number
of vehicles. MACS-DVRPTW, starts by reading the problem instance and initializing the data
structures, followed by creating a starting solution with the nodes available. Afterwards when a time
slice starts, the newly available nodes are inserted using the InsertMissingNodes function.

21

Then the process continues by (re)starting, ACS-VEI and ACS-TIME. A pseudocode of MACS-
DVRPTW is outlined in Algorithm 5.3.

Algorithm 5.3 Pseudocode MACS-DVRPTW

// Initialization
T * ← NearestNeighbour(n)
τ0 ← 1/nLnn

Initialize time t=0
Initialize available nodes n
Start counting CPU time t
Activate ACS-VEI (v-1)
Activate ACS-TIME (v)

// Main loop
while t<T wd do

v ←get_vehicles(T *)
while ACS-VEI and ACS-TIME active and time-step not over do
 Wait an improved solution T from ACS-VEI or ACS-TIME

 if get_vehicles(T) < v then
 kill ACS-TIME and ACS-VEI

end if
v ←get_vehicles(T)
T * ← T

end while

if time-step over then
if new part of T * is defined or new nodes are available then

kill ACS-TIME and ACS-VEI
Update available nodes n
Insert new nodes into T *

Commit to nodes in T *

end if
end if

if colonies not active then
Activate ACS-VEI (v-1)
Activate ACS-TIME (v)

end if

return T *

 end while

22

Chapter 6

Sequential Parameter Optimization Toolbox

As we have already outlined in the previous chapters the algorithms to be tuned, in this chapter we will
focus on the Sequential Parameter Optimization Toolbox (SPOT), as the method for tuning.

Before proceeding with the description of SPOT, we will first offer a description of the Sequential
Parameter Optimization framework on which SPOT is based.

6.1 Sequential Parameter Optimization

Definition [4], Sequential Parameter Optimization (SPO) is a framework for tuning and understanding
of algorithms by active experimentation. This approach makes use of methods both from
computational statistics and exploratory data analysis, like design of experiments(DOE) and design
and analysis of computer experiments (DACE). SPO can be interpreted as a search heuristic, that
optimizes the performance of non–deterministic algorithms. The basic framework of SPO consists of a
12 step process outlined in Table 6.2.

Table 6.2 SPO framework [31].

1
2
3
4

5
6
7
8
9

10
11
12

Pre-experimental planning
Scientific claim
Statistical hypothesis
Specification of the

- optimization problem
- constraints
- initialization method
- termination method
- algorithm main factors
- initial experimental design
- performance measure

Experimentation
Statistical modelling of data and prediction
Evaluation and visualization
Optimization
Termination: If the obtained solution is good enough, or the maximum number of iterations has
been reached, go to step 11
Design update and go to step 5
Rejection/acceptance of the statistical hypothesis
Objective interpretation of the results from step 11

The DOE method relies on three steps: screening, modelling and optimization, where every step uses
different experimental designs. The classic approach towards the design of experiments uses elements
like linear regression models, however the shortcomings of this approach rely on the assumption that
observation errors are independent. As these assumptions are only speculative SPO, uses a stochastic
process model, DACE-Kriging, that helps predict unknown values and can be applied to interpolate
results from extensive simulations.

23

[9] Algorithm design (DA) and problem design (DP) are the key elements of the SPO methodology.
DA defines ranges of values for the algorithm's variables, in other words a design point xa∈DA

represents a vector with the particular set of settings of the studied algorithm. On the other hand DP
specifies the variables related to the optimization problem (e.g. number of function evaluations).
Together the two elements DA and DP form the experimental design D.

Determining good design points depends highly on the regression model used, however, identifying a
feasible model depends on the design points, creating what it is known as the chicken and egg
problem. In the area of parameter tuning for random search algorithms, research has proven the
superiority of space design filling over classical factorial designs. One example of a space design
filling model, is Latin hypercube designs (LHD), and it was integrated by SPO due to its ease of
implementation and understanding. However, LHD has not been proven to have superiority over other
models from its category, just over a number of simple random sampling designs.

6.2 Sequential Parameter Optimization Toolbox

[3][5] Sequential parameter optimization toolbox (SPOT) is one possible implementation of the SPO
framework. SPOT, uses the available budget (e.g. number of function evaluations) in a sequential
manner, such that it guides the search by building one or several meta models from the information
gathered from the exploration of the search space.

The meta models are used to predict new design points and they are refined gradually, in order to
improve knowledge about the search space. SPOT, copes with noise by improving confidence and it
applies exploratory data analysis to learn from the tuning process. The tuning can take place both in an
interactive or automated fashion.

The SPOT method is comprised of two phases, particularly the first is building the model and the
second is the sequential improvement. A formal description can be viewed in Algorithm 6.2.

In the first phase a population of initial designs is determined from the algorithm's parameter space and
then the algorithm is run k times for each design. The second phase is characterized by a loop of the
following processes:

• A model based on the obtained data is build or updated.
• The predicted utility of the generated large number of design points is computed by sampling

the model.
• The best design points are chosen and then the algorithm is run k+1 times for each of them.
• The new design points are added to the population and the loop is restarted unless the

termination criteria is reached.

The variable k is incremented in each run, and it is used to identify the number of repetitions for every
design. In order to obtain a comparable number of repetitions the best design points are rerun.
Sequential approaches are considered to be more efficient than approaches that evaluate the
information in one step, as they require a small number of function evaluations.

In order to determine the correlation between the algorithm's input and its output, SPOT uses a
sequentially improved model, which has two main functions. The first, allows SPOT to find feasible
parameters. And the second, determines the interaction between variables, which facilitates the
understanding of how the algorithm works on a particular problem or how changes in this problem
impacts the output. In terms of prediction models, regression and Kriging models or a combination of
the two are the most commonly used, nevertheless, SPOT allows for the usage of large number of meta
models.

24

Pseudocode SPOT

//phase 1, building the model
let A be the tuned algorithm
generate an initial population X={x̄1 , ... , x̄m} of m parameter vectors
let k=k 0 be the initial number of tests for determining estimated utilities
for each x̄∈X do

run A with x̄ k times to determine the estimated utility y of x̄
end for each

//phase 2, using and improving the model
while termination criterion not true do

let ā denote the parameter vector from X with best estimated utility
let k the number of repeats already computed for ā
build prediction model f based on X and {y1 , ... , y∣X∣}
generate a set X ′ of l new parameter vectors by random sampling
for each bar x∈X ′ do

calculate f (x̄) to determine the predicted utility f (x̄) of x̄
end for each
select set X″ of d parameter vectors from X ′ with best predicted utility (d≪ l)
run A with ā once and recalculate its estimated utility using all k+1 test results (improve
confidence)
let k=k+1
run A k times with each x∈X″ to determine the estimated utility x̄
extend the population by X=X∪X″

end while

SPOT uses simple text files as interfaces from the algorithm to the statistical tools. The files are
divided in two sections, files that the user needs to provide and the files belonging to the SPOT output.
A schematic overview of the files and their interaction with SPOT and the algorithm is available in
Figure 6.3.

The input files that the user has to specify are as follow:
- Algorithm design (APD) files are used to specify the constant parameters used by the algorithm.
However, APD files are not compulsory, and in our situation we are not going to make use of them as
the parameters are already defined in the algorithms.
- Region of interest (ROI) files define the region over which the algorithm parameters are tuned. SPOT
supports even categorical variables (e.g. the recombination operator), and they can be encoded as
factors. In the Hybrid GA case we would have BCRC or AX recombination.
- Configuration files (CONF) are used to define SPOT specific parameters, such as the number of
evaluations or the prediction model. Parameters without an assigned value will receive the default
value. In the case that the file mode is disabled, this information will be stored in the config variable.

If the file mode is enabled SPOT creates the following output files:
- Design file (DES) specify D A 's. They are created automatically by SPOT and used by the
optimization algorithm.
- Result file (RES), as the name, it stores the results of running the algorithm. These files are used in
statistical evaluations and visualizations. SPOT uses RES files to generate prediction models.
- Best file (BST) stores the best results found in each sequential step, and they provide direct access to
progress information.

25

Figure 6.2 Overview of the SPOT files.

Following we will describe the 6 tasks that can be performed by SPOT.
1. Initialize. This is normally the first step during experimentation, and it generates an initial design.
Before this step the user has to create the ROI and APD files and specify SPOT’s parameters using a
CONF file. When defining a project it is suggested to use the same base-name for CONF, ROI, and
APD, however it is not compulsory, as one APD file can be used for different projects.
2. Run. In this task the optimization algorithm begins with configurations from the generated design,
and additional information from the algorithms' DP is also used. The step ends with results being
written in the RES file.
3. Sequential step. Based on information from the RES file, a new design will be determined. This step
is characterized by use of a prediction model. SPOT provides different prediction models, and we will
use: spotPredictForrester for the Hybrid GA and spotPredictRandomForest for the MACS-DVRPTW.
In the situations when only few algorithms runs are possible, and the focus is on efficiency it is
possible to integrate user-defined models into SPOT.
4. Report. By using the information from the RES file, analysis can be generated. New report methods
can easily be added as the information is stored in files. SPOT is equipped with scripts to conduct
regression analysis and plots such as histograms, scatter plots, plots of the residuals, etc.
5. Automatic mode. As the name, the second and the third tasks, run and sequential, are performed
automatically after an initialization for a user defined number of times.
6. Meta mode. This allows the tuning process to be repeated for a number of different configurations.
For instance, tuning can be conducted for various starting points, several dimensions, or randomly
chosen problem instances.

6.2.1 SPOT Multi-Criteria Optimization

In most cases industrial optimization problems, have more than one quality criteria. For example,
besides the result itself, many optimization problems, have the computational time as the second
criteria for performance. This is due to the fact that, time-consuming evaluations limit the optimization
processes to a small number of evaluations.

In the past decade methods for multi-criteria optimization(MCO) emerged as a solution for problems
with more than one quality criterion [45]. At the same time, it became necessary to use these MCO
techniques together with optimization methods that require a small number of function evaluations.
Extended research has been conducted in combining MCO and surrogate model optimization, for
example Voutchkov et al. [42] introduced a multi-criteria approach to sequentially improve surrogate
models, tested on simple multi-criteria functions with a small number of function evaluations.

26

[46] Multi criteria SPOT (MSPOT) is similar to Voutchkov et al. approach, however it does not
employ any form of expected improvement, or other forms of using the variance for exploration.
MSPOT employs the surrogate models of the different objectives by making use of a multi-criteria
optimization algorithm like SMS-EMOA or NSGA2; in our tests we used the former one.

This approach returns a population of promising points, where one or more of these points is/are
selected in order to be used on the actual target function. This selection is based on non-dominated
sorting and the individual hyper volume contribution. In order to avoid clustering of solutions in the
objective space, the known points are tested again on the surrogate model.

27

Chapter 7

Experimental Setup and System Description

This section elaborates on the SPOT implementation details regarding the two algorithms meant to
solve the CVRP and the DVRPTW respectively. The Hybrid GA was developed in Visual C# and the
MACS-DVRPTW was implemented in C under a Linux environment.

7.1 Implementation Hybrid GA

As described in Chapter 2, the experimental setup consist of a three layer architecture, and Figure 7.1
outlines the hierarchy of our first implementation.

Figure 7.1 Experimental hierarchy MSPOT-HGA

7.1.1 Application Layer

On the application layer we have chosen, the 9 CVRP problems used by Wink et al. [43] in their tests
of the Meta-GA. The size of the problems ranges from 60 to 80 clients, out of which 5 are clustered
and 4 dispersed. A problem instance holds the coordinates and demands of all nodes. The distances
between nodes are in Euclidean distance, however in order for the total travel distance to remain an
integer, the distances are rounded to the nearest integer.

7.1.2 Algorithm Layer

On the algorithm level we used the HGA, described in Section 4.2. The actual implementation of the
algorithm made use of multi-threading, allowing for a parallel iteration over λ individuals for each of
the following steps: recombination, mutation, optimization, evaluation, and selection. This was one of
the factors that greatly improved the HGA's performance.

In order to facilitate the interaction between SPOT and HGA, as previously depicted in Figure 6.2.,
firstly we created a new C# program(ConsoleProgram.cs) within the HGA, which is able to compile
the algorithm with the parameter settings received from SPOT.

28

MSPOT

Hybrid GA

CVRP

optimizes

optimizes

parameter tuning

problem solving

MSPOT

Hybrid GA

CVRP

algorithm quality

solution quality

7.1.3 Tuning Layer

On the tuning layer we used a modified version of SPOT, more precisely MSPOT[46], a method for
multi-criteria optimization. SPOT is implemented as an R package and to our knowledge, no prior
research was conducted using this approach on an optimization algorithm implemented in Visual C#.
This raised the problem of how to link R with C#, to this end we researched the following methods:
R.NET [49], R(D)COM[48], SWIG [50]. However, these methods were not robust enough, and so
another approach was required. After a lengthy trial and error process, the solution came in the form of
two simple callStrings added to the SPOT's interface which set the connection to the algorithm.

compiles the algorithm with the two required libraries
callString1 <- paste("csc ConsoleProgram.cs /r:Logic.dll /r:Data.dll")
callcs <-system(callString1, intern= TRUE)

runs the algorithm with the currently tested parameter set
callString2 <- paste("ConsoleProgram", mu, lambda, ts, pm, ro, mo, io, ss)
y <-system(callString2, intern= TRUE)

In order to efficiently configure SPOT for a multi-criteria optimization process, it is important to
choose a surrogate model based on the nature of the problem. As CVRP is a continuous problem with
continuous parameters, it is considered that a Kriging model such as spotPredictForrester is the best
option. Even so, spotPredictForrester, has its limitations when tuning categorical or boolean
parameters.

An alternative approach, would be to tune the categorical parameters first, using a tree based model
spotPredictRandomForest, and afterwards do a second run with the Kriging model to optimize the rest
of the parameters. This approach did not yield better results, moreover our goal was not just to
determine good parameter settings but also to get a better understanding of the parameters.
Additionally we choose nsga2[45] as an optimization algorithm, and left Latin Hypercube Sampling,
as the default method to optimize the model.

MSPOT was given a budget of 100 test evaluations, with an initial design size of 20. Each initial
design point was set for 2 repeats and the sequential one for 3, totalling a number 40 individual
configurations.

In our implementations we did not use a ROI file to define the region of interest, or any other file, as
we implemented the necessary commands within the R script. The entire R script is available in
Appendix 2.

As can be seen from Table 7.1.3, the HGA made use of four categorical parameters, theoretically they
should have been encoded as factors, however, for consistency and to avoid any clash with the
algorithm's implementation they were set as integers. Furthermore, the step sizes are handled by the
console program, for example the value for Pmutation is achieved using the following formula:
Pmutation=2 pm+1 , where pm∈[1,4] is the value sent by MSPOT.

29

 Table 7.1.3 Region of interest for the HGA
Variable Name Lower Upper Type Values HGA Step size

μ 3 10 INT 8 : 1024 2n

Selection Strategy 0 1 INT Comma or Plus selection -

λ 2 5 INT 2μ : 5μ μ

Recombination Operator 0 1 INT BCRC or Alvarenga -

Mutation Operator 0 1 INT Merge routes or Adjacent reorder -
Pmutation 1 4 INT 0.3 : 0.9 0.2

Tournament size 2 17 INT 2 : 17 -

Initialization operator 0 1 INT Random or Bearing -

7.2 Implementation MACS-DVRPTW

Figure 7.2 Experimental hierarchy SPOT-MACS-DVRPTW

7.2.1 Application Layer

We have tested SPOT, on 15 VRPTW from Solomon[35]. More precisely we choose the 9 R1 and 6
RC1 problems, where R has randomly placed nodes and RC has both randomly and clustered nodes.
As mentioned in Section 5.3, the benchmark problems were modified with the goal to simulate
different degrees of dynamism, by adding an availability time to each node.

7.2.2 Algorithm Layer

On the algorithm level we used MACS-DVRPTW, described in Section 5.3. The algorithm returns a
detailed overview of the progress achieved by each of the two colonies(ACS-VEI and ACS-TIME),
together with the distance and the number of vehicles of the best solution found.

Although informative, the output could not be interpreted by SPOT. Eliminating the extra text was
straightforward, however as the solution itself is comprised of both the time and the number of
vehicles. We had to convert the two values into one single number, achieved by multiplying the
number of vehicles with 104

and added the time to this value, resulting in a number like this: 191652
where the first two digits represent the number of vehicles (19) and the rest the actual time (1652).

MACS-DVRPTW, was created as a collection of C programs and libraries that were compiled using a
Makefile, which made it impossible for SPOT to assign parameter values directly to the program. To
this end we created another C program (Bridge.c) that receives the parameters from SPOT and writes

30

SPOT

MACS-DVRPTW

DVRPTW

optimizes

optimizes

parameter tuning

problem solving

SPOT

MACS-DVRPTW

DVRPTW

algorithm quality

solution quality

them in a file(Parameters.dat), which the modified program.c can read and pass on to the algorithm in
order to determine a solution.

7.2.3 Tuning Layer

To optimize MACS-DVRPTW, we made use of a single criteria optimization SPOT, whose
configuration is very much alike that of MSPOT, and we will only underline the differences.
The connection with the application is done with the aid of four callStrings, grouped as two pairs. Each
pair is preceded by a change of directory due to the fact that Bridge.c had to be placed in another
folder as it clashed with Makefile, resulting in an error. The entire R script is available in Appendix 3.

setwd("/home/chill/Ma/Bridge/")
callString1 <- paste("gcc -o write Bridge.c")
call1 <-system(callString1, intern= TRUE)

callString2 <- paste("./write", iNumAnts, iRho, iAlpha, iBeta, iQZero, iPheromonePreservation)
call2 <-system(callString2, intern= TRUE)

setwd("/home/chill/Ma/")
callString3 <- paste("make")
callcs <-system(callString3, intern= TRUE)

callString4 <- paste("./main")
y <-system(callString4, intern= TRUE)

#callstring1 and callstring2, compiles the Bridge.c program and then writes the current
parameter set into the Parameter.dat file, and callstring3 and callstring4 compiles and runs the
algorithm

As MACS-DVRPTW was set to run for 100 seconds of CPU time, running a single criteria
optimization was a better choice as the running time will always stay the same. Therefore,
spotPredictRandomForest, became a more feasible approach for the surrogate model. Additionally we
choose cmaes[6] to optimize on the surrogate model.

SPOT was given a budget of 200 test evaluations, with an initial design size of 30. Each initial design
point was repeated 3 times and the sequential one for 4 times, totalling a number 57 individual
configurations.

Table 7.2.3 Region of interest for the MACS-DVRPTW
Variable Lower Upper Type

m 5 100 INT
ρ 0 1 FLOAT
α 1 5 INT
β 1 5 INT
q0 0 1 FLOAT
γ 0 1 FLOAT

Where β is the influence of heuristic value on probability to be incorporated in tour

31

Chapter 8

Results
This chapter contains the results achieved by MSPOT and SPOT on the Hybrid GA and MACS-
DVRPTW, respectively. Experimental runs are performed to get a better understanding of the
parameters and how altering them affects the final result. Each section offers the final results of both
implementations.

8.1 Results MSPOT-HGA

As can be seen from Table 8.1, MSPOT-HGA results are on average less than 0.6% over the optimum,
results which are slightly worse than those of the Hybrid GA or the Meta-GA. However, the running
time for MSPOT-HGA is less than half of that of the Meta-GA.

Table 8.1 Final results MSPOT-HGA
Problem Hybrid GA Meta-GA MSPOT-HGA

Instance Optimum Results Over
Optimum

Result Time Over
Optimum

Result Time Over
Optimum

A-n62-k8 1288 1300 0.93% 1288 10h - 1300 4.1h 0.93%

A-n63-k9 1616 1627 0.68% 1616 10h - 1616 3h -

A-n64-k9 1401 1411 0.71% 1405 10h 0.29% 1414 4.3h 0.93%

A-n69-k9 1159 1159 - 1159 10h - 1159 4.8h -

A-n80-k10 1763 1766 0.17% 1764 15h 0.06% 1784 5.6h 1.19%

B-n63-k10 1496 1523 1.8% 1497 10h 0.07% 1517 3.8h 1.4%

B-n64-k9 861 861 - 861 10h - 863 4.5h 0.23%

B-n68-k9 1272 1286 1.1% 1273 10h 0.08% 1275 6.6h 0.24%

B-n78-k10 1221 1221 - 1221 15h - 1222 6.9h 0.08%

When running MSPOT for a multi-criteria optimization, we used computational time as the second
criteria. The tests proved that such an approach is not really needed, as the results for the
computational time never influenced the final solution due to its small variations between different
configurations. We can conclude that different parameter settings do not influence the time it takes the
algorithm to optimize the CVRP.

In their tests Wink et al. used an AMD Phenom II X4 940, 3.0 GHz CPU, a processor that outperforms
an Intel i3 330M, 2.13 GHZ CPU which was used for the tests in this paper. According to [47] the
AMD processor has a 3711 CPU Mark whereas the Intel has only a 1811 CPU Mark, although we can
not state for certain that the former processor performs twice as good, it is fair to say that it has twice
as many cores which aids with the parallel threading of the HGA implementation.

The difference in processing power might not influence the quality of the results too much but it will
definitely allow MSPOT to finish its evaluations faster, a fact proven by the up 50% increase in the
time it took us to optimize a problem instance using the HGA. Overall, we consider that using a more
powerful processor will allow MSPOT to run a larger number of evaluations in the same amount of
time, which in turn raises the probability of achieving better results.

32

8.2 Results SPOT-MACS-DVRPTW

As can be seen from Table 8.2, the parameter sets found with SPOT, perform on average with 2%
worse than the best found results by MACS-DVRPTW. The running time for all problems was of 5.7
hours.

Table 8.2.1 Final results SPOT-MACS-DVRPTW

Problem MACS-DVRPTW SPOT-MACS-DVRPTW

Instance No Vehicles Result m/ ρ / α / β / q0 / γ No Vehicles Result Over Best Solution

r101 19 1650 23/ 0.1/ 3/ 2/ 0.8/ 0.6 19 1652 0.12%

r102 17 1486 25/ 0.6/ 4/ 5/ 0.4/ 0.5 17 1488 0.13%

r103 13 1292 27/ 0.1/ 4/ 2/ 0.1/ 0.2 13 1333 3.17%

r104 10 986 13/ 0.1/ 3/ 2/ 0.9/ 0.5 10 1008 2.23%

r105 14 1377 33/ 0.3/ 3/ 3/ 0.4/ 0.5 14 1403 1.9%

r106 12 1259 18/ 0.2/ 5/ 4/ 0.4/ 0.7 12 1291 2.54%

r107 10 1119 16/ 0.2/ 4/ 4/ 0.1/ 0.8 10 1150 2.77%

r108 9 974 7/ 0.1/ 3/ 4/ 0.8/ 0.7 10 967 N/A

r109 11 1211 18/ 0.1/ 2/ 4/ 0.6/ 0.1 11 1242 2.55

rc101 14 1696 35/ 0.0/ 3/ 2/ 0.6/ 0.2 14 1703 0.41%

rc102 13 1477 9/ 0.5/ 4/ 4/ 0.2/ 0.8 13 1484 0.05%

rc105 14 1540
5/ 0.3/ 2/ 3/ 0.6/ 0.9 13 1667 -

7/ 0.5/ 2/ 3/ 0.6/ 0.9 14 1568 1.82%

rc106 12 1384 9/ 0.5/ 4/ 4/ 0.2/ 0.8 12 1396 0.87%

rc107 11 1232 14/ 0.3/ 3/ 4/ 0.4/ 0.7 11 1230 -0.16%

rc108 10 1139 9/ 0.5/ 4/ 4/ 0.2/ 0.8 10 1150 0.97%

According to van Veen et al. [40] the Cross Exchange local search can at times produce a tour with an
empty vehicle, which happens for rc103 and rc104, making it impossible for SPOT to tune.

In their tests van Veen et al. also made use of a more powerful processor (Intel i5, 3.2 GHz CPU),
which also has a CPU Mark above 3000. In this situation we are convinced that the quality of the
results is directly proportional with the speed of the processor, as the MACS-DVRPTW was set to run
for 100 seconds of CPU time. By calculating the difference in processing speed, Intel i5 is capable to
do up to 50% more calculations per second.

Besides finding good parameter sets, SPOT offers an overview of the parameters that had the greatest
impact towards good results (Figure 8.2.1), and also their progress (Figure 8.2.2). By comparing the
schematic outputs of different problems we can get a better understanding of which parameters have
the greatest impact on the algorithm's performance. In the case of RC problems: β followed by γ or
m have the greatest impact.

33

Figure 8.2.1 Final output of the RC107.0.0 problem instance. (VARX4 is the 4th variable in the
sequence: m/ ρ / α / β / q0 / γ)

Figure 8.2.2 Progress Overview.

34

Chapter 9

Conclusion and Outlook

The focus of this thesis is to determine the effectiveness of automated parameter tuning by testing
SPOT on two different algorithms: HGA and MACS-DVRPTW, algorithms that try to solve the CVRP
and DVRPTW respectively. By answering the five questions defined in Section 2.4, we will outline the
effectiveness of this approach.

Is MSPOT able to match or improve the parameters found by the Meta-GA of Wink et al.[43]?
No, it is not, as the results are on average less than 0.5% over the results achieved by the Meta-GA.
However, as specified in Section 8.1, the processor used in Wink et al.'s tests is up to twice as powerful
as the one used to test the implementation presented in this paper. With this in mind we consider that in
order to accurately determine the gap in performance between the two approaches testing SPOT on an
evenly performant computing system is imperative.

Is SPOT able to match or improve manually tuned parameter sets for MACS-DVRPTW of van Veen
[40]?
The answer is also no, the results being on average 2% worse than the results achieved with the default
parameters. We consider that this might be due to the same issue, the processor performance, in this
situation being even more emphasised by the fact that the algorithm was set to run for 100 seconds
CPU time. With much lower processor speed (up to 50%), the algorithm is stopped at an earlier stage
in its optimization. In order to confirm our results we also suggest testing our implementation with a
better system.

Is MSPOT able to match or improve the time it took the Meta-GA to achieve good results?

Yes, MSPOT managed to achieve high-quality results in only half the time of the Meta-GA, with only
200 evaluations instead of 310.

Do the parameter sets obtained by SPOT perform consistently?
Yes, they do, as tests proved that running the algorithms with the parameters found with SPOT returns
good results.

Is it possible to find a better understanding of the parameters used by each algorithm?
We consider that by analysing and comparing the graphical representation generated by SPOT, we can
determine which parameters have the greatest impact on the performance of the algorithm based on the
type of problem used.

To summarize, we consider that SPOT, has a strong potential to determine good parameter settings for
various algorithms regardless of the type of problem used. Although, our tests failed to prove SPOT's
ability to achieve optimum parameters, it did however show that it is capable to achieve good settings
in half the time of a Meta-GA approach.

In order to determine the concrete utility of SPOT, more tests need to be done on a more performant
computer, or at least allowing it to run for the same duration as the Meta-GA.
In terms of configuration, using MSPOT on the CVRP was blunt, however using it with the second
objective as the standard deviation of the vector of solutions it might determine better results[45]. For
this purpose we do suggest another set of tests with this particular configuration on both algorithms.

35

Bibliography

[1] G.B. Alvarenga, G.R. Mateus, and G. de Tomic. A genetic and set partitioning two-phase approach
for the vehicle routing problem with time windows. Computers & Operations Research, Vol 34. 2007

[2] Th. Back, D.B. Fogel and Z. Michalewicz. Handbook of evolutionary computation. IOP Publishing
Ltd. Bristol, UK. 1997

[3] Th. Bartz-Beielstein. Sequential Parameter Optimization An Annotated Bibliography. 2010

[4] Th. Bartz-Beielstein, M. Chiarandin, L. Paquete and M. Preuss. Experimental methods for the
analysis of optimization algorithms. Heidelberg: Springer, p35. 2010.

[5] Th. Bartz-Beielstein, M. Chiarandin, L. Paquete and M. Preuss. Experimental methods for the
analysis of optimization algorithms. Heidelberg: Springer, p287-363. 2010.

[6] Th. Bartz-Beielstein, M. Preuss, and M. Zaefferer. Statistical Analysis of optimization Algorithms
with R. 2012

[7] Th. Bartz-Beielstein, spot: An R Package For Automatic and Interactive Tuning of Optimization
Algorithms by Sequential Parameter Optimization. 2010

[8] Th. Bartz-Beielstein, O. Flasch, P. Koch, and W. Konen. SPOT: A Toolbox for Interactive and
Automatic Tuning in the R Environment. In: Proceedings 20. Workshop Computational Intelligence.
p264-273. 2010

[9] Th. Bartz-Beielstein, C. Lasarczyk, M. Preuss. Sequential Parameter Optimization. In: B. McKay,
Proceedings 2005 Congress on Evolutionary Computation (CEC'05), Edinburgh, Scotland Bd. 1.
Piscataway NJ : IEEE Press, S773-780. 2005.

[10] J. Brownlee. Clever algorithms: nature-inspired programming recipes. S.l.: Lulu Com. 2011.

[11] J. Clune, S. Goings, B. Punch, and E. Goodman. Investigations in meta-GAs: panaceas or pipe
dreams? In GECCO Workshops, p235–241. 2005

[12] A. Croes. A method for solving traveling salesman problems. Operations Research, Vol 5, p791–
812. 1958

[13] M. Dorigo, M. Birattari, and Th. Stützle. Ant Colony Optimization Artificial Ants as a
Computational Intelligence Technique. IEEE Computational Intelligence Magazine. Free University
Brussels, Belgium. 2006

[14] M. Dorigo and Th. Stützle. Ant Colony Optimization. Massachusetts Institute of Technology. 2004

[15] W.A. de Landgraaf, A.E. Eiben and V. Nannen. Parameter Calibration Using Meta-Algorithms.
2006

[16] A.E. Eiben, R. Hinterding, Z. Michalewicz. Parameter control in evolutionary algorithms.
Evolutionary Computation, IEEE Transactions on, vol.3, no.2, p124-141. 1999

36

[17] A.E. Eiben and S.K. Smit. Parameter Tuning for Configuring and Analyzing Evolutionary
Algorithms. Swarm and Evolutionary Computation. 2011.

[18] A. E. Eiben and J. E. Smith. Introduction to evolutionary computing. New York: Springer. 2003.

[19] B. Golden, E. Wasil, J. Kelly and I.-M. Chao. The impact of metaheuristics on solving the vehicle
routing problem: algorithms, problem sets, and computational results. In: T. Crainic, G. Laporte(Eds).
Fleet management and logistics. Boston: Kluwer; p33–56. 1998

[20] B. Golden, S. Raghavan, and E. Wasil. The Vehicle Routing Problem: Latest Advances And New
Challenges. Springer Science+Business Media, LLC. 2008.

[21] G. Hasle. Vehicle routing in practice. Presentation at XVIII EWGLA, Naples, Italy. 2010

[22] P. Jaillet and M. R. Wagner. Generalized online routing: New competitive ratios, resource
augmentation, and asymptotic analyses. Operations Research. 2008

[23] L. Kallel and M. Schoenauer. Alternative Random Initialization in Genetic Algorithms.

[24] H. Kwasnicka. Efficiency Of Selected Meta-Heuristics Applied To The Tsp Problem: A Simulation
Study. Wroclaw University of Technology. 2002

[25] A. Larsen. The Dynamic Vehicle Routing Problem. IMM, DTU. 2000

[26] J.K. Lenstra and A.H.G. Rinnooy. Complexity of vehicle routing and scheduling problems.
Networks Vol 11, p221–227, 1981

[27] C.Y. Liong, I. Wan Rosmanira, O. Khairuddin and M. Zirour. Vehicle Routing Problem: Models
And Solutions. University Kebangsaan Malaysia. 2008

[28] V. Maniezzo, L.M. Gambardella and F. de Luigi. Ant Colony Optimization. Springer-Verlag,
Berlin Heidelberg, p21. 2004.

[29] Y. Nagata. Efficient Evolutionary Algorithm for the Vehicle Routing Problem with Time Windows:
Edge Assembly Crossover for the VRPTW. Japan Advanced Institute of Science and Technology. 2007.

[30] V. Pillac, M. Gendreau, C. Gueret, and A.L. Medaglia. A review of dynamic vehicle routing
problems. European Journal of Operational Research. CIRRELT. 2011.

[31] M. Preuss and Th. Bartz-Beielstein. Sequential Parameter Optimization Applied to Self-
Adaptation for Binary-Coded Evolutionary Algorithms. Berlin Heidelberg. Springer. 2007

[32] S.K. Smit and A.E. Eiben. Using Entropy for Parameter Analysis of Evolutionary Algorithms. In:
Experimental methods for the analysis of optimization algorithms. Heidelberg: Springer, p298-301.
2010.

[33] S. K. Smit and A. E. Eiben. Parameter tuning of evolutionary algorithms: Generalist vs.
specialist. Applications of Evolutionary Computation, vol. 6024 of Lecture Notes in Computer
Science. Springer. 2010.

[34] S.K. Smit, A.E. Eiben, Comparing parameter tuning methods for evolutionary algorithms. In:
Proceedings of the 2009 IEEE Congress on Evolutionary Computation, IEEE Press, Trondheim, p399-
406. 2009.

37

[35] M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research, Vol 35, p254–265. 1987

[36] R. Stoean, T. Bartz-Beielstein, M. Preuss, and C. Stoean. A Support Vector Machine-Inspired
Evolutionary Approach for Parameter Setting in Metaheuristics. Cologne University of Applied
Science. 2009.

[37] Th. Stützle, M. Lopez-Ibanez, P. Pellegrini, M. Maur, M.M. de Oca, M. Birattari and M. Dorigo.
Parameter Adaptation in Ant Colony Optimization. IRIDIA - Technical Report Series, Belgium. 2010

[38] P. Toth and D. Vigo. The Vehicle Routing Problem. SIAM. 2002

[39] E.G. Talbi. Metaheuristics: From design to implementation. John Wiley & Sons. 2009

[40] B. van Veen, M. Emmerich and Th. Back. Solving the Dynamic Vehicle Routing Problemwith
Time Windows using Ant Colony Optimization. Leiden University. 2013

[41] J.M. van Ast, R. Babuska and B. De Schutter. Ant colony learning algorithm for optimal control.
In: Interactive Collaborative Information Systems (R. Babuska and F.C.A. Groen(Eds.), vol. 281 of
Studies in Computational Intelligence, Berlin, Germany: Springer, p55–182. 2010.

[42] I. Voutchkov and A. Keane. Multi-objective optimization using surrogates. In: Adaptive
Computing in Design and Manufacture ACDM. 2006.

[43] S. Wink, Th. Back and M. Emmerich. A Meta-Genetic Algorithm for Solving the Capacitated
Vehicle Routing Problem. Leiden University. 2011

[44] Z. Yuan, M.M. de Oca, M. Birattari, and Th. Stützle. Continuous optimization algorithms for
tuning real and integer parameters of swarm intelligence algorithms. IRIDIA - Technical Report
Series, Belgium. 2011

[45] M. Zaefferer, Th. Bartz-Beielstein, M. Friese, B. Naujoks and Ol. Flasch. Multi-Criteria
Optimization for Hard Problems under Limited Budgets. In: GECCO Companion ’12: Proceedings of
the fourteenth international conference on Genetic and evolutionary computation conference
companion, Philadelphia, Pennsylvania, USA, p1451-1452. 2012.

[46] M. Zaeferer, Th. Bartz-Beielstein, B. Naujoks, T. Wagner, and M. Emmerich. A Case Study on
Multi-Criteria Optimization of an Event Detection Software under Limited Budgets. In: Evolutionary
Multi-Criterion Optimization 7th International Conference, EMO. 2013.

Websites:

[47] CPU Benchmarks, accessed: 26.01.2012, website: http://www.cpubenchmark.net

[48] SWIG, accessed: 26.10.2012, website: http://www.swig.org/

[49] R.NET, accessed: 02.11.2012, website: http://rdotnet.codeplex.com/

[50] R(D)COM, accessed: 25.10.2012, website: http://cran.r-project.org/other-software.html

[51] Xtreme Route. accessed: 12.01.2013, website: http://www.xtremeroute.com/

38

http://www.xtremeroute.com/
http://cran.r-project.org/other-software.html
http://rdotnet.codeplex.com/
http://www.swig.org/
http://www.cpubenchmark.net/

Appendices

Appendix 1

Extensive comparison tuning approaches [17]

39

Appendix 2

SPOT interface to HGA

rm(list=ls());
require(SPOT)
setwd("D:/vrp/Vehicle Routing Problem/ConsoleApplication/")

ptm <- proc.time()
callString1 <- paste("csc ConsoleProgram.cs /r:Logic.dll /r:Data.dll")
callcs <-system(callString1, intern= TRUE)

#now define a target function for SPOT
tGA <- function(pars){

#the tuned parameters:
 mu<- round (pars [1])

 lambda<-round (pars[2])
 ts<-round (pars [3])
 pm<-round (pars [4])
 ro<- round (pars [5])
 mo<- round (pars [6])
 io<- round (pars [7])
 ss<- round (pars [8])

 #now start ES and record used time as well as best function value
ti<-as.numeric(system.time({

 callString2 <- paste("ConsoleProgram", mu, lambda, ts, pm, ro, mo, io, ss)
 y <-system(callString2, intern= TRUE)

 print(c(mu, lambda, ts, pm, ro, mo, io, ss))}
))[1]

return(c(as.numeric(y),ti)) #Y1 is the best value reached, Y2 is the time used}

#define region in which parameters of GA are tuned
roi<spotROI(c(3,2,2,1,0,0,0,0),c(10,5,17,4,1,1,1,1),
type=c("INT","INT","INT","INT","INT","INT","INT","INT"))

#define further settings for SPOT
config <- list(alg.func=tGA, #target of SPOT
 alg.roi=roi, #region of interest of SPOT

 seq.predictionModel.func="spotPredictForrester", #a kriging surrogate model
 #seq.predictionModel.func="spotPredictRandomForest",
 #seq.predictionModel.func="spotPredictEarth",
 seq.predictionOpt.func="spotParetoOptMulti", #optimize surrogate models
 #seq.predictionOpt.func="spotPredictOptMulti",
 #seq.predictionOpt.method="sms-emoa",#optimize surrogate model with sms-emoa
 seq.predictionOpt.method="nsga2", #optimize surrogate model with nsga2
 seq.predictionOpt.budget=2000, #1000 evaluations of surrogate models
 seq.predictionOpt.psize=20, #population size of sms-emoa or nsga2
 io.verbosity=3, #create some text output
 spot.ocba=T, #no optimal computational budget allocation
 spot.fileMode = T, # RES, DES, BST files are created
 auto.loop.nevals = 100, # the number of times the GA is run

40

 seq.design.oldBest.size=2, #number of old points to repeat in each step
 seq.design.new.size=1, #number of new points to evaluate
 seq.design.size = 2000, #large candidate design evaluated on surrogate
 init.design.size = 20, #number samples in initial design
 seq.design.maxRepeats = 3, #maximum number of evaluations of a design point
 init.design.repeats = 2, #number of evaluations of each initial design point
 spot.seed = 125)
 #init.design.func = "spotCreateDesignLhd",

#run SPOT (this might take some time, depends on your machine)
res <- spot(spotConfig=config)

#look at results (raw)
res$alg.currentResult

#pareto optimal parameters found (pareto set):
res$mco.par

#pareto front:
res$mco.val

proc.time() - ptm

rm(list=ls());
require(SPOT)
#setwd("D:/vrp/Vehicle Routing Problem/ConsoleApplication/")

ptm <- proc.time()

Appendix 3

SPOT interface to MACS-DVRPTW

#now define a target function for SPOT
tGA <- function(pars){

#the tuned parameters:
 iNumAnts <- round (pars [1], digits = 1)
 iRho<- round (pars[2], digits = 1)
 iAlpha<-round (pars [3], digits = 1)
 iBeta<-round (pars [4], digits = 1)
 iQZero<- round (pars [5], digits = 1)
 iPheromonePreservation<- round(pars [6], digits = 1)
 #io<- round (pars [7])
 #ss<- round (pars [8])
 #signif(x, digits = 6)

 #now start ES and record used time as well as best function value
#ti<-as.numeric(system.time({

setwd("/home/chill/Ma/Bridge/") # to be able to write the desired values in the txt file

41

callString1 <- paste("gcc -o write Bridge.c")
call1 <-system(callString1, intern= TRUE)

callString2 <- paste("./write", iNumAnts, iRho, iAlpha, iBeta, iQZero, iPheromonePreservation)
call2 <-system(callString2, intern= TRUE)

setwd("/home/chill/Ma/") # reason for a different folder is incompatibility with the above Bridge.c
callString3 <- paste("make")
callcs <-system(callString3, intern= TRUE)

callString4 <- paste("./main")
y <-system(callString4, intern= TRUE)

 print(c(iNumAnts, iRho, iAlpha, iBeta, iQZero, iPheromonePreservation))

 #))[1]

#return(c(as.numeric(y),ti)) #Y1 is the best value reached, Y2 is the time used
 #return(as.numeric(y)) }
 return(y) }

#define region in which parameters of Macs-DVRTW are tuned
roi <- spotROI(c(5,0,1,1,0,0),c(100,1,5,5,1,1),type=c("INT","FLOAT","INT","INT", "FLOAT",
"FLOAT"))
#roi <- spotROI(c(10,1),c(100,5),type=c("INT","INT"))

#define further settings for SPOT
config <- list(alg.func=tGA, #target of SPOT
 alg.roi=roi, #region of interest of SPOT

#seq.predictionModel.func="spotPredictForrester", #a kriging surrogate model
 seq.predictionModel.func="spotPredictRandomForest",
 #seq.predictionModel.func="spotPredictEarth",
 #seq.predictionOpt.func="spotParetoOptMulti", #optimize surrogate models
 seq.predictionOpt.func="spotPredictOptMulti",
 seq.predictionOpt.method="cmaes",
 #seq.predictionOpt.method="sms-emoa",#optimize surrogate model with sms-emoa
 #seq.predictionOpt.method="nsga2", #optimize surrogate model with nsga2
 seq.predictionOpt.budget=2000, #2000 evaluations of surrogate models
 seq.predictionOpt.psize=20, #population size of cmaes
 io.verbosity=3, #create some text output
 spot.ocba=F, #no optimal computational budget allocation
 spot.fileMode = T, # RES, DES, BST files are created
 auto.loop.nevals = 200, # the number of times the algorithm is run
 seq.design.oldBest.size=2, #number of old points to repeat in each step
 seq.design.new.size=1, #number of new points to evaluate
 seq.design.size = 2000, #large candidate design evaluated on surrogate
 seq.design.maxRepeats = 4, #maximum number of evaluations of a design point
 init.design.func = "spotCreateDesignLhd",
 init.design.size = 30, #number samples in initial design
 init.design.repeats = 3) #number of evaluations of each initial design point
 #spot.seed = 125)

#run SPOT (this might take some time, depends on your machine)
res <- spot(spotConfig=config)

42

#look at results (raw)
res$alg.currentResult

#pareto optimal parameters found (pareto set):
res$mco.par

#pareto front:
res$mco.val

proc.time() - ptm

43

	1st supervisor: Dr. M.T.M. Emmerich
	2nd supervisor: Prof. Dr. T.H.W. Bäck
	1 Introduction 1
	2 Parameter Tuning 2
	3 Vehicle Routing Problem 7
	4 Meta Genetic Algorithm 10
	5 Ant Colony Optimization: MACS-DVRPTW 16
	6 Sequential Parameter Optimization Toolbox 23
	7 Experimental Setup and System Description 28
	8 Results 32
	9 Conclusion and Outlook 35
	10 Bibliography 36
	11 Appendices 39
	Introduction
	Parameter Tuning
	2.1 Parameter Tuning in Evolutionary Algorithms
	2.2 Parameter Tuning in Swarm Intelligence
	2.3 Comparison and Selection of Parameter Tuning Approaches
	2.4 Research Objective

	Vehicle Routing Problem
	3.1 Capacitated Vehicle Routing Problem
	3.2 Vehicle Routing Problem with Time Windows
	3.3 Dynamic Vehicle Routing Problem with Time Windows
	3.4 Real world applications

	Meta Genetic Algorithm
	4.1 Classical Genetic Algorithm
	4.1.1 Characteristics and Parameters

	4.2 Hybrid Genetic Algorithm
	4.2.1 Local Search Heuristics
	4.2.2 Initialization
	4.2.3 Recombination
	4.2.4 Mutation
	4.2.5 Optimization
	4.2.6 Selection

	4.3 Meta-GA

	Ant Colony Optimization: MACS-DVRPTW
	5.1 Ant Colony Optimization
	5.1.1 Ant Colony System

	5.2 MACS-VRPTW
	5.3 MACS-DVRPTW

	Sequential Parameter Optimization Toolbox
	6.1 Sequential Parameter Optimization
	6.2 Sequential Parameter Optimization Toolbox
	6.2.1 SPOT Multi-Criteria Optimization

	Experimental Setup and System Description
	7.1 Implementation Hybrid GA
	7.1.1 Application Layer
	7.1.2 Algorithm Layer
	7.1.3 Tuning Layer

	7.2 Implementation MACS-DVRPTW
	7.2.1 Application Layer
	7.2.2 Algorithm Layer
	7.2.3 Tuning Layer

	Results
	8.1 Results MSPOT-HGA
	8.2 Results SPOT-MACS-DVRPTW

	Conclusion and Outlook
	Bibliography
	Appendices
	Appendix 1
	Appendix 2
	Appendix 3

