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Abstract

Artificial routing problems like the Vehicle Routing Problem relate to many real-world problems. Many
work has been done on solving static routing problems but solving the dynamic variants has not been
given an equal amount of attention, while these are even more relevant to most companies in logistics
and transportation. In this work an Ant Colony Optimization algorithm for solving the Dynamic Vehicle
Routing Problem with Time Windows is proposed. Results are presented that show the performance
on a new set of benchmark problems with varying degrees of dynamicity. Also, a method for applying
two-stage planning to the Stochastic Vehicle Routing Problem is described.



Chapter 1

Introduction

Routing problems like the traveling salesman problem and the vehicle routing problem are among the
most studied problems in computer science. They are as relevant to business as they have ever been and
because of their complexity they still offer a good challenge. A multitude of algorithms has been developed
to solve routing problems. They range from exact algorithms like the Nearest Neighbor algorithm [15] to
constraint programming [31] to meta-heuristics like Ant Colony Optimization [16].

With recent developments in communication and positioning systems like GPS it is now possible for
companies in transportation to view and change their planning during the day. This leads to a new group
of dynamic routing problems that algorithms have to be designed for.

In this report we will deal specifically with an Ant Colony Optimization approach to solve the Dynamic
Vehicle Routing Problem with Time Windows. This specific problem has not been solved with and ant
colony optimization approach. To test our new approach a set of benchmark problems was created that is
made public for others to use.

This master thesis is the final report for the Computer Science master program at Leiden University.
The resulting report and software contribute to the DELIVER project that is a collaboration with the
goal to design a framework for continuous logistic planning, as an improvement of traditional a priori
planning1.

Besides this Ant Colony Optimization approach we also formulated a two-stage stochastic programming
approach to solve the Stochastic Vehicle Routing Problem.

The remainder of this work is structured as follows. First Chapter 2 will introduce the routing problems
that will be discussed in the following chapters. Then Chapter 3 gives an extensive introduction into Ant
Colony Optimization, its most common variants and extensions. Chapter 4 introduces the MACS-VRPTW
algorithm that serves as a basis for the new MACS-DVRPTW algorithm that is described in Chapter 5.
In Chapter 6 a two-stage planning approach is formulated. The report ends with some conclusions in
Chapter 7 and directions for further work in Chapter 8.

Throughout this report many abbreviations will be introduced to describe different routing problems.
Also, the chapters on Ant Colony Optimization and the MACS-VRPTW and MACS-DVRPTW algorithms
use many symbols and letters in equations and pseudo-codes. Therefore a nomenclature is included at the
end that lists all these abbreviations and symbols.

1More information about the DELIVER project can be found at http://natcomp.liacs.nl/index.php?page=DELIVER
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Chapter 2

Problem description

Routing problems like the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) were
already early considered in the research field of computer science. Both problems have a multitude of
variants that all resemble different real-world problems. In this section we will give an introduction into
different routing problems. At the end of this chapter we will introduce the Dynamic Vehicle Routing
Problem with Time Windows (DVRPTW), which is the main focus of this thesis.

2.1 Traveling Salesman Problem

An instance of the TSP can be formally described as a fully connected undirected graph G = (V,E)
where V = {v1, ..., vn} is the set of nodes and E = {(vi, vj) | vi, vj ∈ V } is the set of edges connecting
the nodes, each one with an associated traveling distance dij . Given G and the associated distances, the
task is to find a path of minimal length that visits each node exactly once and returns to the first node.
The standard TSP is also called the symmetric TSP because dij = dji, hence the use of an undirected
graph in the above definition.

A solution is an n-tuple {π1, ..., πn} containing each node from V . The length of this solution can be
computed with Equation 2.1. Note that each solution is a cycle in G, after visiting all nodes we return to
the first node.

n−1∑
i=1

(dπi,πi+1
) + dπn,π1

(2.1)

The analogy of this problem is that of a salesman that has to visit n customers and has to find the
shortest route. It was supposedly formulated as a mathematical problem for the first time by Menger
in 1928 [25]. Since then it has been one of the most intensively studied problems in optimization. The
problem is NP-complete [23]. It is conjectured that there is no polynomial-time algorithm to solve such
problems.

TSP is the most basic of the routing problems that we consider here. All the following problems extend
on this idea and formal description.

2.2 Vehicle Routing Problem

The Vehicle Routing Problem (VRP), also called Capacitated Vehicle Routing Problem (CVRP), is a
generalization of the TSP. The used analogy is that of a company with a set of vehicles that delivers goods
to customers. Each vehicle has a maximum capacity Q and each customer vi has a demand for a certain
amount, qi, of goods. The problem is to deliver the correct amount of goods to all customers without
exceeding the capacity of each vehicle. Basically a VRP instance consists of multiple TSP instances
because each vehicle is associated with a separate TSP tour.
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Each VRP problem instance has a special node v0, called the depot, which is the start and end of each
tour. When the depot is visited mid-tour this is equivalent to starting with a new vehicle.

The objective in VRP can be to minimize the traveling distance or the amount of vehicles. In many
articles both objectives are minimized simultaneously, though most implementations prioritize the
objectives instead of solving a truly multi-objective problem. In [16] for example, the first goal is to
minimize the amount of vehicles and the second goal is to minimize the traveling distance. This means
that a solution with less vehicles is always preferred over a solution with a smaller traveling distance.

2.3 Vehicle Routing Problem with Time Windows

In the Vehicle Routing Problem with Time Windows (VRPTW), also called the Capacitated Vehicle
Routing Problem with Time Windows (CVRPTW), each node vi has a corresponding time window [ei, li]
describing the earliest beginning of service ei and the latest beginning of service li. Also, each service
requires a service time si. The distance matrix T now resembles the traveling time between each pair of
nodes. Just like in the standard VRP, each node has a certain demand and vehicles have a maximum
capacity.

The depot has a wide time window that starts at e0 = 0 so that all nodes can be serviced before
returning to the depot before l0. Also it usually has a service time s0 = 0. Note that it is possible to
arrive at node vi before time ei. In this case servicing can only start at ei so time will be spend waiting.
A solution is only valid if the service at all nodes, including the depot, can be started before the end of
their time windows.

To avoid confusion we want to explicitly state that in this report the traveling distance and the traveling
time of a route are equivalent. Intuitively one might expect that the traveling time would include waiting
times and service times. Most articles consider the two to be equal so we conform to that.

2.4 Dynamic Vehicle Routing Problem with Time Windows

The Dynamic Vehicle Routing Problem with Time Windows (DVRPTW), is the last variant we will
introduce here and the main focus of this research. Because capacity constraints are also enforced it can
also be called the Dynamic Capacitated Vehicle Routing Problem with Time Windows (DCVRPTW). The
dynamic vehicle routing problem, sometimes called on-line vehicle routing problem or real-time vehicle
routing problem, can be dynamic in different ways.

As described by Psaraftis [29], a problem is dynamic when some part of the input is revealed to the
solver during optimization. This means that we can not build a fixed solution, we have to adjust the
solution while the problem changes. Some implementations can deal with changing traveling times, others
deal with the addition or deletion of nodes. We focus on the latter, the addition of nodes to an initial
problem.

The a priori problem only contains part of all nodes in a problem. During a simulated working day of
length Twd the other nodes become visible to the algorithm. During the working day a tentative schedule
is kept. Static problems also keep track of the global best solution found during the algorithm. The
difference is that a tentative solution will most probably be unfeasible after some time because new nodes
have become available. Also, part of the tentative solution can not be changed anymore because nodes
have already been serviced at time t of the simulation.

For a more elaborate description of the dynamic VRP, its applications and different solution methods
we refer to Pillac et al. [28].
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2.4.1 Relevance to this work

Summarizing, we solve the Dynamic Capacitated Vehicle Routing Problem with Time Windows. We
therefor have to deal with:

� a maximal capacity Q of each vehicle;

� a time window [ei, li] on each node vi;

� a service time si on each node vi;

� the dynamic addition of nodes to the problem.

A solution is a tuple {π1, ..., πx} with a maximal length of 2n− 2, containing all n nodes from V and at
most n− 2 copies of the depot node. The traveling distance of a solution can be computed with

x−1∑
i=1

(dπi,πi+1
) + dπx,π1

(2.2)

where x is the number of nodes in the solution.

How the dynamic problem can be simulated and solved is described in detail in Section 5.1.
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Chapter 3

Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta-heuristic that is based on the natural behavior of ants. It
was introduced by Colorni, Dorigo and Maniezzo [7], [10], [13] and inspired by an experiment of Gross et
al. [19]. The experiment dealt with the way that Argentine ants (Iridomyrmex humilis) search for food.
The ants were given a food source that they could reach via two bridges of unequal lengths as depicted
in Figure 3.1. The observed behavior was that, after a short while, most ants were traveling along the
shorter bridge.

Figure 3.1: a) Schematic representation of the experiment by Gross et al. [19] with choice points 1 and 2.
b) Photo of the test setup.

Ants accomplish this task with a small set of simple rules. When an ant is foraging it has to make
the decision of which way to go. This choice is a probabilistic one that is influenced by the amount of
pheromones that have been deposited on the path. Ants tend to choose the path with higher pheromone
levels with a higher probability. On its way to the food and on the way back to the nest each ant deposits
pheromones, thereby increasing the amount of pheromones on the specific route that it has traveled.

With this simple mechanism ants find the shorter route in most of the performed experiments. This
is achieved by the self-organization process of depositing and following pheromone trails. When the
experiment starts the choice of using the longer or the shorter bridge is random since no pheromones are
deposited. Ants that choose the shorter bridge will arrive at the food earlier and deposit pheromones
on their path. When these ants return to the nest the only pheromones deposited at choice point 2 in
Figure 3.1a lead to the shorter bridge. They will use the shorter bridge on their way back with a high
probability and deposit pheromones on their way back. The pheromones on the shortest path are enforced
more and will dominate other paths.

This way, by depositing pheromones ants can communicate to one another. This process of communi-
cation by changing the environment is called stigmercy. This is the basis for ACO. It is important to
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keep in mind that there is no central control in the colony, every ant acts as an individual agent that
takes individual decisions. All ants together exhibit intelligent behavior, a phenomena known as emergent
behavior.

The pheromone trails form a collective memory that every ant uses and to which every ant contributes.
When an individual finds food pheromone will be stored in the trails. If the route is fast the pheromone
trail will be reinforced, effectively adjusting the collective memory to inform others that the route is good.

3.1 Canonical ACO algorithm

Let us now look at the outline of the ACO optimization algorithm that is inspired by real ants. The
pseudo code for a canonical ACO algorithm can be found in Algorithm 1.

Algorithm 1 Canonical ACO

initialize pheromones
repeat

for k = 1 to number of ants m do
start tour of ant k
for i = 1 to number of reachable nodes n do

choose next node of tour
end for
local search method (optional)
local pheromone update (optional)

end for
evaluate tours
update best solution found so far
global pheromone update

until stop condition
return best solution found

During initialization all pheromone levels are set to an initial value. After initialization the main loop
of the algorithm starts. One after another, each of the m ants constructs a route that solves the problem.
The ant is positioned at an initial node, which may be randomly chosen but for the VRP problem should
be the depot. Then it probabilistically chooses the next node to incorporate in its route until all nodes
are visited. For ant k positioned at node vi, the probability pkj (vi) of choosing vj as its next node is given
by the transition rule in Equation 3.1.

pkj (vi) =


[τij ]

α · [ηij ]β∑
m∈Nk

i
[τim]α · [ηim]β

if j ∈ Nk
i

0 if j /∈ Nk
i

(3.1)

with:

τij : pheromone level on edge (i, j)
ηij : heuristic desirability of edge (i, j)
α : influence of τ on the probabilistic value
β : influence of η on the probabilistic value
Nk
i : set of nodes that can be visited by ant k positioned at node vi

and τij , ηij , α, β ≥ 0.
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During the construction of a tour, the set Nk
i contains all nodes that are reachable from the current

node and are not yet visited. Nodes that are unavailable or that can not be reached due to constraints
are not part of Nk

i . This ensures that no node is visited twice and only feasible solutions are created. The
heuristic desirability ηij is a way to incorporate problem specific knowledge into the probabilities. One of
the most commonly used settings for the TSP is ηij = 1/dij where dij is the length of edge (i, j). This
heuristic favors shorter edges because they will get a higher value for η and thus a higher value of pkj .
Many different heuristics have been used for different problems.

Once an ant has constructed a route, most approaches apply a local search algorithm to improve the
generated solution with some problem specific knowledge. A well-known local search method for the TSP
is 2-opt [8]. This method optimizes tours by eliminating crossing edges. Section 3.3.6 deals with some
common local search methods.

When all ants have constructed a tour, these tours can be evaluated after which the pheromone trails
are adjusted. All pheromone trails are first decreased with a factor (1− ρ) to simulate the evaporation
of existing trails. Then pheromone is added to edges that are part of tours that were found in the last
iteration of the algorithm using Equations 3.2 and 3.3.

τij = (1− ρ) · τij +

m∑
k=1

∆τkij (3.2)

∆τkij =

 1/Lk if (i, j) ∈ Tk

0 otherwise
(3.3)

with:

ρ : pheromone evaporation parameter
m : number of ants
∆τkij : amount of pheromones deposited by ant k on edge (i, j)
Tk : tour found by ant k
Lk : length of tour Tk

and 0 ≤ ρ ≤ 1 and ∆τij ≥ 0.

After this pheromone update the process can be repeated, starting with new ants to discover new
routes. Newly discovered routes can be expected to be better than older ones because the ants are guided
to more promising solutions by the pheromone trails. Some convergence proofs for ACO algorithms are
given by Gutjahr [22] and Stützle and Dorigo [33]. A more detailed discussion on the convergence of ACO
algorithms can be found in Section 3 of [11].

The main loop of the algorithm runs until some stopping condition is met. This condition might be a
maximum number of iterations, a certain time or until a reasonable solution is found.

3.2 Variants

Many variants have been build on the first ACO algorithm that was proposed. A short review is given
below. The main goal of this overview is to show the diversity in the different approaches, not to give an
exhaustive overview.

3.2.1 Ant System

The approach that was described in Section 3.1 is almost exactly the same as the Ant System (AS)
proposed in [13] by Dorigo, Maniezzo and Colorni. The AS did not use any local optimization or local
pheromone updates. All ants contributed to the pheromone trails, based on the Equations 3.2 and 3.3. It
is the very first ACO algorithm.
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3.2.2 Elitist Ant System

In [13], Dorigo et al. proposed not only the AS but also the Elitist Ant System (EAS). In this strategy
all ants deposit pheromones, but the pheromone levels on the edges from the best tour found so far are
enforced by elitist ants. The pheromone update rules are given in Equations 3.3, 3.4 and 3.5. Besides the
standard pheromone, σ ants deposit pheromones on the edges that belong to T ∗, the best solution found
so far. The length of T ∗ is denoted with L∗.

τij = (1− ρ) · τij +

m∑
k=1

∆τkij + σ∆τ∗ij (3.4)

∆τ∗ij =

 1/L∗ if (i, j) ∈ T ∗

0 otherwise
(3.5)

3.2.3 Ant Colony System

The Ant Colony System (ACS) is the first major variation on the AS. Proposed in [12] by Dorigo and
Gambardella, the main adjustment is to focus ants on promising parts of the search space. This is done
by introducing a local pheromone update and by adjusting the global pheromone update function and
transition function.

The ACS uses a local pheromone update to decrease pheromone levels on edges that are traversed by
ants. Each time an ant has traversed an edge (i, j), it applies Equation 3.6. By decreasing pheromones on
edges that are already traveled on there is a bigger chance that other ants will use different edges. This
increases exploration and should avoid too early stagnation of the search.

τij = (1− ρ) · τij + ρ · τ0 (3.6)

with:

τ0 : initial pheromone value

The global pheromone update rule given in Equations 3.2 and 3.3 are changed slightly as well. To increase
exploitation, pheromones are only evaporated and deposited on edges that belong to the best solution
found so far and ∆τij is multiplied by the pheromone decay parameter ρ. This changes Equations 3.2
and 3.3 to Equations 3.7 and 3.8.

τij = (1− ρ) · τij + ρ ·
m∑
k=1

∆τkij , ∀(i, j) ∈ T ∗ (3.7)

∆τkij = 1/L∗ (3.8)

with:

T ∗ : best tour found so far
L∗ : length of T ∗

The transition rule that is used to determine the next node in the tour is altered as well. The AS
transition rule, given in Equation 3.1, is only applied with a certain probability q0. The new function is
given by Equation 3.9.

pkj (vi) =


arg max
j∈Ni

{[τij ]α · [ηij ]β} if q ≤ q0

Equation 3.1 otherwise

(3.9)

with:
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q : uniform random number on [0, 1]
q0 : parameter that determines the balance between exploitation and exploration, and 0 ≤ q0 ≤ 1

In essence, every ACO algorithm uses the transition rule described by Equations 3.9. When it is not
explicitly stated we assume that q0 is set to 0.

3.2.4 Max-Min Ant System

In the year 1997 Stützle and Hoos [35] proposed the MAX-MIN Ant System (MMAS). Just like the ACS
it was meant to increase exploitation and avoid early stagnation. To accomplish this, four adjustments to
the AS were proposed.

First the amount of pheromones on edges are limited to the interval [τmin, τmax]. These boundaries
make sure that pheromone trails do not totally evaporate. This increases the changes of certain edges
being incorporated in a route, leading to more exploration. Because of this, and because of the upper
bound, no single route should be able to dominate other routes. The second and third adjustment are
that pheromone trails are initialized at τmax and reinitialized to τmax when the algorithm is stagnating.

Lastly, like in the ACS, only one ant is allowed to update pheromone trails in each iteration. Other
than in the ACS variant, in MMAS pheromone evaporation is done on all edges. The adjusted pheromone
update function can be seen in Equations 3.10 and 3.11.

τij = ρ τij +

m∑
k=1

∆τij (3.10)

∆τij =

{
1/L∗ if (i, j) ∈ L∗
0 otherwise

(3.11)

The values for τmin and τmax are problem dependent. A technical report [34] describes how to
estimate the values. In a later article from them same authors [36] default values of τmax = 1/ρL∗ and
τmin = τmax/2n are proposed.

For long runs, it was found that a technique called smoothing could help to prevent stagnation.
Smoothing involves increasing all pheromone values. The amount of pheromones deposited on each edge
is proportional to τmax − τij . This method adds little pheromone to strong pheromone trails, but it adds
more pheromone to weak trails. So the order among the trails is kept but the pheromone levels on all of
them are increased. This again enforces exploration and should prevent the algorithm from ending up in
a local optimum.

3.2.5 Rank Based Ant System

Bullnheimer, Hartl and Strauss [4] proposed variations on the Ant System that use elitist ants and a
ranked based approach. First they propose a strategy that enforces the pheromones on edges of the best
tour, much like in [13] described in the Section 3.2.2.

After this they propose a new variation called the Rank Based Ant System (RBAS). The global
pheromone update of the EAS is adjusted so that each ant deposits pheromones proportional to the
rank of its route. The ant with the best tour deposits most pheromones, the second best ant deposits
slightly less, the third ant even less, and so on. The new global pheromone update function is described
in Equations 3.12 and 3.13.

τij = ρ · τij + ∆τij + ∆τ∗ij

∆τij =

σ−1∑
µ=1

∆τµij

(3.12)
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∆τuij =


(σ − µ) · 1

Lu
if (i, j) ∈ Tu

0 otherwise

(3.13)

∆τ∗ij =


σ · 1

L∗
if (i, j) ∈ T ∗

0 otherwise

with:

σ : the number of elitist ants
µ : the rank of each ant
Tµ : tour found by ant with rank µ
T ∗ : best tour found
Lµ : length of Tµ
L∗ : length of T ∗

and σ = n = m. Recall that n stands for the number of nodes in the problem and m is the number of
ants in the colony.

3.2.6 Population Based Ant System

A population bases approach for ACO was proposed by Guntsch and Middendorf in [21, 20]. The
population P consists of k tours and can be controlled using different strategies. The approach is similar
to the MMAS. The pheromone values have a minimal and a maximal value.

The difference lies in the fact that pheromone evaporation occurs in a different way. When an ant
enters P it deposits pheromones and when it leaves P the same amount of pheromones is evaporated.
Pheromones are initialized at τ0. For convenience Guntsch and Middendorf have set τmax to 1. When a
tour enters P it deposits ∆τ = (τmax − τ0)/k pheromones on the edges visited in the tour.

This way of updating pheromones has two advantages over the traditional pheromone update methods.
Firstly it is less computationally intensive. Instead of updating pheromones on all edges after each iteration
we now only update pheromones on edges belonging to the two tours that enter and exit the population.
Secondly this approach might be more suitable for solving dynamic problems. The pheromone matrix
contains a lot of information but at least part of this information stems from old solutions. In a dynamic
problem it would be better to base actions on more recent information and with a population based
approach it would be easy to store the k last adjustments to the pheromones.

To determine which individuals enter and leave the population, multiple population update strategies
have been tested. These are similar to techniques used in genetic algorithms which also keep track of a
population. Some solutions that were proposed in [20] are:

� Age: the oldest solution in P is replaced by the best solution from the current iteration of the
algorithm. A first implementation from [21] that used this strategy was called the FIFO-Queue
ACO algorithm.

� Quality: if the best solution from the current iteration is better than the worst solution in P , then
the new solution will enter P and the worst solution will be removed from P .

� Probabilistic: a function probabilistically selects one of the solutions in P unified with the new
solution. The chosen solution will not be part of P in the next iteration, it will be formed by all
unselected solutions. The probability of choosing a solution of bad quality should be bigger than
choosing solutions of better quality, but the strength of this strategy is that every solution can be
deleted from P . This reduces the chance that P will be populated by copies of a single best solution.
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� Elitism: the best solution found so far is always kept in the population.

� Mixed strategy: strategies can be combined to form a new strategy. In [20] an Age & Probability
strategy was applied to solve dynamic problems.

3.2.7 Multi-objective ACO

Barán and Schaerer [1] proposed an ACO algorithm that optimizes multiple objectives to find good
solutions to the VRPTW problem. Their work is an improved version of the MACS-VRPTW algorithm
proposed in [16] by Gambardella, Taillard and Agazzi. The MACS-VRPTW algorithm tries to optimize
two objectives: the amount of vehicles and the total traveling time should both be minimized. But because
a lexicographical ordering is used we can not speak of a multi-objective approach. Barán and Schaerer
have overcome this by using the Pareto preference relation, which is commonly used in multi-objective
optimization.

Barán and Schaerer have specified three objectives, that they try to optimize at the same time. These
objectives are the number of vehicles, the traveling time and the total delivery time (traveling time +
waiting time). Each tour that is constructed by the ants is compared on the three objective functions. If a
solution is not (Pareto) dominated by other solutions it enters the Pareto optimal set P and all members
of P that are now dominated are deleted. Because all objectives are equally important, the solutions in P
are incomparable. P is not limited in size so that a new non-dominated solution can always be added.

Whenever P is found to be altered at the end of an iteration, the pheromones are reinitialized. This
procedure should improve exploration. It forces the ants to explore new routes and makes sure they do
not follow false information, e.g., pheromones deposited by routes that are erased from P .

Pareto optimal sets that are found can be compared on different measurements of the Pareto front, for
example the overall non-dominated vector generation or the overall non-dominated vector ratio. It goes
beyond the scope of this work to get into detail on these measurements, interested readers can refer to [1]
for more information and further references.

3.2.8 Decomposition ants

Reimann, Doerner and Hartl [30] proposed the D-Ants (short for Decomposition Ants) in 2004 to solve
the VRP. The basis for their algorithm is the Savings based Ant System proposed by Doerner [9] which
uses the savings value as a heuristic value, and candidate lists based on the same savings values. The
savings value sij for visiting node vj after node vi can be computed with Equation 3.14 and was proposed
in 1964 by Clarke and Wright [6].

sij = di0 + d0j − dij (3.14)

The algorithm splits the route construction from the route optimization. Basically one can say that at
first they determine the number of trucks and which nodes a truck visits. After that each individual route
is optimized. In short the following steps are taken to do this:

1. Run the Savings based Ant System (SbAS) x times. Save the single best solution that is found.

2. Find the center of gravity for each of the v vehicles from the best solution found in step 1.

3. Make i sub-problems using the Sweep algorithm [18] and the centers of gravity from step 2. The
parameter i is predefined.

4. Solve each sub-problem by running the SbAS j times. The parameter j is predefined.

5. Repeat from step 1 until stopping condition is fulfilled.

Two kinds of local search are used. The first is a swap algorithm that exchanges nodes between tours.
The second one is 2-opt that optimizes an individual tour.
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The algorithm uses one pheromone matrix to store all pheromone information. The pheromones are
updated when a new best solution is found for one of the sub-problems. Only the solutions of sub-problems
contribute to the pheromone trails but the algorithm of step 1 can also use this information to find a
better initial solution.

3.3 Extensions

Now that we have seen some variations on the basic ant colony algorithm, a short overview will be given
of some extensions to these algorithms. In particular some problem specific solutions, tailored for routing
problems will be discussed.

3.3.1 Pheromone initialization

At the start of most ACO algorithms the pheromone matrix is initialized. The standard way to do this is
to determine the initial pheromone level τ0 to which all pheromone levels are set. τ0 can be set to an
arbitrary but low value, like in [7], but there are different methods for estimating a good value.

A simple but effective way to compute the value of τ0 is by finding an initial solution with a simple
heuristic. If we would have to solve TSP, it would be good to find an initial solution with the Nearest
Neighbor heuristic [15]. This will result in a reasonable and feasible solution. Although this solution will
probably be improved by the ACO algorithm, the length of this initial tour can be used to initialize
pheromones to a reasonable value with Equation 3.15 as used in [16].

τij =
1

n · LNN
(3.15)

with:

n : number of nodes
LNN : length of Nearest Neighbor tour

3.3.2 Heuristic values

The heuristic value ηij that was first introduced in Equation 3.1 should reflect the desirability of
incorporating vj in the tour after the current node vi. This heuristic should be used to incorporate
problem specific knowledge. Some commonly used values for solving routing problems are:

� Length of edge (i, j): ηij = 1/dij . Used for solving the TSP using an AS in [7].

� The savings value: sij = di0 + d0j − dij , introduced by Clarke and Wright [6] and used in [30] to
solve the Vehicle Routing Problem. It is a measure that compares visiting vj directly after vi and
visiting the depot in between these nodes.

� Parametric savings function: ηij = di0 + d0j − g · dij + f · |di0− d0j | = sij − (g− 1)dij + f |di0− d0j |,
introduced by Paessens [27] and used by Bullnheimer et al. in [5]. This alternative savings function
should yield better results, at the cost of optimizing two extra parameters. Paessens suggested to
use 0 ≤ g ≤ 3 and 0 ≤ f ≤ 1.

� Capacity utilization: κij = (Qi + qj)/Q, introduced by Bullnheimer et al. [3]. Qi stands for the
current load of vehicle i. Higher values for κij indicate that the vehicle will be fuller after visiting
node j, compared to nodes that yield lower values for κ.

� The number of times that a customer is not incorporated in a route. This only occurs when
time windows form a hard boundary and being late is no option. It might be infeasible to visit
some customers (in time), due to their constraints. If a customer can not be incorporated in
many consecutively created routes this could be a reason to raise its attractiveness. This idea was
incorporated in the heuristic that was used in the MACS-VRPTW algorithm by Gambardella et al.
[16].
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� Basic features of available nodes such as:

– Begin of service: beginj like introduced in Section 2.3.

– Urgency: end of time window lj− arrival at node arrivalj . One could easily adjust this to
resemble the tardiness that is introduced by visiting this customer at this point of the route:
lj− current time −dij .

– Waiting time: the amount of time waiting at a node, before service can begin.

The list given above is not complete but should give an idea of what can be done. Some of these
heuristics, like the Savings values, are powerful enough to be used as the only heuristic. Others have been
combined to form a single number, like in [5]. Another option is to use multiple heuristics, each of which
can have its on parameter. Equation (3.16) shows the transition rule of [3] by Bullnheimer et al., which
is a good example of using multiple heuristics with their own parameter. Of course there is a trade-off
between the strength of the heuristic and the amount of parameters that are introduced and need to be
optimized.

pkj =


[τij ]

α · [ηij ]β · [µij ]γ · [κij ]λ∑
m∈Ni

[τim]α · [ηim]β · [µij ]γ · [κij ]λ
if j ∈ Ni

0 if j /∈ Ni

(3.16)

3.3.3 Candidate lists

Candidate lists are an extension that can limit the number of nodes that can be reached from every
other node. If we set the size of the candidate list at an arbitrary number x, we will never consider more
than the x most attractive nodes. The use of candidate list can greatly improve the performance of the
algorithm since we consider less options and therefore need less computations.

To decide which x nodes are most attractive and should form a candidate list we can use different
values. An important thing to consider is that the chosen value should be computed only once and stored
for future use. If the used value is not static, but depends for example on time window constraints, the
candidate list shall need to be recomputed at every iteration which neutralizes the positive effects of
using a candidate list. Most implementations use the traveling distance [12, 2, 5] or savings value [9, 30]
to build candidate lists.

The use of candidate lists adds one more parameter to the algorithm, the size of the lists. Bell and
McMullen [2] investigated how to determine the appropriate size by testing neighborhood sizes depending
on problem sizes, e.g., the number of nodes in a problem. The results seem to indicate that a fixed size
between 10 and 20 works best. Using a list of size 20 is also proposed by Dorigo and Gambardella [12] in
their work on the TSP.

3.3.4 Pheromone adjustment techniques

Eyckelhof and Snoek [14] proposed an algorithm for the dynamic TSP in which the traveling times
between nodes were made dynamic in order to simulate traffic jams. To cope with these changing traveling
times they proposed ways of adjusting the pheromone levels.

A method called shaking is introduced to adjust pheromone levels. This method lowers pheromone
levels on all edges (global shaking) or just on edges near a traffic jam (local shaking). All pheromone
levels are lowered, but the hierarchy among edges is kept. An initial pheromone level τ0 is used. The
shaking method decreases all pheromones to τ0 but high values are decreased more than low values. This
technique is similar to the smoothing discussed in Section 3.2.4 on MMAS.
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The authors also suggest to take a look at changing the values of α and β (parameters of pheromones
and heuristics in the probability function) after a change in the problem. This could be done locally or
globally.

3.3.5 Multiple colonies

Several authors have proposed algorithms that use multiple ant colonies to solve the VRP. The idea is
that different colonies can work more efficient because they have their own pheromone trails. This means
that each colony can focus on its own problem and is not distracted by pheromones trails that belong to
other parts of the problem.

Bell and McMullen [2] use separate colonies to optimize the route of each vehicle in the VRP. Their
results indicate that the multiple colony approach found better results on average. They also show that
the use of multiple colonies decreased the CPU time that was needed to find the best results.

3.3.6 Local search

Local search methods are simple heuristics that are used in ACO algorithms to improve on routes that
have been found. Because they are not inspired by ants they are no real extensions of the ACO algorithms.
It is better to think of them as an ideal combination. The ant colony builds initial solutions which the
local search methods can fine-tune. Because the use of local search methods dramatically improves results
almost all implementations use them.

The most common methods are k-interchange methods. These replace k edges from the graph by k
different edges if and only if this improves the route. If it is impossible to improve the tour by replacing k
edges, the tour is said to be k-optimal. Because the computational complexity of the algorithms increases
with the size of k it is only practical to check for k = 2 (2-opt) or k = 3 (3-opt).

2-opt was first introduced by Croes [8] and is depicted in Figure 3.2. The edges (X,X ′) and (Y, Y ′) are
replaced by the edges (X,Y ) and (X ′, Y ′). The edges that are replaced might be positioned in different
tours like in Figure 3.2a or within a single tour like in Figure 3.2b. This replacement only yields an
improvement if Equation 3.17 holds and is therefore very easy to check.

dX,X′ + dY,Y ′ > dX,Y + dX′,Y ′ (3.17)

The 3-opt method is an extension in which 3 edges are reconnected, which can be done in 8 different
ways. An important problem with applying 2-opt and 3-opt is that it might change the orientation of an
edge. An example can be found in Figure 3.2b, where 2-opt is applied within a single tour. The orientation
of the sub-tour Y,X ′, is reversed and this would almost certainly lead to a violation of time window
constraints.

Some local search methods are specifically constructed with time window constraints in mind. One
example is Cross Exchange, proposed in [37] by Taillard et al. It exchanges two sub-tours that can be
situated within the same tour different tours. Also, one of the two sub-tours may be empty so that the
result is a sub-tour insertion. Because the orientation of the sub-tours does not change this method is
more suitable for problems with time window constraints. An example can be found in Figure 3.3.
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Figure 3.2: Examples of 2-opt edge replacements. Squares represent depots, circles represent nodes. (a)
demonstrates a move with edges from different tours. (b) is an example of a move within a single tour.
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Y 1

Y 2′Y 1′
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Y 1

Y 2′Y 1′

Y 2

Figure 3.3: Example of Cross Exchange. Squares represent depots, circles represent nodes. The sub-tours
X1′Y 1 and X2′Y 2 are swapped. These sub-tours vary in length and one of them may be empty.
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Chapter 4

MACS-VRPTW

In the next chapter we propose an ACO algorithm that solves the Dynamic Vehicle Routing Problem
with Time Windows. This chapter describes the implementation that we will take as the basis for the
new implementation: the MACS-VRPTW algorithm proposed by Gambardella, Taillard and Agazzi [16].

The MACS-VRPTW algorithm solves the VRPTW problem with great success and is still a state-
of-the-art ACO algorithm1. To our knowledge there is no ACO algorithm that yields better results on
the VRPTW problem. Because the DVRPTW problem is an extension of the VRPTW problem this
algorithm should be a good basis. It will also give us a good source for results with which we can compare
our own algorithm. The description and results will be reported in detail because implementing certain
parts of the algorithm on basis of the original description turned out to be difficult.

The next section describes the MACS-VRPTW algorithm in detail. Section 4.2 shows our results on
the Solomon benchmark problems to verify that our implementation matches that of Gambardella et al.

4.1 Algorithm description

The MACS-VRPTW algorithm consists of three basic parts: the controller, the ACS-TIME colony and the
ACS-VEI colony. Each of these parts is first described in more detail. After that the problem representation
and the most important functions are explained.

4.1.1 The controller

The controller is the central part that reads the benchmark data, initializes data structures, builds an
initial solution and starts the colonies. The colonies then try to find solutions that improve the global
best solution found so far, T ∗. If a solution with less vehicles is found the controller restarts the colonies.
The controller stops the colonies when the stop condition, which was originally set to 100 seconds of CPU
time, is fulfilled. A pseudo-code of the controller can be seen in Algorithm 2.

4.1.2 The colonies

Each one of the colonies tries to improve on a different objective of the problem. The ACS-VEI colony
searches for a solution that uses less vehicles than T ∗. The ACS-TIME colony searches for a solution
with a smaller traveling distance than T ∗ while using at most as many vehicles. The two objectives have
a fixed priority: a solution with less vehicles is always preferred over a solution with a smaller distance.

There are a few differences between the two colonies. ACS-VEI keeps track of the best solution found
by the colony (TVEI), which does not necessarily incorporate all nodes. As TVEI also contributes to the
pheromone trails it helps ACS-VEI to find a solution that covers all nodes with less vehicles. ACS-TIME

1see http://web.cba.neu.edu/~msolomon/heuristi.htm for best results on the Solomon benchmark problems.
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does not work with infeasible solutions and does not have a colony-best solution. Unlike ACS-VEI, it
performs a local search method called Cross Exchange.

The maximum number of vehicles that may be used is given as an argument to each colony. During the
construction of a tour this number may not be exceeded. This may lead to infeasible solutions that do
not incorporate all nodes. If a solution is not feasible it can never be send to the controller.

Both colonies work on separate pheromone matrices and send their best solutions to the controller.
Pseudo-codes for ACS-VEI and ACS-TIME can be found in Algorithm 3 and 4 respectively.

4.1.3 Problem representation

An important part of the algorithm is the way in which a tour is represented. Each tour should visit the
depot more than once, which represents the start of a new vehicle. To accomplish this the depot node is
copied a number of times and all copies can be visited individually. The number of copies is the same as
the maximum number of vehicles allowed, which is different for ACS-TIME and ACS-VEI. By copying
the depots we allow the ants to deposit different pheromone levels to different depots, which enables
them to find better solutions. How we use this problem representation can be seen in the ConstructTour
method described next.

4.1.4 Constructing a tour

Algorithm 5 shows a pseudo-code of the ConstructTour method used by the colonies. Each tour starts at
a randomly chosen depot copy and is then iteratively extended with available nodes. The set N k

i contains
all available nodes for ant k situated at node i. Nodes that cannot be visited within capacity or time
window constraints are not part of N k

i .

During the ConstructTour process of ACS-VEI the IN array is used to give greater priority to nodes that
are not included in previously generated tours. The array counts the successive number of times that node
j was not incorporated in constructed solutions. This count is then used to increase the attractiveness
ηij . The IN array is only available to ACS-VEI and is reset when the colony is restarted or if it finds a
solution that improves TVEI. ACS-TIME does not use the IN array, which is equal to setting all values in
the array to zero.

4.1.5 Nearest neighbor heuristic

The nearest neighbor heuristic [15] is used to find initial solutions for the entire algorithm and the
ACS-VEI colony, but it was adjusted in two ways. First the constraints on time windows and capacity
are checked to make sure no infeasible tours are created. Besides that a limit on the number of vehicles
is passed to the function. Because of these limitations it is not always possible to return a tour that
incorporates all nodes. In that case a tour with less nodes is returned.

4.1.6 Inserting missing nodes

When a tour has been created for each ant, a heuristic is applied to insert missing nodes into these tours.
All missing nodes are ordered by decreasing delivery quantities. Then for each node the best place of
insertion is found, based on traveling distance and given that no constraints are violated.

4.1.7 Cross Exchange local search

The ACS-TIME colony uses a variant of the Cross Exchange local search method from Taillard et al. [37].
What method they exactly used is unknown but the main difference with [37] will be that MACS-VRPTW
deals with hard time window constraints instead of soft time window constraints, for which it was
originally used. Two sub-tours are exchanged, as illustrated in Figure 3.3. One of the sub-tours can be
empty which will result in a sub-tour insertion. Also, the two sub-tours can be part of different vehicles
or the same one. A pseudo-code for Cross Exchange can be found in Algorithm 6.
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Algorithm 2 Controller

1: Given: n is the number of nodes
2:

3: T ∗ ← NearestNeighbor(n)
4: τ0 ← 1/(n · length of T ∗)
5:

6: repeat
7: Start ACS-TIME(vehicles in T ∗) in new thread
8: Start ACS-VEI(vehicles in T ∗ − 1) in new thread
9:

10: while colonies are active do
11: Wait until a solution T is found
12: if vehicles in T < vehicles in T ∗ then
13: Stop threads
14: end if
15: T ∗ ← T
16: end while
17: until stop condition
18:

19: return T ∗

Algorithm 3 ACS-VEI(v)

1: Input: v is the maximum number of vehicles to be used
2: Given: τ0 is the initial pheromone level
3:

4: Initialize pheromones to τ0
5: Initialize IN to 0
6: TVEI ← NearestNeighbor(v)
7:

8: repeat
9: for each ant k do

10: T k ← ConstructTour(k, IN)
11: for each nodes i /∈ T k do
12: INi = INi + 1
13: end for
14: Local pheromone update on edges of T k using Equation 3.6
15: T k ← InsertMissingNodes(k)
16: end for
17:

18: Find ant l with most visited nodes
19: if nodes in T l > nodes in TVEI then
20: TVEI ← T l

21: Reset IN to 0
22: if TVEI is feasible then
23: return TVEI to controller
24: end if
25: end if
26:

27: Global pheromone update with T ∗ and Equation 3.7
28: Global pheromone update with TVEI and Equation 3.7
29: until controller sends stop signal
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Algorithm 4 ACS-TIME(v)

1: Input: v is the maximum number of vehicles to be used
2: Given: τ0 is the initial pheromone level
3:

4: Initialize pheromones to τ0
5:

6: repeat
7: for each ant k do
8: T k ← ConstructTour(k, 0)
9: Local pheromone update on edges of T k using Equation 3.6

10: T k ← InsertMissingNodes(k)
11: if T k is a feasible tour then
12: T k ← LocalSearch(k)
13: end if
14: end for
15:

16: Find feasible ant l with smallest tour length
17: if length of T l < length of T ∗ then
18: return T l to controller
19: end if
20:

21: Global pheromone update with T ∗ and Equation 3.7
22: until controller sends stop signal

Algorithm 5 ConstructTour(k, IN)

1: Input: k is the ant we construct a tour for
2: Input: IN is an array containing the number of times nodes have not been incorporated in tours
3: Given: N k

i is a set of nodes and depot duplicates that are reachable by ant k in node i
4:

5: Select a random depot duplicate i
6: T k ← 〈i〉
7: current timek ← 0
8: loadk ← 0
9:

10: repeat
11: for each j ∈ N k

i do
12: delivery timej ← max(current timek + tij , ej)
13: delta timeij ← delivery timej− current timek
14: distanceij ← delta timeij × (lj− current timek)
15: distanceij ← max(1.0, (distanceij− INj))
16: ηij ← 1.0/ distanceij
17: end for
18:

19: Pick node j using Equation 3.9
20: T k ← T k + 〈j〉
21: current timek ← delivery timej+ service timej
22: loadk ← loadk + qj
23: if j is a depot copy then
24: current timek ← 0
25: loadk ← 0
26: end if
27: i← j
28: until N k

i = {}
29:

30: return T k
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Because Cross Exchange can occasionally produce a tour with an empty vehicle there is a small repair
operation afterwards. This checks the tour for consecutive depot copies and deletes one of these when
they are found.

Note that Cross Exchange should only be executed on feasible tours because otherwise the resulting
tour will also be infeasible and the computational effort will be wasted.

4.2 Results

MACS-VRPTW was tested on the 56 benchmark problems by Solomon [32]. These problems are divided
into six categories: C1, C2, R1, R2, RC1 and RC2. The C stands for problems with clustered nodes, the
R problems have randomly placed nodes and RC problems have both. Problems of type 1 have a short
scheduling horizon, only a few nodes can be serviced by a single vehicle. Problems of type 2 have a long
scheduling horizon.

The tests were performed using the default parameters given by Gambardella et al. and listed in
Table 4.1.

Parameter Value
m 10
α 1
β 1
q0 0.9
ρ 0.1

Table 4.1: Default parameter values for the MACS-VRPTW algorithm.

The results of MACS-VRPTW and our own implementation can be found in Table 4.2. Gambardella et
al. ran their algorithm 3 times on each problem and then averaged the results over all runs per benchmark
category. These results can be found in the first row. We ran our algorithm 10 times on each problem.
We report the averaged results over all runs in the row labeled ‘Avg’. We also report the best values per
benchmark problem, averaged per benchmark category, in the row labeled ‘Best’.

Our implementation was executed on a Intel Core i5, 3.2GHz CPU with 4GB of RAM memory.

C1 C2 R1 R2 RC1 RC2
dist vei dist vei dist vei dist vei dist vei dist vei

Original 828.40 10.00 593.19 3.00 1214.80 12.55 971.97 3.05 1395.47 12.46 1191.87 3.38
Avg 828.67 10.00 591.00 3.00 1226.05 12.52 992.49 3.00 1381.20 12.25 1165.51 3.35
Best 828.37 10.00 589.85 3.00 1216.70 12.33 949.69 3.00 1362.58 12.00 1146.89 3.25

Table 4.2: Comparison of results between the original MACS-VRPTW and our implementation.

From Table 4.2 we can see that on average our algorithms performs as good as the original one. On
some problems we score less good, on others we perform better. We have noticed that getting good results
consistently is hard on some of the benchmark problems, which is why some of our results are not as
good as reported for the original implementation. If we look at our best results we see that these are
much better, it outperforms the original algorithm on all problem categories.

Even though our implementation achieves similar results, we can not state the we have implemented
exactly the same algorithm. There are two reasons for this: the local search method is not clearly described
and the stop condition is too vague.
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Algorithm 6 LocalSearch(k)

1: score = length(T k)
2: bestscore = -1
3: for X1 = first depot → last depot do
4: for Y1 = X1.next → last depot do
5: if length of sub-tour X1-Y1 > 3 then
6: break
7: end if
8: for X2 = Y1.next → last depot do
9: for Y2 = Y2.next → last depot do

10: if length of sub-tour X2-Y2 > 3 then
11: break
12: end if
13: newscore = score + edges that will be added - edges that will be removed
14: if (newscore < bestscore) ∨ (bestscore < 0) then
15: T k

′ ← exchange sub-tours in T k

16: if constraints are met then
17: bestscore ← newscore
18: T best ← T k

′

19: else
20: newscore = -1
21: end if
22: end if
23: end for
24: end for
25: end for
26: end for
27: if (bestscore > 0) ∧ (bestscore < score) then
28: T k ← T best

29: end if
30: return T k
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The Cross Exchange method is clearly described in [37]. In MACS-VRPTW a variant is used because
it deals with hard time window constraints and Cross Exchange was originally proposed for soft time
window constraints. An essential part of the local search consists of ways to limit the search, so that less
promising moves will not be tested. This saves a lot of time and makes the overall algorithm perform
much better. Because Gambardella et al. have not described what methods they have used to limit the
search we have chosen to only allow sub-tours with a maximum length of 3 nodes.

The stop condition of the algorithm is set to 100 seconds of CPU time. This means that not only the
strength of that algorithm is important, but also the efficiency of the programming code with which
the algorithm is implemented. Because of this it is impossible to say if results are achieved because the
algorithm is good or because the implementation is fast. An efficient implementation could perform many
more iterations in the same amount of CPU time and therefore achieve better results.

Averaged over all the benchmark problems our approach is comparable with MACS-VRPTW. If we look
at individual categories the results are somewhat less consistent, and if we look at individual benchmark
problems this difference is even bigger. Because of reasons stated above this can be caused by either a
different implementation or by a less efficient implementation.

Difference between benchmark problems

In [16] it is reported that MACS-VRPTW performs especially good on C1- and RC2 problems. Also
it is clear that MACS-VRPTW finds good results in a very short amount of time compared to other
algorithms they compared with.

Our results deviate a bit from the original results and we think this is due to the performance on a
few very specific benchmark problems. It seems like our implementation finds good results for C and RC
problems but not for R problems. Figure 4.1 shows the development of the average score over time for
an easy benchmark problem (R101) and a hard benchmark problem (R202). It is clear that the R101
problem can be solved more consistently and in far less iterations. The R202 problem is hard to solve and
the resulting scores therefor more than on the R101 problem.

Optimizations

In the end, to get to these results our algorithm created an average of about 171.000 ants, which is an
equal number of tours. This is the rounded averaged number of ants over all benchmark problems. These
ants are distributed over the two colonies but most tours are generated in the ACS-VEI colony because
that lacks the local search method, which is a time consuming operation. In order to achieve this many
iterations of the algorithm, multiple optimizations of the source code were needed.

One of the most important performance issues is computing the feasibility and length of a tour. Iterating
over all nodes, one has to check the constraints on time windows and capacity, and if these are successful
the distance of traveling to this node has to be added to the total distance. This can be done much more
efficient by storing the time at which servicing ends, the current load of the vehicle, and the current
traveling distance in each node of the tour. By doing this it is often unnecessary to recompute these
values for all nodes in the tour. After the insertion of a node we now just have to check the part of the
tour between the inserted node and the next depot. It also saves a lot of time during local search.

Reproducible results

Many more optimizations can be thought of and have been used. Because we do not know how many
ants the original algorithm created it is very hard to compare results. That is why we publish a second
set of results that was obtained by changing the stop condition of our algorithm to 100.000 ants. We have
also synchronized the colonies so that they create an equal number of ants. Otherwise ACS-VEI would
create many more ants, because its creates ants without local search which is much faster.

With these synchronized colonies and a limited number of ants we have created new results that can
be found in Table 4.3. These results should be much easier to reproduce because they are independent
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Figure 4.1: Averaged score development of MACS-VRPTW on two different problem instances using a
stop condition of 100 CPU seconds.
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C1 C2 R1 R2 RC1 RC2
dist vei dist vei dist vei dist vei dist vei dist vei

Original 828.40 10.00 593.19 3.00 1214.80 12.55 971.97 3.05 1395.47 12.46 1191.87 3.38
Avg 828.67 10.00 590.14 3.00 1212.87 12.97 976.09 3.09 1377.80 12.67 1151.34 3.47
Best 828.37 10.00 589.85 3.00 1199.49 12.66 940.85 3.09 1369.41 12.12 1119.40 3.37

Table 4.3: Comparison of results between the original MACS-VRPTW and our implementation with a
limit on the number of created tours and with synchronized colonies.

of the efficiency of the implementation or the machine on which the tests are run. Figure 4.2 contains
the score development plots of the reproducible algorithm, which are very similar to the original ones in
Figure 4.1. The differences are caused by the synchronization of the colonies.
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Figure 4.2: Averaged score development of MACS-VRPTW on two different problem instances using a
stop condition of 100000 iterations.
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Chapter 5

MACS-DVRPTW

Now that we have described routing problems, ant colony optimization and the MACS-VRPTW algorithm
into detail, it is time to look at the new algorithm that we propose. Our algorithm is designed to
solve the Dynamic VRPTW and is based on the MACS-VRPTW algorithm, we have therefor called it
MACS-DVRPTW. To our knowledge this is the first ACO algorithm to solve this problem.

We will first describe how a dynamic problem can be simulated and solved in Section 5.1. After that we
will describe the MACS-DVRPTW algorithm in Section 5.2. Section 5.3 describes the benchmark problems
on which the algorithm was tested and Section 5.4 shows computational results and a comparison to
MACS-VRPTW. Section 5.5 concludes with some extensions that were tested to improve the performance
of MACS-DVRPTW.

5.1 Solving dynamic problems

To be able to solve a dynamic problem we first have to simulate a form of dynamicity. Kilby, Prosser and
Shaw [24] have described a method to do this, which is also used by Montemanni et al. [26]. The notion
of a working day of Twd seconds is introduced, which will be simulated by the algorithm. Not all nodes
are available to the algorithm at the beginning. A subset of all nodes are given an available time at which
they will become available. This percentage determines the degree of dynamicity of the problem.

At the beginning of the day a tentative tour is created, incorporating all nodes available a priori. This
tentative schedule is updated throughout the simulation so that there always is a feasible solution to the
current problem. The working day is divided into nts time slices of length Twd/nts, also notated with tts.
This allows us to split up the dynamic problem into nts static problems, which can be solved consecutively.
A different approach would be to restart the algorithm every time a node becomes available. This could
have a very disruptive effect on the algorithm because it could be stopped before a good solution is found.
By dividing the day into time slices we allow the algorithm to work unhindered for a fixed amount of
time.

At the beginning of each time slice the algorithms checks for nodes that have become available during
the last time slice. These are then inserted into the tentative solution. Next the algorithm commits to
parts of the tentative solution that will occur during the next time slice. Commitments are made at the
latest possible moment, i.e., we only commit to a node at time t if the vehicle has to leave before t+ tts
seconds.

Advance commit Some articles use an advance commit time tac. This means that a node has to be
committed to tac seconds earlier than would normally be the case, to allow for communication between
the planner and the driver. Except for the length of a time step tts, mentioned above, we have chosen not
to use an advance commit time.

26



Scaling All time-related variables have to be scaled if we choose Twd to be different than the end of
the depots time window l0. This means that all time windows, traveling times and service times have to
be multiplied with the factor

Twd
l0 − e0

with l0 and e0 being the end and the beginning of the depots time window respectively.

Available times For a problem with time windows, the available times would normally be randomly
generated on the interval [0, ei − tts]. This allows every node to be available before its time window starts.
We have extended this, following the example of Gendreau et al. [17], to generating an available time on
the interval [0, ei] where,

ei = min(ei, ti−1)

Here, ti−1 is the departure time from vi’s predecessor in the best known solution. These best solutions
are taken from the results of our MACS-VRPTW implementation. By generating available times on this
interval we make sure that the optimal solution can still be attained. This makes it easier to compare this
implementation with MACS-VRPTW while it does not necessarily make the problem easier.

Pickups only The static VRP problem can represent a real-world problem involving either the pickup
or delivery of packages. In the dynamic problem we alter vehicle tours when they are on their way. This
means that it can only represent real-world problems involving picking up packages, because otherwise
the truck would have to visit the depot each time a new customer was assigned to the truck.

5.2 Algorithm description

The basic structure of the MACS-VRPTW algorithm stays unchanged, it consists of a controller and two
colonies. All parts have their own extensions to deal with the dynamicity of the problem, which we will
describe here. The objectives for MACS-DVRPTW are the same as for MACS-VRPTW. The first is to
minimize the number of vehicles, the second is to minimize the traveling distance.

5.2.1 The controller

The controller reads the benchmark data and initializes data structures. Afterwards it builds an initial
solution using the nodes that are available at t = 0 and is ready to start the first time slice. At this point
a timer is started that keeps track of t, the used CPU time in seconds.

At the start of each time slice the controller checks if any nodes became available during the last time
slice. If so, these nodes are inserted using the InsertMissingNodes method to make T ∗ feasible again.
Then all necessary nodes are committed. If vi is the last committed node of a vehicle in the tentative
solution and vj is the next node, the vj is committed if ej − tij < t+ tts.

When the necessary commitments have been made the colonies are (re)started. Each colony tries to
find solutions that improve the global best solution found so far, T ∗. If a solution with less vehicles is
found the colonies are restarted without any changes. If a new time slice starts, the colonies are stopped
and the controller repeats its loop. A pseudo-code of the controller can be seen in Algorithm 7.

The colonies are only restarted when new nodes have become available or when part of T ∗ will be
defined. Otherwise the controller will leave colonies running and wait for the end of the next time-step.
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Algorithm 7 Controller

1: Set time t = 0
2: Set available nodes n
3: T ∗ ← NearestNeighbor(n)
4: τ0 ← 1/(n · length of T ∗)
5: Start measuring CPU time t
6: Start ACS-TIME(vehicles in T ∗) in new thread
7: Start ACS-VEI(vehicles in T ∗ − 1) in new thread
8:

9: repeat
10: while colonies are active and time step is not over do
11: Wait until a solution T is found
12: if vehicles in T < vehicles in T ∗ then
13: Stop threads
14: end if
15: T ∗ ← T
16: end while
17:

18: if time-step is over then
19: if new nodes are available or new part of T ∗ will be defined then
20: Stop threads
21: Update available nodes n
22: Insert new nodes into T ∗

23: Commit to nodes in T ∗

24: end if
25: end if
26:

27: if colonies have been stopped then
28: Start ACS-TIME(vehicles in T ∗) in new thread
29: Start ACS-VEI(vehicles in T ∗ − 1) in new thread
30: end if
31: until t ≥ Twd
32:

33: return T ∗
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5.2.2 The colonies

Other than the fact that the colonies only operate on available nodes nothing changes. Both optimize
their own objective although the ACS-VEI colony is limited in its operation because when a vehicle is
committed it cannot be optimized out of the solution. Therefore ACS-VEI is only started if there is at
least one vehicle in T ∗ with undefined nodes. Pseudo-codes for ACS-VEI and ACS-TIME can be found in
Algorithm 3 and 4 from Section 4.1 respectively.

5.2.3 Problem representation

The representation of the problem does not change from the description in Chapter 4. There is however
an extra attribute to every node in T ∗ that determines whether a node is committed or not. Once a node
is committed this can not be undone and that part of the tour cannot be changed anymore.

5.2.4 Constructing a tour

The ConstructTour is significantly changed because of the dynamic problem. One major change is that
N k
j depends on the availability of nodes and whether or not they are committed. Also, because parts

of T ∗ are committed, these have to be incorporated in every tour that is created by the algorithm. An
adjusted pseudo-code for the ConstructTour method can be found in Algorithm 8.

5.2.5 Inserting missing nodes

The method with which missing nodes are inserted is now also called by the controller to insert new
nodes. The basic idea is still the same but when the controller calls this function the node should always
be added to the problem, even when this leads to the addition of an extra vehicle. This is the way to
guarantee that there is always a feasible tentative solution. When this method is called by the colonies it
is not possible to create an extra vehicle, only real insertions are allowed. Furthermore, nodes can not be
inserted between nodes that are already committed.

5.2.6 Cross Exchange local search

The local search method does not really change. The only difference is that parts of the tour that are
committed can not be changed any more. This means that sub-tours that are swapped may not contain
committed nodes and that sub-tours cannot be inserted between committed nodes.

5.3 Benchmark problems

The benchmarks that were created for this algorithm are based on the same Solomon benchmark problems
on which MACS-VRPTW was tested. Each node was given an additional available time that was described
in Section 5.1.

Benchmark problems were created for different degrees of dynamicity ranging from 0 to 50 percent.
The 0 percent benchmarks are used to compare with the static problems. For a problem with 10 percent
dynamicity it means that each node has a 10 percent change to get a non-zero available time. Because
available times are generated on the interval [0, ei], this does not necessarily mean that the generated
time will be non-zero because a node’s time window might start at zero.

Thus, a benchmark problem with 10 percent dynamicity means that at most 10 percent of all nodes
have a non-zero available time. Table 5.3 lists the average amount of nodes that are known a priori for
the benchmarks with different degrees of dynamicity.

The benchmark problems will be made available at natcomp.liacs.nl along with this report and
additional support material.
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Algorithm 8 ConstructTour(k, IN)

1: Input: k is the ant we construct a tour for
2: Input: IN is an array containing the number of times nodes have not been incorporated in tours
3: Given: N k

i is a set of nodes and depot duplicates that are reachable by ant k in node i
4:

5: Current vehicle x← 0
6: Select a random depot duplicate i
7: T k ← 〈i〉
8: current timek ← 0
9: loadk ← 0

10: for each committed node vi of the xth vehicle of T ∗ do
11: T k ← 〈i〉
12: current timek ← delivery timei + service timei
13: loadk ← loadk + qi
14: end for
15:

16: repeat
17: for each j ∈ N k

i do
18: delivery timej ← max(current timek + tij , ej)
19: delta timeij ← delivery timej− current timek
20: distanceij ← delta timeij × (lj− current timek)
21: distanceij ← max(1.0, (distanceij− INj))
22: ηij ← 1.0/ distanceij
23: end for
24:

25: Pick node j using Equation 3.9
26: T k ← T k + 〈j〉
27: current timek ← delivery timej+ service timej
28: loadk ← loadk + qj
29: if j is a depot copy then
30: current timek ← 0
31: loadk ← 0
32: x← x+ 1
33: for each committed node vi of the xth vehicle of T ∗ do
34: T k ← 〈i〉
35: current timek ← delivery timei + service timei
36: loadk ← loadk + qi
37: end for
38: end if
39: i← j
40: until N k

i = {}
41:

42: return T k
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Dynamicity Nodes known a priori
0% 100
10% 93
20% 86
30% 79
40% 72
50% 65

Table 5.1: Average number of nodes known a priori for created benchmark problems with different degrees
of dynamicity.

5.4 Results

Our new algorithm is an extension of MACS-VRPTW, made suitable for the dynamic VRPTW problem.
If we run MACS-DVRPTW on the benchmark problems with 0 percent dynamicity we can see what an
effect the dynamic nature of the problem problem has on the solutions that are found.

Because the algorithm has to keep track of available nodes and account for more dynamicity in the
problem it can perform less computations than MACS-VRPTW. Also, because parts of the current best
solution are progressively committed, less of the solution can be changed. This makes it harder to find
the same solutions that were found without these limitations.

The tests were performed using the default parameters for the MACS-VRPTW algorithm and additional
parameters for simulating the dynamic problem, all of which can be found in Table 5.2. Each benchmark
problem was solved 10 times and the amount of vehicles and the total distance of all solutions was
averaged.

Parameter Value
m 10
α 1
β 1
q0 0.9
ρ 0.1
Twd 100
nts 50

Table 5.2: Default parameter values for the MACS-DVRPTW algorithm.

Table 5.3 shows the performance of MACS-DVRPTW on problems with different degrees of dynamicity.
For the problem with 0 percent dynamicity MACS-DVRPTW achieves scores that are quite similar to
those of MACS-VRPTW. The amount of vehicles is practically the same and the difference in distance is
somewhat larger. This can be explained by the fact that part of the tour is fixed during the execution of
the algorithm and can therefor not be changed anymore. Also, because colonies are restarted more often
(possible at the end of each time-step and every time a solution with less vehicles is found) it cannot
spend a long consecutive time on solving the problem. When the colony is started anew its pheromones
are reset and the IN array of ACS-VEI is reinitialized. This might also influence the results in a negative
way.

When the degree of dynamicity is increased the scores get progressively worse. This is just what one
would expect. Because less vehicles are known a priori and thus have to be fitted into the tentative
schedule it gets more difficult to find high quality solutions.

Despite the enormous amount of literature on routing problems there are only few articles that consider
the DVRPTW. Also, many algorithms make other assumptions or use other benchmark problems, which
makes it especially difficult to make a good comparison with a state-of-the-art DVRPTW solver.
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Algorithm Dynamicity Vehicles Distance
MACS-VRPTW static 7.35 1030.82
MACS-DVRPTW 0% 7.39 1046.06
MACS-DVRPTW 10% 7.91 1095.10
MACS-DVRPTW 20% 8.37 1131.47
MACS-DVRPTW 30% 8.79 1180.36
MACS-DVRPTW 40% 9.03 1216.72
MACS-DVRPTW 50% 9.41 1230.21

Table 5.3: Results of MACS-DVRPTW compared to MACS-VRPTW on different degrees of dynamicity.

One of the article that is somewhat related to this work is by Gendreau et al. [17]. It deals with the
DVRPTW problem with soft time window constraints, uses their own variant of the Solomon benchmark
problems and their algorithm is run for 15 or 60 minutes. Their parallel tabu search algorithm seems to
find better solutions but as we have explained it is hard to compare these results with ours.

5.5 Extensions

We can now conclude that solving the DVRPTW is a hard task and it gets even harder as the degree of
dynamicity increases. To counter this logical but unwanted decrease of solution quality some extensions
to MACS-DVRPTW were tested.

5.5.1 Influence of the a priori solution

One of the main difficulties of solving the dynamic VRPTW is that part of the tentative schedule is
committed to and cannot be changed afterwards. The solution of the a priori problem, i.e., the problem
with only the nodes that are available at t = 0, might be of great importance. If no good initial solution
is found it might be that some of these nodes are committed at the start of the algorithm, which could
greatly affect the performance of the algorithm.

The dynamic problem is solved by simulating a working day. In the same way it would be understandable
to simulate some extra time before the working day to solve the a priori problem. A logistics company
could do this at night with all the customer requests that have arrived the previous day.

To test this setup, the a priori problem was solved by the algorithm for 20 seconds, which is long
enough to find significant improvements on all problems. After this initial period the algorithm is run
in the normal way. Only on the problem with 0 percent dynamicity a significant improvement of both
objectives is found, with supports this explanation.

Normal Improved initial solution
Dynamicity Vehicles Distance Vehicles Distance
0% 7.39 1046.06 7.35 1035.86
10% 7.91 1095.10 7.93 1087.06
20% 8.37 1131.47 8.38 1131.41
30% 8.79 1180.36 8.78 1177.96
40% 9.03 1216.72 9.02 1212.11
50% 9.32 1241.32 9.36 1236.36

Table 5.4: Results of MACS-DVRPTW on different degrees of dynamicity without and with an improved
solution to the a priori problem.

The results, that can be found in Table 5.4 are almost identical to the original results and so we can
not say that optimizing the initial problem yields a real improvement. The reason for this seems to be
that although the initial solution is greatly improved it is more difficult to insert new nodes into the
current best solution.
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5.5.2 Pheromone preservation

The changing nature of the dynamic problem makes it hard to find and keep track of an optimal solution.
In MACS-DVRPTW and MACS-VRPTW the pheromone trails for the colonies are reset each time a
colony is restarted. By resetting the pheromone trails, the collective memory of the colony is also reset. It
seems like a good idea to maintain (part of) the pheromone trails when the colony is restarted. This idea
is described among others by Eyckelhof and Snoek [14] and Montemanni et al. [26]. It is called shaking,
smoothing or pheromone preservation. We have chosen to follow the implementation of Montemanni et al.
and adjust all pheromone levels with

τij = (1− γ)τij + γτ0

where γ is a parameter that is set to 0.3.

Pheromone preservation was tested as a separate extension so the initial problem was not optimized.
The results can be seen in Table 5.5. We can see that the average number of vehicles that is needed is
a little higher while the average distance of the solutions is lower, with the exception of the 0 percent
problems.

These results indicate that pheromone preservation works better on the ACS-TIME colony than on
the ACS-VEI colony. The explanation for this could be that solutions with a shorter length have a
higher similarity to previous solutions than solutions with less vehicles. Preliminary tests were run that
reduced the pheromone preservation only on the ACS-VEI colony, but this does not seem to yield any
improvements.

Normal With pheromone preservation
Dynamicity Vehicles Distance Vehicles Distance
0% 7.39 1046.06 7.35 1043.13
10% 7.91 1095.10 7.93 1087.98
20% 8.37 1131.47 8.39 1127.67
30% 8.79 1180.36 8.79 1175.14
40% 9.03 1216.72 9.04 1210.38
50% 9.32 1241.32 9.34 1235.90

Table 5.5: Results of MACS-DVRPTW on different degrees of dynamicity without and with pheromone
preservation.

5.5.3 Max-Min Ant System

The last extension that was put to the test was incorporating some ideas from the Max-Min Ant System
described in Section 3.2.4. The most important idea from MMAS is to enforce lower- and upper boundaries
on the pheromone trails, which should prevent early stagnation. This is exactly what intuitively important
for solving DVRPTW. Because the problem keeps changing it is important to keep some diversity in the
solutions that are generated in order to overcome changes in the fitness landscape.

The pheromone management of MMAS is used. This means that no local pheromone update is applied.
The global pheromone update function is applied to all edges and is described in more detail in Section 3.2.4.
The MMAS variant described by Stützle and Hoos in [36] was implemented. A pheromone preservation
method is used, when a colony is restarted all pheromone trails are reset using

τij = τij + γ(τmax − τij)

where γ is again a parameter controlling how much the pheromones are reset. Like in MACS-DVPTW,
γ was set to 0.3 because Stütlze and Hoos described that they did not optimize this parameter and this
makes for a more equal comparison. MMAS uses an evaporation rate ρ of 0.8.
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All other elements of the algorithm, like the transition rule, are kept the same. This leads to a mixture
of ACS with MMAS. The results of our tests with this extension can be found in Table 5.6.

Normal MMAS variant
Dynamicity Vehicles Distance Vehicles Distance
0% 7.39 1046.06 7.40 1050.06
10% 7.91 1095.10 7.95 1093.66
20% 8.37 1131.47 8.44 1136.97
30% 8.79 1180.36 8.88 1183.02
40% 9.03 1216.72 9.08 1212.48
50% 9.32 1241.32 9.34 1235.90

Table 5.6: Results of MACS-DVRPTW on different degrees of dynamicity without and with MMAS
extension.

It is clear that the results attained with the MMAS extension do not improve on the standard MACS-
DVRPTW approach. On the benchmark problems with a higher degree of dynamicity MMAS finds
solution with a shorter length, but the average number of vehicles is too high on all problems. Also, it
looks like the average solution length is not consistent as it is sometimes lower and sometimes higher
than MACS-DVRPTW. Though the MMAS algorithm intuitively suits dynamic problems we have not
been able to get good results with it. There are however two notes on the performance of this extensions.

The first is that better parameters might increase the performance of the algorithm. Tuning the
minimum and maximum pheromone bounds is difficult but plays an essential role in MMAS. Second,
due to the extensive checking of pheromone trail bounds the algorithm produces about 30 percent less
tours in 100 seconds of CPU time. If the number of created tours would be equal it could be that MMAS
performs as well as ACS.
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Chapter 6

Two-stage planning

6.1 Introduction

Two-stage stochastic programming is a technique that can be used to solve optimization problems with
uncertainty and is formulated in Equation 6.1. To find a solution we (iteratively) choose the best possible
value for x. To decide on x it is needed to compute the cost of choosing x at this moment, which is the
first stage and is denoted by f(x). Furthermore we have to calculate the expected future costs of choosing
x, which is the second stage and is denoted by E[Q(x, ξ)].

x = arg max
x∈X

(f(x) + E[Q(x, ξ)]) (6.1)

In stochastic programming we make the assumption that the data ξ of the second stage has a
probability distribution and is therefor not totally uncertain. For many situations this is a justified
assumption, as we will show for the VRP in the next sections.

We can now reformulate E[Q(x, ξ)] as in Equation 6.2, as a summation over all k scenarios in ξ that
have a probability of pk. Q(x, ξk) is the estimated quality of the solution that is formed by x and ξk. If
K would be infinitely large the expected future costs would converge to the real future costs since we
sample the full distribution of options.

E[Q(x, ξ)] =

K∑
k=1

pk ·Q(x, ξk) (6.2)

6.2 Application to the Stochastic VRP

This thesis has focused on the static and dynamic variants of routing problems. The stochastic problems
have been ignored so far because in ACO algorithms there is no intuitive way to solve this. Stochastic
programming is a good method to solve stochastic problems and the next sections will describe how we
can apply it to the Stochastic Vehicle Routing Problem (SVRP).

Before going into details lets list all different variables that are relevant to the algorithm. At the moment
that we decide on variable x we might have already made earlier decisions, called Xcommitted, which is an
ordered set containing all our previous choices of x. There are nodes that are available to select, called
Xavailable. One of these available nodes will become our new choice of x. Besides these known variables
there is also the uncertainty of nodes that might become available in the future, called Xfuture. These
nodes are uncertain and are only used to compute the expected future score Q(x, ξ).

We will now discuss how to compute a score for both the first and the second stage. Then a simulator
is described that could be used to generate data (Xfuture) on which the expected future cost is based.
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6.2.1 Computing the score

Two different scores have to be calculated in the process of deciding on x. The first one is trivial: what is
the score of the tour if node x is added? This can be computed by summing up all traveling times in the
tour described by Xcommitted + x.

The expected score for the second stage can be computed with Equation 6.2. A set of scenarios ξk with
an associated probability pk is needed. Each scenario consists of a set of nodes Xfuture. Suppose we have
a simulator that can generate this set Xfuture and assign an appropriate probability to it. We now need
a mechanism that can create a tour that starts at node x and incorporates all nodes in Xfuture. This can
be done by any algorithm that can solve the static VRP, like MACS-VRPTW. This algorithm should be
run for a limited time and return the best solution it has found. The score of this solution is Q(x, ξk) for
this kth scenario.

So, to calculate the expected score of choosing x we need to generate a sufficiently large set of k
scenarios. The bigger k, the better our expected score will estimate the real score, but the greater the
computational costs. It is therefor not only important to choose k wisely but also to choose a VRP-solving
algorithm that does not require a lot of time.

6.2.2 A simple simulator

Building a simulator for the SVRP can be a very complicated task. Here we will propose a very basic
approach to give an idea of what the simulator does and how this can be accomplished.

The simulator will have to return a set of nodes that is representative for nodes that will be visible to
the two-stage algorithm in the future. The simulator can generate these scenarios in many ways but our
first choice would be to use existing data. Let us assume we have a year worth of data from a logistics
company, that is, 365 records that form our distribution of “what happens on a typical day”.

When the simulator is called it should return a representative set of nodes. The more representative
this set is, the better the simulators output will resemble the real world. One of the easiest solutions
would be to return a random record from the data-set. Maybe the returned data should be sanitized first,
nodes that are already part of Xcommitted ∪Xavailable should be excluded. One might also limit the size
of the returned set to the average size over all records - |Xcommitted ∪Xavailable|, with a lower limit to
make sure we always output something.

Besides a set of nodes, the simulator should also output the probability of the returned scenario. In
this simple example that is always 1 divided by the number of records in the data-set.

We could improve this simulator in many ways. The fact that today happens to be a Wednesday can
have a large impact on which customers will require service. In that case, selecting a scenario that was
created on a Wednesday might greatly improve the representativeness of the returned nodes. We could
think of many more refinements that could make the simulator better.
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Chapter 7

Conclusions

This report has given an overview of different routing problems and ways to solve them with Ant Colony
Optimization. We have seen a wide variety of ACO algorithms and extensions. The MACS-VRPTW is
discussed as it is a state-of-the-art ACO algorithm for solving the VRPTW problem. Then the MACS-
DVRPTW is proposed that can solve the DVRPTW problem with different degrees of dynamicity. To
our knowledge this is the first ACO algorithm that solves the DVRPTW problem.

The results on the DVRPTW look promising but it is very hard to compare these with results from
other articles. Some extensions to the MACS-DVRPTW algorithm were tested and these increase the
performance slightly. The introduction of Max-Min Ant System principles did not yield better results but
more tests are needed to see if different parameter settings can make this approach work.

A new set of benchmark problems was generated based on the classic benchmark set of Solomon. These
benchmark problems can be used to simulate the DVRPTW and will be made public so that others can
make a comparison with our algorithm.

Chapter 6 introduced the basics of two-stage planning and how this can be applied to solving the
Stochastic VRP. This approach looks very promising and should be implemented to see how it performs
compared to other algorithms.
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Chapter 8

Further work

The MACS-DVRPTW can be improved in a number of ways to make it more efficient at solving the
DVRPTW problem. Its parameters should be properly tuned, preferably with an meta-optimizer like
a mixed-integer genetic algorithm or a particle swarm optimizer. The same meta-optimization can be
applied to the parameters of the MMAS extensions.

More extensions can be tested. An example is the use of candidate lists based on time windows. Many
nodes cannot be reached because the time window constraints do not allow them to be service after each
other. Precomputing and storing these limitations could speed up the algorithm. Also it would be a good
idea to test a changing evaporatuin rate to increase exploration of the algorithm at critical moments, for
example when new nodes are added to the problem.

Lastly, a two-stage planning method based on ACO should be implemented to tests its performance.
The MACS-VRPTW algorithms has proved itself as a fast optimization algorithm and this would be a
good candidate for implementation with the two-stage planning principle.
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Nomenclature

Routing problems
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem
VRPTW Vehicle Routing Problem with Time Windows
CVRPTW Capacitated Vehicle Routing Problem with Time Windows, same as VRPTW
DVRPTW Dynamic Vehicle Routing Problem with Time Windows
DCVRPTW Dynamic Capacitated Vehicle Routing Problem with Time Windows, same as DVRPTW

Ant Colony Optimization algorithms
AS Ant System
EAS Elitist Ant System
ACS Ant Colony System
MMAS Max-Min Ant System
RBAS Rank Based Ant System
SbAS Savings based Ant System

Problem variables
n Number of nodes
dij Traveling distance between nodes vi and vj
tij Traveling time between nodes vi and vj
Q Maximum capacity of a vehicle in the Vehicle Routing Problem
qi Demand for goods at node vi
v0 Depot node
[ei, li] Time window constraint for node vi
ei Earliest beginning of service for node vi
li Latest beginning of service for node vi

Algorithm variables
τij Pheromone level on edge (i, j)
ηij Heuristic desirability of edge (i, j)
ρ Evaporation rate
m Number of ants
N k
i Set of nodes that can be visited by ant k positioned at node vi

Tk Tour of ant k
Lk Length or total traveling distance of a tour Tk
T ∗ Best solution found so far
L∗ Length of the best solution found so far (T ∗)

TVEI Best solution of the ACS-VEI colony
τ0 Initial pheromone level
q0 Parameter determining the balance between exploitation and exploration

Dynamic problem variables
Twd Duration (in seconds) of the simulated working day
nts Number of time-steps into which the working day is divided
tts Length of each time-step in seconds, equal to Twd/nts
t Current time during the simulation
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Appendix A

Best solutions of MACS-VRPTW

For generating the DVRPTW benchmarks of Chapter 5 the best results of my implementation of the
MACS-VRPTW algorithm were used. For complete documentation these best solutions are included below,
in the format that was also used by Gambardella et al. on http://www.idsia.ch/~luca/macs-vrptw/

solutions/welcome.htm.

c101

828.936867 10

0 5 3 7 8 10 11 9 6 4 2 1 75

0 20 24 25 27 29 30 28 26 23 22 21

0 98 96 95 94 92 93 97 100 99

0 81 78 76 71 70 73 77 79 80

0 43 42 41 40 44 46 45 48 51 50 52 49 47

0 67 65 63 62 74 72 61 64 68 66 69

0 13 17 18 19 15 16 14 12

0 57 55 54 53 56 58 60 59

0 32 33 31 35 37 38 39 36 34

0 90 87 86 83 82 84 85 88 89 91

c102

828.936867 10

0 67 65 63 62 74 72 61 64 68 66 69

0 20 24 25 27 29 30 28 26 23 22 21

0 43 42 41 40 44 46 45 48 51 50 52 49 47

0 90 87 86 83 82 84 85 88 89 91

0 5 3 7 8 10 11 9 6 4 2 1 75

0 81 78 76 71 70 73 77 79 80

0 57 55 54 53 56 58 60 59

0 13 17 18 19 15 16 14 12

0 32 33 31 35 37 38 39 36 34

0 98 96 95 94 92 93 97 100 99

c103

828.064882 10

0 90 87 86 83 82 84 85 88 89 91

0 5 3 7 8 10 11 9 6 4 2 1 75

0 67 65 62 74 72 61 64 68 66 69

0 43 42 41 40 44 46 45 48 51 50 52 49 47

0 98 96 95 94 92 93 97 100 99

0 57 55 54 53 56 58 60 59

0 13 17 18 19 15 16 14 12

0 81 78 76 71 70 73 77 79 80 63

0 32 33 31 35 37 38 39 36 34

0 20 24 25 27 29 30 28 26 23 22 21

c104

824.776708 10

0 13 17 18 19 15 16 14 12 10

0 5 3 7 8 11 9 6 4 2 1 75

0 90 87 86 83 82 84 85 88 89 91

0 67 65 62 74 72 61 64 68 66 69

0 20 24 25 27 29 30 28 26 23 22 21
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0 43 42 41 40 44 45 46 48 51 50 52 49 47

0 55 54 53 56 58 60 59 57

0 81 78 76 71 70 73 77 79 80 63

0 98 96 95 94 92 93 97 100 99

0 32 33 31 35 37 38 39 36 34

c105

828.936867 10

0 90 87 86 83 82 84 85 88 89 91

0 5 3 7 8 10 11 9 6 4 2 1 75

0 67 65 63 62 74 72 61 64 68 66 69

0 43 42 41 40 44 46 45 48 51 50 52 49 47

0 20 24 25 27 29 30 28 26 23 22 21

0 81 78 76 71 70 73 77 79 80

0 98 96 95 94 92 93 97 100 99

0 13 17 18 19 15 16 14 12

0 57 55 54 53 56 58 60 59

0 32 33 31 35 37 38 39 36 34

c106

828.936867 10

0 43 42 41 40 44 46 45 48 51 50 52 49 47

0 90 87 86 83 82 84 85 88 89 91

0 20 24 25 27 29 30 28 26 23 22 21

0 5 3 7 8 10 11 9 6 4 2 1 75

0 81 78 76 71 70 73 77 79 80

0 67 65 63 62 74 72 61 64 68 66 69

0 98 96 95 94 92 93 97 100 99

0 32 33 31 35 37 38 39 36 34

0 57 55 54 53 56 58 60 59

0 13 17 18 19 15 16 14 12

c107

828.936867 10

0 43 42 41 40 44 46 45 48 51 50 52 49 47

0 90 87 86 83 82 84 85 88 89 91

0 81 78 76 71 70 73 77 79 80

0 20 24 25 27 29 30 28 26 23 22 21

0 5 3 7 8 10 11 9 6 4 2 1 75

0 67 65 63 62 74 72 61 64 68 66 69

0 98 96 95 94 92 93 97 100 99

0 32 33 31 35 37 38 39 36 34

0 13 17 18 19 15 16 14 12

0 57 55 54 53 56 58 60 59

c108

828.936867 10

0 32 33 31 35 37 38 39 36 34

0 81 78 76 71 70 73 77 79 80

0 5 3 7 8 10 11 9 6 4 2 1 75

0 67 65 63 62 74 72 61 64 68 66 69

0 20 24 25 27 29 30 28 26 23 22 21

0 57 55 54 53 56 58 60 59

0 13 17 18 19 15 16 14 12

0 90 87 86 83 82 84 85 88 89 91

0 98 96 95 94 92 93 97 100 99

0 43 42 41 40 44 46 45 48 51 50 52 49 47

c109

828.936867 10

0 57 55 54 53 56 58 60 59

0 98 96 95 94 92 93 97 100 99

0 20 24 25 27 29 30 28 26 23 22 21

0 67 65 63 62 74 72 61 64 68 66 69

0 5 3 7 8 10 11 9 6 4 2 1 75

0 81 78 76 71 70 73 77 79 80

0 13 17 18 19 15 16 14 12

0 43 42 41 40 44 46 45 48 51 50 52 49 47

0 32 33 31 35 37 38 39 36 34

0 90 87 86 83 82 84 85 88 89 91
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c201

591.556557 3

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17

13 25 9 11 10 8 21

0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50

52 47 43 42 41 48

c202

591.556557 3

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17

13 25 9 11 10 8 21

0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50

52 47 43 42 41 48

c203

591.173443 3

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17

13 25 9 11 10 8 21

0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50

52 47 42 41 43 48

c204

590.598746 3

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 41 42 45

51 50 52 47 43 48

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17

13 25 9 11 10 8 21

0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 84 86 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

c205

588.875963 3

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17

13 25 9 11 10 8 21

0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50

52 47 43 42 41 48

c206

588.492849 3

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 19 16 14 12 15 17

13 25 9 11 10 8 21

0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50

52 47 42 41 43 48

c207

588.286321 3

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 17 18 19 16 14 12 15

13 25 9 11 10 8 21

0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50

52 47 42 41 43 48

c208

588.323801 3

0 67 63 62 74 72 61 64 66 69 68 65 49 55 54 53 56 58 60 59 57 40 44 46 45 51 50

52 47 42 41 43 48

0 20 22 24 27 30 29 6 32 33 31 35 37 38 39 36 34 28 26 23 18 17 19 16 14 12 15

13 25 9 11 10 8 21
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0 93 5 75 2 1 99 100 97 92 94 95 98 7 3 4 89 91 88 86 84 83 82 85 76 71 70 73 80

79 81 78 77 96 87 90

r101

1650.799240 19

0 63 64 49 48

0 45 82 18 84 60 89

0 95 98 16 86 91 100

0 2 21 73 41 56 4

0 92 42 15 87 57 97

0 33 29 78 34 35 77

0 5 83 61 85 37 93

0 28 12 40 53 26

0 62 11 90 20 32 70

0 14 44 38 43 13

0 36 47 19 8 46 17

0 27 69 76 79 3 54 24 80

0 52 6

0 65 71 81 50 68

0 72 75 22 74 58

0 39 23 67 55 25

0 30 51 9 66 1

0 59 99 94 96

0 31 88 7 10

r102

1486.119471 17

0 28 29 78 34 35 3 77

0 62 88 8 46 17 93 59

0 94 96 99 6

0 50 33 30 51 9 66 1

0 65 71 81 20 32 70

0 92 37 98 85 16 86 91 97 13

0 52 7 11 19 49 48 82

0 40 53

0 42 15 41 75 56 74 21

0 63 64 90 10 31

0 87 57 2 58

0 83 45 61 84 5 60 89

0 14 44 38 43 100 95

0 73 22 72 54 24 80 12

0 27 69 76 79 68

0 36 47 18

0 39 23 67 55 4 25 26

r103

1292.675510 13

0 71 65 78 34 35 81 77 28

0 42 43 15 57 41 74 72 73 21 58

0 2 22 75 56 4 25 54

0 27 69 30 9 66 20 51 1

0 40 53 12 68 80

0 60 45 83 5 99 6

0 26 39 23 67 55 24 29 3

0 7 19 11 8 46 47 48 82 18 89

0 92 98 14 44 38 86 16 61 85 91 100 37

0 36 64 49 63 90 32 70

0 94 96 95 97 87 13

0 52 62 88 84 17 93 59

0 50 33 76 79 10 31

r104

986.025445 10

0 6 96 99 84 5 93 59 97 95 94

0 1 50 33 81 51 9 35 34 78 3 77 28

0 27 69 76 79 29 24 68 80 12 26

0 70 30 20 71 65 66 32 90 63 10

0 89 60 83 17 45 8 46 47 48 82 18

0 42 43 15 87 57 41 22 74 73 21 40

0 53 13 2 58
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0 92 98 14 44 38 86 16 61 85 91 100 37

0 31 88 62 11 64 49 36 19 7 52

0 72 75 56 23 67 39 55 4 25 54

r105

1377.111018 14

0 95 92 98 99 94 6 96

0 59 5 61 16 85 84 17 60 89

0 21 73 75 22 41 56 74 58

0 33 65 71 9 66 20 1

0 28 12 29 79 3 50 68 24 80

0 31 30 51 81 78 34 35 77

0 63 64 11 90 10 32 70

0 72 39 23 67 55 54 4 25

0 42 14 44 38 86 37 97 13

0 47 36 19 49 46 48

0 2 15 57 87 43 100 91 93

0 27 69 76 40 53 26

0 45 83 82 8 18

0 52 62 88 7

r106

1259.708773 12

0 27 28 40 87 57 43 100 37 98

0 50 33 65 71 66 20 32 70 1

0 26 39 23 67 55 54 4 25

0 48 47 36 19 49 46 82 7 52

0 2 15 73 41 22 75 56 74 72 21 58

0 42 14 44 38 86 91 97 13

0 94 95 92 59 99 6 53

0 63 64 11 90 10 31

0 5 45 16 61 84 17 85 93 96

0 29 76 79 78 68 24 80 12

0 62 88 18 8 83 60 89

0 69 30 51 81 9 35 34 3 77

r107

1119.185972 10

0 33 81 65 71 9 66 20 51 1

0 12 54 39 23 67 55 4 25 26

0 94 96 92 59 99 6 87 97 95 13

0 42 43 14 44 38 86 16 91 100 37 98

0 52 7 11 62 88 31 10 63 90 32 70

0 27 69 30 79 78 34 35 3 77

0 2 57 15 41 22 75 56 74 72 73 21 58

0 60 83 45 46 8 84 5 17 61 85 93

0 48 47 36 64 49 19 82 18 89

0 28 50 76 40 53 68 29 24 80

r108

974.158678 9

0 2 57 15 43 42 87 97 95 94 13 58

0 72 75 56 23 67 39 55 4 25 54

0 20 66 65 71 9 35 34 78 77 28

0 52 7 48 82 8 46 47 36 49 19

0 27 69 50 76 53 40 21 73 74 22 41

0 31 88 62 11 64 63 90 32 10 70 1

0 6 96 59 93 99 5 84 17 45 83 60 18 89

0 30 51 81 33 79 3 29 24 68 80 12 26

0 92 98 91 44 14 38 86 16 61 85 100 37

r109

1210.570802 11

0 27 69 33 78 81 9 35 34 24 80

0 52 88 19 47 36 49 48

0 2 72 73 21 40 53 26 54 55 25

0 83 45 82 7 18 8 46 17 60 89

0 95 42 15 57 87 94 6 96 97 13

0 39 67 23 75 22 41 74 56 4

0 28 12 76 79 29 68 3 50 77
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0 62 11 64 63 90 32 10

0 5 59 99 85 61 16 84 93 37 100 91

0 92 98 14 44 86 38 43 58

0 31 30 51 71 65 66 20 70 1

r110

1089.253442 11

0 27 31 30 51 33 81 78 34 24 80 68

0 95 98 44 16 86 38 14 43 42 58

0 69 9 35 71 65 66 20 70 1

0 59 99 93 5 84 61 85 91 100 37 92

0 28 12 76 77 29 79 3 50

0 21 72 73 22 75 23 67 39 56 74

0 88 62 11 64 63 90 32 10

0 53 40 26 54 55 25 4

0 6 18 83 8 46 45 17 60 89

0 2 41 15 57 87 94 96 97 13

0 52 82 7 19 47 49 36 48

r111

1055.311998 11

0 28 76 79 78 29 24 68 80 12 26

0 95 42 14 44 38 86 16 17 5 60 89

0 27 69 30 20 65 66 32 70 1

0 52 88 62 11 63 90 10 31

0 50 33 81 51 9 71 35 34 3 77

0 92 98 37 59 99 97 87 6 94 13

0 83 18 45 8 84 61 91 100 85 93 96

0 53 40

0 73 75 23 67 39 55 4 25 54

0 7 19 64 49 36 46 47 48 82

0 2 57 15 43 41 22 74 56 72 21 58

r112

964.407242 10

0 69 30 51 9 35 71 65 66 20 1

0 21 73 72 75 56 23 67 39 25 55 4

0 2 57 87 42 43 15 22 41 74 58

0 28 76 79 33 81 78 34 29 24 54

0 18 82 8 45 17 84 83 60 89

0 52 7 19 64 49 36 46 47 48
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