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Abstract

The Department of Dermatology at the Leiden University Medical Center keeps a large
database of medical images, used for educational purposes. This thesisadsfeasibility

study on automated classibcation of skin diseases with the use of annotatéchages from
this database. Each annotated image is converted into tiles of which colorefatures and
HaralickOs texture features are calculated. These features are thesad to train the 1R,

J48, NaiveBayes, Multilayer Perceptron and SMO classibers. After elssibcation the pre-
dictions were linked back to their original image and with a majority vot e the classibcation
of the image was obtained. This resulted in a recall on the images of 70%.
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Chapter 1

Introduction

At the Leiden University Medical Center (LUMC) the department of de rmatology keeps
a large database of several thousands of photographs of patients with skin diages. The
database is internally used for educational purposes and is supplemesd regularly with

new photographs.

This thesis is a feasibility study on automated classibcation of skin teases by learn-
ing from the dermatology database. Next to Pnding a good approach to do so, it iN¥ focus
also on the problems that might occur by using a dataset that is not spedbcally created
with machine learning in mind.

1.1 Possible application

Not everywhere in the world are there good doctors available when you regl them. Es-
pecially in third world countries, where hospitals are few and transprt is limited, it is
hard to bnd good medical care. One of the things that are done to tackle tis problem is
the deployment of ORying doctorsO, which are general practitionérained to do their jobs
in remote villages. Although they are skilled, they are no specialistsand because of this
canOt always rely on their own skills and knowledge.

At the same time, the availability of technology, mobile phones and intenet connec-
tivity has spread throughout the continent. This means that both doctors and patients
can look up medical information on the internet.

But the availability of technology brings more possibilities in the medical world: with
the use of computer vision, technology can assist patients and doctors imaking diagnoses.
Dermatology is one of the medical disciplines that could benebt the mogrom this kind of
disease classibcation system. Imagine an iPhone application that automaally recognizes
diseases from pictures that are taken with it or gives a listing of poséile diseases with an
advice on what medical steps to proceed with. While it is not likely that it could replace
the knowledge of a real dermatologist, it could provide a simple replaement for situations
in which a specialist is not available, like in Africa often is the cae.

At the moment no such general solution for classifying skin diseasexists, although
there are some niche problems in which computer vision is succeaBf deployed like de-
termining the nature of melanomas Isasi et al. [2011].
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CHAPTER 1. INTRODUCTION

1.2 The data

Most of the images in the dermatology database are taken at the hospital by one of th
medical photographers, as part of the medical examination, although a smallenumber is
taken by patients or doctors with mobile devices or compact cameraOs.

The medical photographer works in a photo studio with an even background ad good
lighting in order to ensure that no shadows present at the subject issue. The equipment
and the setup of the photo studio, including the colour of the backgroundcanvas used has
changed over the years. The photographs taken by doctors and patients vargreatly in
setting and quality. Lastly, parts of an old physical non-digital photo archive have been
digitalised and added to the database. Because of the large timespan and ditent sources,
the quality, size and dimensions vary greatly across these photographs.

The database consists of a low quality version of the image, linked togethievith extra
information in a relational database. This database contains information about

¥ the photograph itself, with a reference to the original image ble, the dte the photo
was taken, the camera that has been used, the Exifdata and the photographer;

¥ the patient, with Pelds including sex, date of birth, name and address and patient
ID for linking to the Electronic Health Record ?;

¥ the part of the body that is photographed;
¥ the disease the patient is diagnosed with, if known.

The photographs that are present in the database itself are lossy JPEG imagp, which
are less than ideal to use with computer vision. The original images are sted in TIFF or
PNG where these qualities originally existed, which is the case for htecent professionally
taken photographs. Where these formats were not available, the original lel is also a
JPEG. In the research only the PNG / TIFF formats were used, so the losy JPEG
encoding was not an issue.

More details on the image dataset that is used can be found in Section 2.1.

1.3 Research goals

This research project is a feasibility study to see if images in tis dermatology database
can be used to automatically diagnose dermatological diseases, although the giographs
were not taken with such application in mind. From the start it is cle ar that the database
as is, isnOt going to give the easiest, most accurate solution and therefat makes little

sense to try to build the best possible classiber for skin disease This project will focus

upon the following questions, which together will answer the main reearch question:

¥ Is it possible to train a classiPer that can discriminate between fou skin diseases,
learning from the images in the database and what accuracy can be achieved?

¥ Are all images in this database of use, or is there a clear distinction in dracteristics?

1EXIF, or Exchangeable Image File, format is a metadata specibcation for image bles taken by digital
cameras among others.
2Electronic Heath Record is known in dutch as EPD or Electronisch Patienten Dossier.
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CHAPTER 1. INTRODUCTION

¥ What information is needed in addition to the images, for example skin cabur, in
order to create a classiber that can discriminate between diseases?

¥ What kind of classiber can be used best for the purpose of discriminatg between
the four diseases?

¥ |s it possible to locate the area of the alected skin or is it only possilte to mark an
entire image as containing a specibc disease?

¥ How can the creation of new pictures be improved in order to increaseheir usefulness
in automated classibcation?

¥ What kind of features are most useful for discriminating between digases?

1.4 Plan of action

To answer these questions, the following plan of action has been compake
1. Obtaining the dataset , including the selection and bltering of the data;
. Investigating the data , in order to see the dilerences between classes of pictures;
. Generating features for training , converting the images into features;

2

3

4. Annotating the images , where necessary;

5. Choosing a classiber , selecting and comparing dilerent classibers;
6

. Experimenting , varying some parameters and setups in order to bnd the best
approach;

7. Selecting areas for improvement , in order to help the hospital build a dataset
which is more valuable for future uses.
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Chapter 2

Materials and Methods

2.1 Image dataset

There are over 40.000 images stored in the database at the LUMC. Because of prazi
reasons and privacy issues a bltered subset of 13k images was extractedhisl subset
excluded faces, genitals and other bodyparts that featured tattoos, spnning 311 di! erent
diagnosis. The extraction of the subset was a tedious process as many ofettObodypartO
Pelds were left blank or didnOt state all bodyparts that were visilel in the image. Because
of this, all images had to be inspected manually before the dataset could e approved.
This is a very tedious work to do for all 13k images. Because of this, a reted set of only
the hands was manually inspected and approved for use with the resedrc This resulted
in a dataset of 912 images of which 815 were provided with a diagnosis.

As can be seen in Figure 2.1, there are few diagnoses in the dataset with mottean
bfteen samples of a disease. To train and test a classiber, the more gales of a single class
(diagnosis) available, the better. ThatOs why there is again extracted subset. This time
only four diagnoses remained: Spinocellulaircarcinoom, Contact Dermatitis, Dermatitis
and Palmoplantar Keratoderma Hereditaria. These four diagnoses vary in appearance, an
example of each of them can be seen in Figure 2.2. The total sample count in ¢hdataset
is 77. The content of the four diagnoses is shown in Table 2.1.

The risk of such low number of samples is that of undertraining. This neans that
there are not enough examples for a classiber to learn some general rules $eparating
the diseases. For a feasibility study this is not a big problem, altlough a bigger data set
would be recommended for future research.

Each of the images is in the PNG format or converted from TIFF to PNG. The PNG
format provides a lossless encoding, preserving as much detail as gdde. All images are
around three megapixel in size and have 8-bit RGB channels.

2.2 Software components
In this section, the dilerent software components used in this prgect are brie3y explained.
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Figure 2.1: Distribution of diagnoses and sample sizes. Thee are many diagnoses with
a small samples set and few with a sample set 15

(a) diagnosis-1739023, (b) diagnosis-6929067,
Spinocellulaircarcinoom Contact Dermatitis

i )

(c) diagnosis-6929070, (d) diagnosis-7573943,
Dermatitis Palmoplantar Keratoderma Hereditaria

Figure 2.2: The four di! erent diseases in the bnal dataset.
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CHAPTER 2. MATERIALS AND METHODS

diagnosis samples # annotated samples % annotated samples
diagnosis-1739023 19 7 37%
diagnosis-6929067 20 7 35%
diagnosis-6929070 13 11 85%
diagnosis-7573943 21 14 66%
Totals 73 39

Table 2.1: Contents of the dataset

221 TDR

TDR of LIACS is a software tool originally designed to annotate slices of 3D inages for
3D reconstruction. With TDR it is possible to annotate images by drawing contours
with dilerent labels. This software is used in the setup to annotate the datast used
for classifying. Three kinds of contours were drawn in the images: ski al! ected skin
and nails. These contours divide the image in three parts: background, émlthy skin and
alected skin. The latter, the contour of the nails, hasnOt been usedithe classiPer, but
was added to be able to tell more about the size and orientation of the hand.

Annotating the images is a time consuming process, because of this, mpart of the
annotated images only the alected parts of the skin were indicated.

2.2.2 OpenCV

OpenCV (Open Source Computer Vision) is a library of programming funcfons for real
time computer vision ope, developed by Intel. The library is used ly the feature detec-
tion algorithm, providing functions for reading and writing images, performing matrix
operations and more.

2.2.3 Weka

Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learn-
ing software written in Java, developed at the University of Waikato, New Zealand. Weka
contains tools for data pre-processing, classibcation, regression,ustering, association
rules, and visualization wek.

2.3 Tiling

The amount of samples of the four diseases we are trying to classify is @@ small. The
diseases manifest themselves in various forms, like spots, vesgis] or an overall redness of
the skin. Therefore it is not easy to look for a single kind of feature or émplate in the
image to determine which areas of the skin are alected by the diseasélhe best approach
is to look at the entire image in smaller parts and try to classify each of he smaller parts.

The easiest way to divide the image into smaller parts is to place a gd on it and
create square tiles. Given that the tiles are small enough, most of theiles will contain
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one class each (skin, alected skin or background). Tiles that contain trasitions between
two classes are small in number and wonOt disrupt a classiber. In casavill, tiles not
containing a single class in majority can be omitted from the training data feeding the
classiber or can be specibed as another class calksthje

Using the pixels of the tiles as input for a classiPer wonOt work that &l: spots and
vesicles are not always in the same place within a tile and using theipels directly would
make the classiber very vulnerable to rotation and scaling. That is why he classiber uses
features that are calculated from the pixels of these tiles.

2.4 Colour features

Images are stored in RGB colour space, debning colour as a mixture of red,egn and
blue. But this is not a colour space mimicking the way our human eyes wuld perceive
colour. A more useful way for this purpose is specifying the colour of @ixel as a mixture
of hue, saturation and value Zarit et al. [1999].

The colour features are simple to calculate as they are the averages andasidard
deviation of the values of each of the RGB and HSV channels. These are most efsll
separating skin from background as the dilerence between healthy skiand a! ected skin
is not an absolute dilerence. ORednessO of the skin, an alected regiengdependent on
the skin colour and varies from sample to sample.

The colour features describe one channel at a time, making it hard for elssibers to
blter for example blueish tiles and whitish tiles on a single RGB vale: both contain a
high value of blue. To circumvent this problem, features containingthe ratio between two
channels can be added. There are six channels containing colour feats. Adding ratios
of all the combinations gives us too many features, only slowing down t training of any
classiper. Therefore only the ratiosggreen/blue, blue/red and green/red are computed.

2.5 Texture features

Colour features have the problem that they vary under many external comlitions, such as
lighting, camera and natural variations in skin complexion. Texture features should not
be hampered by these conditions and can provide good features for sepéing healthy
skin from alected skin and dilerentiate between the dilerent diagn osis, as long as there
are dilerences in texture between those.

There are many kinds of feature detection algorithms based on texture ailable. For
this project, the Haralick features are chosen Robert M Haralick [1973].

The Haralick features are a set of features which are calculated from the fay-Level
Co-occurrence Matrix. The gray-level means that there is only one chnnel which is looked
at at the same time, not specifying that it should be a grayscale image. TIs matrix, with
sides equal to the range of pixel values per channel, contains the nureb of co-occurring
values of an image (or tile). Mathematically it can be debned as:

o T il (p+t Xt )=
if1(p,@ =il (p+" x,q+" y)=] 2.1)

Crxry(ij)= 0 otherwise ’
p=1 g=1
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meaning that while looping over all pixels in the tile elementsa, band b, aare incremented
if a pixel with value a is found next to a pixel of value b.

Because this summation looks in thex and y direction of the image, it is not rotation-
ally invariant. This is why the matrix is constructed not only of this s ummation, but also
with a rotation of 45, 90 and 135 =! 45 degrees, creating the matrix as if the image was
rotated by these degrees. The remaining neighbouring pixels do notdve to be visited by
the algorithm because co-occurrence is commutative and therefore tke neighbours are
already accounted for when the neighbouring pixel is visited.

90 45

Figure 2.3: Pixels looked at at rotational degrees of 45, 90 and 135 degrees.

In theory a RGB image could be converted to a single channel image, by coevting
the three 8-bit channels to one 24-bit channel. Only would the matrix @nsist of an
enormous (255)? =248 = 2.8" 10'* elements and would be a very sparse matrix which
would severely impact computational time and memory usage. This is why lhie Haralick
features are calculated for one channel of the image in HSV colour space at tharte. By
also calculating the features for the gray level image, the interrelabnship between the
channels is also taken into account. The gray level image is created byaraging the three
channels of the RGB channel.

Even if containing just a single 8-bit channel the co-occurrence matx is large and
sparse. This is why the Haralick features are generated from this matrix named after
R M Haralick. These features are named as follows: angular second moment, doast,
correlation, variance, inverse dilerence moment, sum average, sumaviance, sum entropy,
entropy, dilerence variance, dilerence entropy, and two information measures of correla-
tion.

To fully cover all of these features in this paper would be too muchso three of them
are shown below. First the angular second momentum,

1:angular second momentum = (p(i,j ))21 (2-2)
i
where p(i,j ) is the value at i,j in a normalized co-occurrence matrix. Second is the
contrast,
$ &
Ng! 1 Ng Ng
fcontrast = n? % p(i,j) it jl=n, (2.3)

n=0 i=1 j=1

where Ng is the number of distict values in the imagesO channel, in our case 256. &h

1A sparse matrix is a matrix populated primarily with zeros. If the majority of elements di ! er from
zero then it is common to refer to the matrix as a dense matrix Stoer and Bulirsch [2002].
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third feature displayed is the second correlation information measue,

(
f correlation info 2 = 1! ¢ 2(HXY2 1 HXY) Jwith (2.4)
| |
HXY=1  p(i,j)log(p(,j)) and (2.5)
Bk
HXY2 = | Px (1)py () log (px (I)py (§)) (2.6)

i
where px(ig is ith entry in the marginal-probability matrix obtained by summing the r ows
of p« (i) = J-Nzgl p(i,j ) and py(j) the summation the columns.

2.6 Scaling the image

The Haralick texture features are based on the co-occurrence matrix,hterefore are depen-
dent on the scaling of the image. A close-up image of a single bnger revealsich more
detail and texture than an overview of the entire hand and forearm. By saling images
down before they are tiled and the co-occurrence matrix is build, ot only the number of
tiles is reduced, the amount of detail is reduced as well. This meanthat the algorithm
will generate somewhat more alike features for a scaled down close up imagéa Pnger,
compared to a unscaled image of the entire forearm.

However, it is not possible to determine the size of the subject irthe image before-
hand, because no external information about the subject is present ando visual markers
of known size or distance are available in the image. A way to circumventhis problem
is to generate the features with dilerent scalings of the image. Nevetteless multiple ex-
ecutions of the algorithm on one image increases the computational time a lot ahthe
algorithm could benebt greatly by providing OnaturallyO scaled images.

2.7 Classibers

Weka provides a range of dilerent classibers. These classiberseadilering input and
output types and canOt be compared in a straight forward manner. For the &&ing four
dilerent classibers are used, their dilerences being put aside bhew:

¥ 1R, algorithm that uses only one rule to classify examples;

¥ C4.5, an algorithm that creates a decision tree;

¥ Naive Bayes, a probability based classibcation algorithm;

¥ PlattOs Sequential Minimal Optimization algorithm, a support vector machine;

¥ Multilayer Perceptron; a type of neural network.

271 1R

Described in 1993 by Holte Holte [1993], the 1R is a one level decision tree algiwin,
which ranks the attributes on error rate and choses the attribute with the smallest error.
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The algorithm regards all numeric attributes as continuous and uses a stight for-
wardly method to divide the range into several intervals. To counte the risk of over
btting when a perfect split is made, creating intervals of single tems, a minimum size of
the intervals is required.

272 C45

The J48 decision tree classiber is a java implementation of the weknown C4.5 algo-
rithm Quinlan [1993]. The C4.5 algorithm builds a desicion tree in the sane way as ID3,
using the concept of information gain. Information gain can be debned as

'm
G(S,A)= E(S)!  fs(A)E(Sa,), 2.7)
i=1

where G(S, A) is the gain of setS after split over attribute A, E(S) is the information
entropy of set S, m is the number of dilerent values of attribute A in S, fs(Aj) is the
proportion of the items possessingA; as a value forA in S and Sp, is the subset of S
containing the items where the value of attribute A is A;. The information entropy, E(S)

can be debned as n

E(S)=! =1fs(j)log, fs(). (2.8)
i

wheren is the number of dilerent values of the attribute in S and fs(j) is the frequency
(proportion) of the value j in the set S.

The algorithm recursively splits the tree on the attribute with th e highest informa-
tion gain, creating subsets of the remaining data for each child node andepeating the
information gain calculations for each attribute. After the algorithm is done, branches
with little information gain are pruned by replacing them with leaf no des.

2.7.3 Naive Bayes

The Naive Bayes classiber is a simple probabilistic classiber, wihi is based on applying
BayesO theorem. The algorithm assumes that all features are indepenti®f any other
feature. In reality this assumption is generally wrong, but neverthdess the Naive Bayes
classiber produces good results for complex problems.

The classiber depends mostly on the application of BayesO rule,

P(AIB)P(B)

P(BIA) = 5

en Norvig [2003] (2.9
In the case of building a classiber, the algorithm perceives as evidee the elect of some
unknown cause and wants to know the cause. In that case, BayesO rule becomes

P (elect |cause " P (cause
P (elect)

P (causgelect) = (2.10)

Because the algorithm assumes that all featurescguseg are independent, it can use the
condititional independence to combine multiple features by the @&pbnition of

P(X,Y|Z)= P(X|Z)" P(Y|2). (2.11)
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Combining the two formulas gives the naive Bayes model
*
P(CauseElect,,...,Elect,) = P(Cause)  P(Elect;|Cause), (2.12)

which forms the basis of the algorithm. By building a probability table and applying these
rules, the classiber builds a probabilistic model.

These equations are only valid for as long as the features are independentn the
case of the colour and texture features, this is does not hold up. Evemithis situation,
the naive Bayes could provide a pretty good model Domingos and Pazzani97].

These equations require that the probability distribution of some attribute is known.
This is an easy task with nominal and binary attributes, as they can be estmated from
the training set by dividing the number of samples of given value by he total number of
samples. Numeric data is however continuous and would brst have to bdiscretized in
order to use this technique. This can be done by binning, in which he numerical data is
converted in an nominal attribute and its prior can be estimated.

There is however another way, when the attributesO data is assumhéo be distributed
according to a Gaussian distribution for each of the classes. When corfnted with a
numeric attribute x, the algorithm brst calculates the mean (1) and variance (! 2) of x in
each clasx. Now the probability of some value given a classP (x = v|c) can be calculated
using the equation for the Normal distribution,

1 | lug)?
Px=v|Q)= +——=¢e 2i | (2.13)
2 2

In reality both the discretizing technique and the Normal distribu ted estimation are
used, where the former can outperform the Normal distributed estimaton, depending on
the discretizing method Dougherty et al. [1995].

2.7.4 Support Vector Machine

A support vector machine tries to separate instances by a linear hypglane. Instead
of minimizing the empirical loss on the training data, it tries to minimize the expected
generalization loss by maximizing the separator that is farthest away from all the exam-
ples en Norvig [2003]. This means that the hyperplane used as a separator isg¢ maximum
margin separator. The separator is dePned as the set of points : w ax + b= 0, with w
the weight vector.

The optimal separator is found by solving the equation

IN IN
- : 1- .
Maximize L (#) = #i ! > #i# yiy; (Xi ax;), (2.14)
i=1 ij =0

under the constraints #; # 0 and) i #jy; = 0. Once the vector # is calculated, the
expression for the separation function itself is

$ &
!

h(x)=sign % #y,(xax;)! b . (2.15)
j
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Hyperplane

v

Figure 2.4: Non-linear separable classibcation problem jin Wang et al. [2009]. The
hyperplane separates the two classes with the highest margin possible.

This function gives the classibcation for feature vectorx, -1 or 1.

If examples are not linearly separable, training samples from the inptispace are
mapped by a function F (x) into a higher-dimensional feature space, in such way that the
examples are linearly separable in the new feature space.
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Figure 2.5: This bgureFletcher [2009] shows how a non-linear separable classibcation
problem can be converted to a linear separable classibcation problem by converting the

feature space jnto a new feature space, in this case by the radial basis kernel function
Hxit xji?

] 2
k(xi,xj)= e 2

Support vector machines can be put to use in a multi-class classiPdan problem,
by constructing separate separation functions for each pair of classes armtbmparing the
results with each other. In this project, the SMO-class of Weka isused Wek [a], which im-
plements John C. PlattOs sequential minimal optimization algorithm fortraining a support
vector classiber using polynomial or RBF kernels Platt [1999].
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2.7.5 Multilayer Perceptron

A perceptron, or neural network, is a graph of nodes, divided in an inpti layer, one or
multiple hidden layers and an output layer. Each node in one layer onnects with a certain
weight w;j to every node in the next layer, as can be seen in Figure 2.6. The outpwf a
node is determined by an activation functiona; = g(in;) which takes as an argument the
weighted sum of the inputs of the node,

inj = Wij &;. (216)
i=0

This activation function is a sigmoid function,

1

TO= Trax

: (2.17)

which gives a smooth transition between 0 and 1.

Figure 2.6: Diagram of a multi-layer feedforward artibcial n eural network mul.

The input nodes take normalized versions of the feature vector of an exapte. These
values are fed forward through the network. The nodes in the output lagr represent the
classibcation. In the case the classibcation is not numeric but nominaln output node
for each of the nominal values is created. When selecting the classidt®on, the node with
the highest output is taken.

Training a perceptron is done by back-propagation, a technique which pdates the
weights of all nodes moving from the output layer through the hidden hyer(s) to the input
layer. First an example is fed through the network, generating valuesn the output nodes.
These values are compared with the desired outcome: the classibcatiaf the example.
The error or dilerence between those two values is propagated backwardghrough the
network, adjusting the weights of each node accordingly.

The function for updating the weights of the connections to a node is
Wik $ wj + #4aa &'  den Norvig [2003] (2.18)

with # the learning speed of the network,wjx the weight between nodes j and k, "¢ is
the error times the derivative of the sigmoid function,

£/ = FOO@! f(x). (2.19)

By repeatedly feeding examples through the network and adjusting tle weights, the net-
work is trained.
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Chapter 3

Implementation

This section explains how the overall setup of the classibcation piaess is set up and how
the dilerent technologies are used together.

3.1 Overall setup

The overall setup used to move from input images to features to a clasber is divided in
bve steps: annotation, tiling, feature calculation, training and testing.

The brst step is annotating the images. This is done with TDR, as explaied in
Section 2.2.1. The annotations are stored in two Ples: an XML ble describinthe di! erent
annotations used and location of the contour data in the second ble, whichsia binary
ble. In this Ple, each byte represents two 4-bit directions in with the contour moves with
respect to last pixel location.

The second and third step are performed by self-written software,n C++. The
program reads the images of the trainingsset and reconstructs their contas, converting
them into a mask per pixel. The program then scales each image if instated and divides
the image into tiles. For each tile features are calculated and stored iran output ble,
which is in the ARFF-format.

For the fourth step, training a classiber, Weka is used. The ARFF-fe is slightly
modibed to remedy errors with missing values and then used as inpdior the classiber.

The last step, testing the classiber is done internally in Weka bya tenfold cross
validation. The exact methods of testing diler per experiment and will be detailed where
needed.

3.2 Scaling and tiling

The program responsible for creating features out of the images accepts twparameters:
tile size and scale. The program scales brst and then cuts the image intdes. This means
that the same number of tiles are produced with a scaling factor of one ana tile size of
32 pixels as a scaling factor of 12 and a tile size of 16 pixels.
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. XML cat- Binary con-
|
Annotation mages alog ble tour data
Create mask OpenCVOs Mat Mask

/

Tilin Tiles

Features
Calculate features (ARFF-ble)
Classify using Weka Model

Figure 3.1: Flow chart of data Row in the system

For easy comparison of dilerent scaling factors powers of two are used as ¢ttile size.
This gives the possibility to split a tile in two, four or any other pow er of two smaller tiles
without ending up with a non integer number.

The scaling is done by the OpenCV functionresize , which uses bilinear interpolation
to scale down the image. This way, pixel values are determined by th average of their
source pixels, not just one of the source pixels. As a CCD can be seen agallection of
buckets in which photons are collected, this is essentially the sagprocess as averaging
the photon density in the area of the bucket. By scaling down in a sinlar way, the image
is scaled down as if the camera was further away from the subject, wth was the reason
for scaling down in the Prst place.

The image is cut into tiles by Algorithm 3.1

Algorithm 3.1 Cutting the image in tiles.
image $ resizefmage, scaling)
for x =0 % (image.cols! 2)/tileSize.width do
for y=0 % (image.rows! 2)/tileSize.height do
tileRect $ createRectf &tileSize.width +1,
y &tileSize.height + 1, tileSize.width, tileSize.height )
tile $ getimageRegion{mage, tileRect)
determineClass(ile)
calculateFeaturestile )
end for
end for

3.2.1 Determining the tile classibcation

The classibcation of each tile is determined by the classibcation of ghpixels it contains.
This classibcation of the pixels is derived from the mask that was creatd by annotating

20 of 65 Automated classibcation of skin diseases using tile-based texture features



CHAPTER 3. IMPLEMENTATION

the image. As will be explained in Section 4.1.2, two classipcations wilhe calculated for
each imageskin/background and not-disease

For the skin/background, the class of the tile is determined by a majority of 33% of
the pixels, where the disease classes take precedence over skimd skin takes precedence
over background. If the image isnOt annotated with background and normal skj the tile
is classibed as unknown.

For hte not-disease classibcation is simpler: if more than 33% of the pixels is
disease-alected skin, the classibcation islisease . If not disease, the classibcation is
not-disease . Algorithm 3.2 shows the calculations of both classibcations in more detalil

Algorithm 3.2  Determining the classibcation of a tile.
for all classesdo
tmpMask $ threshold(pixelMask, valueOfClassinMask(lass))
percentagdclass] $ cv :: countNonZerotmpMask)
/ (pixelM ask.rows &pixelMask &cols)
end for
if percentagd@isease] > 0.33 then
classification gyinpackground $ image.disease
classification not1 gisease $ image.disease
else if percentagdg@ormal ! skin']> 0.33 & skinlsAnnotated(image) then
classification sinbackgronda $ Qnormal ! skin™
else if percentagg®ackground]> 0.33 & skinlsAnnotated(image) then
classification sinpackgronda  $ Cbackground”
else
classification sxinbackgrouna  $ 07
classification not1 gisease $ @0! disease
end if

3.3 Feature calculation and co-occurrence matrix

After the image is split into tiles, the features are calculated. For @lculating the Haralick
features, a co-occurrence matrix is generated for the tile. This tdsis done by a modibed
GLCM class, where GLCM stands for Grey Level Co-occurrence Matrix, with means
that there is only one channel for which the matrix is calculated. Becawse of this, separate
matrices are created for each channel in RGB and HSV-space, resulting iseparated
features. The channels are split by OpenCVGsplit  function.

The colour based features are calculated with OpenCV@seanStdDevfunction, cal-
culating both the mean and the standard deviation of each channel. The Haratik features
are calculated by the GLCM class. All features are outputted in an ARFF ble for use
with the classiper.

3.4 Classibers

All classibers that are used are written in Java for Weka. This sectiorelaborates on WekaOs
implementation of the algorithm and the settings that are provided.
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3.4.1 J48

JA8 Wek [b] is WekaOs implementation of the C4.5 decision tree algorithmescribed in
Section 2.7.2 and can produce a unpruned or pruned tree. The possibéettings with their
values are presented in Table 3.1.

Setting Description Used value

binarySplits Whether to use binary splits on nominal at- false
tributes when building the tree

collapseTree Whether parts are removed that do not reduce true

training error
confidenceFactor The conbdence factor that is used for pruning 0.25
(smaller values incur more pruning)

minNumObj The minimum number of instances per leaf 2

subtreeRaising Whether to consider the subtree raising operation true
when pruning

unpruned Whether pruning is performed false

Table 3.1: Settings and their values for the J48 algorithm.

3.4.2 NaiveBayes B Naive Bayes implementation

WekaOs implementation of the Naive Bayes algorithm, NaiveBayes Wek [d} very straight
forward. From the website:

Class for a Naive Bayes classiber using estimator classes. Numeric es-
timator precision values are chosen based on analysis of the trditng data.
For this reason, the classiber is not anUpdateableClassifier  (which in
typical usage are initialized with zero training instances) b fi you need the
UpdateableClassifier ~ functionality, use the NaiveBayesUpdateable clas-
siber. The NaiveBayesUpdateable classiber will use a default precision of
0.1 for numeric attributes when buildClassiber is called with zeroraining in-
stances.

For estimating the priors on numeric data, the attributes are assumed b be normal
distributed. Optionally the algorithm can use kernel estimation instead of a single normal
distribution or use binning to discretize the numeric attribut es.

In our testing purposes, the default settings were used.

3.4.3 SMO b Support Vector Machine

From the website:

Implements John C. PlattOs sequential minimal optimization algithm for
training a support vector classiber using polynomial or RBF kernels This
implementation globally replaces all missing values and transforsnnominal
attributes into binary ones. It also normalizes all attributes by defalt. (Note
that the coé'cients in the output are based on the normalized/standardized
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data, not the original data.) Multi-class problems are solved usig pairwise
classibcation.

To obtain proper probability estimates, use the option that btsdgistic regres-
sion models to the outputs of the support vector machine. In the miHclass
case the predicted probabilities will be coupled using Hastiend TibshiraniOs
pairwise coupling method. Note: for improved speed standardizion should be
turned o! when operating on Sparselnstances. Wek [a]

As for the settings, the values shown in Table 3.2 were used.

Setting Description Used value
buildLogisticsModel The minimum number of instances per leaf false

c The complexity constant C 1

epsilon The epsilon for round-o! error 10' 12
filterType Determines how the data will be transformed Normalize
kernel The Kernel to use PolyKernel
toleranceParameter The tolerance parameter 163

Table 3.2: Settings and their values for the SMO algorithm.

3.4.4 MultilayerPerceptron B Multilayer Perceptron

The MultilayerPerceptron class Wek [d] uses a network of nodes tat can be build by hand
or created by the algorithm. Default, it creates one hidden layer ofl22ues [+ ldassesl g qeg,
All data is run multiple times through the network, the default numb er of epochs is 500.
For this classiber all the default settings were used. These settfgs are shown in Table 3.3

Setting Description Used value

hiddenLayers The hidden layers to be created for the net- a
work. (Value should be a list of comma sep-
arated Natural numbers or the letters Oa0 =
(attribs + classes) / 2, Oi0 = attribs, 000 =
classes, OtO = attribs .+ classes) for wildcard

values
learningRate Learning Rate for the back propagation algo- 0.3
rithm.
momentum Momentum Rate for the back propagation al- 0.2
gorithm.
nominalToBinaryFilter A NominalToBinary blter will be used. true
normalizeAttributes Whether to normalize the attributes true
normalizeNumericClass ~ Whether to normalize numeric classes true
trainingTime Number of epochs to train through. 500
Table 3.3: Settings of the MultilayerPerceptron classiber of Weka
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3.4.5 Running the classiber

Running the feature generator and the classibers in various parameterettings is a time
consuming task, especially for smaller tile sizes. This is why a sef scripts are written to

automatically distribute the computation over multiple computers. It consists of a master
and a slave script, the master giving out pieces of work to the slavedike calculating the
features for a given tile size and scaling, or running a classiber. Whea slave computer is
Pnished, the result is copied back to the master.
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Results

In this section the results of the tiling algorithm and the trained classibers are shown
and discussed. The experiments that are conducted will make it podlsle to answer our
research questions.

4.1 About the training data

Before training the classibers, it is necessary to look into the dat that will be used. This
data is created by the tiling algorithm for various parameter settings for tile size and
scaling. In this section, these data sets are investigated. Also, a ba#®e is determined in
order to be able to tell anything about the accuracy of the classibers.

4.1.1 Classibcations in the data set

The distribution of diseases in the source image data set was the topic dbection 2.1.
This section elaborates on the training data: the calculated features fom the tiles. The

algorithm detailed on in Section 3.2.1 assigns two classibcations to eachidi Because Weka
can only train for one classibcation, the dataset that is created by the fature program

is reformatted and saved as two seperate datasets, each containing a c#iscation. For

the rest of this chapter, the dataset that is used will be specibeddr all results. The

dataset containing the distinction between skin and background tileswill be referenced as
skin/background, the other as not-disease

The features are calculated for various tile sizes and scaling factors.able 4.1 shows
the distribution of classes in each of these datasets. A graphical disgy in Figures 4.1
and 4.2 clearly shows the skewed distribution of the classes.

4.1.2 Using the unclassibed tiles
As is visible in Table 4.1, there are a lot of missing classibcations for #hskin/background

dataset. This is because in the image data set, not all images were fully aotated. A
subset of the image was only provided with annotation of disease-alected &as.
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Tile Dataset a b c d e f g ? Total
Skin 87 23 35 85 362 224 - 549 81
256 10,7% 2,8% 4,3% 10,4% 44,4% 27,5% - 67,3% -
no-disease 87 23 35 85 - - 1.135 - 1.36
6,4% 1,7% 2,6% 6,2% - - 83,2% - -
skin 333 93 172 341 1.443 1.099 - 2.369 3.48
128 9,6% 2,7% 4,9% 9,8% 41,5% 31,6% - 68,1% -
no-disease 333 93 172 341 - - 4911 - 5.85
5,7% 1,6% 2,9% 5,8% - - 83,9% - -
skin 1.268 372 758  1.383 5.942 5.321 - 10.345 15.04
64 8,4% 2,5% 5,0% 9,2% 39,5% 35,4% - 68,8% -
no-disease 1.268 372 758  1.383 - - 21.608 - 25.38
5,0% 1,5% 3,0% 5,4% - - 85,1% - -
Skin 4909 1386 2995 5360 23.903 22.397 - 42244 60.950
32 8,1% 2,3% 4,9% 8,8% 39,2% 36,7% - 69,3% -
no-disease 4909 1386 2.995 5.360 - - 88.544 - 103.194
4,8% 1,3% 2,9% 5,2% - - 85,8% - -
Skin 19.277 5383 11.893 21.187 96.563 93.844 - 172.604 248.147
16 7,8% 2,2% 4,8% 8,5% 38,9% 37,8% - 69,6% -
no-disease 19.277 5.383 11.893 21.187 - - 363.011 - 420.751
4,6% 1,3% 2,8% 5,0% - - 86,3% - -
skin 76.512 21.210 47.298 84.133 388.530 383.440 697.687 1.001.123
8 7,6% 2,1% 4,7% 8,4% 38,8% 38,3% - 69,7% -
no-disease 76.512 21.210 47.298 84.133 - - 1.469.657 - 1.698.810
4,5% 1,2% 2,8% 5,0% - - 86,5% - -
Average skin - 8,7% 2,4% 4,8% 9,2% 40,4% 34,5% - 68,8%
9 no-disease - 5,2% 1,4% 2,8% 5,4% - - 85,1% -

Table 4.1: Distribution of classes in the training sets. For e ach tile size it displays the absolute number of tiles and thepercentage distribution
for both the datasets. Legend: a = diagnose-1739023, b = diagnose-6929067, ¢ = diagnose-6929070, d = diagnose-7573943, e = normal-skin

and f = background, g=no-disease.
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Other parts can thus be either normal-skin or background. This is why the tiling
algorithm canOt determine the class of these tiles, which is why tlgeare marked asunknown
or ?. Weka just ignores unknown classibcations, so the size of trekin/background dataset
is decreased by the number of unknown classes, which is why the entages of the diseases
are higher in these sets.

In order to use the entire data set, thedisease/not-diseasedataset was created. In
this dataset the classesnormal-skin and background were grouped together. Because
there is only a single class aside the disease classes, the unknovatues B containing tiles
that are either background or normal-skin, see Section 3.2.1 B can also beasibed as
not-disease .

Putting these three classes together further shifts the distrbution to the non-disease
side, because all of the unknown tiles are now seen as well.

4.1.3 E'lects of the tile size on the distribution

The Figures 4.1 and 4.2 also show that the percentage share of the diseasdightly de-

creases as the tile size decreaeses. This happens because smalkesizes correspond with
more detail. Each halving of the tile size splits each large tile into éur smaller tiles. Where
as a third of the original pixels had to be annotated as disease in order to gethe entire

tile classibed as such, with the four smaller tiles each of the smali¢iles have to contain a
majority of 33% before all of the tiles are classiped as diseaes. This is niikely to be true

for tiles on the edge of an alected area. When these are divided into fourraaller tiles, it

is likely that the disease covers not all the tiles for more than 33%. Thé means that the
number of diseased tiles will decrease when the tile size is alsedeased.
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Figure 4.1: Distributions of classes in the skin/background dataset, for various tile
sizes. These numbers are calculated with a scaling factor of 1 and will slightly di er
with other scalings. Missing values are not taken into account.
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Figure 4.2: Distributions of classes in the not-disease dataset, for various tile sizes.
These numbers are calculated with a scaling factor of 1 and will slightly di er with
other scalings.

4.1.4 Determining the baseline

There are many approaches for debning a baseline accuracy. Two possitidls were con-
sidered: WekaOZeroR algorithm and a random guess.

The ZeroR algorithm simply selects the largest class in the data set and classibe
all input as that class. The accuracy that follows could be a baseline for ptting the
performance measured in other classibers into perspective. Thoughis is a very crude
algorithm, in our very unbalanced data set especially thenot-diseasedataset it focusses
on the classes that are no diseases. This means that even if it tell@mething about the
overall accuracy of the classibers, it doesnOt provide a baseline the expected accuracy
of the diseases.

To create a baseline for each class seperately, a theoretical classibe used that
randomly guesses one of the possible classibcations. This gives a veowland simple
baseline for each class. Because a single measure is needed, theayeiof the distributions
shown in Table 4.1 are used to calculate the baseline. Table 4.2 showlsa baseline accuracy
values that are used in the following sections, where they will beeferred to as ObaselineO.
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Skin/background No-disease
Class Avg. share Random acc. Avg. share Random acc.
Diagnosis-1739023 8.69% 1.45% 5.15% 1.03%
Diagnosis-6929067 2.42% 0.40% 1.44% 0.29%
Diagnosis-6929070 4.78% 0.80% 2.83% 0.57%
Diagnosis-7573943 9.19% 1.53% 5.45% 1.09%
Normal-skin 40.38% 6.73%
Background 34.54% 5.76%
No-disease 85.13% 17.03%
Average accuracy 2.78% 4.00%
Total random accuracy 16 5
Total ZeroR accuracy 40.38% 85.13%

Table 4.2: Baseline accuracy for each class seperately and araverage accuracy. The
accuracy per class is determined by a theoretical random classiber, resulting in a total
accuracy of 1/6 for the skin/background dataset and 1/5 for the no-disease dataset.
Total accuracy is also determined by the ZeroR algorithm, resulting in the share of the
largest class as total accuracy.
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4.2 Contribution of tile size and scaling

The tiling algorithm can produce features for various tile sizes and caralso scale down
images before dividing them into tiles. To see if altering the tike size and/or the scale has
any elect on the performance, datasets with various tile sizes and scaigs were produced.
This sections shows if there is any relationship between the tilesize, scaling and the
accuracy of a classiber. Because using all classibers discussedeicti®n 3.4, would produce
too much data, only the classiber J48 was used. Exploratory testing shweed that this
classiber gives relatively high results with reasonably training tine.

There are two kinds of tile sizes that are worth looking at: the size of he tiles that
are used to calculate the features and the original tile size before s¢ay. Up to now,
everywhere the tile size was mentioned, a scaling of one was used,tbe two kinds of tile
size were the same. From this point on, weOll refer to the former as @ed tile sizeO and
the latter as Ooriginal tile sizeO. The relation between those two indited by

Tile size (4.1)

Original tile size = ————
9 Scale factor

and shown in Table 4.3.

Scaling factor
Original tile size 1 Y2 V4 U8 116 132

256 256 128 64 32 16 8

128 128 64 32 16 8 -
64 64 32 16 8 - -
32 32 16 8 - - -
16 16 8 - - - -
8 8 - - - - -

Table 4.3: Relation between the original tile size and the scéding factor: the scaled tile
size, the size of the tile where features are calculated from.

Looking at the scaled tile size, the size of the tiles used to calculatthe features, tells
something about the usefulness of the features in relation to the amounof pixels that
were used to calculate them. In Figure 4.3 the accuracy of the J48 clagser was plotted as
a function of the tile size, for various scalings. The trend line indcates a slight decrease in
accuracy as the tile size increases, suggesting that smaller tile sig are more useful than

the larger ones.

Although Figure 4.3 indicated a slight decrease of accuracy for larger tileiges, it is
to be expected that this decrease has another reason. For large tile sgeno or moderate
scaling could be done, since scaling down the image too much would dsin just a few tiles
for each image and classibcation would be pointless. Even for the data thasigenerated,
it is di# cult to compare them because the features used to train the classiledo not
originate from the same tiles and as such can vary merely due to the tilig algorithm had

di! erent input.

To take a better look at the e! ect of the scaling factor and tile size on the accuracy
that the J48 classiber can achieve, the original tile size is taken inteccount. The original
tile size is used to create groups of combinations of tile size and scadjn such that each
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Figure 4.3: Accuracy of the J48 classiber trained with various tile sizes and scalings
plotted against the tile size. The trend line, computed by linear regression, shows a slight
decline as the tile size increases.

Training of the classiber was done multiple times, the error bars indicating the 95%

conbdence intervals of the standard error. The number of repetitions vary for each

combination, see Tables A.1 and A.2 in the Appendix for exact numbers.
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group contains all Oscaled downO versions of an original tile, as if the tilas Prst cut out
the original image and then scaled down. In Table 4.3 the relation betweerhese three
parameters can be seen, as well as the grouping that occurs. When platt the obtained
accuracy of the J48 classiber against the scale size and colouring each grawpif scale
and tile size distinctively, as can be seen in Figure 4.4, a few thingsay be observed.

¥ Within a group of tiles with the same origin in the source image, scaling dwn
decreases the accuracy of the classiber. Each group shows about the samnel of
decline, with an exception of the original size 16 group in Figure 4.4b.

¥ There is a clear ranking between the accuracy of the dilerent groupsthe trend lines
do not cross each other.

¥ There seems to be almost no dilerence in the accuracy of the original I sizes 32,
64 and 16. Larger original tile sizes clearly perform less and also the"88 pixel tiles
perform less than the larger ones.

¥ There is a much larger margin of error in the largest tile size 256 than for tle other
sizes, even though these experiments were repeated most. (See TbhA.1 and A.2
in the Appendix).

A possible explanation for the tile sizes 16 16, 32" 32 and 64" 64 performing best,
with 32 " 32 as the maximum, could be that the texture that is present in the images is
around that size. Creating tiles that are smaller than the distinctive texture would result
in tiles that only contain a portion of a texture by which information woul d be lost. It is
unlikely that all distinctive textures are exactly of the same size which explains the small
di! erences between the three dierent tile sizes.
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Figure 4.4:  Accuracy (in %) plotted against scaling factor for the dis-
eases/skin/background dataset with 95% conbdence levels on #h standard error. Com-
binations of tile size and scaling where the combinations of tile size and scaling factor
are coloured by their original tile size. For each original tile size, a trend line is plotted.

The plot is made with a normal y axis and a logarithmic x axis, so each step down
means a halving of each tile.
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4.3 Comparison of classibers

Machine learning is a complex task and the best approach and best algorithndilers for
each situation. This section contains a comparison between the dilenat classipcation
algorithms discussed in Section 2.7.

4.3.1 Experiment setup

For this experiment it isnOt feasible to compare the classibers fail combinations of tile

size and scaling factor. Therefore comparison is done only for the best cdmmation of

scaling factor and tile size. According to the outcomes of Figure 4.4, the ambination

that gave the best overall accuracy in both the datasets was the tile siz 32 and scaling
factor one, closely followed by the tile size 64 and scaling 1. The lattewas chosen for
this experiment. Because the 64 64 tiles are larger, the overall dataset is four times
smaller than that of 32" 32 tiles. This makes it a lot easier to run each test multiple times
to generate more accurate results. Though larger tiles could imply that maller spots of
disease are not classibed as such in the tiling algorithm, Figure 4.1 imchtes no such thing
and even shows slightly higher percentages for the disease than at the 3232 level.

Just comparing the overall accuracy, the percentage of correctly clagsed tiles, wonOt
provide enough detail for comparing the classibers, as preliminary gs showed that the
overall accuracies were very close together. Except for the corregtlpredicted percentage
of tiles, the classibers also output a confusion matrix Witten et al. 011]. In this matrix,
each column represents the instances in a predicted class and eaabw represents the
instances in the actual class. Each element thus represents the mber of instances for
which the actual class is the row and the predicted class is the colum

Reducing the level of detail in the confusion matrix leaves four catgories for each
classi:

True positives are instances of clas$ that are correctly classibed as class;
False positives are instances of another class that are incorrectly classibed as claiss
False negative are instances of class that are incorrectly classibed as another class;

True negatives are instances which are not of clas$ and indeed classibed as another
class that is noti, whether this prediction is correct or incorrect.

These values are directly proportional to the distribution of classesin the instance
dataset and therefore not very suitable to compare the performance of thelassibers with
our unbalanced datasets. With these four numbers for each of the classethere are some
other statistics that are more useful in comparing these values:

Recall or the true positive rate,

true positives
true positives + false negatives

(4.2)

is the fraction of instances of the class that are found or Orecalled® out dimdtances
of this class, giving information of how many tiles of a disease are found;

Precision -
true positives

true positives + false positives’

(4.3)
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is the fraction of correctly classiped instances, the true positivg, out of all instances
that received the prediction of this class, providing a measure of bw many tiles are
incorrectly classibed as a disease;

F-measure is the harmonic mean of recall and precision,

precision" recall
precision + recall’

4.9

combining the two statistics into one.

4.3.2 Results

In Figures 4.5 and 4.6, the results of the experiment are displayed. &h of the classibers
was run thirty times to create numbers with a high conbdence. The ract data is shown
in Tables A.3 and A.4 in the appendix.

On inspecting the results, the following Pndings might be obserd.

¥ Each algorithm scores very good on classifying background, both in recall @hpre-
cision.

¥ The 1R algorithm clearly tends to generate a rule separating the largest lasses,
normal skin and background from the other classes as it only scores comparable
results on those two classes.

¥ The NaiveBayes algorithm tends to classify many tiles as one of the diseas; scoring
high on recall and low on precision for those classes. This also manifestself in the
low recall on normal skin. It would be interesting to investigate if the samples that
are falsely classibed as a disease, did come from an image containing thasese.

¥ The SMO algorithm has the opposite preference of classifying diseasesry reticent;
scoring low on recall and attaining the highest score on precision.

¥ The J48 algorithm shows steady performance on all classes on both precisi@nd
recall, however it seems to perform better at the diseases/skin/bacground dataset
than at the diseases/no disease dataset.

¥ Most of the classibers perform better on the normal skin and background saphes
than on the samples of the diseases. This could be because the normalrskind
background tiles are in much greater number or because there is less vance between
the tiles, as would be with a plain blue background. If this disparity still exists when
resampling the dataset such that all classes are of the same size wouldighback up
the notion that this inequality is caused by the skewed distribution.

¥ Each of the values are well above the baseline described in Table 4.2.
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Figure 4.5: Comparison of recall, precision and f-measure of di! erent classibers, trained
on the disease/skin/background dataset for tilesize 32 and scale 1.0.

36 of 65 Automated classiPcation of skin diseases using tile-based texture features



CHAPTER 4. RESULTS

Bn1R 084800 NaiveBayes! 1 SMO [0 MultilayerPerceptron

© ~

37 ¢

100 |- N

< 0 ™ —
_w| Eo2E -
X
®
o
[a'd
a\le(age

100 |~
S 3
S B oo
@ <
@
[a

(e}
o
sl

100 |-
;\o‘ 80 N ~
;‘; 60 ° E
>
7]
8 40
£
i

20

0

23 G 10 el - oas® 20°
oA 4692 4692 4151 0 85° ave!

Figure 4.6: Comparison of the recall, precision and f-measure of di! erent classibers,
trained on the disease/no disease dataset for tilesize 32 and scale 1.0.
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4.4 Contribution of features

As discussed in Sections 2.4 and 2.5, there are two dilerent groups of feates: the colour
features and the texture features. The composition of these featuresvas done quite
arbitrary, as in advance there was no clue about their usefulness for blding a classiber.
To give some insight in these features, further investigation was neded as the classiber
algorithms do not give much information about this.

4.4.1 Experiment setup

A lot of things could be done to zoom in on the usefulness of the featuredeka provides
several algorithms to rank features on individual basis, or to compose a $fiset of features
which give the best performance. Repeatedly training the classie with the dataset with

leaving out a feature each time would provide insight in which featires do not contribute
anything and thus could be left out. However, with a total of 93 features, this is not a
easy task. Also, many features, like the ratios and the original colour valuesare directly
dependent on each other and leaving just one out would not mean that much itl erence.

Instead of manually trying to bnd the best and worst features, Weka isused to select
and rank both features individually and create a subset of the best featres. With just
this subset a new dataset is created and the bve classibcation algoritlerare trained so
their performance can be measured. Again, the dataset with tile size i$4 and a scaling
factor of one is used. Because we are most interested in Pnding the beanked features
for discriminating between diseases, the dataset is reduced by meoving the background
and skin classes, such that only the four diseases remain.

To create a ranking for the features, two attribute evaluation algorithms, InfoGain-
AttributeEval  and OneRAttributeEval , are used. The wayInfoGainAttributeEval
works is the same method as the J48 algorithm uses to calculate its brsipht: calcu-
lating the Info Gain on the data, using the algorithm described in Secton 2.7.2. The
OneRAttributeEval algorithm evaluates the performance of HoltesO 1R algorithm Holte
[1993] as described by Holmes Holmes and Nevill-manning [1995]. The two algorithsvare
executed with tenfold cross validation to improve the reliability of the outcomes.

For the selection of a subset, theCfsSubsetEval algorithm is used. This algorithm,
designed by M. A. Hall evaluates the worth of a subset of attributes by conglering the
individual predictive ability of each attribute along with the degre e of redundancy between
them Hall [1998]. The algorithm is executed with tenfold cross validation, b provide more
accurate results.

The third comparison is between the colour features and the texture éatures. The
tile size 64 and scaling factor one datasets will be split into two subets with only colour
features or only texture features and the results of the classibersilvbe compared. To
generate accurate results, each conbguration is run twenty times witldi! erent seeds.
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4.4.2 Results
Ranking of the features

The results of the two feature ranking algorithms, performed on the dagset containing only
the four classes of diseases, is displayed in Table 4.4. Some of the m&gting observations
are listed here.

¥ The best ranked attribute, the average homogeneity of the value colour cannel,
valueglcmhomogenityavg , clearly outperforms the other attributes with a much
higher InfoGain and also a higher score on the 1R separator.

¥ The features based on the colour channels hue and value, both originatingdm from

the HSV colour space, score very good, representing twelve out of bée in the top
list.

¥ The three ratios that were added all show up in the table, thegreen/blue ratio at
the pfth place and the other two ratios blue/red and green/red both all the way on
the bottom. Unfortunately, inspecting the raw training data revealed both values to
be wrongly calculated, resulting in zero for an answer.

¥ The Haralick features homogeneity and contrast are present seven times ithe top
pfteen, making them very good features.

¥ With six out of the ten lowest ranked features, the saturation colour channel is not
of much use.

Subset evaluation

The CfsSubsetEval algorithm was run with hundred fold cross validation, outputting

the found created as a listing of the attributes with their percentage included in the
subsets. Observing Table 4.5, a lot of the highest ranked attributes ar represented in
almost all tiles. The ones that are not included, like the fourth-ranked attribute hue-

glem-homogenity-stddev , likely show much similarities with previous included attribu tes.
Adding such attribute to the subset would not improve its performance. As with the
previous experiment, almost all attributes included are derived fom the HSV colour space.

This experiment shows that not all attributes that are scored high by the ranking
algorithms are included in the best subset of attributes. This meanghat there are many
correlated attributes in the dataset. Removing some of the redundantattributes would
not have a big impact on the performance, but would increase computatioal time and
lower memory requirements when training classibers.

Plotting all samples of diseases in the three dimensional space of theeof the features
of the subset,value-glcm-homogenity-avg , value-glcm-energy-stddev  and mean-color-
hsv-hue, a good degree of separation occurs, as can be seen in Figure 4.7.

Performance of only colour or texture features

The results of the third experiment, the comparison of the J48 clas$ier with only colour
or texture features would seem to be predictable up front. Given that in the previous two
experiments the texture features are more frequent than the coloufeatures, it would be
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Values
# Ranking Attribute InfoGain 1R In subset
1 1.0 value-glcm-homogenity-avg t 0.85 70.8 100%
2 2.6 value-glcm-contrast-avg t 0.62 64.3 99%
3 3.5 hue-glcm-entropy-stddev t 0.62 63.7 100%
4 3.9 hue-glcm-homogenity-stddev t 0.59 64.4 0%
5 4.0 mean-color-ratio-green-blue c 0.62 621 100%
6 6.0 value-glcm-energy-stddev t 0.54 59.5 100%
7 7.1 value-glcm-contrast-stddev t 0.51 583 1%
8 8.2 mean-color-hsv-hue c 0.45 57.3 100%
9 9.8 gray-glcm-contrast-avg t 0.44 56.2 41%
10 9.9 hue-glcm-correlationinfo2-stddev t 0.44 55.8 100%
11 11.9 hue-glcm-contrast-stddev t 0.43 54.3 0%
12 14.7 value-glcm-clustertendency-stddev t 0.42 534 0%
13 15.3 hue-glcm-maxprob-stddev t 0.41 531 91%
14 15.9 hue-glcm-clustertendency-stddev t 0.39 54.0 0%
15 16.3 gray-glcm-homogenity-avg t 041 531 0%
83 82.0 saturation-glcm-maxprob-stddev t 0.15 415 0%
84 83.1 gray-glcm-correlation-avg t 0.12 42.0 0%
85 85.4 gray-glcm-correlationinfol-stddev  t 0.11 39.6 0%
86 85.8 saturation-glcm-info2-avg t 0.10 39.7 0%
87 87.0 saturation-glcm-info2-stddev t 0.09 384 0%
88 89.6 gray-glcm-entropy-stddev t 0.08 35.3 0%
89 89.7 saturation-glcm-infol-stddev t 0.07 36.0 0%
90 90.7 mean-color-ratio-green-red c 0.00 36.6 0%
91 90.8 mean-color-ratio-blue-red c 0.00 36.6 0%
92 91.1 saturation-glcm-correlation-avg t 0.03 35.1 0%
93 91.3 saturation-glcm-correlation-stddev  t 0.03 35.0 0%
Table 4.4: Results of the attribute rankers InfogainAttributeEval and OneR-
AttributeEval . The table is ordered on average ranking and shows the top bfen and

ten lowest ranked attributes. The dataset used as input for the attribute rankers con-
tains only samples of diseases: the skin and background classes were removed from the
diseases/skin/background dataset. The column OIn subsetO shows the percentage that the
attribute was included in the subset generated byCfsSubsetEval . The column showing
t or c indicates if the attribute is a colour feature or a texture fe ature.
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Attribute Included in subset Ranking
value-glcm-homogenity-avg t 100% 1
hue-glcm-entropy-stddev t 100% 3
mean-color-ratio-green-blue c 100% 5
value-glcm-energy-stddev t 100% 6
mean-color-hsv-hue c 100% 8
hue-glcm-correlationinfo2-stddev t 100% 10
saturation-glcm-homogenity-stddev t 100% 16
value-glcm-homogenity-stddev t 100% 17
mean-color-hsv-saturation c 100% 25
mean-color-rgb-blue c 100% 30
gray-glcm-homogenity-stddev t 100% 59
value-glcm-contrast-avg t 99% 2
hue-glcm-correlationinfo2-avg t 97% 38
hue-glcm-energy-stddev t 96% 29
hue-glcm-maximumprobability-stddev  t 91% 13
saturation-glcm-homogenity-avg t 91% 35
gray-glcm-contrast-stddev t 60% 22
gray-glcm-contrast-avg t 41% 9
value-glcm-entropy-stddev t 11% 57
saturation-glcm-energy-stddev t 9% 31
value-glcm-correlation-stddev t 3% 50
value-glcm-contrast-stddev t 1% 7
value-glcm-correlation-avg t 1% 55

Table 4.5: Subset evaluation results with 100-fold cross vatlation, showing the percent-

age that each attribute was included in the subset together with the ranking of the at-
tribute according to Table 4.4. Attributes that were zero times included are not displa yed.

Each subset contained 17 di erent attributes. The column showing t or c indicates if

the attribute is a colour feature or a texture feature.
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Figure 4.7: Plot of the features value-glcm-homogenity-avg , value-glcm-energy-
stddev and mean-color-hsv-hue . Except for the diagnosis-6929067 , all samples are
quite separable with only these three features.
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likely that the dataset of colour features would be outperformed by the dtaset of texture
features.

When plotting the results in Figure 4.8, this hypothesis is indeedproven correct,
taking in account the 95% conbdence levels that lay around 3.5, as can be sdarTable A.5
in the Appendix. Remarkable is that the texture-only dataset even peforms slightly better
(not signibcant) than the dataset containing all features. This indicates that classibers
might probt from datasets containing less features, a reason why furthreresearch should
focus in experimenting with subsets of the dataset.

Another observation is that for the normal skin and background classes, bothsbsets
perform as good as the original.
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Figure 4.8: Comparison between colour and texture features Displayed is the f-measure
averaged over the classibers J48, NaiveBayes, SMO and MultilayerPerceptron.
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4.5 Classifying images

Whereas all experiments so far were based on the recognition of tileshé Pnal goal of this
project is to be able use the classibed tiles to say something abotite images they are
originating from. It is not possible to say that when a disease has a rechbf 75%, 75% of
the images with this disease are also found. There are several reasonsywhut Prst the
way images are classiPed must be explained. We know that all images are dfexted skin,
so the algorithm simply has to choose which disease it sees, not to abte discriminate
between diseased and healthy skin. Therefore, the algorithm simplpreaks the image into
tiles and classibes them. The image is then classibed according toethargest disease class
that is present in the tiles.

Reasons why the recall on images wonOt automatically compare with the recall the
tiles would be:

¥ the distribution of the correctly classibed tiles wonOt be evenlgistributed amongst
the images, therefore some images could contain only correctly classipgfs, while
another image would not contain any correct tiles at all, still making up for a total
of 75% recall;

¥ not all images contain the same amount of diseased tiles, in some image theejust
less dected skin shown than in others, also skewing the distribution;

¥ although a majority of the diseased tiles would be classiped correctlywhen the
precision of the classiber is not perfect, some false positives of other diseasesl
also show up in the images;

¥ even though all performance measures of the classibers were calculatgith tenfold
cross validation, it can be expected that of all training images, ten perent of the
tiles are left out of each fold. This means that slight di'lerences between the images
can also be Olearned® by the classiPer, lowering performance onrtiages that were
not annotated and therefore not used in the training.

45.1 Experiment setup

In order to classify the images, a new dataset was created, containing thfeatures without
classibcation for all 73 images in the data set. Time limited, the scopesiagain narrowed
to only the tile sizes 64 and 32, both with scaling factor one. For each of thelassibers,
the stored model is used to create predictions for the tiles. Theites are then linked back
to their originating image and totals for each class are calculated.

45.2 Results

The results are displayed in Figure 4.9. When comparing the recall wih that of the tiles
in Figure 4.5, the low recall for diagnose-6929067 is visible in both histograms.

The dilerences between the 32 and the 64 tiles are inconclusive: faliagnosis-1739023
the performance seems to increase with the smaller tile size, wheas for other diseases
it seems to have less lect or even decreases. To get a clue whyliagnosis-6929067 is
so badly recognised, a look at the original distribution of the images in Setion 2.1 shows
a possible reason: the number of annotated samples is only a third of all iages while
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Figure 4.9: Recall on classiPcation of images

diagnosis-6929070 and diagnosis-7573943 both have two third or more of the samples
annotated, making it harder for the classiber to learn all characteristcs and manifestations
of the disease. Howeverdiagnosis-1739023 is recalled very good by all classibers, while
this class too has only a third of its images annotated.

A better explanation can be found when looking at the images themselvesDiagnosis-
6929067, Contact Dermatitis, apparently has many manifestations, as can be seen in Fig-
ure 4.10. Together with a limited number of annotated image, not even contaimg all
manifestations, it becomes virtually impossible to get an accurate prdiction. A simple
solution for this problem would be to add more annotated samples to the set

Averaging the results, the best performing classiber is J48, with bdt tile sizes giving
an equal average recall of 70%.

Figures 4.11 to 4.18 show for each disease two images that are classibed. Gample
of an image that was also used to train on and one image that was not included in the
train set. All images were marked with the model created by the J48 algdthm, which
was trained with 32" 32 tiles and unscaled images. The following colours are used to
mark the classes in these images:

¥ Pink: diagnosis-1739023

¥ Salmon: diagnosis-6929067

¥ Yellow: diagnosis-6929070

¥ Green: diagnosis-7573943

¥ Slightly gray overlay: normal-skin
¥ Slightly white overlay: background
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Figure 4.10: Close-ups of image diagnosed withdiagnose-6929067
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Figure 4.11: Image of diagnosis-1739023 that is correctly classibed. This image was
used in training the classiber.

Figure 4.12: Image of diagnosis-1739023 that is correctly classibed. This image was
not used in training the classiber. Compared to Figure 4.11 this image contains more
Onoised from misclassibed tiles, although a big majority is still correctly classibed.
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Figure 4.13: Image of diagnosis-6929067 that is correctly classibed. This image was
used in training the classiber.

Figure 4.14: Image of diagnosis-6929067 that is incorrectly classiped as
diagnosis-1739023 . This image was not used in training the classiber. The image
clearly shows that the in the upper left corner, a lot of misclassibed tiles exist. This is
likely due to the fact that the texture on the torso is di! erent than that of hands and
was never seen by the classiber. All the rest of the image contains largely noisy mis-
classibed tiles, although the Pngers are as a whole misclassibed rather than containing
some single misclassibed tiles.
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Figure 4.15: Image of diagnosis-6929070 that is correctly classibed. This image was
used in training the classiber.

Figure 4.16: Image of diagnosis-6929070 that is correctly classibed. This image was
not used in training the classiper. As can be seen, the accuracy is lower and level of
noise in the image is indeed higher than in the unseen Figure 4.15
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Figure 4.17: Image of diagnosis-7573943 that is correctly classiPed. The image was
included in the set used to train the classiber. There are almost no tiles wrongly clas-
sibed.

Figure 4.18: Image of diagnosis-7573943 that is incorrectly classibed as
diagnosis-7573943 . This image was not used in training the classiber. Although this
picture contains part of the Pngers, the main topic are the foots of the patients. On both
parts there are examples of random misclassibcations and large patches of skin that are
misclassibed.
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Discussion and Conclusions

Although a great deal of discussion was already added to the Results, wheiewas more
appropriate, a few more remarks and areas for improvement can be made on th@ocess
as a whole.

5.1 The road not taken

This project is a feasibility study and in the process many choice were made early on,
limiting the possibilities further on. Looking back on the process some minor and major
points of improvements can be named.

5.1.1 The concept of tiles

While tiling and dividing the image in multiple tiles had proven a simple and elective
approach on reducing the complexity of the image, a quite similar concepgives more
possibilities. Instead of looking at the classibcation, one can look at absifying pixels,
with a surrounding neighbourhood that is used to calculate featuredfor that pixel. This
way tiles can overlap and a higher Oresolution® on the image can be obtaimgthout
being limited to small tile sizes. It is also possible to reducehie number of pixels without
enlarging the tile size.

Increasing the number of tiles that can be calculated from a single imag&ot only
gives more samples to train on. When enough overlapping tiles are geneed, it is easy
to toss out the tiles that do not contain a near majority of a single class. Ako there is
more chance for a small vesicle or pustule to end up entirely in a sgie tile, such that the
texture features take into account the entire texture of the a! ected skin.

This approach would also have made it easier to compare dilerent tile sies, because
they could all originate from the same image, without the need for scaling. flany further
work would be done based on this project, it is recommended strongly taewrite the
feature creation algorithm to use this concept.
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5.1.2 Resolution independence

In the current implementation, some of the example images contain clofups of one
Pngernail while others contain an overview of the entire hand plus forem. These images
obviously result into dilerent levels of detail when taking bxed sze tiles. When adding
multiple scalings of the same original tile size, a degree of resolutiomidependence would
be accomplished.

Just like the point-with-a-neighbourhood concept, using multiple scalings of the same
image would not only increase the number of sample tiles to train with, f also makes it
possible to match two images with dilerent level of detail together.

Adding a degree of resolution independence would be a simple task: ehcurrent
implementation of the tiling algorithm can be run multiple times and t he results could be
combined. A fast test showed promising improvements of the recalbf classibers.

5.2 Conclusions

This research project was a feasibility study to see if medical irages that are taken with no
such purpose in mind, can be used to classify dermatological diseasess some promising
results are visible in Section 4.5.2, it can safely be concluded that ik is indeed feasible.
Without having examined all options and certainly left room for various improvements
and optimisations, a quite simple approach led to an overall recall of 70% onhe images.
Classibcation of the tiles scored much better than the baseline in Tde 4.2.

A more detailed answer to the question if automated classibcation is fedsde can be
given by answering the more specibc research questions listed ihe introduction.

Are all images in this database of use, or is there a clear distinction in char-
acteristics?

Although some diseases clearly result in a much more deviant texturehtan that of normal
skin, results do not point out a single disease or image that is not usable.The badly
recognised diseas€ontact Dermatitis has many manifestations in the images, presumably
resolved by adding more images of this disease.

What information is needed in addition to the images, for example skin col our,
in order to create a classiPer that can discriminate between disease s?

First of all, some annotations were needed. For the disease alected areabut also to

mark the dilerence between healthy skin and background. Other data hat was available
was the sex and age of a patient. Adding those as features to the training saoes would
garble the results as the number of images is very limited and these &ures would push a
classiber too much in a direction given an age or sex. When the size ofdtsample image
set increases manyfold, adding those characteristics would help inuting out conditions

that occur only in childhood or old age.
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What kind of classiber can be used best for the purpose of discriminati ng
between the four diseases.

Figures 4.5 and 4.6 show that there is no such thing as the best clasgik OThe bestO is
a trade-o! between recall and precision. That being said, the J48 degaion tree algorithm
gives steady performance on both. As for classifying images, the J48 claksir scores
highest on recall.

While itOs not taken into any account so far, the execution time of a algatfim will
be a major factor in the real world. Naive Bayes and 1R are the fastest, wittNaive Bayes
far more accurate. Although the recall and precision of the Naive Bayes algathm is less
than with the J48, SMO and Multilayer Perceptron classes, it comes alog pretty good
with the classibcation of images. The SMO and Multilayer Perceptron tassibpers become
really slow at smaller tile sizes and thus larger datasets. They would ot scale well for
very large datasets.

The question about the best classiber canOt be answered unambiguousy the cur-
rent setup the J48 algorithm proves the best, but for larger datasets itis not possible to
predict if computation time weighs up to the better performance, conpared to the Naive
Bayes class.

Is it possible to locate the area of the alected skin or is it only possib le to
mark an entire image as containing a specibc disease?

Looking at the results in Figures 4.5 and 4.6 background tiles are recognidenearly perfect.
The normal skin also scores quite good. When classifying an image, someise might
occur, but there will be a good estimate of the location of akected skin.

How can the creation of new pictures be improved in order to increase t heir
usefulness in automated classibcation?

This research question deserves a section on its own to be answeyrex$ this is part of a
larger recommendation to the LUMCOs dermatology department and their photo@phers.

What kind of features are most useful for discriminating between dis eases?

The most useful features are displayed in Table 4.5. In a more general wathe results in
Figure 4.8 point to the texture features as the most useful set of featres. They are however
also the most computational intensive features to calculate. This is Wy nominating
features to be eliminated from the calculations is important when scahg up the amount
of images in the training set.

At the start of the project, the tiling approach was not yet thought of. Th erefore no
research question was formulated about this. Looking at the results in &ction 4.2 some
important conclusions can be drawn. Adding more detail in the image by maing the
tiles smaller is not always going to provide better results and it cetainly adds a lot of
computation time. As is clearly visible in Figure 4.4, there is little to gain by decreasing
the tile size lower than 64" 64 pixels. Scaling down the image prior to the tiling is no
good for the accuracy and should be avoided.
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With all research questions being answered, some bnal remarks can beveg as a
conclusion. This bachelor project didnOt provide a complete sofawe solution for classify-
ing dermatological images. It did however prove that it is possible to @ so and hopefully
leads the way to further research and a working implementation. Whie the scenario of
an iPhone application that can be put to use in Africa or other parts of the word with-
out adequate medical care is far away, a system like this could also besad to assign
classibcations to the current database of the LUMC.

5.3 Recommendations for the LUMC

This section contains some recommendations for the LUMCOs department oénatology
and the photographers that are responsible for the image database. The most iportant
recommendation is to collect more images of common skin diseases, althougrserves no
purpose for the original educational goal of the database. With more examples ohe same
disease, classibers can be trained and evaluated much more accurate. Howny images
are needed canOt be substantiated by this research, but a hundreat feach disease would
be a ballpark estimate. Another possibility is to store a photograph of eachpatient that
comes in.

By storing information about the level of privacy for each image (heads, tatbos or
private parts visible), obtaining OsafeO data is a much easier task. diag the location on
the body and diagnosis for each image is also essential. Without a properadsibcation
the image is of little use for training or testing.

The third recommendation is already largely practiced: for easy recogniag the skin
from the surroundings, a plain background is recommended. Images shalibe taken with
the alected part facing straight into the camera, so the texture is always the same. The
rotation of the body part is of no concern, as the algorithm is fairly invariant to rotation.

If information is provided about the size of the object in an image, a beter Oresolution
independenceO could be obtained. With information about the scale of ¢hobject, all
images could be scaled into a uniform level of detail. This size inforation could be a
manually added number, some markers that are present in the image or theatneraOs focal
length and focus distance.

A topic that is not discussed so far, is that of complexion. Many diseasesnani-
fest themselves in dierent ways for di! erent in dilerent coloured skin. Knowing this
information up front would support any classibcation.

When these bPve recommendations are followed up, a database with far greatvalue
will arise, with the potential of being used for automated classibcation

The topic for this research was originally shared with Lucas van der Meer &n der Meer
[2012]. This research focussed solely on the classibcation using therremt database, his
complementary project provides a general overview of how the deratology in general can
benebt from information technology. Herein a more profound advice for the dpartment
is included, along with some methods of computer supported annotation ofhe images.
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5.4 Further research

Some topics worth investigating are already stated in Section 5.1: changinthe way that
tiling is handled and achieving a level of resolution independencdy scaling the tiles
in di'erent ways. Other than things that could have been done dilerent, some other
interesting ideas came forward in this research.

The most obvious topic is a more intense study on classifying skin deases, starting
where this research ended. A larger dataset could provide better aacacy as well as more
challenges concerning the computational intensive tasks of calculatn the features and
training the classiber.

Another idea that would be interesting is the application of the setup of this research
to create predictions of new images and feed them back to the user witiccan check the
results. By accepting or declining the proposed classibcation, adiibnal images that can
be used for training can be created, as well as negative examples of imagest containing
a specibc disease.
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Appendix A

Detallled tables

Tile Size Scale Count Average Variation StdDev StdErr 95% conf

256 1 20 77.66 0.89 0.94 0.21 0.41
128 1 15 82.74 0.29 0.54 0.14 0.27
128 v2 20 76.88 1.00 1.00 0.22 0.44
64 1 30 85.58 0.04 0.19 0.04 0.07
64 V2 15 81.55 0.24 0.49 0.13 0.25
64 va 20 74.91 1.36 1.17 0.26 0.51
32 1 3 86.18 0.04 0.19 0.11 0.21
32 V2 140 84.59 0.05 0.23 0.02 0.04
32 iy 15 80.97 0.18 0.43 0.11 0.22
32 V8 20 74.42 1.78 1.34 0.30 0.59
16 1 3 85.88 0.00 0.02 0.01 0.02
16 V2 3 85.37 0.00 0.07 0.04 0.07
16 Va4 10 83.73 0.06 0.25 0.08 0.15
16 ¥8 14 80.18 0.33 0.58 0.15 0.30
16 116 20 73.73 0.88 0.94 0.21 0.41
8 1 2 84.72 0.00 0.02 0.02 0.03

8 12 3 84.70 0.00 0.05 0.03 0.05

8 14 3 83.70 0.02 0.13 0.07 0.14

8 18 10 81.61 0.04 0.19 0.06 0.12

8 116 15 76.91 0.23 0.48 0.12 0.24

8 132 20 70.17 1.25 1.12 0.25 0.49

Table A.1: Accuracy (% correctly classibed tiles) of the J48 algorithm, trained with the
diseases/normal skin/background dataset.
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Tile Size Scale Count Accuracy Variation StdDev StdErr 95% conf
256 1 20 84.42 0.25 0.50 0.11 0.22
128 1 15 87.87 0.07 0.27 0.07 0.14
128 v2 20 84.51 0.51 0.72 0.16 0.31

64 1 29 89.77 0.02 0.13 0.03 0.05
64 V2 15 87.30 0.09 0.31 0.08 0.16
64 va 20 84.65 0.52 0.72 0.16 0.32
32 1 5 90.13 0.00 0.07 0.03 0.06
32 V2 10 89.16 0.04 0.19 0.06 0.12
32 4 15 87.48 0.07 0.26 0.07 0.13
32 U8 20 84.25 0.37 0.61 0.14 0.27
16 1 3 89.65 0.00 0.01 0.01 0.01
16 V2 5 89.56 0.00 0.06 0.03 0.05
16 va 10 88.62 0.03 0.17 0.05 0.11
16 U8 14 86.59 0.12 0.34 0.09 0.18
16 116 20 83.59 0.38 0.61 0.14 0.27
8 1 2 88.81 0.00 0.04 0.03 0.05
8 v2 3 88.84 0.00 0.05 0.03 0.05
8 4 5 88.45 0.00 0.03 0.01 0.02
8 8 10 87.08 0.01 0.12 0.04 0.07
8 116 15 84.80 0.09 0.30 0.08 0.15
8 132 20 81.67 0.49 0.70 0.16 0.31

Table A.2: Accuracy (% correctly classibed tiles) of the J48 algorithm, trained with the
diseases/no-diseases dataset.
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Precision Recall F-measure
Classiber Class Avg StdDev StdErr 95% Avg StdDev StdErr 95% Avg StdDev ®Err  95%
d-1739023 25.5 15 04 08 83 0.6 02 03 126 0.9 02 04
d-6929067 0.0 0.0 00 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0
1R d-6929070 32.0 1.8 05 09 134 1.2 0.3 0.6 189 1.4 04 07
d-7573943 29.7 11 03 06 111 0.7 0.2 03 16.2 0.8 02 04
normal-skin 61.2 0.2 00 0.1 86.3 0.5 01 02 716 0.3 01 0.1
background  95.9 0.1 00 0.1 975 0.1 0.0 0.0 96.7 0.1 0.0 0.0
d-1739023 79.6 0.7 0.2 04 80.0 1.1 0.3 0.7 798 0.8 02 05
d-6929067 66.6 11 03 0.7 635 1.8 06 11 650 0.7 02 04
348 d-6929070 67.2 15 05 0.9 66.3 1.3 04 0.8 66.8 11 04 0.7
d-7573943 61.8 0.7 02 05 613 0.4 0.1 0.2 615 0.5 02 03
normal-skin 83.9 0.1 00 0.1 845 0.4 0.1 03 84.2 0.2 01 01
background  99.1 0.1 00 0.0 9838 0.1 0.0 0.1 0989 0.1 0.0 0.0
d-1739023 61.5 0.2 0.1 0.1 686 0.3 0.1 0.1 649 0.2 01 01
d-6929067 14.2 0.1 00 01 674 0.5 0.1 03 234 0.2 01 01
NaiveBayes d-6929070 27.0 0.1 00 0.0 794 0.2 0.1 0.1 403 0.1 00 0.1
d-7573943 37.6 0.1 00 0.1 64.8 0.2 0.1 0.1 476 0.1 00 01
normal-skin 76.7 0.2 0.1 0.1 287 0.1 00 0.1 418 0.1 00 01
background  98.8 0.0 00 0.0 933 0.0 0.0 0.0 96.0 0.0 0.0 0.0
d-1739023 79.2 0.2 0.1 01 86.1 0.2 0.1 0.2 825 0.1 01 01
d-6929067 96.4 1.2 04 09 173 0.8 0.3 06 294 1.2 05 0.9
SMO d-6929070 78.5 0.4 02 03 511 0.3 0.1 0.2 619 0.3 01 0.2
d-7573943 71.9 0.7 03 05 39.2 0.4 0.2 0.3 507 0.5 02 04
normal-skin 78.1 0.1 00 0.1 926 0.1 0.0 0.1 847 0.1 00 01
background  99.2 0.0 0.0 0.0 98.9 0.0 0.0 0.0 991 0.0 0.0 0.0
d-1739023 82.1 0.8 05 0.9 885 1.1 06 13 852 0.1 01 01
d-6929067 77.3 15 09 17 671 1.9 11 22 718 0.7 04 07
MP d-6929070 73.3 3.1 1.8 35 686 3.3 19 38 708 0.4 02 05
d-7573943 67.6 2.7 1.6 31 604 1.0 06 12 638 0.6 04 07
normal-skin 85.5 0.5 03 0.6 87.8 1.2 0.7 13 86.6 0.3 02 04
background  99.3 0.1 0.0 0.1 99.0 0.0 0.0 0.0 099.2 0.0 0.0 0.0

Table A.3: The performance of classibers for the diseases/skn/background dataset, averaged over 30 runs.
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All features Colour features Texture features

Class F-measure StdError 95% conf F-measure StdError 95% conf F-measure td&rror 95% conf

d-1739023 74.4 1.4 2.8 61.8 1.1 2.1 76.9 0.8 15
d-6929067 40.6 35 6.8 16.9 2.0 3.9 42.0 2.8 55
d-6929070 54.8 2.2 4.3 36.8 2.9 5.6 57.8 1.2 2.4
d-7573943 53.6 1.1 2.2 37.4 2.6 5.0 51.6 0.9 1.7
normal-skin 66.3 3.6 7.1 67.8 2.5 4.9 73.2 2.1 4.2
background 97.7 0.3 0.5 98.5 0.1 0.1 97.8 0.2 0.4

Table A.5: Comparison between colour and texture features. Displayed is the f-measure averaged over the classibers J48\aiveBayes, SMO
and MultilayerPerceptron together with the standard error and 95% conbdence interval.
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