
Internal Report 2012-2013–17 August 2013

Universiteit Leiden

Opleiding Informatica

A kinetic Monte Carlo implementation

of the Cellular Potts Model

with SciQL

Mathé Zeegers

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

1 Abstract

The Cellular Potts Model (CPM) is a widely-used, stochastic method for modeling
and simulating collective cell behavior in biology. It has been applied to blood vessel
growth, somitogenesis and tumor growth. The main disadvantage of CPM is the
lack of a well-defined time scale. In this project a kinetic variant of the CPM will be
implemented inspired by kinetic Monte Carlo methods, like the one that has been
used for the Gillespie algorithm. In the forthcoming implementation, complex, grid
based datastructures and neighborhood queries are needed. For this reason, the
model will be implemented with SciQL (http://www.scilens.org/Resources/SciQL)
in coorporation with the Database Architectures group at CWI. SciQL is an SQL-
based database language meant for scientific applications and has the right syntax
for such complex queries on tables and arrays. Experiments with the implementation
yield plots where the Hamiltonian is set against the theoretically obtained time scale.
The relations between crucial parameters of the CPM, the compression resistance of
cells and the temperature of the model, and the simulation in terms of the total energy
in the system have been analyzed. The behavior of the implementation corresponds
to the theoretical behavior. The temperature determines roundness and the amount
of inlets of cells and the compression resistance determines the flexibility of cells.

2

Contents

1 Abstract 2

2 Introduction 4
2.1 Cellular Potts Model . 4
2.2 Motivation for a new algorithm . 6

3 Methods 6
3.1 The new algorithm . 6
3.2 SQL, SciQL and MonetDB . 9
3.3 Implementation of the new algorithm 12

4 Results 20
4.1 Experiment 1 - One long cell . 20

4.1.1 Experiment 1.1 - One long cell that shrinks 21
4.1.2 Experiment 1.2 - One long cell that keeps cell size 28

4.2 Experiment 2 - Four similar cells . 35
4.3 Experiment 3 - Engulfment of cells by other cells 43

5 Discussion 47
5.1 Further work . 47

6 Appendix 50
6.1 Compilation file . 50
6.2 Main application . 50

3

2 Introduction

2.1 Cellular Potts Model

To model the collective behavior of cells, Glazier and Graner developed their Cellular
Potts Model (CPM) in 1992 [1]. This model takes the adhesion between the cells as
a base for the rearrangement of cells, which is determined stochastically.
This model is powerful and relatively easy to understand and is therefore used in
a wide range of biological fields, including growth of blood vessels [2], somitogene-
sis [3] and tumor growth [4]. Some biological mechanisms involved are chemotaxis
(the movement of single-cell or multicellular organisms according to chemicals in the
environment), haptotaxis (directed motility of cells by an adhesive gradient) and
haptokinesis (adhesive protein-mediated motility of cells). Depending on the prob-
lem one is facing, the model can be extended in various ways. For example, one may
consider to add an extra component that takes the change of size of the surface of
the membrane in the CPM into account.

The Cellular Potts Model is a Cellular Automaton (CA) that considers a lattice on
which different kinds of cells are living. In the Cellular Potts Model, these cells are
represented as clusters of sites with the same identity σ and they try to copy parts
of themselves to parts of their neighbors. The process of copying costs or produces
a certain amount of energy. This energy describes the work associated with the ex-
tension of cells. The change in energy determines the probability that the copy will
take place. A copy will also be called an ‘update’ later on. For describing the most
important update rule in the CPM, we need to address the parameters that are used.
First of all, consider an environment which consists n−1 different cells and one type
of medium. The environment is abstracted by laying down a grid on the cells. In
this way, we obtain a two-dimensional array in which the elements carry the value of
the cell they belong to. Thus, the identity of an element is denoted by σ(~x), where
~x ∈ Ω ⊂ Z2 is an element from the array and σ(~x) ∈ {0, ..., n}. Sometimes this value
is called the spin. The medium has spin 0. Each spin corresponds to a certain type
of the cell it belongs to, which is given by τ(y), where y is a spin.
Since each pair of cells has a certain adhesion, we introduce the n × n-matrix J in
which the adhesion energies are given to model the adhesion of cells to one another.
The strength of the area constraint of the cells is given by λ. Other important pa-
rameters are ασ and Aσ. ασ denotes the current area of a certain cell σ and Aσ the
target area that a cell σ tries to obtain (σ ∈ {1, ..., n}).

4

Also, consider the Kronecker delta, which is defined by:

δij =

{
1 when i = j,
0 when i 6= j.

The mentioned change in energy is the total energy after the copy minus the total
energy before the copy. The energy is given by the Hamiltonian H, so:

∆H = Hafter −Hbefore

where H is given by:

H =
∑
~x,~x′

Jτ(σ(~x)),τ(σ(~x′)) · (1− δσ(~x),σ(~x′)) + λ
∑
σ

(ασ − Aσ)2

Let ~x and ~x′ be adjacent if ~x′ is one of the eight neighbors of ~x on the grid. All adja-
cent pairs (~x, ~x′) are considered and the corresponding adhesion energies are added.
The Kronecker delta cancels out the pairs from the summation where the elements
have the same corresponding cell. Since the stretching of cells also contributes to the
total energy, the last terms takes care of the sizes of the surfaces of all cells.
Once ∆H is known, the probability of a copy can be calculated. This is done accord-
ing to the Boltzmann-Gibbs distribution. If ∆H is less than zero, the copy produces
energy. This means that such a copy will be executed by all means, so the probability
is 1. If ∆H is equal or higher than zero, then the copy does not produce energy, but,
in case of ∆H higher than 0, the copy will cost energy. In this case, such a copy
will be executed with an exponential probability that depends both on ∆H and on
T > 0, which is the temperature. This yields the following:

P(∆H) =

{
e−

∆H
T , ∆H ≥ 0,

1 , ∆H < 0.

Now we take a closer look at role of the crucial parameters in this Hamiltonian. The
entries of the matrix J can be changed depending on what cells one is working with.
This change has a big impact on the Hamiltonian H if the size of the cell is high. If
λ increases, the stretching of the cells will be penalized by a higher contribution of
this term to the Hamiltonian. This also goes for cells that shrink. As a consequence,
a higher λ results in less variation in cell sizes from their respective A-values. The
temperature T determines the probability P(∆H) in case ∆H > 0. An higher T
increases −∆H

T
and, therefore, increases the corresponding exponential probability

P(∆H) of ∆H > 0. This relates to the fact that cells that are close to their target

5

area will generally get a round shape when the temperature is low and a more ran-
dom shape when the temperature increases. In the latter situation, there are more
possible copies in one step.

2.2 Motivation for a new algorithm

The easiest way of implementing this model is by using a standard Metropolis algo-
rithm [5]. In this way, at every step we first take a random element from the array.
After this, one of his eight neighbors is selected randomly. For the copy correspond-
ing to this pair the Hamiltonian values are calculated, along with the probability.
Comparing the value that results from the latter with a randomly generated number
from [0, 1], the copy will be executed or not. After this, the process starts again with
a new step.

The implementation of the model with the standard Metropolis algorithm as de-
scribed in the previous section has drawbacks. In this algorithm, many possible
updates (or copies) are generated and tested. Unfortunately, many of them are
thrown away because the cell types are equal or the probability is not high enough
for acceptance. This is waste of computation time. Furthermore, in this implemen-
tation there is no good definition of a time scale. This means we are not able to
attach a speed to the process and we cannot know at what rate cells make copies.
In the end, it should be possible to determine the rate at which pseudopodia are
extended and retracted. With this information, the speed of the algorithm can be
tuned by setting the parameters correctly using experimental data.

3 Methods

3.1 The new algorithm

The new implementation is a kinetic Monte Carlo (KMC) algorithm and takes away
the major disadvantages of the Metropolis implementation. In general, kinetic Monte
Carlo methods simulate natural processes. When all parameters are correct and the
processes, which occur at certain rates, are independent, a kinetic Monte Carlo algo-
rithm gives a meaningful time scale. There are many variations on the kinetic Monte
Carlo method, like the Gillespie algorithm [7], but they mainly differ in their applica-
tions. For example, A. Neagu et al. presented the kinetic Monte Carlo method as an

6

alternative for the Metropolis Monte Carlo for simulations of multicellular systems
[6].

In our problem, we first consider all possible updates that can take place in the
current state of the model along with the corresponding values of ∆H. These are all
stored in a database. Then, if i is a record in this database, the probability that this
update will take place is calculated and renamed to ai := P(∆Hi). Now we obtain a
distribution where update i is more likely to be chosen if ai increases. Furthermore,
we define:

a0 :=
∑
i

ai

The rules for the algorithm are derived below. Firstly, we define the probability
density function P(τ, µ) by:

P(τ, µ)dτ = the probability that given time t, the next

update will happen in the interval (t+ τ, t+ τ + dτ),

and that this update is corresponding to aµ

Now aµdt is the probability that, given time t, the corresponding update will be the
update happening in (t, t+ dt). Let:

P0(τ)dτ = the probability that given time t, no update

will happen in the interval (t, t+ τ),

Now P(τ, µ)dτ can be expressed as the product of P0(τ) and aµdτ , i.e.

P(τ, µ)dτ = P0(τ) · aµdτ (1)

Since 1−
∑

i aidτ is the probability that no update will happen within dτ time, the
following holds:

P0(τ + dτ) = P0(τ)(1−
∑
i

aidτ)

Rewriting this and, since dτ is infinitesimal, considering the Taylor polynomial
around zero, this gives:

P0(τ) = e−
∑
i ai·τ

7

Finally, substituting this into (1) gives:

P(τ, µ) = aµe
−

∑
i ai·τ

Now, taking r1, r2 ∼ U(0, 1) and setting:

τ =
1

a0

ln(
1

r1

) and

µ−1∑
v=1

av < r2a0 <

µ∑
v=1

av

The first rule generates a random value τ according to the density function P1(τ) =
a0e
−a0τ and the second rule generates a random integer µ according to the density

function P2(µ) = aµ
a0

.
Since P1(τ) · P2(µ) = P (τ, µ), a random pair (τ, µ) is generated according to the
density functon P (τ, µ) = aµe

−
∑
i ai·τ

These two rules will be used in the new algorithm. The general structure of this
algorithm is as follows:

1. Create a list of all possible updates: iterate over each element of the array, and,
for each element, iterate over each neighbor. If this neighbor differs in type,
calculate ∆H and store this in a database.

2. Determine all ai = P(∆H) = e−
∆H
T for each i.

3. Sort the records of the database descending on ai.

4. Determine the sum a0 of all ai.

5. Generate two pseudorandom numbers r1 and r2 from [0, 1]

6. Determine the time until the next update will take place, given by τ = 1
a0

ln(1
r1

),

and determine µ such that
∑µ−1

v=1 av < r2a0 <
∑µ

v=1 av.

7. Increase the time t with τ (this means that τ time passes) and execute the
update belonging to aµ.

8. Renew the database efficiently. This is done by considering the lattice site that
changed in the previous step and recalculating ∆H for all possible updates
with its neighbors. Since the cell sizes have changed, according to the volume
constraint, we also have to change the ∆H values for the updates that consider
the lattice sites at the borders of the two cells that have changed in size during
the previous step.

8

9. Calculate the new values for ai and go back to step 3.

This algorithm is indeed a kinetic Monte Carlo algorithm and works according to our
problem. The third step is mainly for debugging and statistics, but can be removed
in the final algorithm.

3.2 SQL, SciQL and MonetDB

The implementation of the algortihm is done in C++, but there are places where
SQL is needed. SQL is a famous language which is used for Database Management
Systems (DBMSs). With this language, queries can be done either to extract in-
formation from or to insert information into a database. SciQL is the experimental
aspect of this project. This is a modification of SQL specifically meant for grids and
arrays to be able to request elements with specific properties in an easy way, devel-
oped by M.L. Kersten et al. [8] in 2011 . When the test cases are getting increasingly
complicated, we need to handle a very large amount of data (in this project a large
amount of possible updates and their characteristics). In theory, SciQL will be very
suitable for our problem. Some examples of queries from SciQL and SQL used in
this project will be given later on.

The communication of the program with the database with SciQL and SQL is han-
dled by MonetDB. This is software from the Database Architectures group at CWI
[9]. MonetDB uses column store technology. This means that a data table is stored
as sections of columns of data instead of rows of data. A few advantages of column
storing can be noted compared to row storing in terms of efficiency. A row-oriented
database reads the whole row to be able to read the desired attribute. Often, queries
read much more data than requested. MonetDB is still in full development and keeps
improving in terms of functionality, speed and ease of use, partly by feedback from
research and applications. Since the integration of SciQL in MonetDB is not entirely
finished at this moment, not every function can be used yet, but it is sufficient to
use the current version for this project.

There are a few reasons MonetDB and SciQL are chosen to support the kinetic
Monte Carlo implementation of the CPM. First of all, it is much easier to use SciQL
with an array than straightforward C++ code, since queries can give information
in a much more compact way while using less code. Secondly, with MonetDB it is
possible to use queries at any desired moment. In this way, debugging and obtain-
ing intermediate statistics can be obtained in a very neat way. Furthermore, with
SciQL, it is not possible to go out of the bounds of arrays, so this is not dependent

9

on any compiler settings. Suppose we want to obtain all types of the neighbors of a
certain element that may be on the border of the array. Standard C++ requires the
distinction between different cases of the location of this element or the compilation
may fail otherwise. With SciQL, if an index is too high, there is simply no record
with this index and no information is returned for this value. Finally, in theory, the
use of SciQL and MonetDB makes for a very fast program resulting in being able to
handle large and complex instances.

An outline of the SQL and SciQL queries that are used in the project follows below
[8] [10]. First we consider queries for creating the tables that are needed:

CREATE TABLE updates (cellcopiedx INT, cellcopiedy INT,

celltargetx INT, celltargety INT, energy FLOAT, ai FLOAT,

cellcopiedtype INT, celltargettype INT);

CREATE ARRAY theworld (x INT DIMENSTION[arrayMAX],

y INT DIMENSION[arrayMAX], v INT);

The first query is a standard SQL in which a table named ’updates’ is created. Here,
all information of all updates are stored: the indices and type of both the copied
element and the target element, the energy associated with the updated (∆H) and
the urge of this update (ai).
The second query is an example of a SciQL query that creates an array ’theworld’.
The dimensions arrayMAX are given for x and y and v represents the value of an
element of the array.
The following functions select certain rows from a table.

SELECT *

FROM theworld[i][j];

This SciQL query is easy to understand. It selects information holding the value of
element (i, j) from the array. The following example makes things more complex:

SELECT *

FROM theworld[updatetox-1 : updatetox+2][updatetoxy-1 : updatetoy+2]

WHERE v <> updatefromtype;

In this query, all neighbors of a certain element with the coordinates ’updatetox’ and
’updatetoy’ of another type are selected. The <> operator represents the not equal
operator. It’s important to note that the interval selected has an open endpoint. This
means that the indices ’updatetox+2’ and ’updatetoy+2’ are not included. Thus,
the query above is equivalent to the following standard query:

10

SELECT *

FROM theworld

WHERE x BETWEEN updatetox-1 AND updatetox+1

AND y BETWEEN updatetoy-1 AND updatetoy+1

AND v <> updatefromtype;

Another important ability is to update the database. In the following example, values
specified in an external file are being stored in the table ’theworld’.

UPDATE theworld

SET v = kar - 48 WHERE x = i AND y = j;

More complex queries are used elsewhere to renew updates after a copy has been
made, concerning the change in cell sizes. One is presented below, the other three
used are equivalent:

UPDATE updates

SET energy = energy + compressionresistance*2,

ai CASE WHEN = energy + compressionresistance*2 > -20

THEN ai * exp(-1*compressionresistance*2/temperature)

ELSE exp(20/temperature)

WHERE ((celltargetx NOT BETWEEN updatetox-1 AND updatetox+1)

OR (celltargety NOT BETWEEN updatetoy-1 AND updatetoy+1))

AND cellcopiedtype = type;

When using CASE in an update query, it is important to specify all elements or
otherwise the remaining elements are given a null pointer, no matter what their pre-
vious value was. This must be avoided to prevent segmentation errors and other
aggravating issues.

After a copy has been made, it is necessary to add new possible updates to the table,
since the grid has changed. This is done by the following query:

INSERT INTO updates

VALUES (fromx, fromy, tox, toy, deltaH, a, fromtype, totype);

It is possible to concatenate these values to lessen the number of queries.
Since some possible updates disappear after a copy, these rows have to be dropped
too:

11

DELETE FROM updates

WHERE celltargetx BETWEEN updatetox-1 AND updatetox+1

AND celltargety BETWEEN updatetoy-1 AND updatetoy+1);

When the program is closed, we also need to remove the tables. This is done by the
following queries:

DROP TABLE updates;

DROP ARRAY theworld;

Some standard SQL queries that have also been featured are the following COUNT
and SUM operations. The former counts the number of rows in the table and the
latter sums all values of ai. Both queries return their respective numeric result.

SELECT COUNT(*) FROM updates;

SELECT SUM(ai) FROM updates;

3.3 Implementation of the new algorithm

The full code of the implementation is given in the appendix. Here, the general
structure of the code will be outlined.
There is one object ’Life’ in which all relevant functions and variables are present.
The rest of the code can be broken down into the following parts:

• Database functions:

– query(Mapi dbh, char *q)

Extracts information from the database with the query *q in the form of
a string.

– update(Mapi dbh, char *q)

Inserts information to the database with the query *q in the form of a
string.

– die(Mapi dbh, Mapi hdl)

Handles the queries that are given in the previous two functions.

– closeTable{Mapi dbh)

Drops the tables and handles conflicts upon closing the program.

12

• General program and settings functions:

– menu(Life & life)

Main menu for selecting options.

– readoption()

Reads and returns the option given in the main menu.

– input()

Reads in an configuration from an external file.

– show()

Shows the current configuration of the grid in the terminal.

– clean()

Clears the grid.

– showSizes()

Gives statistics about the current sizes of the cells.

– computeHamiltonian()

Computes the Hamiltonian H for statistics and plots

– output(double time, Mapi dbh)

Generates an textfile of the current configuration for visualisation pur-
poses with Matlab (See the section ’Results’).

– changeIdealSize()

Gives statistics about the current target sizes and the ability to change
them.

– changeAdhesion()

Gives statistics about the current adhesion energies and the ability to
change them.

• Algorithmic functions:

– fillInUpdates(Mapi dbh)

Initializes the table updates when a new configuration has been loaded.

– oneStep()

Simulates one copy.

– multipleSteps()

Simulates a given amount of copies.

13

– simulateTime()

Simulates a given amount of time.

The functions fillInUpdates() and oneStep() will be explained more in detail, because
they form the vital part of the program. See the appendix for the full code of these
functions.

As stated, fillInUpdates() intializes the table containing the updates. When a con-
figuration has been loaded, first all updates have to be removed from a previous
session. After this, the new updates have to be added. The program loops over all
elements of the array. For each element with celltype x, the program loops over all
its neighbors with celltype other than x. Suppose we have the following situation,
and we are looking at element x . The neighbors with a different celltype are colored
red.

x x z z
x x y y
x y y y

These elements are the possible targets for a copy from x . Then, for each neighbor
element, the change of the Hamiltonian ∆H is calculated. This is done by looping
over the elements that are the neighbor of this neighbor. Suppose we’re looking at
neighbor y directly right to x . If the neighbors of the target element of another type
are colored blue, we have the following situation before the copy:

x x z z
x x y y
x y y y

And after the copy:

x x z z
x x x y
x y y y

14

Arguing this way, ∆H can be rewritten as follows:

∆H = Hafter −Hbefore

=
∑

~x, neighbor of y

Jτ(σ(~x)),τ(x) · (1− δσ(~x),x)

−
∑

~x, neighbor of y

Jτ(σ(~x)),τ(y) · (1− δσ(~x),y)

+ λ

[
(αx + 1− Ax)2 + (αy − 1− Ay)2

]
− λ
[
(αx − Ax)2 + (αy − Ay)2

]
=

∑
~x, neighbor of y

Jτ(σ(~x)),τ(x) · (1− δσ(~x),x)− Jτ(σ(~x)),τ(y) · (1− δσ(~x),y)

+ 2λ(αx − αy − Ax + Ay + 1)

The formula above holds when both types are not the medium, i.e. x 6= 0 and y 6= 0.
For x = 0 we have:

∆H =
∑

~x, neighbor of y

Jτ(σ(~x)),τ(0) · (1− δσ(~x),0)− Jτ(σ(~x)),τ(y)(1− δσ(~x),y)

+ λ(−2αy + 2Ay + 1)

And for y = 0:

∆H =
∑

~x, neighbor of y

Jτ(σ(~x)),τ(x) · (1− δσ(~x),x)− Jτ(σ(~x)),τ(0)(1− δσ(~x),0)

+ λ(2αx − 2Ax + 1)

After computing ∆H this way, the corresponding a-value can be determined. To
prevent values from getting too high to be handled by MonetDB, we set, given
T ≥ 1:

ai = min(e−
∆H
T , e

20
T) for all i

15

This rule has another important advantage. By setting an upper limit, the values of
ai are not getting too high, which means that the algorithm will not always take the
best copy in terms of energy. When ∆H is very negative, the exponential function
increases so much that the other optional copies vanish in terms of probability to be
chosen. The values obtained are stored in the table and the loops ensure we get all
possible updates.

In the function oneStep(), there first needs to be checked whether the table with
updates are empty. If so, the grid is one big cell or empty. In this case, the function
should stop to prevent any errors in the rest of the execution since there are no
possible copies to be made. Otherwise, the sum of the a-values is calculated. After
this, the random numbers r1, r2 ∈ [0, 1] are generated by which τ and µ are being
determined according to the formulas given in section 3.1. The information of the
update corresponding to µ is being extracted from the table and stored in temporary
variables. An update query renews the array according to the copy to be made.
This means that the table of updates should be renewed also. Things may get a
little tricky here. According to how the Hamiltonian is calculated, all old updates
having the celltarget within radius 1 (in terms of a Moore neighborhood) from the
element that changed during the copy should be deleted. Suppose the example in
the explanation of the function fillInUpdates() above has been executed and x is the
new element. Then the updates that have one of the blue elements as a target should
be removed:

x x z z z
x x z z z
x x x y y
x y y y y
x y y y y

When these updates have been removed, new updates have to be added. This is
done by looping over all element with radius 2 from x. For each element, only the
neighbor elements are considered that are within radius 1 of x. For all the resulting
couples, ∆H and the a-value are calculated and stored in the table in a similar way
as in fillInUpdates().
Because of the change in cell sizes, it is important to renew all other updates that
are concerned with the same cell types. Suppose a copy has been made from cell-
type x to y, like above. Calculating the change of ∆H and a yields the following steps:

16

For each update i:

• If the x is not the medium, i.e. x 6= 0 then:

– If the target type of the update is x, add 2λ to ∆Hi and e−2λ/T to ai.

– If the copied type of the update is x, add −2λ to ∆Hi and e2λ/T to ai.

• If the y is not the medium, i.e. y 6= 0 then:

– If the target type of the update is y, add −2λ to ∆Hi and e2λ/T to ai.

– If the copied type of the update is y, add 2λ to ∆Hi and e−2λ/T to ai.

Of course, we need to keep ai ≤ e
20
T for all i. Now, the update table has been re-

newed correctly and the algorithm can proceed to a new iteration.

During the implementation, some serious problems were encountered. First, using
MonetDB in combination with the Mapi library for communication with the server
is complicated in Windows. It requires much attention towards the location of the
libraries and include files. In the end, the implementation has been made for Linux.
For visualization purposes, first OpenGL was considered, but since the system used
for this project did not support it, the attention was shifted to a simpler visualization
with Matlab.
Another practical problem was the relatively low speed of the program. This centers
around the fact two Mapi functions, mapi query() and mapi update(), take signifi-
cantly more computation time than all other functions used. Especially the latter
turns down the speed slightly. Thus, these functions needed to be executed as little
as possible in critical parts of the program. This means that some optimizations
were needed.

The first one concerned the general structure of the code in the two functions fill-
InUpdates() and oneStep() obtaining information from the database. In the following
part of the code, all neighbors of a certain element with the coordinates ’fromx’ and
’fromy’ are selected:

17

for (int tox = fromx−1; tox <= fromx+1; tox++){
for (int toy = fromy−1; toy <= fromy+1; toy++){
i f (tox >= 0 && tox < arrayMAX && toy >=0 && toy < arrayMAX &&
! (tox == fromx && toy == fromy)) {
s p r i n t f (bu f f e r , ”SELECT ∗

FROM theworld
WHERE x = %d AND y = %d” ,
tox , toy) ;

hdl = query (dbh , bu f f e r) ;
. . .
}// i f
}// f o r
}// f o r

By this way of coding, the function query() has to be executed 8 times. This can be
toned down by using the following:

s p r i n t f (bu f f e r , ”SELECT ∗
FROM theworld [%d:%d+1][%d][%d+1]
WHERE v <> %d
fromx−1, fromx+1, fromy−1, fromy+1, fromtype) ;

hdl = query (dbh , bu f f e r) ;
whi l e (mapi fetch row (hdl)) {

. . .
}// whi l e

Now the query() function needs to be executed only one time. In the function on-
eStep(), this code is part of an large while loop, so it pays in terms of complexity to
apply this optimization. Moreover, if more elements need to be selected in case of
renewing updates because of changed cell sizes, then the for-loops code have com-
plexity O(n ·m), where n ×m is the size of the array. Also, the capabilities of the
SciQL language are used here in a much more effective way. The selection of elements
is easier to program and the boundary situations do not have to be taken into account.

The second - and more important - optimization is to reduce the number of times
that update() is executed. The oneStep() contains a section in which new updates
have to be added to the table ’updates’ when the copy has been executed. Suppose
that a list of neighbors has been generated. With the following code, the correspond-
ing updates can be added to the table:

18

while (mapi fetch row (hdl)) {
. . . // c a l c u l a t e a l l needed va l u e s here
s p r i n t f (bu f f e r , ”INSERT INTO theworld

VALUES (%d , %d , %d , %d , %f , %f , %d , %d) ” ,
i , j , updatetox , updatetoy , deltaH , a , fromtype ,

type) ;
update (dbh , bu f f e r) ;
}// wh i l e

But again, here we are excuting update() too often. A solution is to concatenate the
strings and call update() after the while loop has been completed. Then, the code
looks as follows:

bool f i r s t = true ;
int t o t a l b u f s i z e = s p r i n t f (bu f f e r , ”INSERT INTO updates VALUES”) ;
while (mapi fetch row (hdl)) {
. . . // c a l c u l a t e a l l needed va l u e s
i f (f i r s t) f i r s t = fa l se ; // t h i s i s needed to avoid an

// ex t ra comma at the beg inn ing
else {
s p r i n t f (bu f f e r , t o t a l b u f s i z e , ” , ”) ;
t o t a l b u f s i z e++;
}// e l s e
int l en = s p r i n t f (bu f f e r , %d , %d , %d , %d , %f , %f , %d , %d) ” ,

i , j , updatetox , updatetoy ,
deltaH , a , fromtype , type) ;

t o t a l b u f s i z e++;
update (dbh , bu f f e r) ;
}// whi l e
s p r i n t f (bu f f e r + t o t a l b u f s i z e , ” ; ”) ;
t o t a l b u f s i z e++;
update (dbh , bu f f e r) ;

This optimization has not been applied to the function fillInUpdates() for technical
reasons (the string might become too long). This is not much of an issue, since this
function will be called only one time upon executing the algorithm.

To give an indication of how well this works out, for a simple example the running
time of the function oneStep() has been reduced by a factor of one hundred. Still, for
complex examples this could increase until a second. The code could be improved
further, but for this project it is currently fast enough to conduct experiments with.

19

4 Results

To validate the implementation, three experiments are conducted.

4.1 Experiment 1 - One long cell

In the first experiment, the behavior of one long cell will be analyzed. The initial
configuration is given below. The indices of the grid are given on the axes. The
blue cell has id 1 and the yellow medium has id 0. Here, we have α1 = 40 and take
J01 = 1.

Figure 1: Initial configuration of the grid in experiment 1

20

4.1.1 Experiment 1.1 - One long cell that shrinks

First, we concentrate on the behavior when the cell shrinks from size 40 to approx-
imately size 15. Thus, we set A1 = 15. The parameter λ takes the values 2, 5, 10
respectively. For each of these values, T takes the values 1, 5, 10 and the shapes after
three seconds of simulation are given, along with the Hamiltonian H during the first
three seconds. The t-axis is given in both linear and logarithmic scale to give an idea
when updates take place and how the Hamiltonian will change over time.

Figure 2: Configuration after 3 seconds
of simulation with λ = 2 and T = 1

Figure 3: Configuration after 3 seconds
of simulation with λ = 2 and T = 5

Figure 4: Configuration after 3 seconds
of simulation with λ = 2 and T = 10

21

Figure 5: Plot of the Hamiltonian over time with λ = 2. The t-axis has a linear scale.

Figure 6: Plot of the Hamiltonian over time with λ = 2. The t-axis has a logarithmic scale.

22

Figure 7: Configuration after 3 seconds
of simulation with λ = 5 and T = 1

Figure 8: Configuration after 3 seconds
of simulation with λ = 5 and T = 5

Figure 9: Configuration after 3 seconds
of simulation with λ = 5 and T = 10

23

Figure 10: Plot of the Hamiltonian over time with λ = 5. The t-axis has a linear scale.

Figure 11: Plot of the Hamiltonian over time with λ = 5. The t-axis has a logarithmic scale.

24

Figure 12: Configuration after 3 seconds
of simulation with λ = 10 and T = 1

Figure 13: Configuration after 3 seconds
of simulation with λ = 10 and T = 5

Figure 14: Configuration after 3 seconds
of simulation with λ = 10 and T = 10

25

Figure 15: Plot of the Hamiltonian over time with λ = 10. The t-axis has a linear scale.

Figure 16: Plot of the Hamiltonian over time with λ = 10. The t-axis has a logarithmic scale.

26

Based upon the final configurations, a few things can be noted. First of all, the sim-
ulation with λ = 2 and T = 1 gives the most desired result. Here, the cell is compact
and round and therefore has the lowest Hamiltonian (which turns out to be 42, which
is the theoretical minimum for this example). However, considering how much the
Hamiltonian decreases in the plots, the other temperatures yield Hamiltonians that
are also not far off in the end. Looking at the configurations, the cell is less round
and has more inlets at higher temperatures. Nevertheless, an higher temperature
causes the Hamiltonian to drop much later than a lower temperature, looking at the
logarithmically scaled plots.
It seems that a higher λ causes the cell to break into multiple parts. For λ = 5, this
happens more when the temperature is low, because then the original shape of the
cell stays intact, albeit with many gaps. When λ is high enough, this occurs also at
higher temperatures. λ seems to have no effect on when the Hamiltonian drops, but
the Hamiltonian is generally a little higher in the end.
It might be confusing that at higher values for λ the cell is less cohesive. This could
be explained by the fact that the cell is shrinking and that when λ is high, the initial
penalty in terms of the volume constraint is higher. Because of this, the cell shrinks
in a rougher way and therefore breaks into multiple parts. When the temperature
increases, the parts have more chance to reunite again.

27

4.1.2 Experiment 1.2 - One long cell that keeps cell size

It would also be interesting to see what the behavior of the cell would be if the cell
size stays the same. Thus, we set A1 = 40. Again, we use J01 = 1 and the parameter
λ takes the values 2, 5, 10 respectively. For each of these values, the shape after
three seconds of simulation are given, along with the Hamiltonian H during the first
three seconds. The t-axis is given in both linear and logarithmic scale to give an
idea when updates take place and how the Hamiltonian will change over time. The
initial cell configuration is the same as with the previous experiment.

Figure 17: Configuration after 3 seconds
of simulation with λ = 2 and T = 1

Figure 18: Configuration after 3 seconds
of simulation with λ = 2 and T = 5

Figure 19: Configuration after 3 seconds
of simulation with λ = 2 and T = 10

28

Figure 20: Plot of the Hamiltonian over time with λ = 2. The t-axis has a linear scale.

Figure 21: Plot of the Hamiltonian over time with λ = 2. The t-axis has a logarithmic scale.

29

Figure 22: Configuration after 3 seconds
of simulation with λ = 5 and T = 1

Figure 23: Configuration after 3 seconds
of simulation with λ = 5 and T = 5

Figure 24: Configuration after 3 seconds
of simulation with λ = 5 and T = 10

30

Figure 25: Plot of the Hamiltonian over time with λ = 5. The t-axis has a linear scale.

Figure 26: Plot of the Hamiltonian over time with λ = 5. The t-axis has a logarithmic scale.

31

Figure 27: Configuration after 3 seconds
of simulation with λ = 10 and T = 1

Figure 28: Configuration after 3 seconds
of simulation with λ = 10 and T = 5

Figure 29: Configuration after 3 seconds
of simulation with λ = 10 and T = 10

32

Figure 30: Plot of the Hamiltonian over time with λ = 10. The t-axis has a linear scale.

Figure 31: Plot of the Hamiltonian over time with λ = 10. The t-axis has a logarithmic scale.

33

Again, the settings λ = 2 and T = 1 give the most desired result in this experiment.
The cell has a round shape without inlets. When the temperature increases for λ = 2,
the number of inlets start to increase and the cell loses its round shape. This also
means that the Hamiltonian should be higher, which can be seen in the plots. The
Hamiltonian is generally higher and fluctuates more when the temperature is high.
This also goes for λ = 5, but note that it takes much time before a new update
happens when T = 1. Taking a look at the shape, for T = 1, the cell almost keeps its
original shape, hence the nearly horizontal red line. For both T = 5 and T = 10, we
see similar behavior as for λ = 2. The cell is round for T = 5 and gets increasingly
more inlets when T = 10. The Hamiltonian has the same behavior as when λ = 2.
For λ = 10, there is similar behavior. The main difference here is that for T = 5 and
T = 10 the cell has much more inlets. Another notable fact is that for T = 10 the
Hamiltonian is occasionally much lower than for T = 5. This could lie in the fact
that the cell might stick to the boundary during the simulation for T = 10.

34

4.2 Experiment 2 - Four similar cells

The next experiment is about four cells of the same type. The initial configuration is
given below. The four cells have ids 1 to 4 and the yellow medium has id 0. The four
cells have an initial cell size of 36 and a target size of 15. This means αi = 36 and
Ai = 15 for 1 ≤ i ≤ 4. We set J0i = Ji0 = 8 and Jij = 2 for i, j ∈ {1, 2, 3, 4}. This
is done because the cells should be sticking together, because the adhesion energy
between the cells and the medium is now much higher than their mutual adhesion.
The parameter λ takes the values 2, 5, 10 respectively. For each of these values, the
shape after two seconds of simulation are given, along with the Hamiltonian H during
the first two seconds. The t-axis is given in both linear and logarithmic scale to give
an idea when updates take place and how the Hamiltonian will change over time.

Figure 32: Initial configuration of the grid in experiment 2

35

Figure 33: Configuration after 2 seconds
of simulation with λ = 2 and T = 1

Figure 34: Configuration after 2 seconds
of simulation with λ = 2 and T = 5

Figure 35: Configuration after 2 seconds
of simulation with λ = 2 and T = 10

36

Figure 36: Plot of the Hamiltonian over time with λ = 2. The t-axis has a linear scale.

Figure 37: Plot of the Hamiltonian over time with λ = 2. The t-axis has a logarithmic scale.

37

Figure 38: Configuration after 2 seconds
of simulation with λ = 5 and T = 1

Figure 39: Configuration after 2 seconds
of simulation with λ = 5 and T = 5

Figure 40: Configuration after 2 seconds
of simulation with λ = 5 and T = 10

38

Figure 41: Plot of the Hamiltonian over time with λ = 5. The t-axis has a linear scale.

Figure 42: Plot of the Hamiltonian over time with λ = 5. The t-axis has a logarithmic scale.

39

Figure 43: Configuration after 2 seconds
of simulation with λ = 10 and T = 1

Figure 44: Configuration after 2 seconds
of simulation with λ = 10 and T = 5

Figure 45: Configuration after 2 seconds
of simulation with λ = 10 and T = 10

40

Figure 46: Plot of the Hamiltonian over time with λ = 10. The t-axis has a linear scale.

Figure 47: Plot of the Hamiltonian over time with λ = 10. The t-axis has a logarithmic scale.

41

In this experiment the cells shrink to the desired size and stick together in each case.
For λ = 2, it is clear that the Hamiltonian is higher and fluctuates more for T = 10
then for the other temperatures. For the other values of λ the difference between
the Hamiltonians are so relatively small that not much can be said. The values of
the Hamiltonian also drop first for T = 1, then for T = 5 and finally for T = 10 and
the times at which this happens is the same for each λ. For a higher temperature,
the cells lose their round shape a little, but the round shape of the cluster stays.
At higher temperatures, the clusters may rotate around the center of the cluster.
However, the position of the center of the cluster stays largely the same in every
case.

42

4.3 Experiment 3 - Engulfment of cells by other cells

The final - and most challenging - experiment is inspired by the simulation of the en-
gulfment described by Glazier and Graner. Here, we will use a smaller grid, smaller
cells and fewer cells. The initial configuration is given on the next page. The eleven
blue cells have ids 1 to 11, the seven red cells have ids 12 to 18 and the yellow medium
has id 0. We will mainly use the same parameters:

Jij = Jji =


14 when 1 ≤ i ≤ 11 and 1 ≤ j ≤ 11,
2 when 1 ≤ i ≤ 11 and 12 ≤ j ≤ 18,
11 when 12 ≤ i ≤ 18 and 12 ≤ j ≤ 18,
16 when i = 0.

Ai = 15 for 1 ≤ i ≤ 18

It is important for obtaining engulfment to set the red-blue adhesion energy very low
compared to all other adhesion energies. In this way, engulfment ensures minimal
adhesion energy. Also, the red-medium and the blue-medium adhesion should be set
high to keep the cells sticking together. For the other parameters, we take λ = 1 and
T = 10. The initial cell sizes have been chosen in a way that they are about 15 in
average. The shapes after 1000 and 2000 copies is given, along with the Hamiltonian
H during the first 2000 copies. The t-axis is given in a linear scale.

Taking a look at the results, the same phenomenon occurs here. The blue cells
start to form a ring around the red cells. The plot shows that the Hamiltonian is
decreasing over time. To get certainty whether the simulation follows this trend, the
program should have to simulate 5000 or 10000 copies, which is currently too big to
handle. But despite that a small grid is used here, the behavior of the cells is very
promising.

43

Figure 48: Initial configuration of the grid in experiment 3

44

Figure 49: Configuration of the grid in experiment 3 after 1000 copies (approximately 4.17 seconds)

Figure 50: Configuration of the grid in experiment 3 after 2000 copies (approximately 129.06 seconds)

45

Figure 51: Plot of the Hamiltonian over time for 2000 copies with λ = 1 and T = 10. The t-axis has a linear scale.

Figure 52: Plot of the Hamiltonian over time for 2000 copies with λ = 1 and T = 10. The t-axis has a logarithmic scale.

46

5 Discussion

In this paper, a kinetic Monte Carlo implementation of the Cellular Potts Model has
been proposed as an alternative of the standard Metropolis algorithm. The main
advantage of this new algorithm is the ability to add a time scale to the simulations
[11]. Also, in theory, the kinetic Monte Carlo method is more efficient, because many
possible copies are processed and thrown away.
The final implementation has the crucial features of the Cellular Potts Model. From
the experiments, we can see that the examples converges to the states that are logical
and desired. In the end, the relatively easy examples have the configurations with
the minimal Hamiltonian and are stable. Also, the higher temperatures cause the
Hamiltonian to fluctuate more and be generally higher, along with the fact that the
cells are less round in their final configurations. However, the algorithm still has a
number of flaws. One of the major shortcomings became apparent when the results
were processed and the plots were made. As can be seen in all experiments, a lower
temperature causes the Hamiltonian to drop earlier. This has to do with the upper
limit of the values of ai as defined in section 3.3. The upper limit is depending the
temperature. A higher temperature causes the upper limit of ai to decrease. This
means that the sum a0 decreases. As a consequence, τ defined in 3.1 increases too.
Thus, when the Hamiltonian drops, this will happen at a later point in time. When
the upper limit of ai would be independent of the temperature, there might be other
interesting observations to be made.
Another problem is that the boundary is very sticky. This means there is no adhe-
sion between the boundary and all other cells. During a simulation cells may stick
to the boundary, causing the Hamiltonian to drop in an unfair way and influencing
the experiments in a bad way. A solution for this problem is to add a special static
boundary with a high amount of adhesion. This is not hard to implement, but the
problem was found in such a late stadium of the research that this has not been
rectified. Moreover, it is not much of an issue as long as the cells don’t touch the
boundary during the experiments, which has only happened in experiment 1.2.

5.1 Further work

The major objective of future work lies obviously in improving the algorithm. The
aforementioned issues can be fixed, along with improving the ease of use and the
possibilities of the program. This includes general issues like saving configurations,
more support for input files and running more experiments simultaneously. Also,

47

it would be more tangible to have animations of the simulations, like the Tissue
Simulation Toolkit used in Bio-Informatics. Other interesting considerations are the
extension to 3D and the use of a six-connected neighborhood on an hexagonal grid
instead of an eight-connected (Moore) neighborhood on rectangular grid.
On the technical side, it is necessary to improve the speed of the program for long
simulations. At this point, the program is able to handle simulations with 2000 copies
in a reasonable time. After this, the program is getting too slow. Like in section 3.3,
improving should be done by investigating if more optimizations are possible and
implementing them. This also might lead to another intensive collaboration with
the creators of MonetDB and SciQL. One optimization might be to further reduce
the calling of time consuming functions. Also, there might be ways to transfer some
C++ code into SciQL queries to obtain speed benefits, like selecting update µ dur-
ing step 7 of the algorithm (section 3.1). Most importantly, the interplay between
MonetDB, the used system and the implemented program should be researched to
find reasons of the major slowdown. An obvious reason would be that the database
is stored on the hard disk instead of the main memory and connection would cost
much time, but it is not very likely that this is the case.
A more theoretical direction of future research is more extensive experimenting with
this new algorithm for the CPM by further exploring the influence of the param-
eters λ and T . The same goes for the adhesion energies. Then, more similarities
or differences between this kinetic Monte Carlo implementation and the standard
Metropolis implementation or even other implementations might arise. Also, since
the CPM simulations now have a time scale, it would be interesting how the imple-
mentation would fare in practice, both in reviewing previous research and in future
researches. Futhermore, with a time scale we can attach rates and speed at cer-
tain processes, like the extension and retraction of pseudopodia, movement of cells,
etc. This increases the ability to compare the cellular Potts model with experimen-
tal data, like time-lapse movies of real cells, and to tune the speed of simulations
according to this data by changing parameters.

48

References

[1] J. A. Glazier and F. Graner, Simulation of the differential adhesion driven
rearrangement of biological cells, Physical Review. E 47, 2128-2154, 1993

[2] R. M. H. Merks, E. D. Perryn, A. Shirinifard, J. A. Glazier, Contact-inhibited
chemotaxis in de novo and sprouting blood-vessel growth, PLoS Comput Biology
4, 2008

[3] S. D. Hester, J. M. Belmonte, J. Scott Gens, S. G. Clendenon, J. A. Glazier, A
multi-cell, multi-scale model of vertebrate segmentation and somite formation,
PLoS Computational Biology 7, 2011

[4] A. Szab and R. M. H. Merks, Cellular potts modeling of tumor growth, tumor
invasion, and tumor evolution, Frontiers in Oncology 3, 87 1-12, April 2013

[5] I.Beichl, F. Sullivan, The Metropolis Algorithm, Computing in Science & En-
gineering 2-1, 65-69, 2000

[6] E. Flenner, L. Janosi, B. Barz, A. Neagu, G. Forgacs, I. Kosztin, Kinetic
monte carlo and cellular particle dynamics simulations of multicellular systems,
Physical Review E 85

[7] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The
Journal of Physical Chemistry 81, 2340-2361, 1977

[8] M. Kersten, Y. Zhang, M. Ivanova, N. Nes, SciQL, a query language for sci-
ence applications, In Proceedings of the first International Array Databases
Workshop, 1-12, 2011

[9] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, M. L. Kersten,
MonetDB: two decades of research in column-oriented database architectures,
IEEE Data Data Engineering Bulletin 35, 40-45, 2012

[10] Y. Zhang, M. L. Kersten, M. Ivanova, N. Nes, SciQL, bridging the gap be-
tween science and relational DBMS, In Proceedings of the 15th International
Database Engineering & Applications Symposium, 1-10, 2011

[11] K.E. Sickafus, Kurt E., Kotomin, Eugene A., Uberuaga, Blas P., Radiation
effects in solids, 1-3, 2007

49

6 Appendix

6.1 Compilation file

#! / bin / sh
l i b t o o l −−mode=compi le −−tag=CC g++ −c ‘ env PKG CONFIG PATH=

$INSTALL DIR/ l i b / pkgconf ig pkg−c on f i g −−c f l a g s monetdb−mapi ‘ Pro j e c t
. cc

l i b t o o l −−mode=l i n k −−tag=CC g++ −o Pro j ec t ‘ env PKG CONFIG PATH=
$INSTALL DIR/ l i b / pkgconf ig pkg−c on f i g −− l i b s monetdb−mapi ‘ Pro j e c t . o

. / Pro j e c t

6.2 Main application

#include <iostream>
#include <fstream>
#include <s t r i ng>
#include <s t r i n g . h>
#include <c s t d l i b>
#include <mapi . h>
#include <s t d i o . h>
#include <s t d l i b . h>
#include <math . h>
#include <time . h>

using namespace std ;

const int arrayMAX = 25 ; // The width and he i g h t o f the world
const int cellsMAX = 70 ; // Maximum number o f c e l l s t h a t can be used

class L i f e {
private :

int heigth , width ; // Heigth and width o f the view
int upper le ftX , upper l e f tY ; // Uppe r l e f t i n d i c e s o f the

view
public :

// Var iab l e s f o r database purposes
Mapi dbh ;
MapiHdl hdl ;
MapiHdl hdl2 ;
MapiHdl hdl3 ;
char ∗ c e l l c o p i e d x ;
char ∗ c e l l c o p i e d y ;
char ∗ c e l l t a r g e t x ;

50

char ∗ c e l l t a r g e t y ;
char ∗ energy ;
char ∗ a i ;

// S t r i n g s f o r s t o r i n g the que r i e s
char bu f f e r [1 0 0 0] ;
char bu f f e r 2 [1 0 0 0 0 0] ;
int t o t a l b u f s i z e ;
int l en ; //Last two v a r i a b l e s keep t rack o f the l en g t h

o f the query s t o r ed

//Arrays f o r s t o r i n g f i x e d va l u e s f o r computing de l taH
double adhes ion [cellsMAX] [cellsMAX] ;
int c e l l s i d e a l s i z e [cellsMAX] ;
int c e l l s c u r r e n t s i z e [cellsMAX] ;

//Fixed va l u e s f o r computing de l taH
double temperature ;
double compre s s i on r e s i s t anc e ;

// Var iab l e s f o r computing s t a t i s t i c s
int numberofimages ;
double t imer ;
double speed ;

// Var iab l e s f o r check ing : i f updates t a b l e i s empty ,
// i n s e r t e d update i s the f i r s t one and check ing i f

update t a b l e has a l r eady been f i l l e d
int check ;
bool f i r s t ;
bool u p d a t e s f i l l e d f i r s t t im e ;

// Var iab l e s f o r i n t i a l i z a t i o n and proce s s ing one s t ep
int fromtype ;
int totype ;
int temptype ;
int tempx ;
int tempy ;

double deltaH ; double a ;
int fromx ;
int fromy ;
int tox ;
int toy ;

double sum ;

51

double r1 ;
double r2 ;
double tau ;
double summation ;

//Functions
L i f e () ;
void f i l l I nUpda t e s (Mapi) ;
void c l ean () ;
void show () ;
void input () ;
void change Idea lS i z e () ;
void changeAdhesion () ;
void showSizes () ;
void oneStep () ;
void mult ip l eStep () ;
void simulateTime () ;
void c l o s eTab l e (Mapi) ;
void output (double , Mapi) ;
double computeHamiltonian () ;

} ; // L i f e

//////////////////////////Database f unc t i on s //////////////////////
void d i e (Mapi dbh , MapiHdl hdl) {

i f (hdl != NULL) {
mapi exp la in query (hdl , s t d e r r) ;
do {

i f (map i r e s u l t e r r o r (hdl) != NULL)
map i e xp l a i n r e s u l t (hdl , s t d e r r) ;

} while (map i nex t r e su l t (hdl) == 1) ;
map i c l o s e hand l e (hdl) ;
mapi destroy (dbh) ;

} else i f (dbh != NULL) {
mapi expla in (dbh , s t d e r r) ;
mapi destroy (dbh) ;

} else
f p r i n t f (s tde r r , ”command f a i l e d \n”) ;

e x i t (−1) ;
}// d ie

MapiHdl query (Mapi dbh , char ∗q) {
MapiHdl r e t = NULL;
i f ((r e t = mapi query (dbh , q)) == NULL | | mapi er ror (dbh) !=

MOK)
d ie (dbh , r e t) ;

return (r e t) ;

52

}// query

void update (Mapi dbh , char ∗q) {
MapiHdl r e t = query (dbh , q) ;
i f (map i c l o s e hand l e (r e t) != MOK)

d ie (dbh , r e t) ;
}// update
/////////////////////////Database f unc t i on s /////////////////////////

L i f e : : L i f e () { // d e f a u l t cons t ruc t o r
dbh = mapi connect (” l o c a l h o s t ” , 50000 , ”monetdb” , ”monetdb” , ”

s q l ” , ”demo”) ;
hdl = NULL;
i f (mapi er ror (dbh))

d i e (dbh , hdl) ;
update (dbh , const cast<char ∗>(”CREATE TABLE updates (

c e l l c o p i e d x INT , c e l l c o p i e d y INT , c e l l t a r g e t x INT ,
c e l l t a r g e t y INT , energy FLOAT, a i FLOAT, c e l l c o p i e d t yp e INT ,
c e l l t a r g e t t y p e INT) ; ”)) ;

s p r i n t f (bu f f e r , ”CREATE ARRAY theworld (x INT DIMENSION[%d] , y
INT DIMENSION[%d] , v INT) ; ” , arrayMAX , arrayMAX) ;

update (dbh , bu f f e r) ;

temperature = 1 ;
c ompre s s i on r e s i s t anc e = 1 ;

numberofimages = 0 ;
t imer = 0 . 0 ;
speed = 0 . 0 1 ;

u p d a t e s f i l l e d f i r s t t im e = fa l se ;

he ig th = arrayMAX ;
width = arrayMAX ;
upper l e f tX = 1 ;
upper l e f tY = 1 ;
int i , j ;
for (i = 0 ; i < cellsMAX ; i++){

c e l l s i d e a l s i z e [i] = 15 ;
c e l l s c u r r e n t s i z e [i] = 0 ;
for (j = 0 ; j < cellsMAX ; j++){ //Values change upon

exper iment ing
i f ((i == 0 && j > 40) | | (i > 40 && j == 0))

adhes ion [i] [j] = 1 ;

53

else i f ((i == 0 && j < 40) | | (i < 40 && j ==
0)) adhes ion [i] [j] = 1 ;

else i f (i < 40 && j < 40) adhes ion [i] [j] = 1 ;
else i f (i < 40 && j > 40) adhes ion [i] [j] = 1 ;
else i f (i > 40 && j > 40) adhes ion [i] [j] = 1 ;
else adhes ion [i] [j] = 1 ;

}// f o r
}// f o r
c e l l s c u r r e n t s i z e [0] = arrayMAX∗arrayMAX ;

srand (time (NULL)) ;
}// L i f e : : L i f e

//Clear the g r i d
void L i f e : : c l ean () {

t imer = 0 ;
numberofimages = 0 ;

update (dbh , const cast<char ∗>(”UPDATE theworld SET v = 0 ; ”)) ;
update (dbh , const cast<char ∗>(”DELETE FROM updates ; ”)) ;
c e l l s c u r r e n t s i z e [0] = arrayMAX∗arrayMAX ;
for (int i = 1 ; i < cellsMAX ; i++){

c e l l s c u r r e n t s i z e [i] = 0 ;
}// f o r

}// L i f e : : c l ean

//Print the g r i d on the screen
void L i f e : : show () {

cout << endl << ”Time : ” << t imer + (double) numberofimages ∗
speed << endl ;

int i , j ;
for (i = upper le ftY −1; i < upper l e f tY+heigth −1; i++) {

for (j = upper le ftX −1; j < upper l e f tX+width−1; j++) {
s p r i n t f (bu f f e r , ”SELECT ∗ FROM theworld [%d][%d

] ; ” , i , j) ;
hdl = query (dbh , bu f f e r) ;
mapi fetch row (hdl) ;
i f (a t o i (map i f e t c h f i e l d (hdl , 2)) == 0) cout <<

” −” ;
else i f (a t o i (map i f e t c h f i e l d (hdl , 2)) > 9)

p r i n t f (”%s ” , map i f e t c h f i e l d (hdl , 2)) ;
else p r i n t f (” %s ” , map i f e t c h f i e l d (hdl , 2)) ;

}// f o r
cout << ’ \n ’ ;

}// f o r
}// L i f e : : show

54

//Read in an e x t e rna l t x t f i l e
void L i f e : : input () {

t imer = 0 ;
numberofimages = 0 ;

cout << ”Which number : input txt ?” << endl ;
int number ;
c in >> number ;
s p r i n t f (bu f f e r , ” input%d . txt ” , number) ;
i f s t r e am input ;
input . open (bu f f e r , i o s : : in) ;
i f (input . f a i l ()) {

cout << ”Bestand input . txt ontbreekt ! Optie n i e t
besch ikbaar . ” << endl ;

}// i f
else {

char kar = input . get () ;
int i = upper le ftY −1;
int j = upper le ftX −1;
while (! input . e o f ()) {

i f (kar == ’ \n ’) {
i++;
j = upper le ftX −1;

}// i f
else {

i f (kar != ’ ’) {
s p r i n t f (bu f f e r , ”UPDATE

theworld SET v = %d WHERE x
= %d AND y = %d ; ” , kar − 48 ,
i , j) ;

update (dbh , bu f f e r) ;
i f (kar − 48 != 0) {

c e l l s c u r r e n t s i z e [kar −
48] += 1 ;

c e l l s c u r r e n t s i z e [0] −=
1 ;

}// i f
}// i f
j++;

}// e l s e
kar = input . get () ;

}// wh i l e
}// e l s e

}// L i f e : : inpu t

55

//Read the opt ion g iven in the menu
char readopt ion () {

char opt ion ;
opt ion = c in . get () ;
while (opt ion == ’ \n ’) {

opt ion = c in . get () ;
}// wh i l e
return opt ion ;

}// readopt ion

// F i l l in the t a b l e updates f o r the f i r s t time
void L i f e : : f i l l I nUpda t e s (Mapi dbh) {

//Remove a l l r e s i d u a l updates
update (dbh , const cast<char ∗>(”DELETE FROM updates ”)) ;

//Loop over a l l e lements o f the array and ge t the coord ina t e s
and the type

s p r i n t f (bu f f e r , ”SELECT ∗ FROM theworld WHERE v IS NOT NULL”) ;
hdl3 = query (dbh , bu f f e r) ;
while (mapi fetch row (hdl3)) {

fromx = a to i (map i f e t c h f i e l d (hdl3 , 0)) ;
fromy = a to i (map i f e t c h f i e l d (hdl3 , 1)) ;
fromtype = a to i (map i f e t c h f i e l d (hdl3 , 2)) ;

// S e l e c t a l l ne i ghbor s o f t h i s c e l l o f a d i f f e r e n t type
. Loop over t h e s e c e l l s and ge t the coord ina t e s and
the type

s p r i n t f (bu f f e r , ”SELECT ∗ FROM theworld [%d:%d+1][%d:%d
+1] WHERE v <> %d ; ” , fromx−1, fromx+1, fromy−1,
fromy+1, fromtype) ;

hdl2 = query (dbh , bu f f e r) ;
while (mapi fetch row (hdl2)) {

tox = a t o i (map i f e t c h f i e l d (hdl2 , 0)) ;
toy = a t o i (map i f e t c h f i e l d (hdl2 , 1)) ;
totype = a to i (map i f e t c h f i e l d (hdl2 , 2)) ;

//Computer de l taH by l oop ing over a l l ne i ghbors
o f t h i s c e l l o f another type and

c a l c u l a t i n g the sum of adhes ion ene r g i e s
deltaH = 0 ;
s p r i n t f (bu f f e r , ”SELECT ∗ FROM theworld [%d:%d

+1][%d:%d+1] WHERE (x <> %d OR y <> %d) ; ” ,
tox−1, tox+1, toy−1, toy+1, tox , toy) ;

hdl = query (dbh , bu f f e r) ;
while (mapi fetch row (hdl)) {

56

temptype = a t o i (map i f e t c h f i e l d (hdl , 2)
) ;

deltaH += (adhes ion [fromtype] [temptype
] ∗ (temptype != fromtype) − adhes ion [
totype] [temptype] ∗ (temptype !=
totype)) ;

}// wh i l e

//Compute the share o f energy in de l taH
corresponding to change o f c e l l s i z e s

i f (totype == 0) deltaH +=
compre s s i on r e s i s t anc e ∗ (2∗ c e l l s c u r r e n t s i z e [
fromtype] − 2∗ c e l l s i d e a l s i z e [fromtype] + 1) ;

else i f (fromtype == 0) deltaH +=
compre s s i on r e s i s t anc e ∗ (−2∗ c e l l s c u r r e n t s i z e
[totype] + 2∗ c e l l s i d e a l s i z e [totype] + 1) ;

else deltaH += compre s s i on r e s i s t anc e ∗ (2∗
c e l l s c u r r e n t s i z e [fromtype] − 2∗
c e l l s c u r r e n t s i z e [totype] − 2∗ c e l l s i d e a l s i z e [
fromtype] + 2∗ c e l l s i d e a l s i z e [totype] + 2) ;

//Compute the corresponding a i
i f (deltaH > −20) a = exp (−1∗deltaH/

temperature) ;
else a = exp (20/ temperature) ;

// In s e r t the va l u e s in t o the database
s p r i n t f (bu f f e r , ”INSERT INTO updates VALUES (%d

, %d , %d , %d , %f , %f , %d , %d) ; ” , fromx ,
fromy , tox , toy , deltaH , a , fromtype , totype
) ;

update (dbh , bu f f e r) ;
}// wh i l e

}// wh i l e
cout << ” I n i t i a l i z e d \n” ;

}// L i f e : : f i l l I n

//Change the t a r g e t s i z e f o r a c e l l
void L i f e : : change Idea lS i z e () {

cout << ” Ce l l \ t I d e a l s i z e ” << endl ;
for (int i = 0 ; i < cellsMAX ; i++) cout << i << ”\ t ” <<

c e l l s i d e a l s i z e [i] << endl ;
cout << ”Of which c e l l do you want to change the i d e a l s i z e ?”

<< endl ;
int c e l l ;
c in >> c e l l ;

57

while (c e l l >= cellsMAX) {
cout << ”This c e l l does not e x i s t ! ” << endl ;
c in >> c e l l ;

}// wh i l e
cout << ”What should be the i d e a l s i z e ?” << endl ;
int s i z e ;
c in >> s i z e ;
c e l l s i d e a l s i z e [c e l l] = s i z e ;
cout << ”The i d e a l s i z e o f c e l l ” << c e l l << ” i s now ” << s i z e

<< ” . ” << endl ;
}// L i f e : : change Idea lS i z e

//Change the adhes ion energy between two c e l l s
void L i f e : : changeAdhesion () {

cout << ”Adhesionmatrix : ” << endl ;
for (int k = 0 ; k < cellsMAX ; k++) cout << ”\ t ” << k ;
cout << endl ;
for (int i = 0 ; i < cellsMAX ; i++){

cout << i ;
for (int j = 0 ; j < cellsMAX ; j++){

cout << ”\ t ” << adhes ion [i] [j] ;
}// f o r
cout << endl ;

}// f o r
cout << ”Between which c e l l s should the adhes ion be changed?”

<< endl << ” F i r s t c e l l : ” ;
int c e l l 1 ; int c e l l 2 ;
c in >> c e l l 1 ;
while (c e l l 1 >= cellsMAX) {

cout << endl << ”This c e l l does not e x i s t ! ” ;
c in >> c e l l 1 ;

}// wh i l e
cout << endl << ”Second c e l l : ” ;
c in >> c e l l 2 ;
while (c e l l 2 >= cellsMAX) {

cout << endl << ”This c e l l does not e x i s t ! ” ;
c in >> c e l l 2 ;

}// wh i l e
cout << endl << ”What should de adhes ion be?” << endl ;
double temp ; c in >> temp ; adhes ion [c e l l 1] [c e l l 2] = temp ;

adhes ion [c e l l 2] [c e l l 1] = temp ;
cout << ”The adhes ion between c e l l ” << c e l l 1 << ” and ” <<

c e l l 2 << ” i s now ” << adhes ion [c e l l 1] [c e l l 2] << ” . ” << endl
;

}// changeAdhesion

58

//Show s i z e s o f the c e l l s
void L i f e : : showSizes () {

cout << ” Ce l l \ tCurrent s i z e ” << endl ;
for (int i = 0 ; i < cellsMAX ; i++) cout << i << ”\ t ” <<

c e l l s c u r r e n t s i z e [i] << endl ;
}// L i f e : : showSizes

// Simulate one update
void L i f e : : oneStep () {

//Check i f t h e r e are any updates − t h i s i s the case when the
g r i d i s one b i g c e l l or empty

hdl = query (dbh , const cast<char ∗>(”SELECT COUNT(∗) FROM
updates ; ”)) ;

mapi fetch row (hdl) ;
check = ato f (map i f e t c h f i e l d (hdl , 0)) ;
i f (check == 0) return ;

//Compute the sum of the a i , two random numbers , tau and
determine update a mu

hdl = query (dbh , const cast<char ∗>(”SELECT SUM(a i) FROM
updates ; ”)) ;

mapi fetch row (hdl) ;
sum = ato f (map i f e t c h f i e l d (hdl , 0)) ;

r1 = (double) rand () /(double)RANDMAX;
r2 = (double) rand () /(double)RANDMAX;
tau = (double) 1/sum ∗ l og ((double) 1/ r1) ;
summation = 0 . 0 ;
hdl = query (dbh , const cast<char ∗>(”SELECT ∗ FROM updates ; ”)) ;
while (mapi fetch row (hdl)) {

summation += ato f (map i f e t c h f i e l d (hdl , 5)) ;
i f (r2 ∗sum < summation) break ;

}// wh i l e

//Get the in format ion o f the chosen update
int updatefromx = ato i (map i f e t c h f i e l d (hdl , 0)) ;
int updatefromy = ato i (map i f e t c h f i e l d (hdl , 1)) ;
int updatetox = a to i (map i f e t c h f i e l d (hdl , 2)) ;
int updatetoy = a to i (map i f e t c h f i e l d (hdl , 3)) ;
int type = a t o i (map i f e t c h f i e l d (hdl , 6)) ;
int type2 = a to i (map i f e t c h f i e l d (hdl , 7)) ;

//Update the array and the c e l l s i z e s
s p r i n t f (bu f f e r , ”UPDATE theworld SET v = %d WHERE x = %d AND y

= %d ; ” , type , updatetox , updatetoy) ;
update (dbh , bu f f e r) ;

59

c e l l s c u r r e n t s i z e [type]++;
c e l l s c u r r e n t s i z e [type2]−−;

//De le te a l l update t ha t are not r e l e v an t any more a f t e r t h i s
update

s p r i n t f (bu f f e r , ”DELETE FROM updates WHERE c e l l t a r g e t x BETWEEN
%d AND %d AND c e l l t a r g e t y BETWEEN %d AND %d ; ” , updatetox−1,
updatetox+1, updatetoy−1, updatetoy+1) ;

update (dbh , bu f f e r) ;

//Create i n d i c e s f o r the new updates
int i , j , i2 , j 2 ;

//Prepare the s t r i n g t ha t w i l l s t o r e the new updates in t o the
t a b l e

f i r s t = true ;
t o t a l b u f s i z e = s p r i n t f (bu f f e r2 , ”INSERT INTO updates VALUES”)

;

// S e l e c t a l l e lements t ha t are w i th in a range o f 2 o f the
changed element , loop over them and ge t t h e i r coord ina t e s
and t h e i r type

s p r i n t f (bu f f e r , ”SELECT ∗ FROM theworld [%d:%d+1][%d:%d+1] ; ” ,
updatetox−2, updatetox+2, updatetoy−2, updatetoy+2) ;

hdl2 = query (dbh , bu f f e r) ;
while (mapi fetch row (hdl2)) {

i = a t o i (map i f e t c h f i e l d (hdl2 , 0)) ;
j = a t o i (map i f e t c h f i e l d (hdl2 , 1)) ;
fromtype = a to i (map i f e t c h f i e l d (hdl2 , 2)) ;

// S e l e c t a l l n e i g bor s o f t h i s c e l l s w i th in the range o f
1 o f the changed element (so the t a r g e t o f the new

updates have to be the updated element o f a ne ighbor
o f him) ,

// loop over them and ge t t h e i r coord ina t e s and t h e i r
type

s p r i n t f (bu f f e r , ”SELECT ∗ FROM theworld [%d:%d+1][%d:%d
+1] WHERE x BETWEEN %d AND %d AND y BETWEEN %d AND %
d AND v <> %d ; ” , i −1, i +1, j −1, j +1, updatetox−1,
updatetox+1, updatetoy−1, updatetoy+1, fromtype) ;

hdl3 = query (dbh , bu f f e r) ;

while (mapi fetch row (hdl3)) {
i 2 = a t o i (map i f e t c h f i e l d (hdl3 , 0)) ;
j 2 = a t o i (map i f e t c h f i e l d (hdl3 , 1)) ;
totype = a to i (map i f e t c h f i e l d (hdl3 , 2)) ;

60

//Computer de l taH by l oop ing over a l l ne i ghbors
o f t h i s c e l l o f another type and

c a l c u l a t i n g the sum of adhes ion ene r g i e s
deltaH = 0 ;
s p r i n t f (bu f f e r , ”SELECT ∗ FROM theworld [%d:%d

+1][%d:%d+1] WHERE (x <> %d OR y <> %d) ; ” ,
i2 −1, i 2 +1, j2 −1, j 2+1, i2 , j 2) ;

hdl = query (dbh , bu f f e r) ;
while (mapi fetch row (hdl)) {

temptype = a t o i (map i f e t c h f i e l d (hdl , 2)
) ;

deltaH += (adhes ion [fromtype] [temptype
] ∗ (temptype != fromtype) − adhes ion [
totype] [temptype] ∗ (temptype !=
totype)) ;

}// wh i l e

//Compute the share o f energy in de l taH
corresponding to change o f c e l l s i z e s

i f (totype == 0) deltaH +=
compre s s i on r e s i s t anc e ∗ (2∗ c e l l s c u r r e n t s i z e [
fromtype] − 2∗ c e l l s i d e a l s i z e [fromtype] + 1) ;

else i f (fromtype == 0) deltaH +=
compre s s i on r e s i s t anc e ∗ (−2∗ c e l l s c u r r e n t s i z e
[totype] + 2∗ c e l l s i d e a l s i z e [totype] + 1) ;

else deltaH += compre s s i on r e s i s t anc e ∗ (2∗
c e l l s c u r r e n t s i z e [fromtype] − 2∗
c e l l s c u r r e n t s i z e [totype] − 2∗ c e l l s i d e a l s i z e [
fromtype] + 2∗ c e l l s i d e a l s i z e [totype] + 2) ;

//Compute the corresponding a i
i f (deltaH > −20) a = exp (−1∗deltaH/

temperature) ;
else a = exp (20/ temperature) ;

//Concatenate the s t r i n g s
i f (f i r s t) f i r s t = fa l se ;
else {

s p r i n t f (bu f f e r 2 + t o t a l b u f s i z e , ” , ”) ;
t o t a l b u f s i z e++;

}// e l s e
l en = s p r i n t f (bu f f e r 2+t o t a l b u f s i z e , ”(%d , %d ,

%d , %d , %f , %f , %d , %d) ” , i , j , i2 , j2 ,
deltaH , a , fromtype , totype) ;

t o t a l b u f s i z e += len ;

61

}// wh i l e
}// wh i l e

// Fin i sh the s t r i n g and add the va l u e s to the t a b l e
s p r i n t f (bu f f e r 2+t o t a l b u f s i z e , ” ; ”) ;
t o t a l b u f s i z e++;
i f (t o t a l b u f s i z e > 30) update (dbh , bu f f e r 2) ;

//Renew a l l o ther updates b e l ong ing to c e l l t ype or c e l l type2
or both (because o f the changed s i z e s o f type and type2)

i f (type != 0) {
s p r i n t f (bu f f e r , ”UPDATE updates SET energy = energy + %f , a i =

CASE WHEN energy + %f > −20 THEN a i ∗ %f ELSE %f END WHERE
((c e l l t a r g e t x NOT BETWEEN %d AND %d) OR (c e l l t a r g e t y NOT
BETWEEN %d AND %d)) AND ce l l c o p i e d t yp e = %d ; ” ,
c ompre s s i on r e s i s t anc e ∗ 2 , c ompre s s i on r e s i s t anc e ∗ 2 , exp
(−1∗(c ompre s s i on r e s i s t anc e ∗ 2) / temperature) , exp (20/
temperature) , updatetox−1, updatetox+1, updatetoy−1,
updatetoy+1, type) ;

update (dbh , bu f f e r) ;
s p r i n t f (bu f f e r , ”UPDATE updates SET energy = energy + %f , a i =

CASE WHEN energy + %f > −20 THEN a i ∗ %f ELSE %f END WHERE
((c e l l t a r g e t x NOT BETWEEN %d AND %d) OR (c e l l t a r g e t y NOT
BETWEEN %d AND %d)) AND c e l l t a r g e t t y p e = %d ; ” , −1 ∗
compre s s i on r e s i s t anc e ∗ 2 , −1 ∗ compre s s i on r e s i s t anc e ∗ 2 ,
exp ((c ompre s s i on r e s i s t anc e ∗ 2) / temperature) , exp (20/
temperature) , updatetox−1, updatetox+1, updatetoy−1,
updatetoy+1, type) ;

update (dbh , bu f f e r) ;
}// i f

i f (type2 != 0) {
s p r i n t f (bu f f e r , ”UPDATE updates SET energy = energy + %f , a i =

CASE WHEN energy + %f > −20 THEN a i ∗ %f ELSE %f END WHERE
((c e l l t a r g e t x NOT BETWEEN %d AND %d) OR (c e l l t a r g e t y NOT
BETWEEN %d AND %d)) AND ce l l c o p i e d t yp e = %d ; ” , −1 ∗
compre s s i on r e s i s t anc e ∗ 2 , −1 ∗ compre s s i on r e s i s t anc e ∗ 2 ,
exp ((c ompre s s i on r e s i s t anc e ∗ 2) / temperature) , exp (20/
temperature) , updatetox−1, updatetox+1, updatetoy−1,
updatetoy+1, type2) ;

update (dbh , bu f f e r) ;
s p r i n t f (bu f f e r , ”UPDATE updates SET energy = energy + %f , a i =

CASE WHEN energy + %f > −20 THEN a i ∗ %f ELSE %f END WHERE
((c e l l t a r g e t x NOT BETWEEN %d AND %d) OR (c e l l t a r g e t y NOT
BETWEEN %d AND %d)) AND c e l l t a r g e t t y p e = %d ; ” ,
c ompre s s i on r e s i s t anc e ∗ 2 , c ompre s s i on r e s i s t anc e ∗ 2 , exp

62

(−1∗(c ompre s s i on r e s i s t anc e ∗ 2) / temperature) , exp (20/
temperature) , updatetox−1, updatetox+1, updatetoy−1,
updatetoy+1, type2) ;

update (dbh , bu f f e r) ;
}// i f

//Compute s t a t i s t i c s
t imer = timer + tau ;
while (t imer > speed) {

// crea t e image us ing output (dbh , t imer) ;
numberofimages++;
t imer = timer − speed ;

}// wh i l e

}// L i f e : : oneStep

double L i f e : : computeHamiltonian () {
double hami ltonian = 0 ;
s p r i n t f (bu f f e r , ”SELECT ∗ FROM updates ; ”) ;
hdl = query (dbh , bu f f e r) ;
while (mapi fetch row (hdl)) {

int type = a t o i (map i f e t c h f i e l d (hdl , 6)) ;
int type2 = a to i (map i f e t c h f i e l d (hdl , 7)) ;
hami l tonian += adhes ion [type] [type2] ;

}// wh i l e
hami ltonian = hami ltonian / 2 ;
cout << hami ltonian << ” en ” ;
for (int i = 1 ; i < cellsMAX ; i++){

i f (c e l l s c u r r e n t s i z e [i] > 0) {
hami ltonian += compre s s i on r e s i s t anc e ∗ (

c e l l s c u r r e n t s i z e [i] − c e l l s i d e a l s i z e [i]) ∗ (
c e l l s c u r r e n t s i z e [i] − c e l l s i d e a l s i z e [i]) ;

cout << hami ltonian << endl ;
}// i f

}// f o r
return hami ltonian ;

}// computeHamiltonian

// Simulate mu l t i p l e updates
void L i f e : : mu l t ip l eStep () {

cout << ”How many i t e r a t i o n s ?” << endl ;
int i t e r a t i o n s ;
c in >> i t e r a t i o n s ;
s p r i n t f (bu f f e r , ” Resu l t s /Ham%f−%f . txt ” , compre s s i on r e s i s t ance ,

temperature) ;
o f s tream output (bu f f e r , i o s : : out) ;

63

s p r i n t f (bu f f e r2 , ” Resu l t s /Time%f−%f . txt ” , compre s s i on r e s i s t ance
, temperature) ;

o f s tream output2 (bu f f e r2 , i o s : : out) ;
output << computeHamiltonian () << ” ” ;
output2 << ”0 ” ;
for (int i = 0 ; i < i t e r a t i o n s ; i++){

oneStep () ; cout << i+1 << ” : ” ;
output << computeHamiltonian () << ” ” ;
output2 << t imer + (double) numberofimages ∗ speed << ”

” ;
}// f o r

}// L i f e : : mu l t i p l eS t e p

// Simulate f o r a g iven time
void L i f e : : s imulateTime () {

cout << ”Simulate f o r how much time ?” << endl ;
double time ;
c in >> time ;
s p r i n t f (bu f f e r , ” Resu l t s /Ham%f−%f . txt ” , compre s s i on r e s i s t ance ,

temperature) ;
o f s tream output (bu f f e r , i o s : : out) ;
s p r i n t f (bu f f e r2 , ” Resu l t s /Time%f−%f . txt ” , compre s s i on r e s i s t ance

, temperature) ;
o f s tream output2 (bu f f e r2 , i o s : : out) ;
output << computeHamiltonian () << ” ” ;
output2 << ”0 ” ;
while ((t imer + (double) numberofimages ∗ speed) < time) {

oneStep () ;
cout << t imer + (double) numberofimages ∗ speed << endl ;
output << computeHamiltonian () << ” ” ;
output2 << t imer + (double) numberofimages ∗ speed << ”

” ;
}// wh i l e

}// L i f e : : simulateTime

//Close and remove the t a b l e s
void L i f e : : c l o s eTab l e (Mapi dbh) {

hdl = query (dbh , const cast<char ∗>(”SELECT ∗ FROM updates ; ”)) ;
update (dbh , const cast<char ∗>(”DROP TABLE updates ; ”)) ;
map i c l o s e hand l e (hdl) ;
hdl = query (dbh , const cast<char ∗>(”SELECT ∗ FROM theworld ; ”))

;
update (dbh , const cast<char ∗>(”DROP TABLE theworld ; ”)) ;
map i c l o s e hand l e (hdl) ;

mapi destroy (dbh) ;

64

}// L i f e : : c l o s eTab l e

//Generate output f o r v i s u a l i s a t i o n in Matlab
void L i f e : : output (double time , Mapi dbh) {

s p r i n t f (bu f f e r , ” Resu l t s / Stat s%f−%f−%f . txt ” , time ,
compre s s i on r e s i s t ance , temperature) ;

o f s tream output (bu f f e r , i o s : : out) ;
hdl = query (dbh , const cast<char ∗>(”SELECT ∗ FROM theworld ; ”))

;
while (mapi fetch row (hdl)) {

i f (a t o i (map i f e t c h f i e l d (hdl , 2)) != 0) output << (a t o i
(map i f e t c h f i e l d (hdl , 2)) ∗15) ;

else output << ”255” ;
i f (a t o i (map i f e t c h f i e l d (hdl , 1)) == arrayMAX−1) output

<< ”\n” ;
else output << ” ” ;

}// wh i l e
output . c l o s e () ;

}// L i f e : : output

//Execute the main menu
void menu(L i f e & l i f e) {

cout . p r e c i s i o n (20) ;
char opt ion ; // The charac t e r w i l l be s t o r ed here
bool stop = fa l se ; // When true , the wh i l e loop s t op s
l i f e . c l ean () ;
while (stop == fa l se) {

cout << endl << ” (Q) u i t \nShow the (W) or ld \n(C) l e a r \
nIn (p) ut \nSet (T) emperature \nSet compress ion (r)
e s i s t a n c e \n(O) ne step \n(M) u l t i p l e s t ep s \nChange (
i) dea l c e l l s i z e \nChange (a) dhes ion en e r g i e s \n(S)
how cur rent c e l l s i z e s \nSimulate f o r g iven time
us ing (X) ” << endl ;

opt ion = readopt ion () ; // Character be ing read
switch (opt ion) {

case ’ q ’ : case ’Q ’ : // Option q u i t
stop = true ;
l i f e . output (5 . 0 , l i f e . dbh) ;
l i f e . c l o s eTab l e (l i f e . dbh) ;
break ;

case ’w ’ : case ’W’ : // Option show the world
l i f e . show () ;
break ;

case ’ c ’ : case ’C ’ : // Option c l ean
l i f e . c l ean () ;
l i f e . show () ;

65

l i f e . u p d a t e s f i l l e d f i r s t t im e = fa l se ;
break ;

case ’ p ’ : case ’P ’ : // Option input
l i f e . c l ean () ;
l i f e . input () ;
l i f e . show () ;
l i f e . u p d a t e s f i l l e d f i r s t t im e = fa l se ;
break ;

case ’ o ’ : case ’O ’ : // Option one s t ep
i f (! l i f e . u p d a t e s f i l l e d f i r s t t im e) l i f e .

f i l l I nUpda t e s (l i f e . dbh) ;
l i f e . u p d a t e s f i l l e d f i r s t t im e = true ;
l i f e . oneStep () ;
break ;

case ’m’ : case ’M’ : // Option mu l t i p l e s t e p s
i f (! l i f e . u p d a t e s f i l l e d f i r s t t im e) l i f e .

f i l l I nUpda t e s (l i f e . dbh) ;
l i f e . u p d a t e s f i l l e d f i r s t t im e = true ;
l i f e . mul t ip l eStep () ;
break ;

case ’ x ’ : case ’X ’ : // Option s imu la t e f o r time
i f (! l i f e . u p d a t e s f i l l e d f i r s t t im e) l i f e .

f i l l I nUpda t e s (l i f e . dbh) ;
l i f e . u p d a t e s f i l l e d f i r s t t im e = true ;
l i f e . s imulateTime () ;
break ;

case ’ t ’ : case ’T ’ : // Option s e t temperature
cout << ”The cur rent temperature i s ”

<< l i f e . temperature << ” . Change to
. . . ? \n” ;

c in >> l i f e . temperature ;
cout << ”The new temperature i s ” <<

l i f e . temperature << ” .\n” ;
break ;

case ’ r ’ : case ’R ’ : // Option s e t compression
r e s i s t a n c e

cout << ”The cur rent compress ion
r e s i s t a n c e i s ” << l i f e .
c ompre s s i on r e s i s t anc e << ” . Change
to . . . ? \n” ;

c in >> l i f e . c ompre s s i on r e s i s t anc e ;
cout << ”The new compress ion r e s i s t a n c e

i s ” << l i f e . c ompre s s i on r e s i s t anc e
<< ” .\n” ;

break ;

66

case ’ i ’ : case ’ I ’ : // Option change i d e a l c e l l
s i z e s

l i f e . change Idea lS i z e () ;
break ;

case ’ a ’ : case ’A ’ : // Option change adhes ion
ene r g i e s

l i f e . changeAdhesion () ;
break ;

case ’ s ’ : case ’ S ’ : // Option show c e l l s i z e s
l i f e . showSizes () ;
break ;

default : // Option not known
cout << ”This i s wrong input . ” << endl ;

}// sw i t ch
}// wh i l e

}//menu

int main () {
L i f e l i f e ;
menu(l i f e) ;
return 0 ;

}//main

67

