
Internal Report 2012-2013–14 August 2013

Universiteit Leiden

Opleiding Informatica

Testing of

channel based

service connectors

Joost Leuven

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 3

2 A practical overview of REO 4
2.1 Channels . 4
2.2 Nodes . 4

3 Input/Output conformance (ioco)
and mCRL2 5
3.1 mCRL2 . 5
3.2 JTorX . 5
3.3 ioco . 6

4 Implementation 7
4.1 Eclipse . 7
4.2 REO extention code modifications . 7
4.3 Results . 8
4.4 Changelog . 12

4.4.1 Changed Files . 12
4.4.2 New Files . 12

Appendices 13

Appendix A Installing Eclipse 13

Appendix B REO extention 14

Appendix C REO extention developement 15
C.1 Getting the source code . 15
C.2 Importing the source code . 15
C.3 Building the source code . 15
C.4 Running the source code . 16

Appendix D Install mCRL2 17

2

1. Introduction

Nowadays most applications (software) are build as individual components that are com-
bined later on in the project. This keeps the development easy and clear. However this
presents a whole new set of problems. Since these components need to work together to
create the complete application, it is paramount that the communication between elements
is well structured and well organized. It is for this purpose that REO is incredibly useful.
REO offers a standardized method to model the interconnection of software components.
Before the linking of individual components was done using what’s called ”glue code”.
This glue code was very messy and inconvenient. Another problem with ”glue code” is
that it’s not always clear if that piece of coding does what it’s supposed to do. REO
doesn’t have these problems, because REO can be tested for input/output conformance.
The current REO framework within Eclipse doesn’t support automated input/output
conformance checking for the REO-connectors. Every input/output conformance check
needs to be done by hand. In this paper I will show how I’ve implemented an automated
process for the checking of input/output conformance of 2 REO-connectors.

3

2. A practical overview of REO

In this chapter an overview of REO connectors is given as discribed in [1]

Figure 2.1: The basic REO-connectors

2.1 Channels

The nodes in a Reo connector are connected via channels. In this section we deal with
the meaning of the channels as displayed above. Every channel has a source and a sink
end. Following is a discription of what heretofore mentioned channels do with their source
and sink ends. The Sync channel accepts a data item only if it can instantly output it on
the sink end. LossySync always accepts a data item and tries to unload this on it’s sink
end. If this is not possible the data item is lost. The FIFO channel accepts a data item
on its source end and can act as a buffer with capacity 1. SyncDrain has 2 source ends.
It accepts data items from both it’s inputs at the same time and loses these. AsyncDrain
only accepts data item from 1 of its source ends and lose it. The following 2 channels are
for data manipulation. First the filter is used to accept a data item from its source end
and only puts the data item on the sink end of the channel if the data item is of a specific
type. Second the Transform channel is used to transform the data item on the source end
into an other data item using a user-defined function. All these channels can be combined
with each other by using nodes.

2.2 Nodes

All nodes can be one of 3 types. Source, Sink and mixed. What type they belong to
depends on what kind of ends of the connected channels are connected to the node. If all
connected ends are source ends it is a sink node and vice versa. All source and sink nodes
combined form the boundary of the Reo-connector and are used form communication with
its environment.

4

3. Input/Output conformance (ioco)
and mCRL2

3.1 mCRL2

mCRL2 is a process algebra that can be used to describe the semantics of a REO con-
nector. A description of a REO connector in mCRL2 is formed by a set of actions. These
actions describe anatomic events. There are several operators used to combine actions into
multiactions. First of all actions can be synchronized. This is done with the | operator.
So a|b means that action a occurs simultaneously with action b. This action is commuta-
tive, so a|b is equivalent to b|a. Another operator is the δ operator. This operator doesn’t
display any behavior. A third operator is the + operator which defined a choice between
two actions. So a+ b means that either action a is done or action b. Fourthly there’s the
sequential composition ·. So a · b means that a is followed by b. Another operator is the
if-then-else operator. This operator is of the form c→ a�b. This means that if condition c
evaluates to true action a happens and otherwise action b. There are some more operators
which can be found in [2].

3.2 JTorX

JTorX is a program that can, given a specification and an implementation (both in Alde-
baran format .aut), compare these two for ioco. For this project JTorX was connected to
the REO extension for Eclipse.

5

3.3 ioco

In order to test whether what you’ve build is actually what you wanted to build when
you specified the specifications, we need to have both reo model of the specification and
implementation. In [2] it is explained that if we add extra actions to the mCRL2 definition
of a REO connector for the boundary nodes, we can test whether two REO models are
input output equivalent. For every boundary node (and thus action) A we need to add
an action ?A and !A. The action ?A describes when the environment requests input or
output from the node A. !A describes the actual observation of data flow over node A.
This changes the view mCRL2 gives on the semantics of a REO connector. Normally we
couldn’t distinguish between data being rejected and data being accepted but being lost
in the connector. Both have actions on the input boundary node but neither has action on
the output boundary node. But the REO connectors are not the same! With the addition
of the ! and ? actions we can observe that if data is entered into the REO connector
through an input boundary node A that the action !A occurs. The same goes for output
boundary nodes. If an output boundary node B has output (!B), then the action ?B must
also have occured. Another benefit of this approach is that we don’t need to know what
happens between A and B.
3.1 and 3.2 is are excelent examples of how this new approach works. If input is observed
on A then in the specification, flow on B and C could be observed simultaneously or
indepentant of eachother. But in the implementation flow over B and C is always observed
simultaneously and never independant (because of the extra sync channel). If we describe
this using the ! and ? actions we get that if the action ?A and ?C have been observed, in
the specification !A and !C can be observed whereas in the implementation !C will never
occur.

Figure 3.1: Specification Figure 3.2: Implementation

6

4. Implementation

4.1 Eclipse

Eclipse is a cross-platform developement toolkit. With Eclipse it’s possible to build ex-
tensions for Eclipse itself. In the appendices of this report extensive instructions can be
found on how to install the various plugins and/or additional software needed to both run
the developed REO Extension and how to start the developement environment to start
modifying the REO extension yourself. Once all these instructions have been followed,
the REO extension can be build and run. When you run your project, Eclipse will start
a new version of itself with your home build plug-in as one of its plugins.

4.2 REO extention code modifications

In order to implement the in chapter 3 mentioned implementation of Input/Output Con-
formance testing, a converter for the current mCRL2 implementation needed to be made.
This converter uses the converter build for the I/O actions conversion of the mCRL2 code
as a basis [4]. Most of the mCRL2 code that is modified in this converter is not needed
for the ioco conversion. For all these non needed conversions, the implementation of the
basic converter is used. The second modification made to the mCRL2 plug-in for Eclipse
is the addition of some functionality buttons. With these buttons the current text of the
specification window can be saved to a .aut file. The second button also saved the current
specification window text to a dot out file. But because the mCRL2 converter isn’t able
to handle ! and ? characters, the input for the mCRL2 converter is done using i and o
instead. When the second button is clicked the same .aut file is saved as with the first
button, but after this the output is converted to have the ! and ? format. The third button
is to start JTorX. JTorX is a program that used 2 descriptions of REO models (the .aut
files) and does the testing for Input/Output Conformance. In order to be able to start
JTorX, it’s location on the users harddrive must be specified. The same goes for mCRL2
(see Appendix D). A text field in the settings was added to accommodate this.

7

4.3 Results

In this chapter some results will be shown. In 4.1 we see the mCRL2 interface tab as
seen in the REO-extension before any modifcations were made to the source code. In 4.2
the new interface is shown. A new checkbox has been added, as well as 3 new buttons at
the button.

Figure 4.1: User Interface before modifications

Figure 4.2: User Interface after modifications

8

The following page contains the mCRL2 beginings ot the definition of 3.1. On the left
we have the begin of the mCRL2 definition without the input and output events on the
boundary nodes. On the right we have the modified mCRL2 definition as described in
section 4.2.

act
A,B,C,M,M ′,M ′′, N,N ′, N ′′, O,O′,
O′′, P, P ′, P ′′, Q,Q′, Q′′, R,R′, R′′, S, S ′,
S ′′, T, T ′, T ′′;

proc
FIFO1 = M ′′.N ′′.F IFO1;
FIFO2 = O′′.P ′′.F IFO2;
Sync3 = (Q′′|R′′).Sync3;
Sync4 = (S ′′|T ′′).Sync4;
Node1 = ((A|M ′|O′)).Node1;
Node2 = ((N ′|S ′)).Node2;
Node3 = ((P ′|Q′)).Node3;
Node4 = ((T ′|B)).Node4;
Node5 = ((R′|C)).Node5;

act
M,M ′,M ′′, N,N ′, N ′′, O,O′, O′′, P, P ′,
P ′′, Q,Q′, Q′′, R,R′, R′′, S, S ′, S ′′, T, T ′,
T ′′, iA, iB, iC, oA, oB, oC;

proc
FIFO1 = M ′′.N ′′.F IFO1;
FIFO2 = O′′.P ′′.F IFO2;
Sync3 = (Q′′|R′′).Sync3;
Sync4 = (S ′′|T ′′).Sync4;
Node1 = ((iA.oA|M ′|O′)).Node1;
Node2 = ((N ′|S ′)).Node2;
Node3 = ((P ′|Q′)).Node3;
Node4 = ((T ′.iB|oB)).Node4;
Node5 = ((R′.iC|oC)).Node5;

Below we have the same definitions as above, only now we have them for 3.2.

act
A,B,C,M,M ′,M ′′, N,N ′, N ′′, O,O′,
O′′, P, P ′, P ′′, Q,Q′, Q′′, R,R′, R′′, S, S ′,
S ′′, T, T ′, T ′′, U, U ′, U ′′, V, V ′, V ′′;

proc
FIFO1 = M ′′.N ′′.F IFO1;
FIFO2 = O′′.P ′′.F IFO2;
Sync3 = (Q′′|R′′).Sync3;
Sync4 = (S ′′|T ′′).Sync4;
SyncDrain5 = (U ′′|V ′′).SyncDrain5;
Node1 = ((A|M ′|O′)).Node1;
Node2 = ((N ′|S ′|U ′)).Node2;
Node3 = ((P ′|Q′|V ′)).Node3;
Node4 = ((T ′|B)).Node4;
Node5 = ((R′|C)).Node5;

act
M,M ′,M ′′, N,N ′, N ′′, O,O′, O′′, P, P ′,
P ′′, Q,Q′, Q′′, R,R′, R′′, S, S ′, S ′′, T, T ′,
T ′′, U, U ′, U ′′, V, V ′, V ′′, iA, iB, iC, oA, oB,
oC;

proc
FIFO1 = M ′′.N ′′.F IFO1;
FIFO2 = O′′.P ′′.F IFO2;
Sync3 = (Q′′|R′′).Sync3;
Sync4 = (S ′′|T ′′).Sync4;
SyncDrain5 = (U ′′|V ′′).SyncDrain5;
Node1 = ((iA.oA|M ′|O′)).Node1;
Node2 = ((N ′|S ′|U ′)).Node2;
Node3 = ((P ′|Q′|V ′)).Node3;
Node4 = ((T ′.iB|oB)).Node4;
Node5 = ((R′.iC|oC)).Node5;

9

The images displayed below are parhaps the most striking evidence that the ioco testing
works. The first image is a graph representing 3.1 using the ioco setting in the reo-
extension. The second image is a graph represention 3.2 using the same settings. On
closer inspection of these graphs we find that in the implementation, there are some
actions that don’t occur in the specification graph. This points out that the specification
3.1 and 3.2 are not the same in relation to Input/Output Conformance. Example. After
the action iA, oA and iB have been observed, in the specification oB can be observed. In
the implementation this cannot happen before iC has been observed.

Figure 4.3: Graph representing 3.1 using the ioco mCRL2 definition

Figure 4.4: Graph representing 3.2 using the ioco mCRL2 definition

10

Below are the two graphs represention the same REO connectors. Though these graphs are
not isomorphic, we can see on closer inspection that every action in the implementation
(only one NB. A|B|C) occurs in the specification. This is where the ioco and non-ioco
graphs differ.

Figure 4.5: Graph representing 3.1 using the mCRL2 definition without ioco

Figure 4.6: Graph representing 3.2 using the mCRL2 definition without ioco

11

4.4 Changelog

Following is a list of all modified files and a short description of the changes made

4.4.1 Changed Files

org.ect.reo.ui/src/org/ect/reo/prefs/ReoPreferenceConstants.java
Added JTorX home
org.ect.reo.ui/src/org/ect/reo/prefs/ui/ExternalProgramsPage.java
Added field for the JTorX home directory
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/Atom.java
Added function removeDouble
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/properties/MCRL2PropertySection.java
Added function addIOConfChk, added checkbox for ioco checking.
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/conversion/Reo2MCRL2Preferences.java
Added constants and functions to handle check/non-check of ioco checkbox
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/conversion/ElementConverters.java
Added new converter (Channel and component converter are basic, node converter is new)
org.ect.reo.ui/src/org/ect/reo/prefs/ReoPreferences.java
Added function to return JTORX home directory.
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/Sequence.java
Removed the additional brackets
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/Specification.java
Added call to function removeDouble

4.4.2 New Files

org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/converters/IOCONodeConverter.java
This file implements the converter for the ioco conversion of the specification text field.
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/properties/SaveAUT.java
This file adds the job that needs to be run if the ”Save To .aut” button is pressed
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/properties/SaveConvAUT.java
This file adds the job that needs to be run if the ”Save To Modified .aut” button is pressed
org.ect.reo.mcrl2/src/org/ect/reo/mcrl2/properties/RunJTorX.java
This file adds the job that needs to be run if the ”Run JTorX” button is pressed

12

A. Installing Eclipse

In order to work with the REO extention for Eclipse, one first needs to install Eclipse itself.
A clean installation of Eclipse can be found at http://www.eclipse.org/downloads.
To install Eclipse the only thing that has to be done is to extract the content of the
downloaded zip-file. There’s no need for an actual installation.

13

http://www.eclipse.org/downloads

B. REO extention

To work with the REO extention in Eclipse it first needs to be installed. Following is a
step by step description of how this is done.

1. Open Eclipse.

2. Go to Help→Install New Software...

3. In the Work with: field type http://reo.project.cwi.nl/update

4. Under Extensible Coordination Tools select the Reo Core Tools (required)

5. Click Next

6. Click Next

7. Accept the terms of the license agreement

8. Click Finish

14

http://reo.project.cwi.nl/update

C. REO extention developement

To start developement on the REO extension two things need to be done: First the source
code for the REO extension is needed, and second, these files need to be imported into
eclipse

C.1 Getting the source code

A clean version of the REO extension source code can be found at http://code.google.
com/p/extensible-coordination-tools/source/checkout. In order to get this we need
to use an SVN-application. For windows a good SVN program is TortoiseSVN. This can
be found at http://tortoisesvn.net. Once you have downloaded the source code it can
be imported into Eclipse.

C.2 Importing the source code

To import the source code follow the following steps:

1. Open Eclipse.

2. Go to File→Import...

3. Under Plug-in Developement select Plug-ins and Fragments

4. Under Import From select the directory where you’ve downloaded the source code
files

5. Under Import As select Projects with source folders

6. Click Next

7. Add all REO plug-ins

8. Click Finish

C.3 Building the source code

In order to be able to run the source code we need to install some additional software in
reo. Use the following steps to do this:

1. Open Eclipse.

2. Go to Help→Install New Software...

3. Under Work with: select the website for your current release of Eclipse (Juno (3.8)
was used in this project).

4. Type GMF into the filter field and select all the packages that are filtered out.

15

http://code.google.com/p/extensible-coordination-tools/source/checkout
http://code.google.com/p/extensible-coordination-tools/source/checkout
http://tortoisesvn.net

5. Click Next

6. Click Next

7. Accept the terms of the license agreement

8. Click Finish

9. Do step 2-8 again but instead of typing GMF (step 4) type EMF.

Now the REO Extension for Eclipse should compile without fault.

C.4 Running the source code

In order to run the source code a run configuration needs to be made. The following steps
will explain how this is done

1. Open Eclipse.

2. Go to Run→Run Configurations...

3. Under Plug-ins select the workspace plugin.

4. Click Run

16

D. Install mCRL2

mCRL2 can be downloaded from http://www.mcrl2.org. Once you have downloaded
and installed this, it still needs to be connected to the REO extension in Eclipse. Use the
Following steps to do this.

1. Open Eclipse.

2. Go to Window→Preferences

3. Select Reo→External Programs

4. Locate your installation of mCRL2 in the mCRL2 home (not bin) field.

17

http://www.mcrl2.org

Bibliography

[1] F. Arbab (2004): Reo: A Channel-based Coordination Model for Component
Composition. Mathematical Structures in Computer Science 14, pp. 1-34, doi:
10.1017/S0960129504004153

[2] N. Kokash, F. Arbab, B. Changizi (2011): Input-output Conformance Testing for
Channel-based Service Connectors. PACO

[3] J. Tretmans (2008): Model Based Testing with Labelled Transition Systems. In: For-
mal Methods and Testing, LNCS 4949, Springer, pp. 1-38, doi: 10.1007/978-3-540-
78917-8 1

[4] N. Kokash, C. Krause, E.P. de Vink (2011):REO + mCRL2: A Framework for
Model-checking Dataflow in Service Compositions. Formal Aspects of Computing
doi: 10.1007/s00165-011-0191-6

18

http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/s00165-011-0191-6

	Introduction
	A practical overview of REO
	Channels
	Nodes

	Input/Output conformance (ioco) and mCRL2
	mCRL2
	JTorX
	ioco

	Implementation
	Eclipse
	REO extention code modifications
	Results
	Changelog
	Changed Files
	New Files

	Appendices
	Appendix Installing Eclipse
	Appendix REO extention
	Appendix REO extention developement
	Getting the source code
	Importing the source code
	Building the source code
	Running the source code

	Appendix Install mCRL2

