
2012-2013-06 June 2013

Universiteit Leiden

Opleiding Informatica

Typing Streams

Stefan Buijsman

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Typing Streams

Stefan Buijsman

1 Introduction

One of the more common datastructures in use today is a list of elements. These lists are charac-
terized by being finite and are usually defined element by element. Lists are fairly well understood
nowadays and almost every programmer can use them effectively. Recently however, computer sci-
entists have looked for ways to create datastructures that are very much like lists except that
they’re infinite. This means that these datastructures, which are called streams, cannot be defined
element by element but instead require a different kind of definition. Streams are usually defined by
coinduction, which means that the first element is defined along with a way to calculate the next
element from that first element. Coinduction is further clarified in [Rutten, 2001, p.5-7] and it is
used in giving the semantics for streams in section 2.
In order to be able to say more about streams than the above, it is first necessary to introduce a
simple language for the manipulation of streams. The syntax of this language can be found at the
beginning of section 2, after which the semantics is explained. The syntax chosen here has the same
basic operators as the syntax in Rutten [2001], but has fewer operators that build on these basic
operators. On the other hand, this syntax does have an if-statement and a variable stream, which
are not present in Rutten [2001]. The system presented here is thus in no way complete nor is it
necessary to adopt all of its elements, rather it has been chosen in such a way as to show as many
aspects of typing streams as possible.
Next to a simple language for the manipulation of streams, it is also necessary to have a language
which can be used to type these streams. This language is presented in section 3 and is constructed
in such a way as to fit the language for streams in section 2. Because there is an if-statement in
section 2, it is necessary to also introduce a union type in section 3. Intuitively, this is because when
I have an if-statement either the then-clause or the else-clause will be executed. This can be typed
by saying that the if-statement has either the type of the stream in the then-clause or the type of
the stream in the else-clause. This solution in particular, the use of union types, has not yet been
observed in the literature and thus forms an essential part of the language presented in section 3.
With the two languages in hand, all that is missing is some way to use the typing language to say
something about streams. In order to be able to do this, two steps are taken in this paper. First,
an ordering between types is introduced. This allows one to speak about the inclusion of one type
in another and can be used later on to be more flexible in deriving the kind of types a stream
falls under. This apparatus is defined in section 4. Second, a derivation system is given which can
be used to derive which types a stream falls under. This system also allows the use of variables,
whose range can be restricted by adding assumptions about which types a variable must satisfy.
This system is defined in section 5.
In order to illustrate how the formal system works, a few example derivations are provided in sec-
tion 6. Then, in section 7, there is a discussion on a possible extension of the type language from
section 3. There, some challenges regarding the coinductive definition of streams are laid out for
further study.

1

2 Streams: Syntax and Semantics

The syntactic definition of streams (which will be denoted by the, possibly subsripted, letters s and
t) is as follows:

s ::= [r]|X|(s+ s)|(s× s)|(s−1)|IF sTHEN sELSE s|v

Streams are to be interpreted as elements of Rω with one interpretation function defined on streams,
namely LsMµ which goes from the syntax (s) to the interpretation of that syntactical statement; the
stream. Often it is usefull to split the resulting interpretation in two parts using the split function:
Split(s) : Rω → R × Rω. The R is the first element of the stream (the head), whereas the Rω is
the rest of the stream (the tail). µ is the interpretation of the variable stream v, if any occur in s.
The interpretation function is a function that assigns a certain stream to all occurences of a certain
variable, or similarly for more variables.
Streams are built up out of one set of primitive streams, which are all streams with a real number
as first element and zeros as all the other elements. Based on these primitive streams one further
stream is defined directly, namely the X stream which is the stream with 0 as first element and
the primitive 1 stream as the tail of the stream. From now on streams will be defined using the
interpretation function and the Split function. In the following cases the interpretation is the unique
stream that satisfies the equation specified using the Split function.

Split(L[r]Mµ) = 〈r, L[0]Mµ〉

Split(LXMµ) = 〈0, L[1]Mµ〉

Using these two streams the rest of the streams are built up using the operators which are given in
the syntactic definition. First of all some additional functions and abbreviations are defined:

inl(〈x, y〉) = x inr(〈x, y〉) = y

s0 = inl(Split(LsMµ)) s′ = inr(Split(LsMµ))

The stream operators are defined corecursively, using the interpretation function. This leads to
the following definitions, where a subscript R indicates that the functions is that defined on real
numbers:

Split(L(s+ t)Mµ) = 〈s0 +R t0, s
′ + t′〉

Note that the corecursion takes place in the second element of the ordered pair, which is possible
because s′ is only a part of Split(Ls1Mµ).

Split(L(s× t)Mµ) = 〈s0 ×R t0, (s
′ × LtMµ) + (s0 × t′)〉

Split(L(s−1)Mµ) = 〈 1

s0
,− 1

s0
× (s′ × Ls−1Mµ)

In the last case it is necessary that inl(Split(LsMµ)) 6= 0. The definition for the IF statement is:

LIF s1 THEN s2 ELSE s3Mµ =

{
Ls2Mµ, Ls1Mµ = [1]

Ls3Mµ, Otherwise

Finally there is the variable stream v, which is assigned a meaning through the function µ:

LvMµ = µ(v)

Thus, a variable stream is assigned a value through the µ function. The value of µ(v) is a stream
with no occurences of the variable v and thus a subset of Rω.

2

Lastly, it is necessary to introduce a syntactic definition for s0 and s′, which is done by defining it
on all the operators. This definition the becomes:

[r]0 = r X0 = 0 (s+ t)0 = s0 +R t0 (s× t)0 = s0 ×R t0 (s−1)′ = − 1

s0
× (s′ × s−1)

(IF s1 THEN s2 ELSE s3)0 =

{
(s2)0, Ls1Mµ = [1]

(s3)0, Otherwise

v0 = µ(v)0

[r]′ = [0] X ′ = [1] (s+ t)′ = s′ + t′ (s× t)′ = (s′ × t) + (s0 × t′) (s−1)0 =
1

s0

(IF s1 THEN s2 ELSE s3)′ =

{
(s2)′, Ls1Mµ = [1]

(s3)′, Otherwise

v′ = µ(v)′

Two streams s and t are equal if both s0 = t0 and s′ = t′, which is explained in more detail in
[Rutten, 2001, p.5-6] using the notion of a bisimulation.

3 Stream-types: Syntax and Semantics

The syntax for stream-types (denoted by the possibly subscripted greek letters τ and σ, preferring
the first) is given as follows:

τ ::= top|int|bool|Nonzero|Xτ |τ0|(τ + τ)|(τ × τ)|(τ−1)|(τ ∪ τ)|Fτ

A stream-type is then to be interpreted as a subset of Rω with the following interpretation function
defined on each type τ , going from syntax to a subset:

JτK ⊆ {s|s ∈ Rω}

Meaning that it takes the syntax to the collection of streams falling under that stream-type.1 The
primitive types, top, int and bool are defined directly by:

JtopK = {s|s ∈ Rω}

JintK = {s|s0 ∈ Z ∧ s′ = [0]}

JboolK = {s|s0 ∈ {0, 1} ∧ s′ = [0]}

JNonzeroK = {s|s0 6= 0}

Where [0] is the stream defined in such a way that it consists of only zero’s. The first stream-type
operator is then:

JXτK = {s | Ls′Mµ ∈ JτK}

So this stream is satisfied by all the streams that satisfy τ and are shifted one place. Now the rest
of the operators can be defined:

τ0 = {[s0] | LsMµ ∈ JτK}

τ0 is also defined syntactically, by the following rules:

top0 = top int0 = int bool0 = bool Nonzero0 = top\{[0]} (Xτ)0 = top (τ0)0 = τ0 (τ+σ)0 = τ0+σ0

1The falling-under, or satisfies, relation will be defined more precisely later on

3

Here top \ {[0]} is the usual complement operator as defined on sets.

(τ × σ)0 = τ0 × σ0 (τ−1)0 = (τ0)−1 (τ ∪ σ)0 = τ0 ∪ σ0 (Gτ)0 = τ0 (Fτ)0 = top

The rest op the operators are only defined semantically here, their syntactic behaviour is defined
by the derivation rules for satisfaction of a type.

Jσ + τK = {s|s0 = p0 +R q0 ∧ s′ = p′ +s q
′ ∧ LpMµ ∈ JσK ∧ LqMµ ∈ JτK}

Where +R is the + operator defined for real numbers and +s is the + operator defined for streams.

Jσ × τK = {s|s0 = p0 ×R q0 ∧ s′ = (p′ ×s q) + (p0 ×s q′) ∧ LpMµ ∈ JσK ∧ LqMµ ∈ JτK}

Where the ×s is the × operator as it is defined for streams and ×R is the × operator as defined on
the real numbers.

Jτ−1K = {s|s0 =
1

p0
∧ s′ = − 1

p0
×s (p′ ×s p−1) ∧ LpMµ ∈ JτK}

Note that this stream is only defined if the first element is not equal to zero, that is if the stream is
a subset of Nonzero. In the notation of the next section, this type is only defined if τ <: Nonzero.

Jσ ∪ τK = {s|LsMµ ∈ JσK ∨ LsMµ ∈ JτK}

The last stream-type operator cannot be defined directly, but is defined via a fixed point. It uses
the set τ0 defined above.

Fτ is the least fixed point of the relation fτ (S), where S is the set of streams that satisfy Fτ :

fτ (S) = {s ∈ Rω|L[s0]Mµ ∈ Jτ0K ∨ s′ ∈ S}

After which the satisfies relation : which obtains iff a stream falls under a stream-type can be
defined as the greatest fixed point of the function F where S is the set of all streams and T the set
of all stream-types.

F (S, T) = {〈s, τ〉|s ∈ S ∧ τ ∈ T ∧ LsMµ ∈ JτK}

Both fixed points exist, since both functions are monotonic. If S ⊆ T then fτ (S) ⊆ fτ (T) since
whenever s′ ∈ S is fulfilled, so is s′ ∈ T and s0 ∈ τ0 is unaffected by S and T . For the function F
it holds that when S ⊆ S′ then F (S, T) ⊆ F (S′, T) since s ∈ S′ whenever s ∈ S and possibly more
often. Similarly, when T ⊆ T ′ then F (S, T) ⊆ F (S, T ′) since t ∈ T ′ whenever t ∈ T and possibly
more often. Thus, both functions are monotonic and because of that the fixed points exist.

4 Internal ordering of stream-types

Using the stream-type definitions it is possible to define an internal (partial) ordering between
various of these types via the subtype operator <:, which is defined as follows:

τ1 <: τ2 = Jτ1K ⊆ Jτ2K

Two stream-types σ and τ are equal, which is written as τ =: σ, when σ <: τ and τ <: σ. For the
subtyping relation various theorems and natural deduction style rules can be proved. I start here
with the theorems.

τ <: τ

Since JτK = JτK, it is true that JτK ⊆ JτK and thus that τ <: τ .

τ1 ∪ τ2 <: τ2 ∪ τ1

4

Since the set defined by τ1 ∪ τ2 is equivalent to that defined by τ2 ∪ τ1, something which follows
from the commutative properties of the logical ∨ and the definition of the ∪ operator the above
theorem holds by virtue of the definition of ⊆. Similarly, the theorem τ2 ∪ τ1 <: τ1 ∪ τ2 holds.

σ ∪ (τ1 ∪ τ2) <: (σ ∪ τ1) ∪ τ2

Is a valid theorem, in virtue of the transitivity of the logical ∨, the definition of the ∪ operator and
the properties of ⊆. For the same reasons the converse theorem (σ ∪ τ1) ∪ τ2 <: σ ∪ (τ1 ∪ τ2) also
holds.

σ <: σ ∪ τ

Since the ∪ operator does not alter any of the streams in σ but only adds those in τ to them, all
the streams that are in σ are also in σ ∪ τ . Thus, JσK ⊆ Jσ ∪ τK and the theorem holds.

τ ∪ τ <: τ

Is a valid theorem, since the ∪ operator does not alter the stream-types that it takes, except that
the resultant stream-type is satisfied by all streams that satisfy either one of the argument stream-
types. Since τ is satisfied by the same streams as itself, τ ∪ τ is equivalent to τ2. Thus, because of
the properties of ⊆ the theorem holds.

σ + τ <: τ + σ

This is true since +R is associative and +s is associative3. Therefore, by the definition of +, σ + τ
is equivalent to τ + σ and thus σ+ τ <: τ + σ. For the primitive types there are some further valid
rules:

int+ int =: int int× int =: int bool × bool =: bool bool <: int

Since int is the type containing all streams with an integer as first element that consist further of
nothing but zero’s, nothing happens to the streams when added except that the first element of
a stream changes. Since Z is closed under addition no new streams will be formed by adding two
streams in int. Nor will any streams in int disappear when added together, for each is duplicated
by addition with the [0] stream. Therefore int + int satisfies exactly the same streams as int and
is thus a subtype of int. A similar argument can be made for the second and third cases, because
neither + nor × changes the tail of the streams satisifed by bool and int - so it remains [0]. Next to
that, the first element stays within either Z or {0, 1} and no elements are lost. For the last rule all
one has to do is note that {0, 1} ⊂ Z and that [0] = [0]. There are also some valid theorems for top:

top+ top =: top top× top =: top top−1 = top F top =: top

For the first three, all one has to note is that Rω is closed under addition, multiplication and
inverse. This means that when all streams are added to all streams, no streams disappear. Similarly
for multiplication and inverse, no streams disappear as long as one applies the operator to all
streams. The last equality is simpler, if at some time I encounter an element of a stream then the
stream satisfies Ftop. Since all streams satisfy this requirement, every stream falls under Ftop and
thus Ftop =: top. There is one more valid theorem for the primitive type top:

τ <: top

This holds for any τ , since top is the type under which all streams fall, thus all the other types are
subsets of top by the fact that only streams fall under those types. Thus, for any τ it is true that

2This can also be argued for via the properties of ∨ and the definition of the ∪ operator, but the current proof
seems to me to be more insightfull

3This is proved in [Rutten, 2001, p.11]

5

JτK ⊆ JtopK and the theorem holds. Finally, there are also two theorems regarding the primitive
type Nonzero:

Nonzero×Nonzero =: Nonzero Nonzero−1 =: Nonzero

The first holds because it is impossible to get a zero by multiplying two nonzero numbers and the
second holds because it is impossible to get zero by taking the inverse of nonzero numbers. Because
both operations don’t reduce the amount of streams that satisfy the type, the types are equivalent.

σ1 <: τ1 σ2 <: τ2
+O

(σ1 + σ2) <: (τ1 + τ2)

By assumption, Jσ1K ⊆ Jτ1K and Jσ2K ⊆ Jτ2K. This means that every ordered pair that is in the
interpretation of σ1 is also in τ1 and the same for σ2 and τ2. Thus, every combination of streams
that can be made using the streams in the interpretation of σ1 and σ2 can also be made using the
streams in the interpretation of τ1 and τ2. Since it are these combinations of streams that determine
the elements of Jσ1 + σ2K and Jτ1 + τ2K and nothing else4, every stream that is in the first is also in
the second. Therefore, Jσ1 + σ2K ⊆ Jσ1 + σ2K and thus (σ1 + σ2) <: (τ1 + τ2).

σ1 <: τ1 σ2 <: τ2 ×O
(σ1 × σ2) <: (τ1 × τ2)

Here again it holds that there is a function f such that Jσ1×σ2K = f(Jσ1K, Jσ2K) and the same (with
the same function) for τ1 and τ2. Since by assumption Jσ1K ⊆ (Jτ1K and Jσ2K ⊆ Jτ2K it also holds
that Jσ1 × σ2K ⊆ Jτ1 × τ2K. Hence, it holds that (σ1 × σ2) <: (τ1 × τ2).

τ1 <: τ2 τ1 <: Nonzero τ2 <: Nonzero −1O
(τ1)−1 <: (τ2)−1

By assumption, Jτ1K ⊆ Jτ2K and from the definition of the −1 operator (which is defined for these
types as ensured by the other two assumptions), it follows that there is a function f such that
J(τ1)−1K = f(Jτ1K) and the same is true, with the same function f, for τ2. Since f has to produce the
same values for the same arguments (this is mandatory for all functions), it is true that f(Jτ1K) ⊆
f(Jτ2K) and thus that J(τ1)−1K ⊆ J(τ2)−1K. From this it follows that (τ1)−1 <: (τ2)−1.

σ <: τ
FτO

Fσ <: Fτ

When σ <: τ it holds that JσK ⊆ JτK and thus that σ0 ⊆ τ0. Thus, whenever a stream s fulfills
s0 ∈ σ0 it also fulfills s0 ∈ τ0. And, since JσK ⊆ JτK if s fulfills s′ ∈ S with S the set of streams
that satisfy Fσ, s also fulfills s′ ∈ T with T the set of streams that satisfy Fτ . Thus, in both cases
JFσK ⊆ JFτK and therefore Fσ <: Fτ , whence the inference is valid.

σ <: τ τ <: ρ
Transσ <: ρ

This rule holds because by assumption JσK ⊆ JτK and JτK ⊆ JρK. Since ⊆ is transitive, it thus follows
that JσK ⊆ JρK and hence that σ <: ρ.
Using the above proofs it is possible to infer a Soundness Theorem, namely that if the above
proof rules prove σ <: τ then JσK ⊆ JτK. This follows by induction on the three proof rules (+,
× and -1) and the theorems, since for each of those it has been shown that there is no mismatch
between the syntactic proofs that can be given and the interpretation behind those proofs.

4This holds since there is a function f such that Jσ1 + σ2K = f(Jσ1K, Jσ2K) and similarly, with the same function
f, for τ1 and τ2

6

5 Satisfaction of a stream-type by a stream

Before staring with the deduction rules, it is important to define exactly what will stand in these
deduction rules. Each term will be of the form Γ ` t : τ . Where Γ is a set of assumptions of the
form v : σ for variables v that may (but do not have to) occur in t. A variable v may occur at most
once in Γ. The semantics of these terms is as follows: Γ ` t : τ holds iff ∀µ : V ar → Rω such that
(∀vi : σi ∈ Γ)µ(vi) ∈ JτiK implies that LsMµ ∈ JτK. One obvious consequence of these definitions is
that

v : σ ` v : σ

Which holds for any variable v and any type σ and basically says that if I assume something, then
that same thing is derivable from the assumption.

Using the definition of the satisfies relation and those of the stream-types, it is possible to prove
the validity of a set of natural deduction rules that specify how a proof that a certain stream satisfies
a certain type can be constructed. The goal here is to prove that the stream-types, except for the
∪ and F operator, match the streams in that when a stream syntactically mirrors a stream-type
it also satisfies that stream-type. The ∪ operator then serves to group various streams under one
stream-type and is used to deal with the if-statement for streams. The F operator is used to be
able to group streams according to the kind of elements that are in those streams.

r ∈ Z
int∅ ` [r] : int

The proof for this rule is fairly simple since Split(L[r]Mµ) = 〈r, [0]〉 and JintK = {s|s0 ∈ Z∧ s′ = [0]}.
Since r ∈ Z, L[r]Mµ ∈ JintK and thus that [r] : int.

r ∈ {0, 1}
bool∅ ` [r] : bool

The proof for this rule is fairly simple since Split(L[r]Mµ) = 〈r, [0]〉 and JboolK = {s|s0 ∈ {0, 1}∧ s′ =
[0]}. Since r ∈ {0, 1}, L[r]Mµ ∈ JboolK and thus that [r] : bool.

top
∅ ` s : top

Where s can be either a concrete stream or a stream with variables. This holds because s has to be
an element of Rω because s is a stream and all elements of Rω are in top.

s0 6= 0
Nonzero∅ ` s : Nonzero

By assumption s0 6= 0, thus LsMµ ∈ JNonzeroK according to the definition of Nonzero and thus
s : Nonzero. Hence, the inference rule is valid.

t : τ
Xτ∅ ` X × t : Xτ

It is true that JXτK = {s | Ls′Mµ ∈ JτK}, from which it easily follows with LtMµ = (X × t)′ and
LtMµ ∈ JτK that LX × tMµ ∈ JXτK and thus X × t : Xτ .

Γ ` s : σ Γ ` t : τ +
Γ ` (s+ t) : (σ + τ)

It is true that LsMµ ∈ JσK and LtMµ ∈ JτK. Given that, the definition of the + operator for streams
can be seen to operate in exactly the same way on two given ordered pairs as the definition of + for
stream-types. Therefore there exists a function f (namely, exactly that from the stream definition)
such that f(LsMµ, LtMµ) = Ls + tMµ ∈ Jσ + τK = {s |Split(s) = f(a, b) ∧ a ∈ JσK ∧ b ∈ JτK}. Which
yields Ls+ tMµ ∈ Jσ + τK and thus Γ ` (s+ t) : (σ + τ).

7

Γ ` s : σ Γ ` t : τ ×
Γ ` (s× t) : (σ × τ)

It holds that LsMµ ∈ JσK and LtMµ ∈ JτK. Given that, the definition of the × operator for streams can
be seen to operate in exactly the same way on two given ordered pairs as the definition of × for
stream-types. Therefore there exists a function f (namely, exactly that from the stream definition)
such that f(LsMµ, LtMµ) = Ls × tMµ ∈ Jσ × τK = {s |Split(s) = f(a, b) ∧ a ∈ JσK ∧ b ∈ JτK}. Which
yields Ls× tMµ ∈ Jσ × τK and thus Γ ` (s× t) : (σ × τ).

Γ ` t : τ Γ ` t : Nonzero τ <: Nonzero −1
Γ ` (t−1) : (τ−1)

It holds that LtMµ ∈ JτK and because LtMµ ∈ JNonzeroK it is certain that t−1 is defined and thanks
to τ <: Nonzero it is certain that τ−1 is defined. Given that, the definition of the −1 operator for
streams can be seen to operate in exactly the same way on two given ordered pairs as the definition
of −1 for stream-types. Therefore there exists a function f (namely, exactly that from the stream
definition) such that f(LtMµ) = Lt−1Mµ ∈ Jτ−1K = {s |Split(s) = f(a) ∧ a ∈ JτK}. Which yields
Lt−1Mµ ∈ Jτ−1K and thus Γ ` (t−1) : (τ−1).

Γ ` s2 : σ Γ ` s3 : τ
IF

Γ ` IF s1 THEN s2 ELSE s3 : σ ∪ τ

It is clear from the definition of IF that it denotes either the stream s2 or the stream s3. If Ls1Mµ = [1]
then it denotes s2. Then, by assumption, s2 : σ. Hence, via W (see below) and σ <: σ ∪ τ ,5

s2 : σ ∪ τ . In this case then IF s1 THEN s2 ELSE s3 : σ ∪ τ . In the other case, when IF denotes s3,
the assumption that s3 : τ is used. For, from that assumption, W and τ <: σ ∪ τ it follows that
s3 : σ∪τ and thus that IF s1 THEN s2 ELSE s3 : σ∪τ . Hence, since all cases lead to the same result
it holds in general that Γ ` IF s1 THEN s2 ELSE s3 : σ ∪ τ .

Γ ` [s0] : τ0
Fτ

Γ ` s : Fτ

By assumption [s0] : τ0, which means that L[s0]Mµ ∈ Jτ0K and thus, by the definition of Fτ that
LsMµ ∈ JFτK and Γ ` s : Fτ . Therefore, the inference is valid.

Γ ` s′ : Fτ
Fτ

Γ ` s : Fτ

By assumption, (s′)0 ∈ τ0, which means that in the function fτ (S) s′ ∈ S and thus that s ∈ S. By
virtue of the definition of Fτ as the least fixed point of fτ (S) it thus holds that LsMµ ∈ JFτK and
Γ ` s : Fτ . Thus, the inference is valid.

Γ ` t : σ σ <: τ
W

Γ ` t : τ

This inference rule allows one to weaken the inferenced satisfaction by choosing a larger type (a
weaker consequence for `), hence W. The validity is established by noting that LtMµ ∈ JσK and
JσK ⊆ JτK by assumption. Therefore, by the properties of ⊆, LtMµ ∈ JτK. Thus, Γ ` t : τ .

Γ, v : τ ` s : σ τ1 <: τ
S

Γ, v : τ1 ` s : σ

Here it is presumed that the assignment function µ makes it true that LvMµ ∈ JτK. Since µ assigns
to v a specific stream, of which nothing is demanded here than that it falls in τ , the ` remains valid
when the demand on µ is strengthened. After all, v still satisfies τ when it satisfies τ ′.

5This follows from σ <: σ when put into ∪O

8

Γ ` t : τ
A

Γ, v : σ ` t : τ

This obviously holds, since the added assumption can only narrow the amount of streams that t can
signify. Since t : τ was already valid with fewer assumptions, this extra assumption does nothing
to the validity of t : τ . For this it is necessary however that the extra assumption does not conflict
with any of the assumptions that are already in Γ. Therefore, the inference is valid.

Γ ` s : σ Γ, v : σ ` t : τ
Inst

Γ ` t[s/v] : τ

Since s satisfies all the requirements laid upon the variable v, it is allowed to substitute s for v in
virtue of the definition of ` given at the beginning of this section. Basically, s is one of the values
v is given by µ that satisfies the assumptions. Thus, Γ ` t[s/v] : τ is true because Γ, v : σ ` t : τ is
true. Hence, the inference is valid.

Because of all the proofs of validity of the inferences, it can be concluded that whenever it is
derivable that a stream satisfies a type under a certain assumption then the interpretation of that
stream is also a member of the interpretation of that type. Thus, this inference system is Sound,
just like the system presented in section 4.

6 Examples

A first example is provided by the following:

∅ ` IF vTHENX × [3] ELSEX ×X × ([1] + [2]) : Fint

The proof of this proceeds in three steps: First, prove that ∅ ` X × [3] : Fint. Second, prove that
∅ ` X ×X × ([1] + [2]) : Fint. Third, use the type ordering theorems to achieve the desired result.
The first step goes as follows: [[3]0] = [3] and

3 ∈ Z
int∅ ` [3] : int

So, ∅ ` [[3]0] : int. Since also (X × [3])′ = (X ′ × [3]) + (X0 × [3]′) = ([1]× [3]) + (0× [0]) = [3] and
int0 = int it holds that

∅ ` [[3]0] : int0
Fint∅ ` [3] : Fint
F int∅ ` X × [3] : Fint

The second step is somewhat more elaborate, but analogous. By the inference above, ∅ ` [3] : int
and ∅ ` X × [3] : Fint. Now, (X × (X × [3]))′ = (X ′ × (X × [3])) + (X0 × (X × [3])′) = ([1]× (X ×
[3])) + (0× [3]) = X × [3]. Since we know that ∅ ` X × [3] : Fint it is possible to conclude that

∅ ` X × [3] : Fint
Fint∅ ` X ×X × [3] : Fint

Now, since ([1] + [2])0 = ([1]0 + [2]0) = (1 + 2) = 3 = [3]0 and ([1] + [2])′ = ([1]′+ [2]′) = ([0] + [0]) =
[0] = [3]′, [1] + [2] = [3] and thus, by substitution of equals, ∅ ` X ×X × ([1] + [2]) : Fint. For the
third step, one first needs to make the following inference

∅ ` X × [3] : Fint ∅ ` X ×X × ([1] + [2]) : Fint
IF∅ ` IF vTHENX × [3] ELSEX ×X × ([1] + [2]) : Fint ∪ Fint

Finally, by the type ordering theorems, Fint ∪ Fint <: Fint and thus by W:

9

∅ ` IF vTHENX × [3] ELSEX ×X × ([1] + [2]) : Fint ∪ Fint F int ∪ Fint <: Fint
W∅ ` IF vTHENX × [3] ELSEX ×X × ([1] + [2]) : Fint

A second example that builds on the first is gained by instantiating the variable in the if-statement.
For example, one can prove that

∅ ` IF (1−X)−1 THENX × [3] ELSEX ×X × ([1] + [2]) : Fint

This proceeds in two steps. First:

top
∅ ` (1−X)−1 : top

And second:

∅ ` IF vTHENX × [3] ELSEX ×X × ([1] + [2]) : Fint
A

v : top ` IF vTHENX × [3] ELSEX ×X × ([1] + [2]) : Fint

Then the result is obtained using Inst:

∅ ` (1−X)−1 : top v : top ` IF vTHENX × [3] ELSEX ×X × ([1] + [2]) : Fint
Inst

∅ ` IF (1−X)−1 THENX × [3] ELSEX ×X × ([1] + [2]) : Fint

7 A possible extension: Gτ

The system presented up until now works well, but misses one operator that would be useful.
Whereas the Fτ operator indicates that there is an element that eventually falls within a certain
range, right now there is no operator to say that every element falls within a certain range. This
can be done however, by introducing an operator Gτ . The only problem is that as soon as one tries
to prove that a stream satisfies this operator one runs into difficulties. These are presented below
using an example, after all the definitions and relevant proofs have been given.
Gτ is the greatest fixed point of the function gτ (S), where S is the set of streams that satisfy Gτ :

gτ (S) = {s ∈ Rω|L[s0]Mµ ∈ Jτ0K ∧ s′ ∈ S}

The fixed point exists, since the function is monotonic. If S ⊆ T then gτ (S) ⊆ gτ (T) since whenever
s′ ∈ S is fulfilled, so is s′ ∈ T and s0 ∈ τ0 is unaffected by S and T .
For this operator two rules hold, one with respect to type ordering and one with respect to stream
satisfaction.

σ <: τ
GτO

Gσ <: Gτ

When σ <: τ it holds that JσK ⊆ JτK and thus that σ0 ⊆ τ0. Thus, whenever a stream s fulfills
s0 ∈ σ0 it also fulfills s0 ∈ τ0. And, since JσK ⊆ JτK if s fulfills s′ ∈ S with S the set of streams that
satisfy Gσ, s also fulfills s′ ∈ T with T the set of streams that satisfy Gτ . Thus, whenever a stream
fulfills both conditions for satisfying Gσ it also fulfills both conditions for satisfying Gτ . Therefore,
JGσK ⊆ JGτK and thus Gσ <: Gτ , and the inference is valid.

Γ ` [s0] : τ0 Γ ` s′ : Gτ
Gτ

Γ ` s : Gτ

The first demand for s : Gτ is that s0 ∈ τ0, which is met by virtue of the assumption that [s0] : Cτ
and the definition of Cτ . The second demand, that s′ ∈ S with S the set of streams that satisfy
Gτ is met by the assumption that s′ : Gτ . Therefore, Γ ` s : Gτ and thus the inference is valid.

An example to illustrate the difficulty in reasoning with Gτ is the stream 1
1−X , or (1 −X)−1.

First,

((1−X)−1)0 =
1

(1−X)0
=

1

[1]0 −X0
=

1

1− 0
= 1

10

Here clearly [((1 − X)−1)0] : bool, since 1 ∈ {0, 1} and via an application of bool. Second, it is
necessary to calculate the tail of the stream:

(
1

1−X
)′ =

−(1−X)′

(1−X)0 × (1−X)
=

−([0] + [−1])

(1− 0)× (1−X)
=

[1]

1−X
= (1−X)−1

This leads to the following inference according to the rule Gτ :

∅ ` [((1−X)−1)0] : bool ∅ ` (1−X)−1 : Gbool
Gτ

∅ ` (1−X)−1 : Gbool

Clearly this inference is not permissible, since the second premiss has to be established before the
conclusion can be established. However, this can only be done by an extra application of the Gτ
rule and this quickly leads to an infinite regress. Thus, the Gτ rule leads to infinite grounding trees,
something which is not standardly allowed. This means that if Gτ is to be added to the typing
system, work has to be done regarding the structure of proof trees. Unfortunately this issue is far
too complicated to tacklle in this paper, so it has to be left as an open problem here. One thing
that can be said though is that this problem arises because the current proof structure used is
inductive, reducing elaborate cases on a step-by-step basis to a certain base-case. Streams however
are defined co-inductively and thus work in the exact opposite direction. Next to that, a way has
to be found to deal with the infinity of streams, for as the Gτ operator shows finite proof trees are
not sufficient.

8 Conclusion

This paper has presented a first step towards a full apparatus for typing streams. In order to do this,
a simple language for stream manipulation was set up in section 2 with specifically an if-statement
and a variable stream. Then, in section 3, a language for typing these streams was presented which
incorporated among other types a union type in order to deal with the if-statement for streams.

In order to be able to use this language to actually group streams under types two additional
steps were taken. First, a way of ordering the types using the subtyping operator <: was given.
This allows for more flexibility in proving the satisfaction of stream-types by streams when using
the apparatus developed in section 5. This apparatus was the second step and provides a set of
deduction rules which can be used to prove that a certain stream satisfies a certain stream-type.
The use of these rules has been illustrated in section 6.

All in all the apparatus that has been developed in this paper works quite well and provides
a good ground on which more elaborate systems for stream manipulation and stream typing can
be build. One point where the system clearly misses the point though was illustrated in section 7,
by the Gτ operator. This showed that if one wants to say something about every single element
of the stream, then this cannot be done with the standardly used finite proof trees. There are two
problems here, one is the misfit between the coinductive definition of streams and the inductive
way that proof trees work. The other is the misfit between the infinite character of streams and the
finite character of proof trees. However, these problems are not so severe as to prevent any typing
of streams, as this paper has tried to show. Finite proof trees can in fact be used to type streams,
but their use is limited.

References

J.J.M.M. Rutten. Elements of Stream Calculus: (An Extensive Exercise in Coinduction). Elec-
tronic Notes in Theoretical Computer Science, 45(0):358–423, November 2001. ISSN 1571-0661.
doi: http://dx.doi.org/10.1016/S1571-0661(04)80972-1. URL http://www.sciencedirect.com/

science/article/pii/S1571066104809721.

11

http://www.sciencedirect.com/science/article/pii/S1571066104809721
http://www.sciencedirect.com/science/article/pii/S1571066104809721

