Internal Report 2012-08

July 2012

Universiteit Leiden

Opleiding Informatica

MASTER'S THESIS

Dynamic Ant Colony Optimization
for

the Traveling Salesman Problem

Sjoerd van Egmond

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Dynamic Ant Colony Optimization
for
the Traveling Salesman Problem

Sjoerd van Egmond
svegmond@liacs.nl
LIACS, Leiden University

Supervisor
Prof. Dr. T.H.W. Béack
Second reader
Dr. M. T.M. Emmerich

July 16, 2012

Contents

1 Introduction

2 Emergent behaviour

2.1 Foraging behaviour. L o oL
3 Ant Colony Optimization
3.1 Ant System
3.1.1 Construction graph 0oL
3.1.2 Solution construction
3.1.3 Pheromone update,
3.1.4 Pheromone initialization
3.1.5 Localsearch
3.1.6 Important principles
3.1.7 Exploration and exploitation,
3.2 Algorithms
3.2.1 Elitist Ant System L
3.2.2 Ant-Q & Ant Colony System
3.2.3 MAX-MIN Ant System
3.2.4 Rank-based Ant System
3.25 ANTS . . .
3.2.6 Best-Worst Ant System Lo oL
3.2.7 Hyper-Cube Ant System
4 Artificial Bee Colony
4.1 Concepts o i
4.2 Honey Bee Swarm
4.3 Algorithm
4.3.1 Exploration: sending scouts
4.3.2 Determine employed bees
4.3.3 Exploitation: sending onlookers
4.3.4 Exhaustion
4.3.5 Memorize best food source
4.3.6 Parameters

5 Algorithms

5.1 Dynamic ACO
5.1.1 Restoringatour
52 ACO-ABC

w W

p—
[ss RN 0 CEEN BEN IeNINe S|

10
10
11
11
12
12
13
14

16
16
16
17
18
18
18
19
19
19

5.2.1 Solution construction

5.2.2 Find new employed ants L
5.2.3 Pheromone update L.
5.3 ACS-ABC
5.3.1 Parameters
54 MMAS-ABC
5.4.1 Parameters
Experiments
6.1 TSPLib.
6.1.1 Traveling Salesman Problems
6.2 Concorde.
6.2.1 Traveling Salesman Problems
6.3 Traveling Salesman Problem experiments
6.4 Implementation
Results
7.1 Parameterresults.
7.1.1 Local Search
7.1.2 Employed ants depositing L
7.2 Traveling Salesman Problems
7.3 Dynamic Traveling Salesman Problem
7.3.1 Unadapted MMAS on burmal4
732 MMAS-ABConchlb0
7.3.3 ACS-ABConchlb0

8 Conclusion

26
26
26
27
28
29
30

31
31
31
33
33
36
36
36
38

40

Abstract

Ant Colony Optimization algorithms are among the best performing heuristics
for NP-hard problems. The problem with the current implementations of these
algorithms however is that once a solution is found and reinforced it has become
very difficult to efficiently explore other possible solutions, limiting these algo-
rithms to unchangeable problem instances. The goal of this thesis is to investi-
gate the possibilities created when hybridizing current Ant Colony Optimization
algorithms with the newer Artificial Bee Colony algorithm for use on dynamic
problems. Neither algorithm has really been designed for dynamic problems,
but this thesis investigates if using the pheromone boundaries of MMAS or
ACS and the clustered neighbourhood search of Artificial Bee Colony combined
generates algorithms capable of following the optimum of a dynamic problem
through the search space.

Chapter 1

Introduction

This thesis investigates the possibility of a hybrid Ant Colony Optimization-
Artificial Bee Colony algorithm, capable of following the optimum of a dynamic
Traveling Salesman Problem through the search space. This chapter will give
short introductions to the following chapters, in which these subjects will be
more thoroughly described.

Dynamic optimization problems are currently very difficult to solve. Opti-
mization algorithms and metaheuristics are highly parameterized, and usually
different types of problems need different sets of parameters. Even an algorithm
for one optimization problem can use different sets of parameters depending
upon different properties of the current problem instance (e.g. sparse graph
vs. fully connected graph). Dynamic optimization problems are no exception,
it is not easy to get good results with the same algorithms and parameters as
used for non-dynamic (static) problems. Using other parameters for a dynamic
problem might increase the performance and get better results, but it is not
guaranteed an algorithm designed for a static problem can successfully optimize
dynamic problems. Ant Colony Optimization (ACO) algorithms belong to this
last group, because they slowly converge to the optimum solution and are not
designed to release it once they find it. Some of the currently known ACO algo-
rithms are better than others, but none have been designed with the restrictions
of dynamic problems in mind.

Sometimes aspects of different types of algorithms can be combined to make
a new, hybrid algorithm that uses the best aspects of both to solve problems. In
this thesis a hybrid algorithm is proposed based on the Ant Colony Optimization
algorithm and the Artificial Bee Colony algorithm. Both algorithms work with
a selected number of agents, usually more than one but not too many, and both
use paths created by agents to determine the paths of the agents following.
While Ant Colony Optimization algorithms are designed to work on graphs,
Artificial Bee Colony algorithms are designed to work on continuous domains.
It can be difficult to translate an algorithm designed for a continuous domain
to work on a graph (a discrete domain), and to translate a graph algorithm
to a continuous algorithm is even more difficult, though it can be done (see
Chapter 3.2.7). Since the chosen problem is the Traveling Salesman Problem,
the Ant Colony Optimization algorithm is chosen as the basis and the Artificial
Bee Colony algorithm is translated to work on a graph based problem. The
most difficult part to translate is defining a neighbourhood of an agent and

being able to randomly create neighbours from it (see Chapter 5.2.1).

In Chapter 2 emergent behaviour is explained, which is the observed be-
haviour that small, autonomous agents with only small instruction sets can
generate complex behaviour in a colony of agents. It is important to under-
stand about emergent behaviour because all natural computing algorithms are
based upon this idea, since in nature a lot of successful examples can be found.
Then in Chapter 3 the Ant Colony Optimization will be explained, with the
details of the basic algorithm in Chapter 3.1 and the differences introduced
by other Ant Colony Optimization algorithms in Chapter 3.2. Followed by an
explanation of the Artificial Bee Colony algorithm in Chapter 4, this chapter
describes everything needed to know about the Artificial Bee Colony, from the
concepts to the pseudocode and the parameters. In Chapter 5 the hybrid al-
gorithm will be introduced, and it also describes special algorithms needed to
make the Traveling Salesman Problem work on a dynamic graph. Finally in
Chapter 6 and Chapter 7 the experiments and their results can be found.

Chapter 2

Emergent behaviour

Emergent behaviour, or emergence, was already an old concept when it got its
name in 1875 [25], and is currently used in a wide variety of knowledge fields,
from religion to art and from philosophy to science. One of the many possible
definitions is given by Goldstein in Emergence, Complexity and Organization
[16]:

Definition 1. Emergence is the arising of novel and coherent structures, pat-
terns and properties during the process of self-organization in complex systems.

Emergent behaviour is an effect that arises from multiple interactions of
simple agents with other agents or the environment, and in this way the collec-
tive of agents can form complex behaviour. The collective of agents is usually
called a swarm or a colony in natural computation. The interactions are often
between agents that already did something and their successors that can use
that information to perform the same task better. This feedback, that usually
comes as positive feedback or reinforcement but can also come as negative feed-
back or penalties, is the driving force of emergence. The number of interactions
possible in a system increases combinatorially with the number of components
of the system [25], and this makes it very hard, or even impossible, to predict
the emergent behaviour. Because this emergent behaviour can only be seen as
a property of the swarm and cannot be found in any way in a single agent it is
called irreducible.

2.1 Foraging behaviour

The form of emergent behaviour Ant Colony Optimization algorithms are based
on is the foraging behaviour of ants. The underlying mechanism of this foraging
behaviour was discovered in 1959 by Pierre-Paul Grassé [17], a French ento-
mologist, which was called stigmergy. Ants leave a pheromone trail to a food
source, which stimulates subsequent ants to follow the same path with a greater
possibility.

Definition 2. Stigmergy is a mechanism of spontaneous, indirect coordination
between agents or actions, where the trace left in the environment by an action
stimulates the performance of a subsequent action, by the same or a different

agent. [23]

As can be seen from Definitions 1 and 2 stigmergy describes a subset of pos-
sible emergent behaviours, specifically those emergent behaviours where there
is no direct interaction between agents but all interactions are with the envi-
ronment. In Chapter 3.1 an experiment is explained that shows how ants use
stigmergy to find the shortest path.

Artificial Bee Colony algorithms do not use stigmergy, but have another form
of foraging behaviour called self-organization. Bees do not use the environment
as a form of indirect communication, but directly communicate with each other
in their hive.

Definition 3. Self-organization is a set of dynamical mechanisms, which result
in structures at the global level of a system by means of interactions among its
low-level components. [19]

Even though the definitions given above seem to describe minuscule differ-
ences of emergent behaviour, the effect they actually wish to define is mostly the
same, but because emergence occurs in many different knowledge areas many
different definitions with as many names exist for it.

Chapter 3

Ant Colony Optimization

Decades after the French entomologist Pierre-Paul Grassé discovered stigmergy,
the use of pheromones on the environment to communicate indirectly, within ant
colonies in 1959 [17], Marco Dorigo et al. founded the field of Ant Colony Op-
timization (ACO) with his master thesis on positive feedback as search strategy
in 1991 [10],[7]. At first he improved the algorithm himself until the publi-
cation of his thesis in IEEE Transactions on Systems, Man, and Cybernetics
[13], after which research in this field takes flight and within five years Ant
Colony Optimization belongs to the best algorithms available for Combinatorial
Optimization (CO) problems.

Ant Colony Optimization was formalized as a metaheuristic for Combina-
torial Optimization problems by Dorigo et al. in 1999 [11]. A metaheuristic
consists of a set of algorithmic concepts used to solve a general class of compu-
tational problems, which can be applied to different problems with only a few
modifications.

In Table 3.1 a comprehensive list of algorithms and their authors is given, as
given in [8], and in Table 3.2 a list of chronologically ordered overview papers
can be found.

| Year | Algorithm | Authors | References |
1991 | Ant System (AS) Dorigo et al. 10],[7],[13]
1992 | Elitist AS Dorigo et al. 7],[13
1995 | Ant-Q Gambardella & Dorigo | [15]
1996 | Ant Colony System | Dorigo & Gambardella | [12
1996 | MAX-MINAS Stiitzle & Hoos 22
1997 | Rank-Based AS Bullnheimer et al. 3]
1999 | ANTS Maniezzo 20]
2000 | Best-Worst AS Cordén et al.
2001 | Hyper-Cube AS Blum et al. 1

Table 3.1: Overview of the more popular or successful Ant Colony Optimization
algorithms

| Year | Title | Authors | References |

. Dorigo
2004 Ant Colony Optimization Stiitale [14]
2005 Ant colony optimization theory: Dorigo (9]
A survey Blum
Ant Colony Optimization: Dorigo
2006 Artificial Ants Birattari [8]
as a Computational Intelligence Technique | Stiitzle

Table 3.2: Existing Survey papers since 2004

nest food

Figure 3.1: Double Bridge experiment, edge 1 is shorter than edge 2

3.1 Ant System

All Ant Colony Optimization algorithms are modeled after the foraging be-
haviour of ants (see Chapter 2.1), because a swarm of cooperating ants can
differentiate between sources of food with variable quantity and quality, and
between the lengths of the paths to a food source. If the only objective of the
ants is finding the closest source of food then it has been experimentally proven
that the majority of ants converge to the shortest path. This experiment is
known as the Double Bridge experiment (see Figure 3.1) of Deneubourg et al.
[6]. For this experiment a colony of ants and a food source are taken and con-
nected by two paths of unequal length. Trying to find a source of food the ants
will traverse both paths and deposit an amount of pheromones depending on
the length of the path taken. The ants will converge (see Definition 4) to the
path with the highest amount of pheromones on them, which corresponds to the
shortest path. In the long run ants are unable to remember any other path but
the best path, so with two equally long paths the ants will randomly converge
to either one path or the other.

Definition 4. Convergence is the approach towards a definite value, a definite
point, a common view or opinion, or toward a fixed or equilibrium state. [24]

The generic structure of an ACO algorithm is described in Algorithm 1, and
its lines will be elaborated in the rest of this section.

3.1.1 Construction graph

Ant Colony Optimization is an algorithm defined to be executed on a graph, a
discrete representation of a problem with a limited amount of solutions. This
graph is called the construction graph and is created in a way such that the ants
can use this graph to walk from node to node over the edges to find a solution

Algorithm 1 Pseudo-code for Ant Colony Optimization

: Create construction graph

: Initialize pheromone values

while not stop-condition do
Create all ants solutions
Perform local search
Update pheromone values

end while

NP g W

to the given problem. Usually this graph is fully connected to prevent deadlock
situations in which an ant is stuck on a certain node without possible edges to
move on. Several combinatorial optimization problems can be translated into
an equivalent graph structure and in [14] the construction graphs for several
problems are created and explained.

3.1.2 Solution construction

The solution construction step is the part of the algorithm in which the ants
create their solutions, in the case of the traveling salesman problem every ant
will create a Hamiltonian cycle. An ant starts at a randomly determined node i
and traverses the graph according to the random-proportional rule by choosing
the edge to the next node j with probability

K [7i;]%[1:51° e Nk

P Sienk [Tal*mal?’ i NS 31
where /\/ZC is the feasible neighbourhood of ant k at node ¢, 7;; is the amount
of pheromone on an edge, 1;; = 1/d;; is a heuristic value known a priori of the
algorithm execution (with d being the Euclidean distance between node i and
node j as the length of the edge) and o and § two parameters determining the
relative influence of 7 and 7. The feasible neighbourhood of an ant at a certain
node is the set of all neighbouring nodes that qualify as a possible next node.

In a fully connected graph the previous step is repeated until a valid tour
has been created for the ant. If the construction graph is not fully connected
and loops are not allowed then it is possible that ants cannot complete their
tours and end up with invalid tours. A loop is obtained if any node is visited
twice. This possibility arises if an ant arrives on a node from which it cannot
leave again without visiting another node for the second time and creating a
loop. In general loops are not allowed because it has been seen that ants can
get stuck in the loop because of the increasing amount of pheromones.

In [21] a proof of convergence is given for ACO algorithms which use the
pheromone update rule (see Chapter 3.1.3) on the best solution found so far.
The proof shows that the algorithm will always find the global optimum for
t - oo, where t is the elapsed time of the algorithm, and that the ants will
converge to the global optimum once it is found.

3.1.3 Pheromone update

The rules ants have to follow when depositing pheromones at the end of their
tours are described by the pheromone update rule. To have the ants converge

to a solution the pheromone amounts on good tours slowly have to increase.
This is achieved by having ants deposit an amount of pheromones depending
on the quality of their solution, where better tours are reinforced with more
pheromones. To increase the effectiveness of dropping pheromones on good tours
a little bit of the pheromones is removed at the end of every iteration, which
slowly decreases the likelihood of creating bad quality tours. Using these factors
of pheromone evaporation as negative feedback, and the pheromone update from
the ants as positive feedback the solution construction will slowly converge to
the better quality tours. Combined in one function this rule is

i< (L=p) - mij+ y At V(i j) e L, (3.2)
k=1

where L is the set of all edges, p is the evaporation rate, m the number of ants.

The amount of pheromone dropped on (7,7) by ant k, denoted with Arfj, can
be computed as:
L if ant k used edge (i,7) in its tour
Atk =1 Ix , ge (i,7) ’ (3.3)
0 otherwise,

where @ is a constant (often 1) and Ly is the length of the constructed tour of
ant k.

3.1.4 Pheromone initialization

The de facto standard for the initial pheromone values can be described by
7ij(0) < ATy, (3.4)

where A7;; is the amount of pheromones deposited by one ant generating a
random or unoptimized tour as defined in Equation 3.3. In the case of a fully
connected graph the nearest neighbour tour is often used for this purpose. If
7i;(0) is set too low the ants will immediately converge towards the tours gen-
erated in the first iteration. Deviations of the Ant System algorithm however
often use other settings, which will be detailed in their respective sections in
Chapter 3.2.

3.1.5 Local search

In Algorithm 1 the local search step has been defined, but this step is optional
as it is not actually needed for the algorithm to work. However, experiments
have shown that the results of the Ant Colony Optimization algorithms can be
significantly better using the local search step. The idea behind local search
is that random search or guided search could benefit from it by optimizing the
generated solutions a little bit, and thereby increasing the efficiency of the entire
algorithm. Local search tries to find a better solution in the neighbourhood of
the generated solution, where neighbourhood is defined as:

Definition 5. A neighbourhood structure is a function N : S — 2° that assigns a
set of neighbours N'(s) €S to every s € S. N(s) is also called the neighbourhood

of s [14].

In the neighbourhood multiple solutions might be better than the original,
and the function that chooses the neighbour to pick, the solution function, usu-
ally uses the best-improvement function or the first-improvement function. The
best-improvement function takes the neighbour with the largest improvement,
while the first-improvement function takes the neighbour with the first found
improvement. It is however also possible for the local search step to be skipped,
as continually taking an improved neighbour has a higher chance of converging
the algorithm to a local optimum.

3.1.6 Important principles

The following sections contain a number of interesting facts combined with some
key points to increase the understanding of what happens during the execution
of an ant algorithm. These points can be found in Dorigo and Stiitzle’s book
on Ant Colony Optimization [14].

Heuristic information

Introducing domain specific knowledge into the algorithm can improve its per-
formance impressively, since it usually only has to be computed once and allows
the algorithm to make more knowledgeable choices. In the usual case of solving
optimization problems on graphs the length of the edge can be used as heuristic
information in the form of a weight on the edge, with the weight calculated as
1/d for minimization problems, where d is the length of the edge. The shorter
the edge is, the greater the weight will be, which will influence the algorithm’s
choice more favourably than longer edges.

Some key points should be mentioned however to ensure heuristic infor-
mation is used correctly. The first point is that using heuristic information
introduces a bias on the search space, which can decrease the algorithm’s per-
formance for problems where the optimal solution lies outside the boundaries
of the bias. The second point is that there are problems where it is not pos-
sible to have static heuristic information (i.e. there is no heuristic information
that only has to be computed once), but heuristic information can be calcu-
lated after a partial solution has been found. Sometimes calculating this type of
heuristic information can be done with reasonable costs, but other times these
calculations can be quite expensive. The last point is that the gain of heuristic
information is mostly negligible when a local search algorithm is used. On the
other hand this allows expensive heuristic calculations to be removed without
much performance loss when the algorithm uses a local search algorithm.

Number of ants

Combinatorial optimization problems can be solved using a colony of only one
ant, because the solution construction step (Chapter 3.1.2) can be repeated
r times for each iteration to simulate a colony. However using a colony in-
creases the algorithm’s performance, because then only once per iteration the
pheromones are deposited (instead of 7 times in a simulated colony) and some
operations can be performed more efficiently on the set of ants as a whole as
compared to consecutive updates based on single ants. An effect called the
differential path length is responsible for increased performance introduced by

grouping consecutive ants into a colony. With the differential path length effect
more pheromones are deposited on shorter tours, and because a group of ants
deposit them at once more ants will follow the previously shortest tour than the
previously longest tour in the next iteration. One of the most used techniques
to increase efficiency is to selectively choose which ants are allowed to deposit
pheromones in certain iterations. When a colony contains more than one ant
the worst result can be omitted, or the best result or results can be emphasized
by increasing the amount of pheromones they will deposit.

There are however only a few guidelines for how many ants to use for an
algorithm, usually an amount of ants equal to the number of nodes is used,
except for Ant Colony System, where a fixed amount of 10 ants is used.

3.1.7 Exploration and exploitation

Exploration is continuously searching the entire search space for better solu-
tions, and exploitation is taking the currently found solutions and using them
to find even better solutions. Correctly balancing these two mechanisms must
be done carefully and is very difficult. If the effects from exploration are too
strong the algorithm will never converge to any solution, while if the effects from
exploitation are too strong the algorithm will converge too fast and will not be
able to escape local optima.

Balancing exploration and exploitation can be done in two ways. The
first way is to update the pheromones on the edges differently as shown by
Ant Colony System (ACS; see Chapter 3.2.2) and the MAX-MZIN Ant Sys-
tem (MMAS; see Chapter 3.2.3). To increase exploration ACS removes some
pheromones from a chosen edge to lower the chance it is chosen again, while
MMAS resets all pheromone values if the algorithm is estimated to have
reached convergence, i.e. has not found a better solution within a certain num-
ber of iterations. The second way assumes heuristic information is used and
changes the balance of the parameters between using heuristic information and
pheromone information. When « is decreased or g is increased the algorithm
focuses more on exploration, and when « is increased or 3 is decreased the al-
gorithm focuses more on exploitation. Another use of these parameters can be
achieved by slowly decreasing 8 from an initial value § > 0 towards O.

3.2 Algorithms

Chapter 3.1 introduced the basic algorithm’s inner mechanisms, with the pseudo
code found in Algorithm 1. This algorithm is the basis for all extensions and
modifications, and in the following sections some of them will be described
chronologically. In Table 3.1 a reference to the papers of the authors of the
extensions and modifications can be found.

3.2.1 Elitist Ant System

The Elitist Ant System (EAS) is the first improvement of the basic Ant System
algorithm [7][13] and proposed only one year after the Ant System, in 1992.
This improvement introduces a small memory remembering the tour with the
best result (7%, the best-so-far tour). Every iteration T is reinforced with an

10

extra pheromone update, even if the tour has not been created this iteration.
The pheromone update rule (Equation 3.2) changes to

V(i,j) €L, (3.5)

m
Tij < (1 - p) “Tij t Z ATZ +€ATZ§S,

k=1
where e is a weight factor determining how much 7% will be reinforced. Exper-
iments in [13] show that a good value for e might be 1 - #nodes. Alternately,
Dorigo and Stiitzle [14] use #nodes as value for e.

3.2.2 Ant-Q & Ant Colony System

The Ant-Q algorithm, an ACO algorithm combined with reinforcement learning
rules from Q-learning, was proposed by Gambardella and Dorigo in 1995 [15].
This algorithm however is not used anymore because a year later in 1996 a
simplified version was proposed which turned out to be equally powerful, the
Ant Colony System (ACS) [12], therefore only the modifications of ACS on the
Ant System will be described.

The solution construction step contains one of the changes, in the new ver-
sion the ants will much more likely follow the best path of high pheromone
values. There is a likely chance it will follow the highest pheromone value to
the next node, otherwise it will follow the normal computations of Ant System
(Equation 3.1).

(3.6)

- |argmax; e {u[mu]?} if g < qo,
J= ’ .
J otherwise,

where j is the next node selected by the ant, ¢ is a random number between
0 and 1, go a constant with g € [0,1] and J a path selected according to the
probabilities of the random-proportional rule given in Equation 3.1.

Another change is that pheromone evaporation and pheromone update is
only applied to the edges in the best-so-far tour, and the pheromone update is
factored by p resulting in a weighted average of the pheromone values.

7ij < (L= p) - 7ij + pATE, V(i f) e T™, (3.7)

The two previously described changes rely heavily on the exploitation of the
best-so-far tour. The last change increases exploration of the graph by slightly
decreasing the pheromone value of an edge traversed by an ant by a percentage
(e.g. 5% equals € = 0.05), with a minimum equal to the initialization value 7.

Tij < (1 =&)Ti; +£70. (3.8)

This means that there are two different ways for the pheromone values to change.
Equation 3.7 describes the weighted pheromone update that happens at the end
of every iteration once T%* is known, while Equation 3.8 describes an evaporation
that happens immediately after an ant has chosen that edge for its tour, to
decrease the chance of the next ant following the same tour.

3.2.3 MAX-MIN Ant System

In the same year as the Ant Colony System (Chapter 3.2.2) was proposed,
Stiitzle & Hoos proposed the MAX-MZN Ant System (MMAS) [22], which

11

exploits the best-so-far tour even stronger than the Elitist Ant System (Chap-
ter 3.2.1). Every iteration either the best-so-far tour or the iteration-best tour
(T) is allowed to deposit pheromones, and the balance between these two de-
termine the algorithms greediness. The pheromone update rule (Equation (3.2))
for the MAX-MZINAS becomes
Tij<—(1—p)~Tij+ATl;;St, V(’L,])EL (39)

where ever iteration ATIZ-’;St is either ATIZ?]‘? or ATZ’-. Some other changes however
were necessary to increase exploration, because MMAS converges too fast.

Firstly the range of pheromone values is bound to [7pin, Tmaz |, and instead of
initializing the trails to 7,,y, where 7., > 0, they are initialized to 7,4,. If the
speed of the pheromone evaporation is low enough this ensures the exploration
of the search space at the start of the algorithm because the relative difference
between the pheromone values of the updated tour and the rest of the graph will
grow less fast. There are some experimental values for the parameters 7,,;, and
Tmaz Dased on the length of the current best-so-far tour, which can be found
in [14].

To get out of local optima the algorithm can reset its pheromone values to
the initial values if it has converged to a single solution or if its best-so-far tour
has not changed in a given amount of iterations.

3.2.4 Rank-based Ant System

The Rank-based Ant System (ASrank) [3] is proposed by Bullnheimer et al. in
1997, which is a modification of EAS and uses only the best w — 1 tours of the
iteration and the best-so-far tour. Experimentally w usually is set equal to 25%
of the number of ants [3][13].

Furthermore the amount of deposited pheromones depends upon the tours
rank, where 7% has a weight factor of w, the iteration-best tour a weight factor
of w—1, the second ranked tour a weight factor of w — 2 etc. The pheromone
update rule now is

w-1
7ij < (1=p)-7i; + Z (w=r)AT] + wATfjs, V(i,7) € L, (3.10)
k=1

where w is the amount of ranked ants including 7%, and the lower bound of
(w—7) is 0, to ensure that no pheromones are subtracted.

3.2.5 ANTS

ANTS, or the Approximate Nondeterministic Tree Search, is proposed in 1999
and influenced by mathematical programming. It dropped the use of heuris-
tic values derived from domain knowledge a priori, but computes lower bounds
on completing a partial solution (the part of the tour the ant has already con-
structed) after temporarily adding a node (¢, 71) and uses all these lower bounds
of (i,j1) to (4,4n), with n the number of neighbours, as heuristic values. The
lower bound (LB) on the expected result of a tour is the sum of the lengths
of the partial solution, the chosen edge (i,jx) and an estimate of the edges
needed to complete the solution from node ji. The solution construction and

12

pheromone update have also been changed, with solution construction (Equa-
tion 3.1) changed to

k Crij + (1= O)nij ok
- if e NF, 3.11
Pig Yienik CTa + (1= C)na J (8:11)

where a and 8 of Equation 3.1 have been replaced by one parameter (and
multiplication has been replaced by addition. In the pheromone update rule
explicit pheromone evaporation has been removed, changing Equation 3.2 into

Tij < Tij + ZATZ-];, (3.12)
k=1
with AT;;- given by
_ c*-LB . .. k
Ak 9(1 T iB) if edge (,7) belongs to T, (3.13)
I 0, otherwise,

where C* is the length of the tour of ant k, Lavg the average length of the last
l iterations and ¢ a parameter usually set to 79. The result of Equation 3.13
is that the paths for tours better than L,,4 are reinforced, while if the path is
worse than Lg.g pheromones will be subtracted from the tour.

3.2.6 Best-Worst Ant System

In 2000, the Best-Worst Ant System (BWAS) is proposed, which uses elements
from Evolutionary Computation, especially the mutations. But also elements
from ACS and MMAS have been included. From ACS the pheromone update
mechanism (Equation 3.7) is used, and from MMAS the restart and reset of
pheromones.

As in ACS, T% receives pheromones each iteration, but in addition the
iteration-worst solution (T") removes pheromones from edges it contains that
are not in 7%, Equation 3.2 is changed to

Tij<—(1—p)-7'ij +p-ATij, V(’L,])EL, (314)

where

Tii = 3.15
/ 0, otherwise, ()

) {f(Cbs), if (i,7) € T,

where f(C%) is a function the length of 7% (usually f(C®) = Cl,,s). Moreover,

to penalize T it is evaporated one more time after the global evaporation
7ij < (1= p) -7, (i,5) € T™and(i, 5) ¢ T". (3.16)

Taken from MMAS is the reinitialization of the pheromones to 7y when the
algorithm has converged too much. This occurs when the difference between
T and T™ becomes less than a pre-defined percentage, where difference is
defined as the amount of different edges.

13

New to ACO however are the mutations to the pheromone values which
increase the explorative behaviour. There exists a probability P, for an edge
to be mutated, and the mutation algorithm can be described with

(3.17)

Ti‘:

’ {Tij +mut(k, Tehreshota), if a=0,
J

Tij — mUt(ka 7-threshold), if a = 1,

where a is a random value in {0,1}, k is the current iteration of the main
loop and Typreshold is the average of the pheromone values of the edges in the
best-so-far solution as

Z(i,j)eTbs Tij

1

Tthreshold =
The operation mut calculates the size of the mutation, which slowly will get
bigger during the execution of the algorithm,

mUt(ka Tthreshold) = M * 0 * Tthreshold (319)
Nk - kr
where k, is the last iteration of a restart, Nj is the maximum number of itera-
tions and o is the mutation power.

The mutation power defines how fast the mutation reaches Tipreshord, and
how much higher it can go (e.g. if ¢ = 2 then after half of the remaining
iterations the mutation is Typreshoid, and at the end the mutation will be close
to 2- Tthreshold)-

The problem with this algorithm is that there are many parameters to be
adjusted properly, and if it is done incorrectly could greatly decrease the algo-
rithms performance or overfit the algorithm to the benchmark.

3.2.7 Hyper-Cube Ant System

A bit different from the algorithms described above is the Hyper-Cube frame-
work [1], which like ANTS is inspired by mathematical programming. It does
not change the rules for the ants or the update mechanisms, but it changes the
representation of the construction graph such that solutions can be made by
binary vectors.

A binary vector, v = (v1,...,v,) with every vector component representing
the pheromone value of an edge, represents a solution by having every variable vy
to vy, take a value in {0,1}, and each unique ordering of 0’s and 1’s is a solution.
This way an n-dimensional hyper-cube is generated, where each corner is a
solution, but if values in the entire interval [0,1] are used instead of values in
{0,1} this hyper-cube represents the entire search-space equivalent to the other
Ant System algorithms. Pheromone values have to be scaled to the interval
[0,1] for every created vector 7, and a binary version of 7 is a solution. This
means that by creating a vector ¥ and creating a one-to-one relationship between
the indexes of ¥ and the pheromone values 7;; on the edges of the graph a vector
7 is created which will not only contain the pheromones of the graph, but also
can be viewed as an ant containing a tour when its values are limited to {0,1}
and a decision function has been defined mapping its current value to either 0
or 1. The vector 7 will slowly converge to the optimum using Equation 3.20.

14

Scaling is done the same way as in ACS (Equation 3.7), changing Equation 3.2
to

Tij < (1= p)-7i; +pZAT£, V(i,7) €L, (3.20)
k=1

where ATfj is scaled using

Vel

(3.21)
0 otherwise.

1/Cc* i od CoN ib L
Ar.k.:{i if edge (4,7) is used by ant k,

15

Chapter 4

Artificial Bee Colony

In 2005 Karaboga proposed a swarm-based algorithm based on the behaviour
of honey bees [19]. His algorithm is based on the two fundamental concepts of
self-organization and division of labour.

4.1 Concepts

Four mechanisms of self-organization are described by Bonabeau et al. in [2].
Positive feedback can be applied very generally, and usually defines the mecha-
nism that rewards good solutions and leads to convergence. On the other hand
there is negative feedback, which can be implemented to negate some effects from
the positive feedback that could negatively effect the outcome. For example if
a food source has been emptied a mechanism needs to decrease the amount of
agents (ants or bees) visiting that food source. The third mechanism is fluctu-
ations, which results in randomness in solutions so new and different solutions
can be found. The last mechanism is called multiple interactions and require
agents to communicate regularly with other agents (or the environment), so
every agent can use results from other agents as well as their own results.
Division of labour is a method that allows a swarm to use different types
of labourers for different tasks. These labourers will have other instructions
and may interact with other types of labourers. Using specialized labourers for
specific tasks is supposed to increase the performance of the entire swarm, and
enables the swarm to respond to changed conditions in the search space [19].

4.2 Honey Bee Swarm

For a honey bee swarm to emerge collective intelligence it needs food sources and
two types of bees, employed foragers and unemployed foragers. Two important
processes need to be defined, the first describes when bees will start exploitation
of a food source, the second describes when they will abandon a food source.

Paths to food sources represent the solutions the swarm needs to find, where
the quantified quality of the source is equivalent to the inverse length of the
solution and used for the TSP minimization problem,

1

Q"= (4.1)

16

with Q¥ the quality of the food source F' and LT the length of the associated
tour.

Foragers are the labourers of the honey bee swarm and find and exploit the
food sources. Unemployed foragers are not associated with a known source and
act as scouts upon the entire search space or as onlooker in the hive. Scouts
generally do not let themselves be influenced by previous results and just go
about their own way, the only interactions they have are when they find a new
source and the become employed foragers to communicate the location to the
onlooker bees. Employed foragers are associated with a certain food source and
go back and forth between the hive and the food source. In this way they exploit
the currently known food source and because of the fluctuations might find a
better path to a source close by, which is equivalent to a better solution in the
TSP.

Contrary to ants, bees communicate directly with each other in the hive using
a waggle dance. Depending on the quality of the food source there is a chance
that a bee will perform a waggle dance, and depending upon the length of the
dance and the dance itself onlooking bees will then decide if they want to become
employed foragers for that food source. These mechanisms should ensure that
better sources are more thoroughly exploited. Every time an employed forager
returns to the hive it can do one of three things, it abandons the source and
becomes a scout, it performs a waggle dance to try and get more bees to come
to its food source, or it continues to forage the same source. Note that since
a scout becomes an employed forager when it finds a new food source, and no
other ways exist to become an employed forager, every actively exploited food
source will have exactly one employed forager.

4.3 Algorithm

The algorithm based on the behaviour of foraging honey bees is called the Arti-
ficial Bee Colony (ABC) algorithm. Since only a scout can become an employed
forager and only an employed forager can become a scout, every food source has
exactly one employed forager and every employed forager has exactly one food
source the following equation indicates the number of active food sources

#F — #Stotal _ #Sfree, (42)

where #F is the number of food sources, #5%°*2! the maximal number of scouts
and #5%°° the number of free (unemployed) scouts. Equation 4.2 shows us that
the total number of food sources is bound to the total number of scouts. There-
fore the mechanism to abandon known sources becomes important to ensure the
algorithm does not converge to one of the first solutions it finds.

Bees are the agents of this algorithm, and independent of their role should be
able to remember the solution they found. Thus the solution a bee finds consists
of a set of values for the input parameters of the function to be optimized.
Furthermore every bee knows the role it has and dependent upon that role will
perform certain actions.

In Algorithm 2 a global outline of the algorithm is described. In line 1 all the
scouts are sent out to find an initial solution. Scouts usually have no guidance
since they are meant for exploration and finding any food source, this results
in low search costs but usually also low quality food sources. Line 3 sends out

17

the employed bees to the food sources just found, and it is at this moment that
the actual quality of the food source is determined. These employed bees are
actually the same scouts, but in line 1 they find a solution while in line 3 the
quality of the tour is calculated (i.e. the length of the tour). After the solution
qualities are calculated probabilities for the onlooker bees to join an employed
bee are determined in line 4, followed by sending out the onlookers in line 5.
After sending out the onlookers a decision has to be made if, and which, sources
are exhausted (line 6), and send out the newly freed scouts to find new solutions
(line 7). Before the next iteration of the algorithm the currently best solution
(T**) is memorized in line 8.

Algorithm 2 Pseudo-code for Artificial Bee Colonies algorithm [19]

1: Using scouts to find initial food sources

2: repeat

3: Send employed bees to food sources

4 Calculate food source probabilities for onlookers

5 Send onlooker bees to food sources

6: Stop exploitation of exhausted food sources
7 Send scouts to discover new food sources
8
9

: Memorize the best food source so far
: until Requirements are met

4.3.1 Exploration: sending scouts

The scouts that are sent out do not use any information gained by the other
bees but try to find new sources of food without being influenced by existing
knowledge. In general these solutions will therefore be of too low quality to be
optimized using the onlookers. At the start of the algorithm all scouts are send
out (line 1), and after existing food sources become exhausted all free scouts
are sent out again (line 7).

4.3.2 Determine employed bees

Every scout that found a food source in line 1 or line 7 will automatically become
a new employed bee for that food source. For existing food sources the bee with
the best solution will become the employed bee for that source, releasing all
other bees on that food source as new onlookers. For a minimization problem
this results in the following function

E; < min{l(p") | ke {Ei_.1 uO}} (4.3)

where i is the iteration number, p* the path of bee k and I(p¥) its length, E
the employed bee and O the set of onlookers.

4.3.3 Exploitation: sending onlookers

Line 4 and line 5 together determine which onlookers will be sent to which food
sources. First the probabilities are calculated for every food source to receive

18

an onlooker)
;
Py = I (4.4)
R

leL

where Py is the probability of an onlooker going to food source f, Ly the length
of the tour to f and L the set of all tourlengths to the currently active food
sources.

Then every onlooker decides which food source to visit and the onlookers get
distributed over the available food sources. These onlookers will, by definition,
not follow the exact same course as the employed bee and might therefor find a
better route to the food source.

4.3.4 Stop exploitation of exhausted food sources

Once a food source has been exhausted exploitation is stopped, the employed
bee becomes a new free scout and onlookers are released. Exhaustion in this
algorithm is defined by a certain number of iterations without improvement.

4.3.5 Memorize best food source

After every iteration the best food source is memorized by saving its employed
bee (containing the best path to this food source). So even if the food source
is exhausted in the future it will always be possible to remember the best path
found so far.

4.3.6 Parameters

After the employed bee and the onlookers for the same source have found new
routes to the source the employed bee will remember the best route, so the em-
ployed bee will always know the best known route to the food source. Exhaustion
is an important mechanism to improve the exploration, because then new scouts
are sent and new sources are discovered. There is a parameter called limit that
describes after how many iterations without improvement a food source is aban-
doned. Tuning this parameter is important to ensure that the algorithm does
not spend too much time in food sources that should be exhausted, or that
it exhaust food sources too fast before they can be efficiently searched by the
onlookers. In the original ABC algorithm the limit was set dynamically to the
number of onlookers times the dimension of the problem.

In Table 4.1 the parameters as used in the simulations of [19] can be found.
An interesting fact of these parameters is that scouts and employed bees are
mentioned separately, and if every employed bee (and thus food source) gets
exactly one onlooker and none of the food sources is exhausted this way there
is still at least one scout moving randomly about. If this scout finds a solution
better than at least one of the currently employed bees the currently worst
employed bee is released (food source is exhausted) and replaced by the scouts
solution.

19

Swarmsize 20

Number of scouts 5% — 10% of number of bees
Number of onlookers 50% of the swarm

Number of employed bees | 50% of the swarm

limit #onlookers - dimension

Table 4.1: Parameters of the ABC algorithm as used in [19]

20

Chapter 5

Algorithms

This chapter will be dedicated to describing the hybrid Ant Colony Optimiza-
tion-Artificial Bee Colony algorithms used for the experiments. Two of the
original Ant Colony Optimization algorithms already contained mechanisms to
bind the amount of pheromones to an upper limit which makes it easier for
exploration and exhaustion to be adapted and integrated. For this reason these
two algorithms, MMAS and ACS, were chosen to be combined with the ABC
algorithm. To complete this chapter an extra section is included that describes
the algorithms that deal with making the original Ant Colony Optimization
algorithms adapt to a dynamic environment.

5.1 Dynamic ACO

A dynamic TSP works the same as a normal TSP, but the parameters of the
problem or the search space in which the algorithm is trying to find the best
solution can change. The algorithm should be able to adapt to these changes,
and not get stuck in places that used to be optima but are not optima anymore
after the search space has changed. A dynamic TSP can be changed in three
ways: nodes can be added, nodes can be removed and the length of an edge can
change. If a change is great enough, or a number of changes happen at once,
such that it is not possible to use at least a part of an already found tour it
will be better to restart the entire algorithm. This is needed because existing
information is incorrect and will only slow the algorithm down. Small changes
that happen too soon will barely have an effect because even a simple Ant
Colony Optimization algorithm should be able to adjust if it has not converged
very far yet.

Because of the abovementioned reasons the type of dynamic TSP that is
investigated contains only small changes, and these changes are performed when
the first initial run of the algorithm has already converged to a solution. For
every testproblem a number of iterations is determined at which the algorithm
has usually converged to a good solution, and the first change does not happen
before that number of iterations has passed.

21

5.1.1 Restoring a tour

A change in the environment can only occur between iterations. Hence only the
best-so-far tour 7% (Chapter 3.2.1) needs to be restored if a change happens,
because that is the only solution that is remembered across multiple iterations.
Since Artificial Bee Colony also remembers every employed ant across iterations
the hybrid algorithms need to restore more ants to a valid solution. A change in
the TSP problem can introduce new nodes, remove existing nodes or do both,
and for both situations a mechanism must be described to make sure that the
tour is still valid. It is difficult to ensure that the new valid tour is still as good
as the old tour was, but the algorithm should take care of that by itself.

Deleted nodes

When a node is deleted it immediately invalidates the remembered tour, because
the tour now contains a node that does not exist. Restoring the tour from
deleted nodes is easy to do, because deleted nodes are just removed from the
tour and the nodes on either side of it are now connected to each other.

Added nodes

Adding a node does not create the same problem deleting a node creates because
the tour can still be followed from start to end. However for the TSP problem
it does invalidate the tour since a valid TSP tour must include all nodes. The
problem is knowing where to insert the newly added node. For this algorithm
the choice was made to test the node between all existing concurrent nodes and
then insert it at the position where the new solution would be best.

A more intricate solution might be to also shuffle some of the existing nodes
to create an even better solution, or to perform a local optimization algorithm
after deleting or adding, but because it is not guarenteed that that makes the
algorithm perform better as a whole restoring the tour is kept as simple as
possible.

5.2 ACO-ABC

Since both Ant Colony Optimization algorithms share a common ancestor and
share a lot of functionality this section will first describe the basic hybrid al-
gorithm between an Ant Colony Optimization algorithm and an Artificial Bee
Colony algorithm. In Algorithm 3 the pseudocode for the hybrid algorithm is
given, and comparing it to Algorithm 1 and Algorithm 2 one can observe how
the original algorithms fit together to form this new hybrid algorithm.

In the following sections the lines that have different behaviour specific for
the hybrid algorithm are explained. Some of the lines behave exactly the same
as in the original algorithms and have already been explained: line 1 can be
found in Chapter 3.1.1, line 2 in Chapter 3.1.4, line 6 in Chapter 3.1.5 and
line 9 in Chapter 4.3.4.

22

Algorithm 3 Pseudo code for the hybrid Ant Colony Optimization-Artificial
Bee Colony algorithm.

1: Create construction graph

2: Initialize pheromone values

3: while not stop-condition do

Create solutions for free scouts

Divide onlookers proportionally and create solutions
Perform local search

Find new employed ants & best-so-far tour

Update pheromone values

9: Stop exploitation of exhausted food sources

10: end while

5.2.1 Solution construction

The first step of every Ant Colony Optimization algorithm is creating solutions.
In this hybrid algorithm solution construction goes in two parts, described in
the following two sections for line 4 and line 5.

Free scouts

In the original Artificial Bee Colony algorithm solution construction the scouts
would create a completely random solution, in the current version of the hybrid
algorithm however solution construction for the scouts is performed the same
as solution construction for Ant Colony Optimization (Chapter 3.1.2).

Onlookers

Once the scouts have created their solutions probabilities are calculated for
the onlookers to use to determine which food source they will visit. Solution
construction for the onlookers is different from that of the scouts because the
onlookers have to take a route resembling that of the scout, but it is required to
be different or it will have no effect. In graph theory however it is not as easy to
define a neighbouring solution as it is in a continuous or discrete search space.

One class of defined neighbourhood structures for combinatorial optimiza-
tion problems is the k-exchange neighbourhood.

Definition 6. The k-exchange neighbourhood of a candidate solution s is the
set of candidate solutions s’ that can be obtained from s by exchanging k solution
components.[14]

The k-exchange neighbourhoods with k£ = 2 or k£ = 3 are often used in the
local search of the algorithm [14], but since the hybrid algorithm also allows
local search this does not generate neighbours with a difference great enough
to really search the neighbourhood. The way neighbours are generated is based
on the k-exchange neighbourhood, but cannot be called a k-exchange method.
The algorithm for creating neighbours is shown in Algorithm 4. A neighbour is
created by following the original tour from a random starting node in a random
direction, but at every node there is a chance that the next node to visit is not
the next one in the original tour but another random unvisited node. This jump

23

chance (line 4) is set to 10% to ensure that even smaller TSP’s (dimension 10-
20) jump at least once, and there is a great chance that larger TSP’s jump more
than once. Because for every next node for which there is a choice in direction
(both nodes before and after have not yet been visited) the direction is chosen
by the greatest pheromone value we can describe this algorithm as: cut up the
original tour in k places, randomly reorder the pieces and reverse the order of
the nodes in some pieces. Where k is set close to 10% of the number of cities of
the TSP.

Algorithm 4 Pseudo code to generate a neighbour of solution S.
1: Get random node from S as starting point.
2: while unvisited nodes exist do
3: Get random number in [0,1]
4: if random number < jump chance then
5 Jump to an unvisited node using the proportional rule (see Equa-
tion 3.1).
else
Determine travel direction (forward or backward).
Get next node in travel direction from S.
9: end if
10: end while

5.2.2 Find new employed ants

In line 7 of Algorithm 3 a simple compare and replace operation is performed.
The solution of every onlooker is compared to that of the currently employed
ant, and if the solution of the onlooker is better they switch roles. This way we
end up with a set of employed ants that are currently the best ants for their
respective food sources. Then the solution of every employed ant is compared
to T and the best tour becomes the new 7.

5.2.3 Pheromone update

The mechanics of the pheromone update in line 8 can be found in Chapter 3.1.3,
but as with Ant Colony System (Chapter 3.2.2) the update is only done on the
edges of T?.

5.3 ACS-ABC

One of the two Ant Colony Optimization algorithms that have been used to make
a hybrid algorithm with Artificial Bee Colony is the Ant Colony System. Equa-
tion 3.7 ensures that there is an upper bound to the amount of pheromones on
an edge. The only difference from the hybrid algorithm described in Algorithm 3
is that the solution construction of the scouts is performed using the pseudo-
random rule (Equation 3.6), instead of the proportional rule (Equation 3.1).

24

5.3.1

In Table 5.1 the parameters for the ACS-ABC hybrid algorithm as used during

Parameters

the experiments can be found.

| Parameter | Value
Local search off
Node selection (scout) Pseudorandom
Pseudorandom chance 0.9
Evaporation rate 0.1
Local evaporation rate 0.1
Number of iterations 1500
Pheromones to drop 1
Swarmsize 40
Number of scouts 10
Number of onlookers 20
Number of employed bees 10
Iterations without onlookers before exhaustion | 5
Iterations without update before exhaustion 10

5.4

The other algorithm used as basis for the hybrid algorithm is the MMAS.
This algorithm runs as an MMAS algorithm with the changes in Chapter 5.2
incorporated. MMAS has explicit boundaries on the pheromone values as

Table 5.1: Parameters used for ACS-ABC hybrid algorithm.

MMAS-ABC

shown in Chapter 3.2.3.

5.4.1

In Table 5.2 the parameters for the MMAS-ABC hybrid algorithm as used during

Parameters

the experiments can be found.

| Parameter | Value
Local search off
Node selection (scout) Proportional
Evaporation rate 0.1
Frequency of iteration best deposit 0.9
Iterations without update before reinitialization | 50
Number of iterations 1500
Pheromones to drop 1
Swarmsize 40
Number of scouts 10
Number of onlookers 20
Number of employed bees 10
Iterations without onlookers before exhaustion 5
Iterations without update before exhaustion 10

Table 5.2: Parameters used for ACS-ABC hybrid algorithm.

25

Chapter 6

Experiments

In this chapter the experiments that have been run will be detailed and ex-
plained. Four TSP problem instances from the T'SPLib library have been taken
and made into incremental dynamic problem graphs. Then the two dynamic
algorithms are compared to each other and to the Ant Colony Optimization al-
gorithms they derived from. Furthermore some dynamic algorithms have been
run more than once with a difference in the parameter set, these results indicate
if a certain parameter would improve the total result or not.

6.1 TSPLib

The TSPLib library contains a large amount of Traveling Salesman Problem
instances, with dimensions from only a few nodes to over 10000 nodes. This
library is free for use and Traveling Salesman Problems from it are regularly
used as benchmark problems. The optimum route, or its length, is given for a
number of problems, including three of the chosen tests.

6.1.1 Traveling Salesman Problems

The problems taken from TSPLib are problems for the static Traveling Sales-
man Problem. To turn them into dynamic Traveling Salesman Problems a set
of changes have to be described that tell the algorithm how to change the graph
during its execution. These changes could be determined randomly each time
the algorithm is executed, but then the algorithms could never be truly repro-
duced. A possible way to define the changes is a list of operations that should be
executed in succession, which would ensure the problem is reproducable. The
algorithm could start on the original graph, and then modify it, but then after
the changes it is not known what the optimum would be. So for these experi-
ments the algorithm starts with a subset of the graph, a couple of nodes have
been taken out, and then the list of operations consists of re-adding the nodes
in a certain order.

Because the algorithm first tries to solve a subset of the graph, continuously
followed by graphs with one added node, this type of dynamic problem solving
is also called incremental problem solving.

26

| Problem | Dimension | Minimum |

burmal4 14 (30.88)
fri26 26 937
berlin52 52 7542
ch150 150 6528

Table 6.1: The chosen TSPLib problems with their dimension and published
minimum (as integer). For burmal4 no shortest route was published, but using
an exact solver (Concorde, see Chapter 6.2) was calculated to be 30.88.

burmal4

This problem instance was chosen because it is the smallest TSP included in
the library. It is a 14 cities problem, with fourteen cities from Burma. At the
start of every experiment three nodes were taken out that were reinserted every
50 iterations. Randomly selected and in order of reinsertion the following nodes
had been taken out: 3, 1, 14.

fri26

The fri26 instance was chosen because it was one of the smallest problem in-
stances for which an optimum was given, but also being around twice the size
of burmal4. This problem is about 26 cities from Fricker, and its shortest route
as given by the TSPLib library is 937. For the dynamic graph four nodes were
taken out from the beginning and were reinserted one by one every 50 itera-
tions. Randomly selected and in order of reinsertion the following nodes had
been taken out: 14, 4, 23, 26.

berlin52

This instance was chosen because it was (again) twice the size of the previous
problem and had a given optimum. The origin of this problem is 52 locations
in Berlin and its minimum is 7542.

ch150

Ch150 was chosen because it is used more often as a benchmarking problem,
and is a 150 cities problem with shortest length 6528. In this instance ten nodes
were taken out from the beginning and were reinserted one by one every 50
iterations after 300 iterations. Randomly selected and in order of reinsertion
the following nodes had been taken out: 128 24 138 74 40 18 102 69 80 125.

6.2 Concorde

One of the fastest exact algorithms for the Traveling Salesman Problem is con-
corde [4],[18]. Concorde uses an advanced branch-and-bound algorithm with a
linear programming solver to find the optimum, but although it is fast it is still
exponential in its worst case complexity. In Table 6.2 the execution time of the
concorde algorithm for a number of Traveling Salesman Problems with a wide
range of dimensions is shown. This table shows that larger problems take longer

27

to run, although the fluctuations in running time also indicate that besides the
size of the problem its complexity also plays a vital role in determining the
execution time.

Problem | Dimension | Time

burmal4 14 | 0.02s
fri26 26 | 0.04s
berlin52 52 | 0.10s
ch150 150 | 0.82s
a280 280 | 2.82s
atth32 532 48s
gr666 666 30s
rat783 783 16s
dsj1000 1000 | 126s
pr1002 1002 11s
pcb1173 1173 | 135s
d1291 1291 >1h
11400 1400 >1h
d2103 2103 >4h

Table 6.2: Concorde experiments, the processes of the results with a > sign were
killed so no exact numbers are available.

6.2.1 Traveling Salesman Problems
burmal4

Table 6.3 shows the results of running concorde for the burmal4 TSP and its
generated subgraphs, including their execution time and shortest tourlength.
Since concorde is an exact algorithm these tourlengths are the actual optima
and can be used to determine the quality of the algorithms compared on this
problem.

| #nodes | Tourlength | Time

11 28.4097 | 0.03s
12 28.9273 | 0.02s
13 29.3352 | 0.02s
14 30.8785 | 0.02s

Table 6.3: Results for burmal4 with concorde algorithm

fri26

In Table 6.4 the execution time and the actual optima for fri26 and its subgraphs
can be found.

28

| #nodes | Tourlength | Time

22 895 | 0.02s
23 896 | 0.02s
24 903 | 0.01s
25 902 | 0.04s
26 937 | 0.04s

Table 6.4: Results for fri26 with concorde algorithm

berlin52

Table 6.5 shows the results of running the concorde algorithm on the berlin52
problem. No subgraphs of this graph were used during the experiments, therefor
only the results of the complete graph are shown.

| #nodes | Tourlength | Time |
| 52 | 7542 | 0.1s |

Table 6.5: Results for berlin52 with concorde algorithm

ch150

The tourlengths of the (sub)graphs and execution time of the concorde algorithm
for the ch150 problem can be found in Table 6.6.

| #nodes | Tourlength | Time

140 6381 | 0.32s
141 6382 | 0.27s
142 6403 | 0.30s
143 6430 | 0.73s
144 6435 | 0.40s
145 6467 | 0.47s
146 6467 | 0.54s
147 6490 | 0.37s
148 6491 | 0.54s
149 6503 | 0.81s
150 6528 | 0.82s

Table 6.6: Results for ch150 with concorde algorithm

6.3 Traveling Salesman Problem experiments

The following sections describe the experiments as run on the four chosen prob-
lems.
burmal4

The original six static algorithms are run on this problem, to be able to compare
their respective behaviour before the algorithm is changed or the graph is made
dynamic. These algorithms are: Ant System, Elitist Ant System, Rank-based

29

Ant System, MAX-MZN Ant System, Ant Colony System and Best-Worst
Ant System. Furthermore the MAX-MZN Ant System was also run on the
dynamic instance of the burmal4 test to test the performance of a non-adapted
algorithm on a dynamic problem.

fri26

As with burmal4, this problem is run with the original six algorithms: Ant Sys-
tem, Elitist Ant System, Rank-based Ant System, MAX-MZIN Ant System,
Ant Colony System and Best-Worst Ant System.

berlin52

This problem is run with five of the original algorithms (Ant System, Elitist Ant
System, Rank-based Ant System, MAX-MZN Ant System and Ant Colony
System), to be able to compare the results of the two previous (smaller) tests
with a slightly larger test.

ch150

This problem is run with five of the original algorithms: Ant System, Elitist Ant
System, Rank-based Ant System, MAX-MZN Ant System and Ant Colony
System. Also the two types of local search algorithms (first-improvement, best-
improvement) are run on this problem to see if they should be enabled for all
testing. Furthermore the two dynamic algorithms (MMAS-ABC, ACO-ABC)
are run on this problem.

6.4 Implementation
The implementation of the algorithms is written in GNU C++4, and compiled
using GCC 4.4.3. The programs were run on a computer with a dualcore Intel

processor on 1.3Ghz with 3GB of DDR3 RAM, running Ubuntu 10.04 64-bit
with linux kernel 2.6.32.

30

Chapter 7

Results

7.1 Parameter results

7.1.1 Local Search

The two different types of local search algorithms have been run on the ch150
problem, and the results for tourlength and execution time can be found in
Table 7.1. In the following paragraphs a possible explanation is searched for,
but according to these results the algorithm should not be included with a 2-opt
local search algorithm.

| | Average result | Average run-time |
AS 7046.8 11min 25s
AS 2-opt (FI) 7143.1 16min 28s
AS 2-opt (BI) 7086.7 3h 49min 23s

| | Minimum run-time | Maximum run-time |
AS 11min 7s 11min 33s
AS 2-opt (FI) 16min 13s 16min 46s
AS 2-opt (BI) 3h 46min 40s 3h 51min 10s

Table 7.1: Results of various Ant System algorithms on ch150 TSPLib instance
(repeated 10 times).

2-opt first-improvement

All types of local search algorithms generate some extra execution time, but the
first-improvement 2-opt (2-opt (fi)) algorithm generates a much smaller amount
of execution time compared to the best-improvement 2-opt (2-opt (bi)), even
though it still increases execution time by 30%. In Figure 7.1 the results of the
five original algorithms with 2-opt (fi) can be found, and in Figure 7.6 the results
of the algorithms without any local search algorithm are reported. Comparing
these two figures show that the 2-opt (fi) algorithm increases the performance
of ASrank and ACS, but decreases the performance of the other algorithms.

31

7400

7200 |- —

N : |

6800 |- J —

6600 |- —

6400 L I
AS EAS ASrank MMAS ACS

Figure 7.1: Original algorithms using first-improvement 2-opt local search on
ch150 TSPLib instance.

7400

7200 |- —

7000 |- —

6800 |- —

6600 |- —

6400
AS

Figure 7.2: Ant System algorithm using best-improvement 2-opt local search on
ch150 TSPLib instance.

32

2-opt best-improvement

Initially both types of local search would have been compared side by side, but
after running a set of experiments (10 runs of the Ant System algorithm) it was
shown that the algorithms running with the best-improvement solution function
(2-opt (bi)) (see Chapter 3.1.5) have a drastic increase in run-time. Without
further optimization of and improvements on the best-improvement function it
was clear that it would take too long and it was therefor decided not to use this
local search procedure. In Figure 7.2 the results are shown of the Ant System
algorithm with 2-opt (bi).

7.1.2 Employed ants depositing

To increase the performance of the algorithms it was investigated if allowing
all the employed ants to deposit pheromones and the best ant to deposit extra
pheromones would generate better results. The reason to allow employed ants
to deposit would be that they would increase the pheromones in other promising
areas for future exploration, and to make sure the best ant would act different
from the employed ants it would deposit twice its pheromones. Running the
MMAS-ABC algorithm with these parameters showed a significant decrease in
quality of the results after a couple of trials (all results outside the outer bounds
of the original results). For now there was decided not to continue researching
in this direction because these parameters unbalanced the exploration and ex-
ploitation (see Chapter 3.1.7), and the purpose of this research is not about
optimizing this algorithm but researching its viability.

7.2 Traveling Salesman Problems

The following sections describe the results obtained by running the algorithm
on the different TSPLib tests.

burmal4

Figure 7.3 shows the results of the six original algorithms on the burmal4 test.
The minimum of the burmal4 test is given in Table 6.3 and is 30.88. The plots
show that all of the algorithms find the optimum at least once, although for
AS the minimum is only found in the lower quartile of the results. Interest-
ingly almost all the results of ACS find the minimum, and those that don’t are
considered outliers. Furthermore the plots show no defined results between the
minimum and the two possible values around 31.2, indicating a gap between the
minimum and the nearest other solution, and only the Ant System has trouble
bridging this gap.

fri26

In Figure 7.4 the plots for the results of the algorithms obtained from running
on the fri26 test are shown. The given minimum for fri26 is 937, and again all
the algorithms are able to find this minimum. However MMAS and BWAS
do not always find this minimum, but MMAS about half the time and BWAS
even less. Normally that would not be something worth mentioning, but in this

33

Original algorithms on BURMA14

32.2 -

4

++ ++0 o

32 B

31.8 N * * R

314 -

312 - 1 F gt 8 i :,,t3 |

31t : i 1 | 1

30.8 I I I I I I
AS EAS ASrank MMAS ACS BWAS

Figure 7.3: Results of the six basic algorithms on the burmal4 instance

case even AS, EAS and ASrank almost always find this minimum. This shows
that depending upon the complexity of the problem, even for the same type of
problem, it is useful to investigate which ACO algorithm to use because there
is no algorithm that is always better that the others.

berlin52

The performance of the five algorithms performed on the berlin52 test almost
seems switched, since for this test the MMAS algorithm almost always ap-
proaches the minimum while the other algorithms do not. Another interesting
result is that ACS is now one of the two worst algorithms (the other is ASrank),
while in the previous two tests it was the best algorithm in both cases. However
none of the algorithms find the minimum, the obtained results approach 7544
but never get below it, while the given minimum is 7542 (see Table 6.5).

ch150

The results for the five algorithms on ch150 can be found in Figure 7.6, with
the horizontal black line indicating the minimum value (see Table 6.6). This
problem is already more difficult for this implementation of the algorithms with
the default set of parameters, since none of the algorithms actually find the min-
imum. For a problem of this size it shows that the more simple algorithms (AS,
EAS and ASrank) are clearly outperformed by the more advanced algorithms
(MMAS and ACS). But for this problem ACS seems to perform better, since
almost all its results are in the same range as the lower quartile of MMAS.

34

1080

1060

1040

1020

1000

980

960

940

Original algorithms on FRI26

‘ I

L +

.

L el R S ‘
8 o

L o ©

L L L L L L
AS EAS ASrank MMAS ACS BWAS

Figure 7.4: Results of the six basic algorithms on the fri26 instance

8100

8000

7900

7800

7700

7600

7500

EAS

Figure 7.5: Results of five basic

ASrank MMAS ACS

algorithms on the berlin52 instance

35

7400

+

7200 |- w —
w +

7000 |- —
+

1 T | |
1

6600 |- —

6400 L L L L L
AS EAS Asrank MMAS Acs

Figure 7.6: Five original algorithms on ch150 TSPLib instance.

7.3 Dynamic Traveling Salesman Problem

7.3.1 Unadapted MMAS on burmal4

Figure 7.7 shows the results obtained by running the original MMAS algorithm
on the dynamic burmal4 test. The black horizontal lines are the calculated
minima as given by Concorde (see Table 6.3), where the bottom-most line is for
the set of 11 nodes and then in order going up. These results illustrate that this
unadapted algorithm is not good in coping with changes in the testset. Every
next iteration the distance from the minimum (in tourlength) becomes greater,
almost as if the algorithm is diverging.

7.3.2 MMAS-ABC on chl50

In Figure 7.8 the results of the MMAS-ABC algorithm on ch150 are shown.
To keep the graph clear only the optimum of the complete graph is shown as
a horizontal black line at 6528. The other optima can be found in Table 6.6.
Although the graph now seems to diverge from the black line it should be re-
membered this line is the optimum only for the last iteration and the other
iterations actually have lower minima. The graph shows mixed results for the
different iterations, iterations 700 and 1200 seem to perform exceptionally well
(even finding lower minima than the iterations before them on average), but it-
erations 900, 1000, 1400 and 1500 perform worse then expected with the average
result much higher than its predecessor.

On average however the calculated minimum of the graph increases by

36

36

35 - —

33 —

32 —

2 I I I I

Figure 7.7: Original MMAS on the burmal4 testset, beginning with 11 nodes
and adding 1 node every 50 iterations. The horizontal lines are the minima as
calculated by Concorde.

37

10000

9500 |- —

8500 |- —

T -

7500 |- —

== s

6500

500 600 700 800 900 1000 1100 1200 1300 1400 1500

Figure 7.8: Plots for the intermediate and end results for the MMAS-ABC
algorithm on ch150. The horizontal line is the minimum for the complete graph
(optimum for iteration 1500).

147 (6528 - 6381, see Table 6.6), where the average minimum of the result
in Figure 7.8 seem to increase with about 600 (try to draw a line through the
averages and then calculate the difference, +7300 — +6700).

7.3.3 ACS-ABC on chl150

Figure 7.9 shows the results of the ACS-ABC algorithm on ch150. Again, to
keep the graph clear only the optimum for the complete graph, iteration 1500,
is shown. These results are a lot better than the results of the MMAS-ABC
algorithm, neither fluctuating nor diverging as much as MMAS-ABC. Even
though the iterations slowly increase the average minimum after 10 additions
with £100 (6770 — £6670), this is less than the calculated minimum increases
(147) and can be seen as convergence even with the dynamic behaviour of adding
nodes. Another point worth mentioning is the Y-scale of Figure 7.9, where the

Y-scale of this entire graph is %th that of Figure 7.8.

38

7000

6900 |- + N -

LA

JJJJ‘

6600 |-

6500 I 1 1 1 1 | I I I I I
500 600 700 800 900 1000 1100 1200 1300 1400 1500

Figure 7.9: Plots for the intermediate and end results for the ACS-ABC algo-
rithm on ch150. The horizontal line is the minimum for the complete graph
(optimum for iteration 1500).

39

Chapter 8

Conclusion

In Chapter 7 the results of this research were described and analyzed, this
chapter however will try to draw a more global conclusion from these results.
Chapter 7.2 shows us that for different problems different Ant Colony Optimiza-
tion algorithms should be used, there is not a single algorithm that is always
better than the other algorithms. However as a general rule it can be concluded
that for any problem either MMAS or ACS will be among the best performing
ACO algorithms (see Figures 7.3, 7.4, 7.5 and 7.6).

The results in Chapter 7.3.1 are used as an argument to show that the nor-
mal algorithms cannot cope with dynamically changing graphs, and although
this was only tested on the smallest available problem the divergence shown is
obvious enough that this same argument should hold for the other problems.
Following this Chapter 7.3.2 and Chapter 7.3.3 analyze the results of the hy-
bridized algorithms. As is shown in Figure 7.6 the ACS algorithm performs
better than the MMAS algorithm, and this is also valid for their hybridized
counterparts. While the results of the MMAS-ABC algorithm (Figure 7.8)
are bad enough to conclude that this hybridization is inefficient, the results of
the ACS-ABC algorithm (Figure 7.9) are hopeful that this hybridization can be
used for other problems because it converges despite the changing graph. Re-
gretfully neither the static algorithms on the normal graphs, nor the dynamic
algorithms on the dynamic graphs reach the actual minimum for ch150, therefor
no conclusion can be drawn about the speed at which changes are allowed before
the algorithms cannot keep up and start diverging.

But the final conclusion that can be drawn is that the hybrid ACS-ABC
algorithm on the dynamic ch150 problem performs as well as the ACS algorithm
on the static ch150 problem, and much better than the hybrid MMAS-ABC
algorithm. Even though there are no real exceptional results neither has the
research failed to deliver what it set out to find, an algorithm that is better in
coping with dynamic traveling salesman problems.

40

Acknowledgements

I especially would like to thank Prof. Dr. T.H.W. Béck, for his patience in wait-
ing for this projects completion, his practical advice and the discussions we had
about on which area to focus. But my thanks also go to Dr. M.T.M. Emmerich,
as second reader of my thesis. Furthermore a general thanks to the other master
students and especially Marijn Swenne, who kept me motivated when I wasn’t.

41

Bibliography

[1]

C. Blum, A. Roli, and M. Dorigo. HC-ACO: The Hyper-Cube Framework
for Ant Colony Optimization. In MIC’2001 - 4th Metaheuristics Interna-
tional Conference, pages 399—403, 2001.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, 1999.

B. Bullnheimer, R. F. Hartl, and C. Strauf]. A New Rank Based Version
of the Ant System - A Computational Study. Technical Report Tech.Rep.,
Institute of Management Science, University of Viena, 1997.

Concorde. www.tsp.gatech.edu/concorde/, march 2012.

O. Cordén, 1. F. de Viana, F. Herrera, and L. Moreno. A new ACO model
integrating evolutionary computation concepts: The best-worst Ant Sys-
tem. In Abstract proceedings of ANTS 2000 — From Ant Colonies to Artifi-
cial Ants: Second International Workshop on Ant Algorithms, pages 22—29,
2000.

J. Deneubourg and S. Goss. Collective patterns and decision making. Ethol-
ogy Ecology € Fvolution, 1:295-311, 1989.

M. Dorigo. Ottimizzazione, apprendimento automatico, ed algoritmi basati
su metafora naturale (Optimization, learning and natural algorithms). PhD
thesis, Dipartimento di Elettronica, Politecnico di Milano, 1992.

M. Dorigo, M. Birattari, and T. Stiitzle. Ant Colony Optimization: Ar-
tificial Ants as a Computational Intelligence Technique. Technical report,
IRIDTA, Institut de Recherches Interdisciplinaires et de Développements
en Intelligence Artificielle, Université Libre de Bruxelles, 2006.

M. Dorigo and C. Blum. Ant colony optimization theory: A survey. The-
oretical Computer Science, 344:243-278, 2005.

M. Dorigo, A. Colorni, and V. Maniezzo. The Ant System: An Autocat-
alytic Optimizing Process. Technical Report 91-016 Revised, Université
Libre de Bruxelles, Milano, Italy, 1991.

M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic.
Technical report, Université Libre de Bruxelles, 1999.

42

[12]

[18]

[19]

[20]

[23]
[24]
[25]

M. Dorigo and L. M. Gambardella. Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem. IEEE Transactions
on Evolutionary Computation, 1:53-66, 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man,
and Cybernetics - Part B, 26:1-13, 1996.

M. Dorigo and T. Stiitzle. Ant Colony Optimization. The MIT Press, 2004.

L. M. Gambardella and M. Dorigo. Ant-Q: A reinforcement learning ap-
proach to the traveling salesman problem. In Proceedings of the Twelfth
International Conference on Machine Learning (ML-95), pages 252-260,
1995.

J. Goldstein. Emergence as a Construct: History and Issues. Emergence,
Complexity and Organization, 1:49-72, 1999.

P.-P. Grassé. La reconstruction du nid et les coordinations interindividu-
elles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la
stigmergie: Essai d’interprétation du comportement des termites construc-
teurs. Insectes Sociauz, 6:41-80, 1959.

Hahsler, Michael, Hornik, and Kurt. TSP - Infrastructure for the Traveling
Salesperson Problem. Journal of Statistical Software, 23:1-21, 2007.

D. Karaboga. An Idea based on Honey Bee Swarm for Numerical Optimiza-
tion. Technical report, Engineering Faculty, Erciyes University, Kayseri,
Tirkiye, 2005.

V. Maniezzo. Exact and Approximate Nondeterministic Tree-Search for
the Quadratic Assignment Problem. INFORMS Journal on Computing,
11:358-369, 1999.

T. Stiitzle and M. Dorigo. A short convergence proof for a class of ACO
algorithms. ITEEE Transactions on Fuvolutionary Computation, 6:358-365,
2002.

T. Stiitzle and H. Hoos. Improving the Ant System: A Detailed Report on
the MAX MZIN Ant System. Technical Report AIDA-96-12, FG Intellek-
tik, FB Informatik, TU Darmstadt, Germany, 1996.

Stigmergy. http://en.wikipedia.org/wiki/Stigmergy, november 2009.
Convergence. http://en.wikipedia.org/wiki/Convergence, april 2010.

Emergence. http://en.wikipedia.org/wiki/Emergence, march 2012.

43

