
Internal Report 2012–07 July 2012

Universiteit Leiden

Opleiding Informatica

Genetic Algorithms and Cellular Automata:

unraveling the Bitmap Problem

Sjaak Wolff

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Genetic Algorithms and Cellular Automata:
unraveling the Bitmap Problem

Sjaak Wolff
sjaakwolff@gmail.com

Leiden Institute of Advanced Computer Science
Leiden University

July 30, 2012

Abstract

Using Genetic Algorithms to evolve Cellular Automata rules to solve a given prob-
lem is a well-known method. The Bitmap Problem however, with it’s versatile
and challenging characteristics, remains quite unknown. This thesis focuses on the
Bitmap Problem and tries to expose its inner workings, possibilities and pitfalls.
Multiple aspects of the Bitmap Problem like grid size, state set and updating
method are being adjusted to measure their influence. In the final chapter of this
thesis an algorithm is described which uses the Bitmap Problem as key ingredient
for a data compression algorithm.

Contents

1 Introduction 3
1.1 Cellular Automata . 4

1.1.1 Definitions and example . 4
1.1.2 Two-dimensional Cellular Automata 7
1.1.3 Rule encoding and rule spaces . 8
1.1.4 Asynchronous updating methods 9

1.2 Genetic Algorithms . 12
1.2.1 Evolutionary Loop . 12
1.2.2 Selection methods . 15

1.3 The Bitmap Problem . 16
1.3.1 Previous results . 16

2 The bitmap experiment 18
2.1 Copying the experiment . 18
2.2 Expanding the experiment . 20

3 Experimental Results 22
3.1 Genetic Algorithm settings . 22
3.2 Connected vs. Unconnected borders . 24
3.3 Bitmap Fingerprints . 26
3.4 Synchronous versus Asynchronous updating 32
3.5 Iteration path fitness . 35

3.5.1 Synchronous iteration path . 35
3.5.2 Asynchronous iteration path . 41

3.6 Increasing the grid size . 44
3.7 General state space Bitmap Problem . 46
3.8 Enhanced Bitmap Problem . 48

4 Summary and Outlook 51
4.1 Data Compression Algorithm . 53
4.2 Algorithm variation . 56

Bibliography 58

2

Chapter 1

Introduction

The Bitmap Problem brings together two subjects within the field of Natural Com-
puting. It is a problem within the field of Cellular Automata (CA) [12, 15, 17] and
Genetic Algorithms (GA) [1, 10] are a good way to find solutions to it. CA date
back over half a century to the 1940s from the work of John von Neumann on
self-replicating systems [14]. CA consist of a set of state machines, or cells, which
are situated in an array or grid. Each cell resides in one of a finite number of states.
The state of a cell can change to another state from the state set as time passes in
discrete time steps. A local rule deterministically decides what the state of the cell
becomes at the next time step considering the direct neighborhood of that cell. The
CA that John von Neumann created, with help of his collegue Stanislaw Ulam,
consisted of a 2-dimensional grid of cells each with 29 possible states and used
the now well known ’von Neumann neigborhood’ to iterate the system over time.
The CA made endless copies of a certain initial pattern; the first self-replicating
automata.

The Bitmap Problem is the challenge of finding a combination of local rules that
iterates the CA from an initial configuration to a desired configuration within a
given amount of steps. Altough the CA used for the Bitmap Problem can be of
any grid size and state set, it proves to be a very difficult task to find successful
rules. To discover its difficulties, possibilities and boundaries, the Bitmap Problem
will first be solved for relatively small grid sizes and state sets. This is where GA
come into play. There are many possible rules to consider when looking for a rule
that will successfully solve a given Bitmap Problem. The very large search space
of rules makes it impossible to find a successful rule by simply brute force or ran-
domly trying out different rules. GA provide a smarter and more efficient way to
search within these very large search spaces.

3

1.1 Cellular Automata

Cellular Automata (CA) form a lively and actively studied subject within the field
of Natural Computing. Nowadays many variations to the original concept have
been constructed. CA are being used in many types of simulations and observations
because of the emergent global behaviour of the system based on simple local rules.
The research in this thesis is largely based on the subject of CA and this section
will provide the reader with the basic required knowledge on CA.

1.1.1 Definitions and example

A Cellular Automaton (CA) is a discrete and deterministic dynamical system,
consisting of a collection of finite state machines called cells [12, 15, 17]. These
cells are interconnected locally with each other forming a d-dimensional lattice, or
grid. In the case of a one dimensional CA this would be an array, or row, of length
n. Where n is the amount of cells in the CA.

A = {a1, a2, ..., an}

Where A is a one dimensional CA with n cells and the cell at position an is gen-
erally adjacent to the cell at position a1, forming a ring-like shape.

The states in which the cells can reside in are defined by a finite state set

S = {s1, s2, ..., sp}

p being the number of elements in the state set. Most CA in this thesis will use
the simplest state set, which is the binary state set where S = {0, 1}.

The state of the cell at position a1 at time t is written as at1. The configura-
tion c of the entire CA at time t is denoted as ct and consists of the states in which
the cells of the CA reside in at that particular point in time.

ct = {at1, at2, ..., atn}

4

The cells can change their internal state at discrete time steps. At each time step
the states of the cells are evaluated and updated. this happens either synchronously,
all at once, or asynchronously, one at a time. Synchronous updating is the most
widely used updating method. Asynchronous updating will be more elaboratly
discussed in section 1.1.4. What the state of a given cell at the next time step will
be, depends on the current states of its neighborhood cells. Exactly which cells are
to be considered the neighborhood cells differs. In our one dimensional case, the
neighborhood Ni of cell ai is defined as the local set of positions with a certain
distance, or radius r, of ai.

Ni = {ai−r, ai−r−1, ..., ai, ..., ai+r−1, ai+r}

When taking the ring structure of the CA into account, this means that N1 =
{a148, a149, a1, a2, a3} for r = 2 and n = 149. Note that the size of the neighbor-
hood in one dimensional CA always equals to 2r + 1.

An update rule, or local transition function Φ, determines what the state of a
given cell will be by considering the current state of its neighborhood.

Φ : Sq → S

Where q is the size of the neighborhood.

This means for a given cell ai at time t, with its neighborhood N t
i :

at+1
i = Φ(N t

i)

N t
i being the state of the neighborhood of cell ai at time t.

The local transition function Φ is applied to all cells at each discrete time step
and thereby determines the global dynamics, or behavior, of the CA. At each time
step, the configuration ct is translated into ct+1.

ct+1 = {Φ(N t
1),Φ(N t

2), ...,Φ(N t
n)}

Let C be the set of all possible CA configurations, C = Sn. The Global Transition
function G is the function G : C → C, so G(ct) = ct+1.

5

To summarize the above, a Cellular Automaton is a 4-tuple (d, S,N,Φ) where d is
the dimension of the grid of cells, S is the state finite set, N the used the neigh-
borhood setting and Φ is the local transition function. Two other variables could
be added to more accurately describe the CA, being c0 as the initial configuration
of the CA and upd, the used update method, which is either synchronous or asyn-
chronous.

To see how a Cellular Automaton actually works, we will consider a CA in one of
its most simple forms; the Elementary Cellular Automata. Extensive research has
been conducted to the Elementary Cellular Automata by Stephan Wolfram [17]
and later on have been proven able to perform Universal Computation [6]. The
Elementary Cellular Automaton consists of a one dimensional array of cells. This
array is usually considered infinite in size, but in practical studies the array is given
a size and the first and last cell are considered neighbors, making it a circular or
ring like shape. The state set of the Elementary CA consists of two states {0, 1}
(binary). Generally visually represented as Black or White squares. The cells are
updated synchronously at each time step with a local neighborhood of radius one,
making the neighborhood three cells in total: the cell itself and the cells directly
adjacent to the left and right. The amount of possible different neighborhoods,
given a neighborhood size of three and a binary state set, is 23 = 8. The transition
function Φ maps each of these neighborhood configurations into a state from the
state set. This will be the state of the cell at the next time step, see Figure 1.1.

Figure 1.1: Picture of the 8 possible neighborhoods and their
local transition function mappings in a Elementary Cellular Au-
tomata rule

Visualizations of one dimensional CA dynamics are often depicted as space-time
diagrams. Horizontal rows are the consecutive configurations in time, where the
top row is the initial configuration and subsequent rows represent the states further
on in time. Figure 1.2 shows how such a space-time diagram is built step by step.
The CA in the figure has an initial configuration of one black cell and uses the
rule depicted in Figure 1.1.

6

Figure 1.2: Picture showing how the rule depicted in Figure 1
influences the state of the cells of the CA in time, starting with an
initial configuration of 1 black cell

1.1.2 Two-dimensional Cellular Automata

Instead of the row of cells we have seen in the one-dimensional CA, the two-
dimensional CA consists of a grid, or lattice, of cells, somewhat like a checkerboard.
The number of cells in the CA in this thesis is finite and therefore the grid has
a certain width w and height h. The cells of the two dimensional CA require two
coordinates to be addressed.

A =

∣∣∣∣∣∣∣∣
a1,1 · · · aw,1

...
. . .

...
a1,h · · · aw,h

∣∣∣∣∣∣∣∣
Where A is a two dimensional CA with width w and height h.

The borders can either be connected or unconnected. Connected borders means
that the leftmost cell in a row is the neighbor to the rightmost cell of the same
row. This is also the case for the bottom and top cells in a column, forming a torus
topology. Unconnected borders does not have this feature and prevent information
to ’flow’ out of the borders to the other side of the grid. In order to still give the
cells at the edges of the grid a full neighborhood, an imaginary border will be
placed around the grid, having cells with a fixed value (in this thesis being ’0’ or
’white’). The setting of having connected or unconnected borders can have a huge
impact on the dynamics of the CA over time.

Now that the cells of the two dimensional CA not only have neighboring cells
to the left and right, but also above and beneath it, the neighborhood for the
transition function has also been modified. Two commonly used neighbordhoods
are the “von Neumann” and “Moore” neighborhood, named after their respective
inventors [13, 14]. These neighborhoods can also be considered having a certain
radius. Both neighbordhoods with a radius one are depicted in Figure 1.3.

7

(a) von Neumann neighborhood (b) Moore neighborhood

Figure 1.3: Two commonly used neighborhoods for two-
dimensional Cellular Automata with a radius of one

As seen in the figure above, the neighborhoods shown consist of more cells than
the Elementary CA described earlier. Increasing the size of the neighborhood also
increases the amount of possible rules, or rulespace, of the CA. This will be dis-
cussed in more detail at section 1.1.3.

1.1.3 Rule encoding and rule spaces

Stephen Wolfram [17] introduced a naming scheme for the Elementary CA. Each
Elementary Rule is specified by an eight-bit sequence, where every bit represents
a mapping from a neighborhood configuration to the resulting state at the next
time step. This eight-bit sequence can be interpreted as the binary representation
of a decimal in the interval [0, 255], the ’Wolfram number’ of the Elementary Rule.
For example, the rule depicted in Figure 1.1 is known as ‘Rule 182’, obtained by
the binary expansion 181 = (10110110)2. All possible Elementary Rules can be
represented by an 8 bit string and thus the amount of unique global transition
functions is limited to 28 = 256. This can be called the ‘rulespace’ of the Elemen-
tary CA. The encoding scheme is also applicable to more complex CA with larger
neighborhoods and state sets. The size of the neighborhood N and the size of the
state set S greatly influence the amount of unique rules that are constructable and
will thereby also increase the length of the string representing the encoded rule.
The size of the encoded rule is equal to the amount of neighborhoods which is
given by the following formula:

|neighborhoods| = |S||N |

The rulespace size is then calculated by the fact that for each neighborhood there
are |S| possible outcomes, i.e.:

8

|rulespace| = |S||S||N|

The size of the rulespace increases dramatically by increasing the size either one
of the sets S or N . Table 1.1 shows how the size of the rulespace increases by
small increments of either one of the sets. The table shows for example, that the
rulespace of the Elementary CA with neighborhood size |N | = 3 and state set size
|S| = 2 equals 223 = 28 = 256. The rulespace for a two dimensional binary CA
with the von Neumann neighborhood, like the well-known ”Game of Life” [2, 5, 9],
would be 225 = 232 = 4.294.967.296.

Neighborhood size |N |
1 2 3 4 5 6 7 8 9

|S
|

1 11 11 11 11 11 11 11 11 11

2 22 24 28 216 232 264 2128 2256 2512

3 33 39 327 381 3243 3729 32187 36561 319683

4 44 416 464 4256 41024 44096 416384 465536 4262144

Table 1.1: Table that shows the influence on the size of the
rulespace |S||S||N|

of both variables, size of state set S and size
of neighborhood N .

1.1.4 Asynchronous updating methods

In contrary to the widely used synchronous updating method, where all cells are
updated at the same time step, there are other ways of evaluating and updating
cells in a CA. This means instead of evaluating all cells at once, evaluating the
individual cells in the CA one at a time. This way, a cell’s neighborhood could have
changed multiple times, before the cell will be evaluated itself. The order in which
the cells are to be evaluated needs to be specified in advance and the statistical
properties of this order can have significant consequences for the dynamics and
patterns generated by the CA.

There are several different algorithms to obtain such an updating order. How-
ever, only those that were used in this thesis will be described in this section.
To read more on asynchronous updating, see [16]. Below follows a brief outline of
each of the used asynchronous updating methods. Figure 1.4 shows the difference
between the resulting configurations after using the same rule to iterate an initial

9

configuration for a given amount of steps with synchronous and the various asyn-
chronous updating methods.

Fixed directional, or line-by-line sweep, is the simplest form of asynchronous up-
dating, where the cells of the CA are put in a predefined, fixed order to form a
sequence in which the cells will be updated. This order will typically be from left
to right and from top to bottom.

Fixed random sweep is quite similar to the simple line-by-line sweep method. In
this case the sequence of cells is chosen randomly. The first cell of the sequence is
chosen from all n cells in the CA, the second is chosen from the remaining n − 1
cells etc. In other words, the sequence is constructed by uniform distribution with-
out replacement. The same sequence will then be used for all iterations, making it
not that different from the line-by-line method, which is actually a special case of
the fixed random sweep.

Random new sweep has its commonalities to fixed random sweep. This time however
the sequence is not fixed and after each sweep through the grid, a new sequence
is chosen by uniform distribution without replacement. The fixed random sweep
would be a special case of random new sweep where by chance, the same sequence
is chosen every time.

10

(a) (b)

(c) (d)

Figure 1.4: Pictures showing the different resulting configura-
tions of the different updating methods using the same rule: a cell
becomes black if at least one of it’s von Neumann neighbors is
black. The rule is iterated 8 steps for synchronous updating and 8
sweeps for the asynchronous updating methods. (a) Synchronous
updating (b) Line by line sweep (c) Fixed random sweep (d) Ran-
dom new sweep. Image concept borrowed from [16].

11

1.2 Genetic Algorithms

Genetic algorithms (GA) [1, 10] are part of the field of Evolutionary Computation,
an interesting and useful subject in within the field of Natural Computing. A GA
is used for solving search and optimization problems in high-dimensional search
spaces. They are based on the paradigm of natural evolution; trying to mimic
nature in evolving organisms to best suit the environment in a way that is known
as ‘survival of the fittest’. The research described in this thesis makes extensive
use of GA and this section will give a short introduction to the field by providing
an overview of their workings.

1.2.1 Evolutionary Loop

Population of individuals

A Genetic Algorithm contains a population, or ‘pool’, of one or more individuals.
Each of these individuals represent a solution to problem which is to be solved.
These representations of solutions are called ‘genotypes’, the solutions which they
represent are called ‘phenotypes’. An individual’s genotype is somewhat compa-
rable to a DNA string of living organisms; it is not the organism itself, but de-
scribes what it is, does and what it looks like. The genotype is typically repre-
sented by a vector of values ~a, in our case this will be a bit string of length l:
~a = (a1, ...al) ∈ {0, 1}l. The population of the genetic algorithm consists of λ indi-
viduals, each having their own genotype.

Fitness

The genetic algorithm starts by randomly initializing the λ individuals. Each in-
dividual in the population now represents a solution to the given problem. These
random solutions will most likely be far from optimal, but some may be better
than others. So now we have to be able to decide which individual is better or
’more fit’ than another. This will be done by using a fitness function. This usu-
ally means mapping the genotype to the phenotype first and then calculating how
good or bad the solution performs, for example by running some sort of simulator.
This is usually the most expensive part of the algorithm, in terms of computation
time. The fitness function then rates the solution and attaches this rating to the
individual.

12

Exit criteria

After calculating the fitness of each individual, the exit criteria of the algorithm
are checked. Reasons for the algorithm to stop could be that one of the individuals
in the population has reached the maximum possible fitness rating, meaning that
a perfect solution was found. Another reason would be that the maximum amount
of time was spent or the maximum amount of generations has been reached. Other
criteria could be thought of as well. As long as these criteria are not met, the
algorithm will continue with the next step.

Selection

When all individuals have been given a fitness rating, a selection is made based
on these fitness ratings, to decide which µ individuals will serve as ’parents’ for
the next generation of individuals. The individuals that were not chosen will be
discarded and removed from the population. The selection can be done in multiple
ways, some of which will be shortly described in section 1.2.2. The main differences
between the various selection methods lie in the amount of ’luck’ a ’bad’ individual
can have in still being chosen as a parent. E.g. very strict selection methods will
always only choose the best individuals of the population, thereby denying the
population to retain its diversity which in some cases is a necessity to find the
optimal solution.

Recombination and mutation

After the selection has been made, the selected parents will be used to gener-
ate ’offspring’. Depending on the algorithm, this generating of offspring can mean
multiple things: one method is that two parents are be combined using ’crossover’
to create a new individual. Crossover will not be used in the GA in this thesis.
Another method for creating new individuals, is simply copying the selected par-
ents (multiple times), leaving them intact, to be the offspring. After the offspring
is created, their genotypes will be slightly changed or ’mutated’. The mutation
consists of changing one or more values in the string which forms te genotype. In
this thesis, where binary strings are used as genotypes, all bits in the string have a
certain probability pmutation to get ’flipped’. What the value of pmutation is exactly
is defined seperatly for each experiment.

New generation(s)

After mutation has been applied, the resulting population consists of both the

13

parents and the newly generated and mutated offspring. Here one can choose to
dispose of the old individuals (the parents) and contintue the algorithm with only
the new individuals. The notation for this is (µ, λ), also called a ’comma-strategy’.
µ being the number of parents that were selected and used to create the offspring
and λ represents the number of generated offspring each generation. The effect of
disposing of the parents and continuing with only new indidivuals, is that possibly
a old, good solution was mutated into a new, worse solution and that the good solu-
tion was disposed and lost forever. Keeping the old individuals in the population,
notated by (µ + λ) and known as a ’plus-strategy’, prevents this from happen-
ing. Both the ’plus-’ and ’comma-strategy’ have their pros and cons. Whereas the
’comma-strategy’ will not easily focus on one solution, but allows the possibility
of the population to decrease in fitness. The ’plus-strategy’ on the other hand will
not ’throw away’ good solutions, while having the danger of focusing too much
on a certain solution which turns out to be far from optimal and ending up in a
’local-optima’.

Evolutionary Loop

When the new generation is completed, the genetic algorithm continues by cal-
culating the fitness for this new generation. After calculating the fitness the exit
criteria are checked and if they are not yet met, the selection procedure will select
the individuals which will be used to form the new offspring etcetera. This process
is nicely displayed in figure 1.5.

Figure 1.5: Graphical representation of the evolutionary loop in
Genetic Algorithms.

14

1.2.2 Selection methods

Many different methods for selecting individuals based on their fitness ratings to
create the new generation, have been constructed. The different selection methods
all have their own characteristics. Where some aim to get a ’fairly good’ solution
as fast as possible using a high selection pressure, others are aimed at finding the
optimal solution and the time it takes matters less. This subsection only describes
the two selection methods that were used in this thesis, namely the Truncation
Selection method and Tournament Selection. For a detailed explanation on various
other selection methods, see [1].

Truncation selection

Truncation selection is a straightforward, easy to implement selection method.
It just selects the best µ individuals, having the highest fitness ratings of the
population. This selection method has the characteristic that it specializes on the
best individuals in the population very fast, meaning that in a few generations
all individuals are ’descendants’ of the same small group and eventually same in-
dividual, greatly reducing the diversity the population. This is also the weakness
of this method; in some cases the optimal solution (or ’global optimum’ of the
search space) to a given problem will not be found as the algorithm gets stuck in
a ’good’ solution (also called a ’local optimum’ of the search space). This method
is a typical example of a selection method with a high selection pressure.

Tournament selection

The other used selection method in this thesis is tournament selection. This method
selects a certain number of individuals to take place in a ’tournament’ with only
one winner. The winner of this q individuals, q being the tournament size, is the
individual with the highest fitness rating. This process repeats itself untill all µ
parents have been selected from the population. The number of individuals se-
lected has great influence on this method’s behaviour. As it is obvious that using
q = 1 makes this selection method completely random while using q = n makes it
always selecting the best individual. The higher q is set to, the higher the selective
pressure becomes.

15

1.3 The Bitmap Problem

The Bitmap Problem is a challenging task in the field of CA, where a rule is to
be found to iterate an initial configuration into a desired configuration within a
limited amount of steps. The challenge lies in the fact that the CA has to generate
the given desired configuration, or ’bitmap’, based on local rules only. The Bitmap
Problem has been defined as follows [3, 4]

Given an initial configuration and a specific desired configuration: find a rule that
iterates from the initial configuration to the desired configuration in less then I
iterations.

It is not required that the number of iterations is fixed, it can be any number
between 1 and I. Also, the CA does not have to stay in the desired configuration,
it only has to reach it within the limited amount of steps. Altough the Bitmap
problem could exist in all CA dimensionalities, only two-dimensional CA have been
used so far.

1.3.1 Previous results

The only experiments that has been done on the Bitmap Problem, prior to this
paper, were conducted by R. Breukelaar [3, 4] and are quite limited, being more
of explorative nature. A fairly simple Genetic Algorithm was used and only small
CA sizes were tested. The used CA have a binary state space, the von Neumann
neighborhood, unconnected borders and have a height and width of 5 cells. Fig-
ure 1.6 shows the different used desired configurations. All desired configurations
for the Bitmap Problems used the same initial configuration of a single black cell
in the middle of the CA, called a ’single seed’ state. The maximum number of
iterations for the desired state to be reached was set to I = 10.

Figure 1.6: Picture of all the bitmaps used in the original exper-
iments. From left to right named ”Square”, ”Hourglass”, ”Heart”,
”Smiley” and ”Letter”.

16

The Genetic Algorithm used in the experiments to find successful rules for the
Bitmap Problems had a population of 100 individuals using the ’plus strategy’
(µ + λ) with µ = 10 and λ = 90. Truncation selection was used to select the top
10% rules. No crossover was used to produce offspring, only Probabilistic Bit Flip
Mutation was performed with a probability to flip every bit in the genotype with
pm = 1/(rule length) = 1/32 = 0.03125. The reason that no crossover was used is
due to results of experiments in his dissertation, showing that using crossover to-
gether with the von Neumann neighborhood does not combine well. The maximum
amount of generations was set to 5000. The definition of the used fitness function
was unfortunatly not given. The results obtained from running this algorithm 100
times for every Bitmap Problem are shown in Table 1.2 [3, 4].

Bitmap Successful rules
(out of 100)

Square 80
Hourglass 77

Heart 35
Smiley 7
Letter 9

Table 1.2: Table showing the results obtained by R. Breukelaar,
by running a Genetic Algorithm on different Bitmap Problems 100
times. Some Bitmap Problems seem to be harder to solve than
others.

17

Chapter 2

The bitmap experiment

2.1 Copying the experiment

To be able to copy the previous experiments, a fitness function had to be defined
first. The most obvious function would be:

”The more cells of the CA are correct in a certain timestep, as in the same as in
the desired configuration, the better. If all the cells are in the same state as in the
desired configuration, the solution was found.”

A more formal definition is:

f(ct) =
w∑
i=1

(
h∑

j=1

ψ(ati,j, b
t
i,j)) and ψ(a, b) = {a = b→ ψ = 1, a 6= b→ ψ = 0}

where f(ct) is the fitness score for a single configuration c at time t.
The fitness score of an individual of the population is given by:

max(f(c0), f(c1), ..., f(cI))

where I is the maximum number of iterations.

So the fitness function will have an individual from the population, which rep-
resents a CA rule, as input. This rule will then be used to iterate a CA with the
given initial configuration and the the amount of ’overlap’ between the current
and desired configuration will be recorded at every iteration. After I iterations,

18

the maximum score, as in the highest achieved overlap, will be returned as the
individual’s fitness rating. Using this fitness function, together with CA and GA
settings as described in section 1.3.1, the achieved results are those shown in ta-
ble 2.1.

Bitmap Successful rules
(out of 100)

Square 87
Hourglass 82

Heart 39
Smiley 13
Letter 9

Table 2.1: Table showing the results of trying to repeat the ex-
periments conducted by R. Breukelaar. The results differ a little
from the original results though. The difference in difficulty is still
the same.

Figure 2.1: Some successful iteration paths of solved Bitmap
Problems

The results from the copied experiment show a small increase in efficiency for all
bitmaps. The reason for this could be that a different fitness function was used.
However, it could also be coincidence as the results differ a little each run.

19

2.2 Expanding the experiment

The explorative experiments by Breukelaar will be used as a basis. They can be
adjusted and extended in multiple ways and this section will describe what will
be experimented on and why, with the ultimate goal to give a possible use for the
Bitmap Problem in a real world application.

Starting with a statement Breukelaar wrote in his thesis, saying that ‘to make
the problem even harder’, the CA would have unconnected borders instead of con-
nected borders. A good first experiment would be to test this statement and see
the actual difference between the two different CA settings. The difference will be
measured in terms of the difficulty the GA with the same settings has on a given
Bitmap Problem with the same initial and desired configurations, but with the
different border settings. This experiment, together with the obtained results, is
described in detail in section 3.2.

Another result that stands out from the initial experiments, is that there is a
huge differences between the difficulty the GA has solving the different Bitmap
Problems. This raises the obvious question of why these notable differences ap-
pear. One explanation that was already given by Breukelaar was that the ‘easier’
desired states had one thing in common: they all had symmetric characteristics to
some extend. Where the easiest desired configuration, the ‘square’, is symmetric
in both horizontal and vertical axes. The runner-up, the ‘heart’ configuration, is
symmetric over the vertical axis. The ‘smiley’ configuration however, which is also
symmetric over the vertical axis, has a much worse performance than the ‘heart’
configuration: what could explain this? Would it be possible to somehow predict
in advance if the the GA will have a hard time finding rules for the given Bitmap
Problem. Section 3.3 describes some experiments that try to discover if, given a
initial and desired configuration, some prediction can be made on this.

Another property of the CA which greatly influences the dynamics of the CA,
is the updating method which is used to iterate the system over time. It would
be interesting to see how the different updating methods differ from each other in
terms of efficiency. Section 3.4 will be devoted to the differences in performance
between several asynchronous updating methods compared to the classical syn-
chronous approach.

Consequently, experiments with bigger CA grid sizes have been done, to see how
much influence the grid size has on the difficulty of a given problem. It is possible
that as the amount of different possible configurations a grid can have increases

20

exponentially, the genetic algorithm will also have much more difficulty in trying to
find successful rules. Grid sizes will be increased from 5 by 5 cells to 7 by 7 and 10
by 10. Detailed experimental descriptions and their results are given in section 3.6.

The final component to change, compared to the initial experiments, is the state
set of the cells. So far the experiments done used a CA with a binary state space. As
seen in section 3.7, expanding the state set has the effect of dramatically increas-
ing the rule space of a CA. This could cause major problems for the relatively
simple genetic algorithms used. However, when rules can be found for Bitmap
Problems with general state spaces, this would certainly emphasize the power of
genetic algorithms and could also increase the possible applications for the Bitmap
Problem.

21

Chapter 3

Experimental Results

3.1 Genetic Algorithm settings

This chapter contains detailed descriptions, together with the results and conclu-
sions of the different experiments described in the previous chapter (section 2.2).
The Genetic Algorithm used in this section differs to some extend from what was
used for copying the original experiments, described in section 2.1. This experi-
ment will use a Genetic Algorithm that has a much smaller runtime, without losing
too much of its ability to find solutions to the Bitmap Problem. Also, the Bitmap
Problem settings are loosened a bit by increasing the setting of the maximum
number of iterations I from 10 to 20. The reason for this is that the experiments
took a fairly large amount of time while the settings did not seem well balanced,
having a very high maximum generations setting opposed to a small population
and high fitness pressure. Figure 3.1 shows what the adjustments in parameters
produce in terms of Genetic Algorithm fitness convergence.

Bitmap Successful rules Successful rules
Original settings Adjusted settings

Square 87 93
Cross 81 84
Heart 39 39
Smiley 13 8

Table 3.1: Table showing the difference between the different
settings of a Genetic Algorithm.

To summarize the Genetic Algorithm settings, population size (λ+µ) = 100, muta-

22

tion rate pmutation = 0, 05, selection method is Tournament selection, Tournament
size q = 10, Parents size µ = 20 and Offspring size λ = 80.

(a) Original experiment Genetic Algorithm settings

(b) Adjusted GA settings (c) Adjusted GA and CA settings

Figure 3.1: Picture showing convergence graphs of different GA
parameters of successful runs on solving the Bitmap Problem for
the ”Heart” desired configuration. (a) shows a typical run using
the ’original’ settings proposed by R. Breukelaar. (b) differs in that
the mutation rate is increased by a small amount, also the selec-
tion method has changed from truncation selection to tournament
selection. (c) Same GA settings as in b, but now the Bitmap Prob-
lem settings were changed by increasing the maximum iterations
from 10 to 20.

23

3.2 Connected vs. Unconnected borders

The first experiment proposed in section 2.2, was one to test a statement made by
R. Breukelaar, saying that unconnected borders would make the Bitmap Problem
harder to solve. To test this, a GA with the settings described in section 3.1 was
run on several Bitmap Problems to see the actual difference between the two CA
settings. The used bitmaps are a bit different than in the original experiments and
are shown in Figure 3.2 The results of running the GA 100 times for each bitmap,
are shown in Table 3.2 for both connected and unconnected borders.

Figure 3.2: Picture of all the bitmaps used in the experiments in
this section. From left to right named ”Square”, ”Cross”, ”Heart”,
”Smiley”.

Bitmap Successful rules Successful rules
Unconnected borders Connected borders

Square 93 92
Cross 84 72
Heart 39 20
Smiley 8 9

Table 3.2: Table showing the results of running the same Genetic
Algorithm on the same Bitmap Problem for a 100 times with both
connected and unconnected borders.

The conclusions that can be made when looking at the results of both connected
and unconnected borders, is that using unconnected borders is clearly more suc-
cessful. This is in contrast with the statement from Breukelaar saying that un-
connected borders would make the problem harder, which is an understandable
assumption when looking from a ’communication’ perspective, cells can reach each
other faster and exchange information easier with less distance. The assumption
however does not seem correct as the opposite is true. This difference could be
explained by the fact that with the grid size of 5 by 5 and unconnected borders,
20 ’extra’ cells are added to the CA, which will never change value as explained
in section 1.1.1. This means, at least while using these fairly small grid sizes for

24

the Bitmap Problem, almost half of the cells in the grid have a fixed value (20
out of 45, 5 at every border). The fact that almost half of the grid is fixed, could
result in a decrease of complexity, so that the Bitmap Problem can be solved more
easily. This assumption would mean that when the size of the grid increases and
therefore the ratio of fixed cells decreases, this property becomes less influential
and eventually the CA using connected borders will be easier to solve. Anyway, it
is clear that using either connected or unconnected borders has a major influence
on the Bitmap Problem. For example, figure 3.3 shows two successfull iterations
which could only occur within in one of the two settings.

Figure 3.3: The image shows two successful iterations to the
”cross” configuration. The top one will only work using uncon-
nected borders. The bottom iteration path can only occur when
the borders are connected.

25

3.3 Bitmap Fingerprints

Another question that was raised, concerns the differences between the amount
of successful runs of the Genetic Algorithm on the several desired configurations.
As already stated in section 2.2, the symmetry of the desired configurations only
partly explained these differences. This section will describe a method which tries
to create a ’fingerprint’ of a given Bitmap Problem, using both the initial and
desired configurations to determine the difficulty of the given Bitmap Problem.

The fitness function used in the earlier experiments, which only used the ’overlap’
between a given (initial) configuration and a desired configuration to compute its
fitness rating (as defined in section 2.1), did not really help in predicting the out-
come of a given Bitmap Problem. For example see figure 3.4 which summarizes
this in a single picture: there is no usable correlation between the fitness of the
initial configuration c0 (calculated by the function given in section 2.1) and the
overall difficulty of that particular Bitmap Problem (defined as the number of so-
lutions found by the GA in section 2.1. As the ’square’ and ’heart’ bitmaps have
an almost equal overlap, but their difficulties are way off. Same goes for the ’cross’
and ’smiley’ bitmaps.

Figure 3.4: Picture showing the overlap the different bitmaps
have with the initial configuration, the ’single seed’ configuration.
Difficulty is based on the experiment results from table 3.1. The
higher the difficulty number, the easier the Bitmap Problem was
to solve.

26

So instead of using cell overlap, the fingerprint method will try to describe the
patterns that are present within the configuration as a numerical string. This
string will contain information on what patterns are present in the configuration.
It can then be compared to another configuration pattern string to search for
similarities.

The steps required for creating the fingerprint are the following: First define a one
dimensional array of zeroes with length |S||N |. |S| being the number of elements in
the state set S and |N | being the size of the used neighborhood. As described in
section 1.1.3, this number represents the amount of possible neighborhoods that
can exist. Then start retracing all the cells of the two dimensional CA. For every
cell ai,j, look up its neighborhood Ni,j and translate this into an integer value (as
shown in Figures 3.5 and 3.6). Subsequently increase the value of the number at
that position in the array by one.

When all cells have been retraced, the result is an array of length |S||N | con-
taining numbers with values between 0 and n. n being the number of cells in the
CA. The resulting array of these steps for the ’Square’ configuration is shown in
table 3.3.

Figure 3.5: Picture that shows how the numbering of the von
Neumann neighborhood works.

0 0 0 1 1 0 0 0 0 1 2 0 0 0 0 3
Neighborhood 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 1 0 0 0 0 3 1 0 0 0 0 3 3 4
Neighborhood 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 3.3: The fingerprint of the ”Square” configuration

The array, or fingerprint, now contains some information on what kind of pat-
terns are present in the given configuration. When comparing this fingerprint to
another configuration’s fingerprint, a fitness score can be derived. This is done by
declaring a variable F with the value of the amount of cells in the CA grid and
multiply this by two (width ∗ height ∗ 2). Then start at the value at position a1
of the array of configuration A and compare it to the value of position b1 of the

27

Figure 3.6: Picture of ’Square’ bitmap configuration with each
cell numbered according to it’s neighborhood, using connnected
borders.

array of configuration B: if they are not equal, deduct the value of variable F by
the difference of the values of a1 and b1.. Repeat this for all elements ai of the
array until all i array positions are checked. The resulting value in variable F is
the fitness of configuration A compared to configuration B. Table 3.4 shows the
’fingerprint fitness’ of the bitmaps used in the experiments in this chapter.

Bitmap Successful rules Overlap fitness Fingerprint fitness
Connected borders compared to ’Single Seed’ compared to ’Single Seed’

Square 92 9 2
Cross 72 17 10
Heart 20 10 4
Smiley 9 18 14

Table 3.4: Looking at the different fitnesses of the initial states
compared to the desired states, the fingerprint method does not
seem to clearly distinguish between the difficulties of the different
Bitmap Problems.

From the results in table 3.4 can be concluded that the ’fingerprint method’ is
not sufficient to predict how difficult a given Bitmap Problem will be.The ’Square’
bitmap has the lowest fingerprint fitness, but is actually the easiest Bitmap Prob-
lem to solve. Also the ’Cross’ and ’Smiley’ bitmaps are quite close together in
terms of fingerprint fitness, but their level of difficulty is far apart. Although the
fingerprint is not able to tell us wether or not a certain Bitmap Problem is solvable

28

or not, it is still usable as an addition to the fitness function of the GA.

The given definition of the fingerprint fitness leaves open the possibility for dif-
ferent configurations to have the exact same fingerprint values. For example see
figure 3.7, where a simple example shows that multiple configurations can have the
same fingerprint. In the case of CA with connected borders and grid size of width
n and height m, all configuration fingerprints already have at least m∗n matching
fingerprints which do not match the exact configuration. This is easily explained,
as the bitmap can be ’shifted’ to the left or right and up or down, while maintain-
ing the exact same patterns. However, it is not said to stop there as possibly more
configurations have the same fingerprint.

Figure 3.7: Different configurations can have the same finger-
print. This picture shows the ’Square’ configuration and four other
configurations which, when the CA uses connected borders, share
the same fingerprint.

When completely replacing the overlap method for calculating the fitness in the
Genetic Algorithm by the fingerprint method, it is forseeable that individuals will
reach a perfect fitness score, without representing a solution for the given Bitmap
Problem. Results of running the Genetic Algorithm with the settings described at
the start of this chapter, but now using the fingerprint fitness as fitness function
and using CA with connected borders, are shown in table 3.5. The experimental
results could indicate that the ”Heart” and ”Smiley” configuration share their
fingerprint with a higher number of other configurations than the ”Square” and
”Cross” configurations, as a lot of rules were found that iterated to matching
fingerprints, while the actual bitmap was not reached.

Table 3.6 shows results for the same experiment, only this time using a CA with
unconnected borders. As was described earlier, with connected borders, the pat-
terns had the possibilty to ’shift’ over the grid. Unconnected borders prevents
this for most configurations, at least to some extend. So it is imaginable that the
amount of successful runs decreases compared to using connected borders, but the
ratio in which rules actually reach the desired configuration instead of only the
desired fingerprint would increase. The reason for this is that there are less pos-
sible fingerprints for a given configuration. The results, shown in table 3.6, are a
bit unexpected however. As for the ’Square’, ’Cross’ and ’Heart’ bitmaps, all rules

29

Bitmap Successful rules Same rules translated
Connected borders Fingerprint fitness to Overlap fitness

Square 76 40
Cross 78 32
Heart 63 0
Smiley 18 1

Table 3.5: Table containing the results of running the Genetic Al-
gorithm 100 times for every bitmap with connected borders, using
only the fingerprint fitness method. Afterwards, the successfully
generated rules were tested with Overlap fitness.

that generated the right fingerprint also lead to the right desired configuration!
Only the ’Smiley’ bitmap seemed to have some rules that did lead to the right
fingerprint, but not to the right configuration.

Bitmap Successful rules Same rules translated
Unconnected borders Fingerprint fitness to Overlap fitness

Square 81 81
Cross 81 81
Heart 23 23
Smiley 9 4

Table 3.6: Table containing the results of running the Genetic
Algorithm a 100 times for every bitmap using unconnected bor-
ders, using only the fingerprint fitness method. Afterwards, the
successfully generated rules were tested with Overlap fitness.

Although previous results show that the fingerprint method on its own is not
sufficient for use as fitness function, especially when using connected borders, it
can still contribute in the fitness function to give additional feedback about the
potential of a given individual. As it does seem to recognize some usable features
of a rule, where the right pieces of the puzzle were generated, only the translation
is incorrect. So a hybrid fitness function was constructed using both the ’overlap’
and ’fingerprint’ methods. While creating such a hybrid fitness function, choices
had to be made in terms of which method has the most influence on the total
result.

f = c · overlap+ (1− c) · fingerprint

30

Where f is the total fitness of an individual and c specifies the influence of the
different fitness functions overlap and fingerprint, described in section 2.1 and 3.3
respectively. Using the setting of c = 1 results in using overlap fitness only and
c = 0 would result in using fingerprint fitness only.

Different settings of c were tested and the results are shown in table 3.7 for con-
nected and table 3.8 for unconnected borders.

Bitmap
Connected borders c = 0.20 c = 0.33 c = 0.50 c = 0.67

Square 83 86 93 93
Cross 69 80 81 79
Heart 12 17 22 24
Smiley 6 4 9 8

Table 3.7: Results of using a hybrid fitness function with different
influence parameters. Higher influence of the ’overlap’ part seems
te have a positive effect on the results. In contrary to a higher
influence of the ’fingerprint’ part, which has a negative effect on
the results. An equal influence of overlap and fingerprint seems to
work best, even better than the original experiment results. The
CA in this experiment uses connected borders.

Bitmap
Unconnected borders c = 0.20 c = 0.33 c = 0.50 c = 0.67

Square 89 92 90 91
Cross 91 94 96 95
Heart 40 35 44 47
Smiley 4 9 11 6

Table 3.8: Results of using a hybrid fitness function with different
influence parameters. The CA in this experiment uses unconnected
borders.

Looking at the results in tables 3.7 and 3.8 and comparing the results to those in
table 3.2, it can be concluded that using a hybrid fitness function has a positive
effect on the effiency of finding rules for the Bitmap Problem with the Genetic
Algorithm using both connected and unconnected borders. As was expected the
bitmaps with unconnected borders had the most advantage of the added fingerprint
method.

31

3.4 Synchronous versus Asynchronous updating

Using a different updating method for the same rule and initial configuration, leads
to entirely different iteration paths. Some configurations that might not even be
reachable when using synchronous updating, could possibly be reached when us-
ing asynchronous updating. Of course this is no garantuee, but it is interesting
nonetheless to see how the Bitmap Problem reacts on various asynchronous up-
dating methods. It is not unthinkable that the differences in difficulty between
bitmaps with symmetric and asymmetric properties will diminish or even disap-
pear completely.

Only the updating methods ’line-by-line sweep’, ’fixed random sweep’ and
’random new sweep’ were used in the experiments in this section, to ensure
all cells will get their evaluation at regular basis. Also these methods are more
convenient to repeat when a successful rule is found. To stay in line with earlier
experiments with synchronous updating, the maximum number of iterations I is
increased from 20 to 500 (20 ∗ 25), because only one cell will be evaluated every
iteration in asynchronous updating. This way every cell will have the same number
of evaluations as in the experiments using synchronous updating. The experiments
were done using the hybrid ’fingerprint-overlap’ fitness function described in sec-
tion 3.3.

Figure 3.8: Successful iteration path to the ’Cross’ configuration
using the Line by Line sweep updating method. Each step in the
picture is actually 5 iterations of the rule

Looking at the results shown in tables 3.9 and 3.10, it can be concluded that for
most of the bitmaps the asynchronous updating methods do not perform better.
The ’smiley’ configuration is an exception though and seems to benefit from the
asynchronous updating, especially using unconnected borders. There are however
more observable changes that are worth noting. One if these is that the disparity
of performance between the different bitmaps have been leveled somewhat. The
performance difference between the square / cross and smiley configuration were
really big when using synchronous updating. Using asynchronous updating brings

32

Figure 3.9: Successful iteration path to the ’Heart’ configuration
using the Random Fixed sweep updating method. Each step in the
picture is actually 5 iterations of the rule.

Bitmap Line by line Fixed Random Random New
Connected borders

Square 19 32 34
Cross 29 11 7
Heart 13 18 15
Smiley 7 16 12

Table 3.9: Results of running the same GA as described in sec-
tion 3.1, but now using a hybrid ’fingerprint-overlap’ fitness func-
tion, an equal number of times on the same bitmaps. Only now,
the CA uses another update method with another maximum num-
ber of iterations. This table shows the performance of the GA on
the various bitmaps using connected borders.

Bitmap Line by line Fixed Random Random New
Unconnected borders

Square 43 29 45
Cross 32 22 42
Heart 28 38 37
Smiley 12 26 36

Table 3.10: Results of running the same GA as described in sec-
tion 3.1, but now using a hybrid ’fingerprint-overlap’ fitness func-
tion, an equal number of times on the same bitmaps. Only now,
the CA uses another update method with another maximum num-
ber of iterations. This table shows the performance of the GA on
the various bitmaps using unconnected borders.

33

their performance results much closer together. This could mean that the Bitmap
Problem performance using asynchronous updating is less influenced by the diffi-
culty of a given desired configuration. Figures 3.8 and 3.9 show successful iteration
paths using asynchronous updating methods.

Another thing that is interesting to see, is the differences between the various
asynchronous updating methods and their effect on the performance of the differ-
ent bitmaps. Some bitmaps seem to have great benefit from an update method,
where another bitmap suffers a decrease in performance. Looking at the Random
New Sweep method, it has a terrible performance with the ’Cross’ bitmap, the
’Smiley’ bitmap however is quite good. It is hard to say exactly what the reasons
are for these big differences. It is clear that using unconnected borders gives much
more successful rules than using connected borders, which was also the case in
synchronous updating.

34

3.5 Iteration path fitness

3.5.1 Synchronous iteration path

In an attempt to get more feedback on how a given Bitmap Problem is being
solved, research has been conducted on how successful rules actually iterate to
the desired state. This might generate information that could be used to improve
the search for successful rules. As described in section 2.1, the fitness function
iterates the given input rule for a maximum of I iterations. At each timestep the
fitness score of the current configuration is being calculated and recorded. After
the I th iteration the best score over all iterations is returned as fitness score. Does
an iteration path of a succesful rule exhibit predictable behaviour in terms of
increasing fitness over time? To get a better understanding on what is going on
when a rule is succesfully iterating to a desired configuration, we will look at the
configuration of each timestep, calculate the configuration’s fitness with respect to
the desired state and see if there are any similarities between different successful
iteration paths.

Figure 3.10: The iteration path of a rule solving the Bitmap
Problem for the ’Smiley’ configuration, using connected borders.

Figure 3.10 shows the iteration path of a rule solving the Bitmap Problem for
the ’Smiley’ configuration. Figure 3.11 is the associated fitness graph, where every
timestep corresponds to an iteration step of the iteration path. There are possibly
many rules, even while using a binary state space and the von Neumann neigh-
borhood, which could successfully solve a particular Bitmap Problem. Looking at
every possible rule and showing their iteration fitness graphs here would take up
way too much time and space, but when looking at some samples, there are some
characteristics that seem to be recurrent.

35

Figure 3.11: The iteration graph of the iterationpath depicted in
figure 3.10. Where time step 1 is the initial ’single seed’ configu-
ration and time step 6 the desired ’Smiley’ configuration.

The longer a rule needs to reach a desired configuration, the harder it is to pre-
dict its behaviour in terms of fitness over time. Because often, the longer iteration
paths seem to be ’oscillating’ rules, going from a large amount of black cells to large
amount of white cells. This also greatly influences the fitness of the configuration
at every timestep, which makes it difficult to see if it will reach the desired con-
figuration at any given time. An example of what exactly is meant by ’oscillating’
is shown in figures 3.12 and 3.13 where it takes a rule 16 iterations to successfully
reach the desired state.

Figure 3.12: An example iteration path of an oscillating rule
which successfully reaches the desired state.

36

Figure 3.13: The fitness graph corresponding to the iteration
path shown in figure 3.12. The spikes in the fitness graph make it
hard for the Genetic Algorithm to figure out wether or not it has
real potential.

The assumption that the longer a rule takes to reach a desired configuration, the
harder it is to predict its behaviour and potential, would mean that decreasing the
maximum amount of iterations would generate less unpredictable oscillating rules
and therefore the amount of successful rules will not decrease equally proportion-
ate. To check wether this assumption holds, a quick experiment was done using
the ’Heart’ desired configuration with various settings for the maximum amount
of iterations. The remarkable results of this experiment are shown in figure 3.14
with its associated data table 3.11.

Max. Iterations 1 2 3 4 5 6 7 8 9 10 15 20 40
Successful rules 0 0 0 54 58 59 54 52 40 41 46 44 48

Table 3.11: Table containing the results of running the Genetic
Algorithm 100 times for the ’Heart’ bitmap using unconnected
borders with different settings for the maximum allowed iterations.

37

Figure 3.14: Graph showing the results of running the Genetic
Algorithm 100 times for the ’Heart’ bitmap using unconnected
borders with different settings for the maximum allowed iterations

Looking at the results, the assumption seems to hold. Counterintuitively, a smaller
amount of maximum iterations produces a higher efficiency of the Genetic Algo-
rithm. Although it is quite clear that the total set of rules which solve a given
Bitmap Problem is bigger when the maximum amount of iterations increases, as
the set of rules with smaller iteration amounts are a subset of the set of rules with
more iterations. A possible explanation for the increased efficiency of the Genetic
Algorithm while the maximum amount of iterations is decreased, lies in the strat-
egy of the Genetic Algorithm. The rules which have a large amount of iterations
have a good chance of getting close to the desired configuration somewhere along
the way. This results in that it will ’survive’ the selection phase, while it has no
true potential of ever reaching the desired state. The population of the Genetic
Algorithm will converge towards this ’misleading’ rule while it progresses in gener-
ations and will not be able to find a successful rule in the end. On the other hand,
allowing only lower amounts of iterations, the rules will be more predictable (see

38

figure 3.15) and the genetic algorithm has less problems with finding a successful
rule, while the set of rules it is searching in is actually smaller. To see if not only the
Bitmap Problem using the ’Heart’ desired configuration had benefit from lowering
the amount of iterations, the same experiment was repeated for the other bitmaps.
The results are shown in table 3.12 and suggest that all the bitmaps seemed to
have some benefit from lowering the maximum number of iterations by a certain
amount. Not all bitmaps behave exactly the same though.

(a) (b)

(c) (d)

Figure 3.15: Picture showing typical fitness graphs of rules that
were found by the Genetic Algorithm, having a maximum amount
of iterations of 5. The rules, as opposed to rules with higher it-
eration amounts, are far easier to predict. (a) ”Cross” graph (b)
”Square” graph (c) ”Heart” graph (d) ”Smiley” graph

39

I = 5 I = 10 I = 20 I = 40

Square 78 93 90 96
Cross 97 80 96 89
Heart 58 41 44 48
Smiley 11 14 11 13

Table 3.12: Results of lowering the amount of maximum allowed
iterations to reach the desired state per bitmap. The table shows
the successful runs of the Genetic Algorithm out of 100 runs.

40

3.5.2 Asynchronous iteration path

Using the asynchronous methods for cell updating seemed to produce significantly
less successful oscillating rules than using synchronous updating. Although this
is also due to when only updating one cell at a time, the change in configura-
tion is not that big, there was still a noticeable difference when looking at the
different fitness graphs. The graph in figure 3.16 represents the fitness graph of a
successful oscillating rule iterating to the ’heart’ desired configuration, using the
asynchronous updating method ’Line by Line sweep’.

Figure 3.16: Fitness graph of an asynchronous oscillating rule
successfully iterating to the desired configuration. The correspond-
ing iteration path is shown in figure 3.17

The reason why less successful oscillating rules were recorded in comparison to the
Bitmap Problems using synchronous updating, remains unclear. As the maximum
iteration amount used of 500 compares to the setting of 20 maximum iterations
in synchronous updating, which seemed to produce significantly more oscillating
rules. When taking into account the results from section 3.4, which show us that the
overall efficiency of the asynchronous updating methods is somewhat lower than
using synchronous updating, together with the assumption ”Less oscillating rules

41

Figure 3.17: Iteration path of an oscillating rule successfully it-
erating to the desired ’heart’ configuration using the asynchronous
updating method ’Line by Line Sweep’. The rule takes 419 itera-
tions to get there, so to save space the configurations are shown
with an interval of 5 steps.

is better for the efficiency of the Genetic Algorithm” and the observation of less
oscillating rules in asynchronous updating, it is not likely that the asynchronous
updating method benefits from lowering the maximum of iterations as synchronous
updating does.

The results shown in table 3.13 confirm the assumption that asynchronous up-
dating methods would not react the same on lowering the maximum amount of
iterations as synchronous updating. In contrary, it can be concluded that increas-
ing the maximum amount of iterations improve the efficiency of asynchronous
updating methods on the Bitmap Problem.

42

”Heart” bitmap I = 125 I = 250 I = 500 I = 1000

Line by Line 21 28 28 40
Random fixed sweep 34 37 38 54
Random new sweep 31 27 37 46

Table 3.13: Results of lowering the amount of maximum allowed
iterations to reach the desired state per bitmap. The table shows
the successful runs of the Genetic Algorithm out of 100 runs.

43

3.6 Increasing the grid size

Using relatively small grid sizes of a height and width of 5 cells results in quite
successful performance of the GA. This section describes the experiments to see
if the same GA is still able to solve a given Bitmap Problem when the grid size
increases. The in previous sections used von Neumann neighborhood consists of
5 cells and therefore, using a binary state set, has 32 (25) unique neighborhoods.
32 bits are needed to encode rules for these settings. This makes the amount of
possible rules (232) much bigger than the amount of possible CA configurations
(225) when the grid size is 5 by 5. It is interesting to see how well the GA still solves
the Bitmap Problem when the amount of unique CA configurations succeed the
amount of rules. Increasing the grid size will also expose if the difference between
using connected or unconnected borders will still hold.

Different experiment setup

The other experiments in this thesis are using a rather small set of predefined
desired configurations (sometimes referred to as bitmaps) while always the same
initial configuration (single seed) is used. There are two reasons to abandon this
setup of experiments in this section. The first reason being that simply scaling the
bitmaps to larger grid sizes may cause an unfair comparison between the smaller
and bigger grid sizes, as it is not said that the difficulty will scale equally per
bitmap. The second reason is that when the grid size increases, the single seed
initial configuration does need perform well anymore. This is something that was
already noted by Breukelaar in his conclusions and preliminary experiments con-
firm this statement. So to ensure that comparing the performance of the GA on
the Bitmap Problem with increased grid sizes is done as fair and accuratly as
possible, this experiment will be done using randomly generated initial and de-
sired configurations. The GA gets twenty tries to solve a Bitmap Problem with
randomly generated (using a normal distribution) initial and desired configuration
pair. After these twenty tries a new initial and desired configuration pair is gen-
erated. This process is repeated 100 times for the CA grid sizes of 5 by 5, 7 by 7
and 10 by 10. The results of this experiment are shown in table 3.14.

The results show that the fairly simple GA has great difficulty solving the ran-
dom Bitmap Problems for higher grid sizes. The difference between connected and
unconnected borders is quite big for the 5 by 5 sizes. To see if the difference still
holds with bigger grid sizes, the same experiment is repeated using the Moore
neighborhood instead of the von Neumann neighborhood. It is noteworthy, that
by going from the von Neumann to the Moore neighborhood, there is a huge in-

44

Connected borders Unconnected borders

5 by 5 30 61
7 by 7 0 0

10 by 10 0 0

Table 3.14: Results from the experiments with increased grid
sizes using the von Neumann neighborhood

crease of rule space. The amount of bits needed to encode the rule increase from 32
to 512 bits. For this reason, the mutation probability in the GA has been adjusted
accordingly: from 0.05 (1/32 · 1.6) to 0.003125 (1/512 · 1.6). To keep it completely
fair, the maximum amount of generations of the GA should be increased as well.
However, as time is limited, the rest of the GA settings is kept the same and thus
maximum amount of generations will be kept at 100.

Connected borders Unconnected borders

5 by 5 100 100
7 by 7 71 54

10 by 10 0 0

Table 3.15: Results from the experiments with increased grid
sizes using the Moore neighborhood

This time the results (table 3.15) show that the 7 by 7 grid size Bitmap Problems
could be solved as well. The difference between connected and unconnected was
surprisingly reversed! Altough is hard to say if this only due to the increased grid
size, or that the change in neighborhood topology had its influence as well. From
these results can be concluded that the Bitmap Problems with increased grid sizes
are much harder to solve than the originals of 5 by 5 cells. The GA that was
used however is quite limited and future research on using more advanced search
algorithms, like Evolutionary Strategies, might acquire better results.

45

3.7 General state space Bitmap Problem

Expanding the state set of a CA by only one element already drastically increases
both the size of the rulespace (table 1.1) and the possible unique configurations
of the CA. This makes it very interesting to see if a GA is still able to find rules
within this massive search space that will successfully solve Bitmap Problems with
more than two states in the state set. With one extra state in the state set, going
from the binary state set to S = {0, 1, 2}, four different bitmaps were created to
see if they could be solved. The bitmaps are shown in figure 3.18 below.

Figure 3.18: The three-state bitmaps used in the experiments in
this section, 0 is represented as white, 1 as grey and 2 as black. For
reference named; from left to right ’Square3’, ’Letter S’, ’Pattern’
and ’Star’.

Because of the huge increment of search space, the parameters of the genetic
algorithm were modified. Still using the ’plus-strategy’ (µ + λ) , the population
size was raised to be 400 with parentsize µ = 80 and offspring size λ = 320.
Tournament selection was used with a tournament size q = 40. The mutation rate
changed to pm = 0.005, this because of the increase of the state set, the length of
the genotypes expanded to 35 = 243. Also the way mutation is performed had to be
adjusted, as ’bit flipping’ was no longer possible. When a position in the genotype
array is chosen to be mutated, the state at that position is changed randomly into
a state from the state set S, other than it already was. The maximum amount of
generations is 100. Also the maximum amount of iterations that a rule was iterated
was raised, this time using 32 as maximum, instead of 20 in earlier experiments.
The algorithm was run a 100 times for every bitmap, the results are shown in
table 3.16.

The results are quite impressive considering the enormous search space. Looking at
a sample of the found solutions to the ’Square3’ and ’Star’ bitmaps, the amount of
iterations needed to go from the initial to the desired configuration was always very
small. Every solution needed three steps, but these include the initial and desired
configuration, so actually only 2 steps were taken; from initial to configuration

46

Bitmap Successful rules
(out of 100)

Square3 44
Letter S 6
Pattern 1

Star 77

Table 3.16: Results from the experiments with an extended state
set.

2, and from 2 to the desired configuration. The iteration paths for the bitmaps
’Letter S’ and ’Pattern’ showed much more variation. Nonetheless, it seems to be
that the setting of 32 maximum iterations was way too high. A successful iteration
path for each bitmap in this experiment is shown in figure 3.19.

Figure 3.19: Successful iteration paths for each of the bitmaps
used in the experiment in this section.

47

3.8 Enhanced Bitmap Problem

The following experiment that is described could actually be used within the vari-
ation of the compression algorithm described in section 4.2 and could be seen as
a ’Bitmap Problem to the second degree’. Where an initial configuration does not
only lead to one, but two desired configurations. Altering the definition slightly:

Given an initial configuration and two different desired configurations: find a rule
that iterates from the initial configuration to both desired configurations, in any
order, in less then I iterations.

The difference lies in that not only a rule has to be found that iterates the ini-
tial to the desired configuration, but while it iterates to the desired configuration
it also has to ’touch’ another configuration on the way. Some preliminary exper-
iments were conducted on this enhanced Bitmap Problem. Although it seemed
much harder to find successful rules, they were found nonetheless. An example of
a successfully solved problem of this definition is shown in figure 3.20.

Figure 3.20: Successful iteration path from the single seed config-
uration to the ’Square’ configuration, reaching the ’Cross’ config-
uration on the way. The successful rule was found using a Genetic
Algorithm and uses a CA grid with unconnected borders.

The fitness function used to solve this enhanced Bitmap Problem uses the hybrid
fitness function described in section 3.3 with an equal influence of the different
fitness score methods. Just like when solving the original Bitmap Problem, a rule
is iterated for a maximum amount of timesteps. But instead of checking the fitness
of the current configuration of the CA at every timestep for only one desired con-
figuration, it is now checked against both desired configurations. When I timesteps
have been iterated and checked, the sum of the highest fitness scores that were
recorded for both seperate desired states form the fitness of the rule as a whole.
It is both beautifull and remarkable to see that the Genetic Algorithm is able of
actually solving two Bitmap Problems in parallel within only one iteration path.

Figure 3.21 shows another successfully solved enhanced Bitmap Problem. This
time the two bitmaps that were proven to be more difficult were used, the ’heart’

48

and ’smiley’ bitmaps. Looking at the fitness graphs for the independent configura-
tions, they look as any other successful rule iterating to the desired configuration.
So it is clear there is an overlap between rules solving the Bitmap Problem for
different configurations, which definitely has its potential.

Figure 3.21: Successful iteration path from the single seed config-
uration to the ’Smiley’ configuration, reaching the ’Heart’ config-
uration on the way. The successful rule was found using a Genetic
Algorithm and uses a CA grid with unconnected borders.

Figure 3.22: The left graph represents the fitness graph of the
iteration path in figure 3.21 leading to the ’Heart’ configuration.
The right graph represents the fitness graph for the ’Smiley’ con-
figuration.

49

To put this in perspective, it is straightforward to see what configurations are in the
set of what a rule can generate: just do the iteration and all unique configurations
that are reached are in the set. The other way around is much harder already:
does a given configuration belong to the set of configurations that a rule can
generate? Which is actually the Bitmap Problem. It is even harder to ask: are
these N configurations within the set of configurations that can be generated by a
rule? The fairly simple Genetic Algorithm solves these problems, what shows how
powerful evolutionary algorithms are.

50

Chapter 4

Summary and Outlook

This thesis further elaborates the work of R. Breukelaar on the ’Bitmap Problem’
which he proposed in his master thesis [4]. The various settings of the original
Bitmap Problem have been tested extensively to discover what exactly their in-
fluence is on the difficulty of the problem. Also a new additions to the Bitmap
Problem have been introduced within this thesis, namely the ’fingerprint’ method
and the Enhanced Bitmap Problem. Furthermore, a real world application was
suggested at the end of the thesis.

The setting of the border, being either connected or unconnected, has been proven
to be in the favor of unconnected borders, especially for smaller grid sizes which
show significant better results on the tested Bitmap Problems. Changing the up-
dating method that is used within the CA shows great differences in performance
as well, not only between synchronous and asynchronous updating in general, but
also between the various asynchronous updating methods large differences can be
observed.

The experiments with increased CA grid sizes did not use the same bitmaps as for
most of the other experiments in this thesis. As simply scaling the previously used
bitmaps did not seem adequate, the initial and desired configurations for these ex-
periments were randomly generated using normal distribution. The GA then tried
to solve each of the randomly generated initial/desired configuration pairs with a
maximum of 20 tries. This process repeated 100 times to gather some empirical
data. The results are somewhat disappointing and show a substantial decrease in
performance every small increment in grid size.

51

Last of settings that was tested on influence was the size of the state set. Ex-
periments with a state set increased from two to three elements show that despite
of the tremendous increase in search space, the GA is still a viable method for
finding successful rules.

Bitmap ’fingerprints’ were introduced to help explain the differences in difficulty
between the several bitmaps. Although the fingerprint method did not help in this
particular issue, it proved to be usefull in enhancing the fitness function for the
GA. Observing the fitness evolution of a successful iteration path in detail helped
to further improve the performance of the GA in a somewhat counterintuitive way.

The results that where found in this research raises the question on what the
optimal settings for the GA and CA are to achieve a highest as possible result on
any given Bitmap Problem. For example the finding ideal setting for maximum
iterations a Bitmap Problem can use to reach the desired state, which is probably
bound to the size of the grid. The fingerprint method proposed a new way of ap-
proaching and describing the Bitmap Problem. While constructing this method,
various other features were tried to extract from it, other than a fitness score alone.
Altough so far without succes, there is a chance that this approach can offer more
that was described in this thesis. Also on the side of the searching algorithm there
are multiple improvements to be made, more advanced search methods could lead
to much better results. Of course it would be very interesting to see, as the knowl-
edge on the Bitmap Problem matures, if a compression algorithm based on the
Bitmap Problem would actually work in real-world test cases.

52

4.1 Data Compression Algorithm

In the explorative research of Breukelaar, it was already proposed that the Bitmap
Problem could be used for lossy image compression. This section will describe a
conceptual compression algorithm based on the Bitmap Problem for binary data
in general. To explain how the algorithm works, we will go through the process
step-wise using examples to clarify the required steps.

The data that is to be compressed, lets say dataoriginal, is a binary string of a
given length l: dataoriginal = {0, 1}l. The first step is to cut this string in pieces of
length x and use them to form a two dimensional grid of x columns and y rows,
as shown in figure 4.1.

Figure 4.1: Visualization of creating a big grid by cutting the
string in pieces of equal length.

The next step is to divide this grid into ’subgrids’ of equal size as in figure 4.2.
Each of these subgrids will be forming the basis for both an initial and desired
configuration for an independent Bitmap Problem.

The subgrids form a ’chain’ of Bitmap Problems where each desired configura-
tion is also the initial configuration for our next Bitmap Problem. So the next
step in the algorithm is to solve all of these single Bitmap Problems of the chain,
starting at the last one and working its way up to the front. One of the key features
of the algorithm is that the information representing the solution to the Bitmap
Problem, being the found rule and the number of iterations needed to get to de-
sired configuration, is to be encoded within the chain of Bitmap Problems itself.

53

Figure 4.2: Divide the large grid into subgrids of equal size

So when the initial data, dataoriginal, has been divided into N subgrids, subgrids =
{sg1, sg2, ..., sgN−1, sgN}, the process will start by using sgN as desired configura-
tion and sgN−1 as initial configuration for the first Bitmap Problem of the chain.
When decompressing the data, the algorithm has to know when the final subgrid
is reached. Therefore a special ‘end flag’ is concatenated to sgN making it recog-
nizable later on. The size of the subgrid is not important for now. After adding
this ‘end flag’ to sgN , the height and width of sgN−1 no longer matches those of
sgN . To fix this, a ‘standard init flag’ is added to sgN−1 to make them equal in
size again. Both the ‘end’- and ‘init’ flag are defined in advance. Now that sgN
and sgN−1 have been prepared, they will form the first Bitmap Problem which is
to be solved by a Genetic Algorithm (or equivalent method).

Figure 4.3: Special ’flags’ have been concatenated to the subgrids,
making them the first Bitmap Problem of the chain.

When a successful rule is found, the encoded rulestring (as described in sec-
tion 1.1.3), together with the used updating method and the amount of iterations
needed to reach the desired configuration, will replace the ‘initial flag’ in sgN−1.
sgN−1 now contains all the information needed to reconstruct the configuration of
subgrid sgN .

54

Thereafter sgN−2 with the standard initial flag will be used as initial configu-
ration and sgN−1, with the previously described information appended to it, acts
as desired configuration. Together sgN−2 and sgN−1 form the next Bitmap Problem
of the chain. This process repeats itself until all N subgrids, and therefore all initial
data, has been encoded within this chain. In theory, the only information needed
to unravel this chain and reconstruct the original data again, is the information
on the used flags (we have to know how the initial flag looks and how to recognize
the end of the chain) and the first initial configuration containing the rule and
number of iterations needed to get starting.

Figure 4.4: The ’init flag’ has been appended to subgrid N-2
and subgrid N-1 has the required information to get to subgrid
N appended to it, making them the next Bitmap Problem of the
chain.

Logically there are some remarks to be made to this algorithm and it might not
even work at all for several reasons, at least not for every given binary string.
However, it is just a concept and is meant to be explanatory.

55

4.2 Algorithm variation

There are several variations to think of, one of them will be shortly discussed in
this subsection. The ’original’ concept suggest one starting configuration accom-
panied by one rule and other required information to get started. Another way to
go would be to, like in the ’original’ concept, start by dividing the original data in
subgrids. In this variation however, the subgrids will not function as both initial
and desired configuration in a chain, but only as a desired configuration. Having
only one initial configuration, a Genetic Algorithm or similar will find rules and
iteration numbers to get to the various data parts. The compressed data will then
consist of the initial configuration and a rule and iteration amounts for every sub-
grid of the original data. See figure 4.5 for a schematic representation.

This means that, in contrary to the original concept, the compressed data will
increase in size when the data which is to be compressed increases. An important
thing to note in this case, is that the size of data that describes how to get to a
certain subgrid, consisting the rule and amount iterations, should be smaller than
the subgrid it points to. The ratio between these sizes will define the factor of
compression of the algorithm as a whole.

56

Figure 4.5: A visual representation of a variation on the origi-
nal concept of the compression algorithm. This variation removes
the ’chain’ of the created Bitmap Problems and uses the same ini-
tial configuration for all created desired configurations, saving the
found rules and iteration values to reconstruct the original data.

57

Bibliography

[1] Bäck, T. Fogel, D.B., Michalewicz, Z. editors, Handbook of Evolutionary
Computation. Oxford University Press and Institute of Physics Publishing,
Bristol/New York, 1997.

[2] Berlekamp, E.R., Conway, J.H., Guy, R.K., Winning ways for your Mathe-
matical Plays Vol.2 Academic, 1982

[3] Breukelaar, R., Interaction and Evolutionary Algorithms, 2010.

[4] Breukelaar, R., Evolving Transition Rules for Cellular Automata with multi-
ple dimensions, Master Thesis Leiden University, 2004.

[5] Chapman P, ”Life Universal Computer”, http://www.igblan.free-
online.co.uk/igblan/ca/ 2002

[6] Cook, M., Universality in Elementary Cellular Automata, 2004

[7] Das R., Crutchfield J.P., Mitchell M., “Evolving Globally Synchronized Cel-
lular Automata”, Proceedings of the 6th International Conference on Genetic
Algorithms, pp. 336-343, 1995

[8] Gacs, P., Kurdyumov, G.L., Levin, L. A., One dimensional unifrom arrays
that wash out finite islands. Problemy Peredachi Informatsii. 1978

[9] Gardner M, “Mathematical games – the fantastic combinations of John Con-
way’s new solitaire game ‘Life’” Scientific American 223 pp. 120-123

[10] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[11] Idilli, G., Evolving Cellular Automata Synchronization

58

[12] Kari, J., Theory of cellular automata: A survey, 2004

[13] Moore, E.F., Machine Models of Self-Reproduction, 1966

[14] von Neumann, J., Burks, A.W., Theory of Self-Reproducing Automata, 1966

[15] Schiff, Joel L., Cellular Automata A Discrete View of the World, 2008

[16] Schönfisch, B., de Roos, A., Synchronous and asynchronous updating in cel-
lular automata, 1998

[17] Wolfram, S., A New Kind of Science. Wolfram Media Inc. 2002

[18] Wolz D., de Oliveira P.P.B., “very effective evolutionary techniques for search-
ing cellular automata rule spaces”, Journal of Cellular Automata; 3, pp. 121
– 142, 2008

59

