

Internal Report 2012-05 August 2012

Universiteit Leiden

Opleiding Informatica

UML Class Diagram Simplification:

A Survey Study

Arjan van Zadelhoff

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 5
1.1 Problem Statement . 6
1.2 Objective . 7
1.3 Research Method . 8
1.4 Contributions and Outline . 8

2 Background Information 9
2.1 UML Class Diagram . 9
2.2 Survey Structures . 10

2.2.1 Structural Questionnaire 10
2.2.2 Non-Structural Questionnaire 11

2.3 Software Design Metrics . 11
2.4 Tools . 11

2.4.1 Software Metric Tools 11
2.4.2 Statistical Software . 12
2.4.3 Design and Reverse Engineering Tools 12

2.5 Related Works . 13
2.5.1 Eye Tracking . 13
2.5.2 Software Visualization 13
2.5.3 Automated Abstraction of Class Diagrams 14
2.5.4 Reasoning on UML Class Diagrams 15

3 Presence of Classes in Class Diagrams A Survey 15
3.1 Survey Methodology . 16

3.1.1 Questionnaire Design 16
3.1.1.1 Part A: Background of the Respondents . . . 16
3.1.1.2 Part B: Class Diagram Indicators for Class

Inclusion/Exclusion 16
3.1.1.3 Part C: Practical Problems 17

3.1.2 Experiment Description 19
3.2 Results and Findings . 19

3.2.1 Background of the Respondents (Part A) 20
3.2.1.1 Question A1: What is your status at the mo-

ment? . 20
3.2.1.2 Question A2: Indicate the location where

you are currently working/studying 21
3.2.1.3 Question A3: How many years of experience

do you have in working with class diagrams?
And Question A4: How do you rate your
skills in creating, modifying and understand-
ing a class diagram? 22

3.2.2 Class Diagram Indicator for Class Inclusion (Part B) . 23

1

3.2.2.1 Size Category (Question B1 - B4) 24
3.2.2.2 Coupling Category (Question B5 - B10) . . . 25
3.2.2.3 Inheritance Category (Question B11 - B13) . 26
3.2.2.4 Class Inclusion/Exclusion (Question B14) . . 26

3.2.3 Practical Problems . 29
3.2.3.1 Question C1: Referring Figure 9, select the

classes that you think should not be included
in a class diagram 29

3.2.3.2 Question C2: Referring Figure 10, select the
classes that you think should not be included
in this class diagram 30

3.2.3.3 Question C3: Referring Figure 11, select the
classes that you think should not be included
in this class diagram 31

3.2.3.4 Question C4: Referring to Figure 9, 10, and
11. Which class diagram do you prefer work-
ing with? . 32

3.2.3.5 Question C5: Referring Figure 12, select the
classes that you think should not be included
in this class diagram 34

3.2.3.6 Question C6: Referring Figure 11 and 12,
which class diagram do you prefer working
with and why? 35

3.3 Discussion . 36
3.3.1 Respondents’ Background 36
3.3.2 Software Design Metrics 37
3.3.3 Class Names and Coupling 38
3.3.4 Class Diagram Preferences 39
3.3.5 Threat of Validity . 39

3.4 Conclusion . 40

4 Class Diagram Simplification: What is in the developer’s
mind? 41
4.1 Survey Methodology . 41

4.1.1 Questionnaire Design 41
4.1.1.1 Part A: Personal Questions 41
4.1.1.2 Part B: Practical Problem 42
4.1.1.3 Part C: Class Diagram Indicators for Class

Inclusion . 43
4.1.2 Experiment Description 43

4.2 Results and Findings . 44
4.2.1 Part A: Personal Questions 45

4.2.1.1 Question A1: What is your role at the mo-
ment? . 45

2

4.2.1.2 Question A2: How many year(s) of experi-
ence do you have in working with class dia-
grams? . 45

4.2.1.3 Question A3: Where did you learn about
UML? . 46

4.2.1.4 Question A4: How do you rate your own skill
in creating, modifying and understanding a
class diagram? 47

4.2.1.5 Question A5: Indicate whether you (dis)like
to look at source code for understanding a
system? + Question A6: Indicate whether
you (dis)like to look at UML models for un-
derstanding a system? 48

4.2.1.6 Others: . 50
4.2.2 Part B: Practical Problems 51

4.2.2.1 Category 1: Attribute 51
4.2.2.2 Category 2 : Operation 53
4.2.2.3 Category 3: Class 54
4.2.2.4 Category 4: Relationship 56
4.2.2.5 Category 5: Inheritance 57
4.2.2.6 Category 6: Package 58
4.2.2.7 Category 7: Others 59

4.2.3 Part C: Class Diagram Indicators for Class Inclusion/Exclusion 60
4.2.3.1 Question C1: In software documentation, par-

ticularly in class diagrams, what type of in-
formation do you look for to understand a
software system? 60

4.2.3.2 Question C2: In a class diagram, what type
of information do you think can be left out
without affecting your understanding of a
system? . 63

4.2.3.3 Question C3: Do you think that a class di-
agram should show the full hierarchy of in-
heritance? If not, which parts could be left
out? (for example: parent, child, intermedi-
ate parent/child, leaf, . . .) 66

4.2.3.4 Question C4: What criteria do you think in-
dicate that a class (in a class diagram) is
important for understanding a system? . . . 67

4.2.3.5 Question C5: If you try to understand a class
diagram, which relationships do you look at
first? (Example: dependencies, inheritance,
associations, etc) 68

3

4.2.3.6 Question C6: If there is a tool for simplifying
class diagrams (e.g. obtained from reverse
engineering), what features/functions would
you expect from such a tool? 68

4.3 Discussion . 70
4.3.1 Respondents’ Background 70
4.3.2 Class Properties . 70
4.3.3 Class Role and Semantics 72
4.3.4 Class Diagram Simplification Tool Features 72
4.3.5 Threat of Validity . 72

4.4 Conclusion . 73

5 Conclusions 73
5.1 Summary of Findings . 74
5.2 Recommendations . 76
5.3 Future Works . 76
5.4 Conclusions . 77

4

UML Class Diagram Simplification: A

Survey Study

By: Arjan van Zadelhoff
Supervisors: Hafeez Osman and Michel R. V. Chaudron

Leiden Institute of Advanced Computer Science
Leiden University, The Netherlands

August 16, 2012

Abstract

Class diagrams play an important role in software development.
However, in some cases, these diagrams contain a lot of information
that makes it hard for software maintainers to use them to understand
a system. To reduce the information in a class diagram, a method
to simplify a class diagram is needed. This simplified class diagram
is resulting from leaving out details that are not needed and to re-
main the important information. To this end, we did 2 surveys to
enquire the information about what type of information they would
include or exclude in order to simplify a class diagram. The first sur-
vey involved 32 software developers with 75 percent of the participants
having more than 5 years of experience in class diagrams. The second
survey involved 25 respondents that answered this survey online, with
76 percent that rated themselves average or above in their skills in cre-
ating, modifying and understanding class diagrams. As for the results,
we found that the important elements in a class diagram are class rela-
tionship, meaningful class names and class properties. We also found
that, in a simplified class diagram, GUI related information, private
and protected operations, helper classes and library classes should be
excluded. In this survey we also tried to discover what types of features
are needed for class diagram simplification tools.

1 Introduction

In this chapter we present the contexts, motivations, and objectives of this
study. We also explain our research methodology, contributions and out-
line of this thesis. After reading this chapter, the reader should have the
knowledge of our aim and problem that we attempted to solve.

5

1.1 Problem Statement

The UML class diagram is one of the valuable artefacts in software develop-
ment and software maintenance. This diagram is helpful for software deve-
lopers and software maintainers in order to understand architecture, design,
implementation and behavior of a software system. UML class diagrams de-
scribe the static structure of programs at a higher level of abstraction than
source code [15].

It is widely known that UML models, which are usually created during
the design phase, are often poorly kept up-to-date during the realization
and maintenance phase. As the implementation evolves, correspondence be-
tween design and implementation degrades from its initial design [18]. For
legacy software, reliable designs are often no longer available, while those
are considered valuable for maintaining such systems.

Reverse engineering is one of the possible techniques to discover a software
design after the implementation phase. Reverse engineering is the process of
analyzing the source code of a system to identify its components and their
interrelationships and create design representations of the system at a higher
level of abstraction [10]. With this technique, recovery of a class diagram
can be done by using the source code. However, the resulting class diagrams
from reverse engineering techniques sometimes suffer with too much detail
and information. In particular, reverse engineered class diagrams are typi-
cally a detailed representation of the underlying source code, which makes
it hard for the software engineer to understand what the key elements in
the software structure are [19]. Although several Computer Aided Software
Engineering (CASE) tools have options to leave out several properties in a
class diagram, they are unable to automatically identify classes and infor-
mation that are not useful or less important. As part of a recent study [14],
Fernández-Sáez et al. found that developers experience more difficulties in
finding information in reverse engineered diagrams than in forward designed
diagrams and also find the level of detail in forward designed diagrams more
appropriate than in reverse engineered diagrams. For this reason, infor-
mation that is needed by developers or maintainers to be shown in a class
diagram should be discovered. In order to produce a better design phase
representation of a class diagram, we need to discover the information that
is important and not important in a class diagram.

Normally, to understand a software system, a programmer needs both source
code and design. A good representation of a class diagram by showing the
crucial information of a system is needed, especially when new programmers
want to join a development group; they need a starting point in order to
understand the whole project before they are able to modify. It is impor-

6

tant for a new programmer to be able to identify which classes, attributes
and operations play a major role in the system. Tools that support during
maintenance, re-engineering or re-architecting activities has become impor-
tant to decrease the time software personnel spend on manual source code
analysis and help to focus attention on important program understanding
issues [7]. Also, a method to assist the software engineer to focus on the
relevant information and to leave out unnecessary information of the design
is needed.

1.2 Objective

This thesis paper specifically aims at simplifying a UML class diagram by
leaving out unnecessary information without affecting the developer’s under-
standing of the entire software. To this end, we have conducted 2 surveys
to gather information from our respondents about what type of information
should not be included in a class diagram.

Figure 1: Scope Class Diagram Simplification

No. Module Description

1 Class Diagram

Structural Design

Metrics

Class selection using structural design metrics.

 a. Online

Survey

Survey on how respondents find a class diagram metric in deciding the class

inclusion or exclusion in a class diagram.

 b. Machine

Learning

Selecting class for inclusion and exclusion based on supervised learning using

forward design and reverse engineered design information.

2 Textual

Information

To find class names that are usually being presented as important classes and

class names that are less important in a class diagram

3 Feature

Location/Selection

Try to find the class features in a way that these features could be used to

group classes in a class diagram.

4 General Class

Diagram

Information

 a. Survey A survey on elements in a class diagram that indicates the classes that should

or should not be included in a class diagram

Table 1: Description Scope Terms

7

This study consisted of 2 surveys that were part of the Class Diagram Sim-
plification study. The objectives between these two surveys were different.
The overall study of Class Diagram simplification is illustrated in Figure
1 and Table 1 explains the terms. As shown in Figure 1, the first survey
that we have done online was under the scope of Class Diagram Structural
Design Metrics. This survey aimed at finding out which structural design
metrics are important for class selection and class diagram simplification.
This survey consisted of 24 questions which were divided into 3 parts in
order to discover which metrics are important.

The second survey was under the scope of General Class Diagram Informa-
tion. In this survey we tried to discover the elements in a class diagram that
are needed to indicate whether a class should be or should not be included in
a class diagram. This survey consisted of 15 questions that were also divided
into three parts in order to discover the elements that the respondents find
important in a class diagram.

1.3 Research Method

The research was a qualitative research [3] because we tried to discover the
motives of the respondents in including or excluding a class in a class dia-
gram. In other words, we tried to find out the reasons of this human behavior
about why the respondents think a class should be excluded or included.

To discover this, we did a survey study which is a field research. We used
this method because with a survey we could distribute it in many possible
ways for example face-to-face, through email, using social media, or putting
it on various forums. By using these options we could get a fair amount of
responses in a short time. However, by distributing this survey, we had to
be careful to which respondents we want to distribute because our target
group is people that work with class diagrams or have knowledge about class
diagrams and if this survey goes to some other group then the answers are
not valid. To prevent this, we made some questions in which the respondent
needs to state their background information, specifically their knowledge
and experience in class diagrams.

1.4 Contributions and Outline

The contribution of this study is two-fold. First, the first survey highlights
the information based on the class diagram metrics that are important to
determine the class inclusion or class exclusion in a simplified class diagram.
Second, the second survey emphasizes the other information about class
inclusion and exclusion based on the software developer’s evaluation and
recommendation. This information can be used as an indicator to simplify

8

class diagrams. It also could be basic information for the software devel-
oper/maintainer on how to determine important or relevant classes in a class
diagram.

The organization of this study is as follows: Chapter 2 presents the back-
ground information. This chapter helps the reader to understand several
things which are a prerequisite for reading this paper. In Chapter 3 we de-
scribe the first survey while chapter 4 describes the second survey. In these
2 chapters we give the survey methodology, results and finding, discussion
and conclusion related to our findings. This follows with Chapter 5 in which
we present the summary of the overall study, recommendations and future
works. The chapter ends with the conclusions.

2 Background Information

This chapter describes the background information in which we explain a bit
about the UML class diagram that we have used in this study. After that,
we explain the different survey structures that we have used and what the
differences between these two structures are. We then present the software
design metrics that we have chosen for our online survey and we also explain
why we have chosen these metrics. The tools we have used to assist the
experiments are described after that. In the last part of this chapter we
present some related works.

2.1 UML Class Diagram

The Unified Modeling Language (UML) is a standardized general-purpose
modeling language in the field of object-oriented software engineering [5].
This standard is being managed and was created by the OMG (Object
Management Group). UML has a set of different visual models to model
an object-oriented system, such as sequence diagrams, use case diagrams,
and so on. The current version of UML is now 2.4.1 and has now a total
of 14 types of diagrams divided in 2 categories, which are structural and
behavioral information. One of them, which we are using for our study, is
the class diagram and is also in the structural category. In these structural
diagrams the items that are being modeled must be presented in the system.

UML class diagrams describe the structure of a system. Such a diagram
is shown in Figure 2. It describes the system by showing the classes and
the relationships between the classes. In these classes, the attributes and
operations are shown. Each attribute or operation can have a type such as
integer, character, void and so on. The parameters of an operation can also
be shown in this diagram. But these elements depend on the level of detail
of the class diagram. There are many flavors of class diagrams used in the

9

Figure 2: UML Class Diagram

software industry based on the Level of Detail (LoD). A class diagram may
have only class names and their relationships between each other, which is a
class diagram with a low level of detail (LLoD). A class diagram can also be
presented with their attributes and their type, operations and their parame-
ters, and the relations between the classes. This class diagram is shown in a
high level of detail (HLoD). Different software developers/maintainers have
their own preferences in the level of detail, which is most probably based on
their experience and the given task for that particular system. These class
diagrams are being modeled based on the user requirements. It is used to
support the software developers and users to further understand the system.

2.2 Survey Structures

There are two types of questionnaires that have been applied during this
project. The two types are:

• Structural Questionnaire
• Non-Structural Questionnaire

These two types are explained in the next subsections.

2.2.1 Structural Questionnaire

A structural questionnaire contains questions that offer the respondents a
set of responses to choose from. This type of questionnaire is suitable for

10

finding a result within a specific context. The process of collecting data is
much simpler and the analysis of the answers takes less time to complete.
Structured questions are best suited in the following situations: (1) the
responses are understandable that the answer choices can develop; (2) it is
not for capturing new ideas or thoughts from the respondent [24].

2.2.2 Non-Structural Questionnaire

A non-structural questionnaire or also known as open-ended questionnaire
contains questions in which the answers are not offered for the respondents
to choose from. This type of questionnaire is suitable for exploring new
ideas. It is also helpful for discovering information that is unknown and
discovering the expectations from the respondents. This open-ended ques-
tionnaire can be time consuming and difficult to analyze because the answers
are unexpected and the range of the answers can be broad.

2.3 Software Design Metrics

A design metric is an element in a class diagram that is being used for the
structured questionnaire. For this survey we chose 14 metrics. These metrics
were chosen from a program called SDMetrics [4]. SDMetrics counts how
many times a certain metric is in a class diagram. A couple of class diagrams
have been loaded in this program to compare which software design metric is
suitable for this questionnaire. The chosen metrics are the metrics that have
been occurred in the class diagrams the most (high numbers in SDMetrics).
The chosen metrics are shown in Table 2.

2.4 Tools

In this section we briefly explain about the tools used for this study. The
first part of this section describes the software metric tools that we have
used in this study. In the next part of this section we explain about a
simple statistical tool and the third part of this section describes the tools
that we have used for designing and reverse engineering class diagrams.

2.4.1 Software Metric Tools

SDMetrics [4] is an object-oriented design measurement tool for the Uni-
fied Modeling Language (UML). SDMetrics is capable to measure 32 types
of class diagram metrics which is divided into five (5) categories namely
Size, Coupling, Inheritance, Complexity and Diagram. Nevertheless, only
14 metrics from category Size, Coupling and Inheritance are used in this
study since the case studies only presented information in these software
design metrics. The metrics that we have used are listed in Table 2.

11

No. Metrics Category Description

1. NumAttr Size The number of attributes in the class

2. NumOps Size The number of operations in the class

3. NumPubOps Size The number of public operations in a class

4. Setters Size The number of operations with a name starting

with ‘set’.

5. Getters Size The number of operations with a name starting

with ‘get’, ‘is’, or ‘has’.

6. NOC Inheritance The number of immediate subclasses

subordinated to a class in the class hierarchy.

7. DIT Inheritance DIT is calculated as the longest path from the

class to the root of the inheritance tree.

8. CLD Inheritance The longest path from the class to a leaf node

in the inheritance hierarchy below the class.

9. Dep_Out Coupling

(import)

The number of dependencies where the class is

the client

10. Dep_In Coupling

(export)

The number of dependencies where the class is

the supplier

11. EC_Attr Coupling

(export)

The number of times the class is externally

used at attribute type

12. IC_Attr Coupling

(import)

The number of attributes in the class having

another class or interface as their type

13. EC_Par Coupling

(export)

The number of times the class is externally

used as parameter type

14. IC_Par Coupling

(import)

The number of parameters in the class having

another class or interface as their type

Table 2: The Chosen Software Design Metrics

2.4.2 Statistical Software

Microsoft Office Excel 2010 is used to table all the information gathered in
both surveys. This tool offers simple features for statistical tasks such as
calculation and diagram or graph construction.

2.4.3 Design and Reverse Engineering Tools

Enterprise Architect [1] is a modeling tool that offers various UML diagram
design features, including class diagrams. This tool is being used for creat-
ing class diagrams for various questions in both questionnaires. This tool
also offers reverse engineering features. By using these reverse engineering
features, a UML class diagram can be reconstructed based on the source

12

code. In both questionnaires, there are several reverse engineered models
reconstructed by using this tool.

2.5 Related Works

To our knowledge no research is done in the way we approached our study.
Some studies that have been done are slightly related. In this section we
discuss those.

2.5.1 Eye Tracking

Yusuf et al. [25] did a study about assessing the comprehension of UML
Class diagrams via eye tracking. They used eye-tracking equipment to im-
plicitly collect a subject’s activity data in a non-obtrusive way as the subjects
are interacting with the class diagram in performing a given task. Also au-
dio and video were recorded of every subject during these tasks. Their goal
was to obtain an understanding of how human subjects use different types
of information in UML class diagrams in performing their tasks. The tasks
given to their subjects consist of the subjects answering specific questions
by viewing the class diagrams. They created two types of questions: ques-
tions that deal with the basics of the class diagram and questions related to
the software design. They concluded that experts tend to use such things
as stereotype information, coloring, and layout to facilitate more efficient
exploration and navigation of class diagrams. Also, experts tend to navi-
gate/explore from the center of the diagram to the edges whereas novices
tend to navigate/explore from top-to-bottom and left-to-right. Thus, sub-
jects have a variation in the eye movements depending on their UML exper-
tise and software-design ability to solve a given task.

2.5.2 Software Visualization

R. Koschke [16] did a study about software visualization in software main-
tenance, reverse engineering, and re-engineering. This study reports the
results of a survey on the perspectives of 82 researchers in these 3 domains.
The goal of this survey is to help to ascertain the current role of software
visualization in software engineering from the perspective of researchers in
these domains and give hints on future research avenues. This survey was
sent by way of electronic mail to these researchers. The questions in this
questionnaire were primarily open, so the respondents could answer freely
what they want. Most of the questions were opinion-related questions, mean-
ing that they ask the subject whether he/she thinks that visualization is
appropriate (for example). Another part of the questionnaire was asking
what kind of things they use to visualize software and how they visualize
software. From this study it also seems that when they are visualizing arte-
facts, only 13 out of 82 subjects answered with UML, which is quite a lot.

13

The most answered with graph (49 subjects). The conclusion of this study
was that many researchers of this survey prefer to only integrate the exist-
ing visualization techniques. Source code is also one of the most important
artefacts for these subjects. Eventually, this survey has revealed a tendency
to actually extend software visualization to what might be paraphrased as
software perception.

Bassil et al. [6] did a survey study about software visualization (SV) tools
that existed in 2000. This study addresses various functional, practical, cog-
nitive and code analysis aspects that users may be looking for in SV tools.
The participants, who are users of such tools in their industries or users
that are in a research setting, rated the usefulness and importance of these
aspects, and came up with their own desires. So basically, this questionnaire
questions the SV tools on what has worked and what has not worked for
these participants when applying a specific tool. The questionnaire is orga-
nized in two parts in which the first part is intended for any SV tool user, and
the second part calls on expert users of SV tools. After the questionnaire,
they analyzed it and in general, the participants were quite pleased with the
SV tool at hand. Functional aspects such as searching and browsing, use of
colors, and easy access from the symbol list to the corresponding source code
were rated as the most essential aspects. Also hierarchical representations
and navigation across hierarchies were strongly desired. Animation effects,
3D visualization and Virtual Reality (VR) techniques were least appreci-
ated. Regarding the practical aspects of these tools, they found that the
reliability of such a tool was classified as the most important aspect. They
verified that code comprehension is considered the key for carrying out var-
ious maintenance and software life cycle tasks. Concerning code analysis
aspects, only 3 out of 24 (desirable) aspects were identified as being sup-
ported by more than half of the tools. These aspects were: Visualization
of function calls, of inheritance graphs, and of different levels of detail in
separate windows. In the end, there is not a tool that fulfills all desires yet.

2.5.3 Automated Abstraction of Class Diagrams

A. Egyed [12] wrote an article that presents an approach for automated
abstraction that allows designers to zoom out on class diagrams to inves-
tigate and reason about their bigger picture. Nevertheless, designers can
easily become overwhelmed with details when dealing with (large) class dia-
grams. This approach that Alexander mentions is based on a large number
of abstraction rules and, when used together, it can abstract complex class
structures quickly. This article gives many examples about why class dia-
grams need to be abstracted and one of the reasons is that if you are only
grouping the classes, it is still insufficient to achieve abstraction. A part of
the abstraction rules are semantic rules in which you look at the semantic

14

properties of classes and relationships which makes it possible to eliminate a
helper class and derive a slightly more abstract class diagram. Another part
of the abstraction rules consist of ambiguous model definitions. In total, the
article provides 121 rules to abstract a class diagram. To date, they have
validated their abstraction technique and its rules on numerous third-party
applications and models with up to several hundred model elements. They
showed that their technique scales, produces correct results most of the time,
and addresses issues such as model ambiguities that are inherently part of
many (UML) diagrams.

2.5.4 Reasoning on UML Class Diagrams

Berardi et al. [8] did a research study about reasoning on UML class di-
agrams. Their first contribution is to show that reasoning on UML class
diagrams is EXPTIME-hard, even on restrictive assumptions; they prove
this result by showing a polynomial reduction from reasoning in DLs. DLs
are Description Logics, a family of logics that admit decidable reasoning
procedures. Their second contribution consists in establishing EXPTIME-
membership of reasoning on UML class diagram, provided that the use of
arbitrary OCL (first-order) constraints is disallowed. Their third and final
contribution has a more practical flavor and consists of polynomial encoding
of UML class diagrams. They have shown in this paper that reasoning on
UML class diagrams can be quite a complex task. They have proved that
it is EXPTIME-complete, without considering arbitrary OCL constraints.
This result suggests that it is highly desirable to provide automated rea-
soning support for detecting relevant properties of the diagrams. But there
were some issues that remain to be addressed. One of them is that the
reasoning tasks they had analyzed in this paper did not include reasoning
on keys and identification constraints. But the experimentations they did,
while certainly limited and not providing a definitive answer, indicate that
current state-of-the-art DL-based systems are ready to serve as a core rea-
soning engine in advanced CASE tools.

3 Presence of Classes in Class Diagrams A Survey

A class diagram presents many classes, but do we need all of them? For
a large sized and complex class a diagram there is a probability that there
are classes that are not relevant. To discover this, we need to observe the
classes by reviewing them based on the software design metrics of a class
diagram. In this chapter, we present a survey that we have published online
to enquire the information about which software design metrics are impor-
tant. We have chosen 14 design metrics based on a tool called SDMetrics.
We also present to the participants various flavors of class diagrams and
question the participants about what classes should be excluded in these

15

diagrams. Also, they were required to respond which class diagram flavor
they preferred working with. In total, 25 complete responses were received
with 76% having average or above skills with class diagrams. As the results,
we found out that the metric that counts the number of public operations
is the most important metric of them all. Also, we discovered that class
names and coupling that is equal or less than 2 are influencing factors when
it comes to excluding classes from a class diagram.

The outline of this chapter is the following: we first describe the survey
methodology. Next, we show our results and give our findings based on
these results. Then, we discuss our findings and give our conclusions based
on this questionnaire’s findings.

3.1 Survey Methodology

In this section we describe the design of the questionnaire in which we ex-
plain how the questionnaire was designed and why. We also give a descrip-
tion of our online survey experiment that explains how the experiment was
conducted.

3.1.1 Questionnaire Design

The questionnaire consisted out of 3 parts i.e. part A, B and C. There were
a total of 24 questions in this questionnaire. In part A, we aimed to discover
the respondent’s personal characteristics and experience with class diagrams.
In part B we aimed to discover what metrics the respondents find important
when looking at a class diagram. As for part C, we aimed to discover
what classes the respondents leave out when looking at a diagram and what
diagram(s) the respondents prefer when looking at different diagram designs.
This is an online questionnaire and is hosted by [2] and is available at [22].

3.1.1.1 Part A: Background of the Respondents

Part A consisted of 4 questions. In question 1, we asked about the current
status of the respondents. Question 2 intended to collect the information
about the respondent’s location. This was an optional question, meaning
that it is not mandatory for the respondents to answer this question. We
asked how many years of experience the respondent has with class diagrams
in question 3. In the last question of this part, we asked the respondent to
rate their skills in creating, modifying and understanding class diagrams.

3.1.1.2 Part B: Class Diagram Indicators for Class Inclusion/Exclusion

This part consisted of 14 questions. The first 13 questions asked about the
aspects of a class diagram based on the software design metrics. In these 13

16

questions, the respondents were asked to answer the questions mainly about
the indicators of class diagram inclusion based on design metrics. In each
of the 13 questions, we briefly explained about the metrics that was used
and 5 answers were offered for the respondents to choose. The choices of
answers are shown in Table 3.

Multiple Choice Letter Answer

A Class(es) Definitely Should Not be Included

B Class(es) Probably Should Not be Included

C Class(es) Sometimes be Included

D Class(es) Probably Should be Included

E Class(es) Definitely Should be Included

Table 3: Answers Multiple Choice Questions

In the last question of part B (i.e. question 14), we tried to discover about
the reason of the respondents in including and excluding a class in a class
diagram. This question aimed to get the other information than software
metrics about the reason of the respondents for including and excluding a
class in a class diagram. This is an open-ended question and it is compulsory
for the respondents to answer.

3.1.1.3 Part C: Practical Problems

Part C contained 6 questions. In this part, we tried to simulate some prac-
tical problem by providing several class diagrams. The class diagrams are
derived from well-known domains i.e. Automated Teller Machine (ATM),
Library System and Pacman Game. These well-known domain systems were
selected to avoid bias about the domain knowledge of the respondents. The
following class diagrams were involved in this survey:

1. Automated Teller Machine (ATM) simulation system: This
class diagram is an ATM simulation example developed by the De-
partment of Mathematics and Computer Science, Gordon College [9].
The ATM class diagram that was used in this survey does not contain
any attributes or operations. With other words, only the classes with
their class names and their relations with other classes are shown. In
total, there are 22 classes in this class diagram.

2. Library System: The Library System is a system that enables a user
to borrow a book from a library. This system is taken from [13]. The

17

system that we show in this questionnaire contains 24 classes and each
class only shows their operations. The reverse engineered design was
used for this questionnaire.

3. Pacman Game: Pacman’s Perilious Predicament is a turn based im-
plementation on the classic Pacman game. To accommodate its turn
based nature, game play mechanics will be changed into more of a
puzzle game. This project is found at [11]. In this questionnaire we
used the diagram from the second phase or in this project called Mile-
stone 2. We used two types of diagrams from this system namely the
forward design and the reverse engineered design. The forward design
consists of 17 classes while the reverse engineered design contains 15
classes. The reverse engineered design is created from the source and
this source code is based on the forward design. With other words,
the reverse engineered design is affected by the forward design.

We also tried to simulate the various flavors of class diagrams from the soft-
ware industry by providing different Levels of Detail (LoD) of class diagrams
and the sources of class diagrams. Different flavors of class diagrams allowed
us to differentiate the indicators of class exclusion based on the class dia-
grams that were provided. The information about the class diagrams that
we used in question 1, 2, 3 and 5 in part C is shown in Table 4.

Question System Source of Diagram Level of Detail (LoD)

1 ATM Machine Forward Design Low

2 Library System Reverse Engineered High

3 Pacman Game Forward Design High

5 Pacman Game Reverse Engineered High

Table 4: Description of the Class Diagrams Used in the Questions

Next to these 4 questions, we made another 2 questions in which we asked the
respondent which class diagram he/she prefers. In the first question (ques-
tion 4 in the survey) the respondent were required to choose between ATM
system, Library system and the forward design of Pacman. The respondents
were also required to provide the reason why they chose the answer.

In the second question (question 6 in the survey) the respondents were re-
quired to choose between the forward design and the reversed engineered
design of Pacman. The respondents were also required to give the reason
why they chose the answer. These questions (4 and 6) were provided with

18

multiple choices of answers which the respondents were required to choose
one of the answers. It was also mandatory to answer this question and the
open-ended questions in which the respondents give the reason why they
chose the answer. The multiple choice answers are shown in Table 5.

Multiple

Choice Letter

Answers question 4 Answers question 6

A I prefer class diagram A (ATM

System)

I prefer class diagram C

(Forward design Pacman)

B I prefer class diagram B

(Library system)

I prefer class diagram D (Reverse

engineered design Pacman)

C I prefer class diagram C

(Forward design Pacman)

I prefer them Both

D I prefer them all I do not prefer them

E I do not prefer them It does not matter which one

F It does not matter which one -not applicable-

Table 5: Answers Part C Question 4 and 6

3.1.2 Experiment Description

The experiment was conducted online and was hosted by [2]. The ques-
tionnaire was published online from 15th of May until the 3rd of August.
We first tried to invite students and researchers at the Leiden Institute of
Advanced Computer Science (LIACS), Leiden, to our online questionnaire.
Then, we promoted the questionnaire by using social media like Facebook,
Twitter and Linked In. We also promoted this questionnaire to multiple
online software developer forums. The questionnaire provided the facility
to save the answers and the respondents could continue on a later time.
The total respondents that entered this questionnaire were 98 (see Table 6).
However, only 25 respondents completed this questionnaire. Most of the
incomplete responses stopped after the questions in Part A.

3.2 Results and Findings

In this section we present our results and findings from this survey. This
section is divided in three subsections: In the first subsection we show the
results of part A of the questionnaire in which we accessed the background
of the respondents. In the next subsection we present our results of part B
of the questionnaire in which we asked the respondent’s indication of class

19

No. Responses Amount

1 Complete Responses 25

2 Incomplete Responses 73

 Total Responses 98

Table 6: Total Reponses

diagram inclusion based on software design metrics. In the last subsection
of this section we present the results of part C in which we asked the respon-
dents some practical problems. The responses for this survey are available
at [23].

3.2.1 Background of the Respondents (Part A)

In this subsection we present the results of part A of the questionnaire in
which we accessed the respondent’s background information. Part A of the
questionnaire consisted of 4 questions and each question was analyzed. The
results of each question of part A are the following.

3.2.1.1 Question A1: What is your status at the moment?

28%

40%

32%

Role of the Respondents

Student

Researcher/Academic

IT Professional

Figure 3: Role of the Respondents

In this question we asked the respondents what the respondent’s status/role
was at the moment. The respondent could choose out 4 answers which were
the following: Student, Researcher/Academic, IT Professional, and Other.

20

In “Other”, the respondent could specify their status that differentiates from
the previous three answers. The results are shown in Figure 3. 40% of the re-
spondents mentioned that their current status is Researcher/Academic while
32% of the respondents are IT Professionals. 28% of the respondents an-
swered Student in this question. None of the respondents answered “Other”
so Figure 3 shows the results of all the respondents. With these results we
can conclude that the distribution of the respondent’s status is quite even.

3.2.1.2 Question A2: Indicate the location where you are cur-
rently working/studying

45%

32%

4%

4%

5%
5%

5%

Location of the Respondents

The Netherlands

Malaysia

Sweden

Italy

Austria

Spain

Czech Republic

Figure 4: Location of the Respondents

In this optional question the respondent could state their location where
they answered this questionnaire. This question was open-ended, meaning
that the respondents were free to give any answer. Because of this, many
respondents answered this question by stating their university for example.
We looked in which country these universities were and added the country
for it. The complete results of this question are shown in Figure 4. 45%
of the respondents stated that they live in The Netherlands. 32% of the
respondents are from Malaysia. This percentage is big because we asked
some people from the Universiti Utara Malaysia, which is a university in
Malaysia, to answer this online questionnaire. The rest of the respondents
(4-5% each) accessed this questionnaire by seeing this in different forums
which is posted by us.

21

3.2.1.3 Question A3: How many years of experience do you have
in working with class diagrams? And Question A4: How
do you rate your skills in creating, modifying and under-
standing a class diagram?

< 1 Year 1 - 3 Years 3 - 7 Years 7 - 10 Years 10+ Years

Excellent 0 0 0 0 4

Good 0 1 1 2 1

Average 1 5 3 1 0

Low 4 0 0 0 0

Poor 2 0 0 0 0

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r

o
f

R
e
s

p
o

n
d

e
n

ts

Class Diagram Skill and Years of Experience

Figure 5: Class Diagram Skill and Years of Experience

We combined the last two questions of part A to discover new findings and
discuss about some matters which will be described later on.

Question A3 was about the experience the respondents have with class di-
agrams. The respondents could choose out of 5 answers which were the
following: < 1 Year, 1 - 3 Years, 3 - 7 Years, 7 - 10 Years, and 10+ Years.
28% of the respondents stated that their experience with class diagram is
less than 1 year. 24% of the respondents mentioned that their experience
with class diagrams is between 1 and 3 years while 16% of the respondents
answered this question with “3 - 7 Years”. 12% of the respondents answered
“7 - 10 Years” and 20% of the respondents mentioned that they have more
than 10 years of experience with class diagrams. As the results, it is quite
evenly distributed. Even though many respondents mentioned that they
have less than 1 year of experience, in the next question most of the respon-
dents rated their selves that their skill is average or above, which is shown
in Figure 5. This means that every respondent has knowledge about class
diagrams.

22

In Question A4, we asked the respondent to rate his/her skills on creating,
modifying and understanding class diagrams. 40% of the respondents stated
that their skill is Average, while 20% answered “Good”. 16% of the respon-
dents rated their skill Excellent. 16% of the respondents and 8% of the
respondents rated their skill Low and Poor, respectively. As the result, we
can state that 76% of the respondents rated their skill of average or above.
For the respondents that answered “< 1 Year” in the previous question, 6
out of 7 answered “Low” or “Poor” in this question. One of them answered
this question with “Average”. This again means that (most of) the respon-
dents have knowledge about class diagrams. The complete results of the
combination of these two questions are shown in Figure 5.

3.2.2 Class Diagram Indicator for Class Inclusion (Part B)

In this subsection we present our result of part B. This part consisted of
14 questions. For question B1 to B13, the respondents were provided 5
answers to be chosen as their answer. The answers are shown in Table 3.
We analyzed these 13 questions by using a score-system. The score system
is shown in Table 7.

Answer Score

Class(es) definitely should not be included -2

Class(es) probably should not be included -1

Class(es) sometimes be included 0

Class(es) probably should be included 1

Class(es) definitely should be included 2

Table 7: Score System Metrics - Question B1-B13

The reason of the scores is obvious: if a respondent does not want a class,
it basically means that the metric that is in this class is not important and
gets negative points. If a respondent answers with “Class(es) sometimes be
included” then this respondent is neutral and the metric does not get any
points. However, if a respondent answers that a class should be included,
then the metric that is being asked in this question gains positive points.

Figure 6 shows the maximum and minimum of the scores that a metric can
get. If a metric gets a negative score after going through all the answers
then we can conclude that this metric is not important and that if a class
contains a high frequency of this metric then this class must be excluded. If

23

-50 -40 -30 -20 -10 0 10 20 30 40 50

Minimum and Maximum Score

Figure 6: Minimum and Maximum Score

a metric has a positive score after going through all the answers then this
metric is important and so is the class that contains this metric at a high
frequency. However, if all metrics have a positive score, then this does not
automatically mean that every metric is important. If this situation occurs,
the metrics should be ranked based on the score and the metrics that are
located amongst the highest position (ordered by highest to low) in the list
are the important metrics. These important metrics should be presented in
the class diagram and the low scoring metrics in the list are the metrics that
should not be included in a class diagram.

The metrics are grouped in three categories which are: Size Category, Cou-
pling Category, and Inheritance Category. Number of attributes (NumAttr),
Number of Operations (NumOps), Number of Public Operations (NumPub-
Ops), and Setters/Getters are grouped in the Size category. Outgoing and
Incoming Dependencies (Dep Out and Dep In), Export Coupling Attributes
and Operations (EC Attr and EC Par), and Import Coupling Attributes
and Operations (IC Attr and IC Par) are grouped in the Coupling category.
Number of Children (NOC), Depth in Tree (DIT), and Class in Leaf Depth
(CLD) are grouped in the Inheritance category. The results of these three
groups are presented in different subsections.

Meanwhile, in the last question of part B, we asked the respondent his/her
reason of including or excluding a class in a class diagram. The analysis of
this question will be described later.

3.2.2.1 Size Category (Question B1 - B4)

Figure 7 shows the results of the Size category. The Size category consists of
four metrics namely NumAttr, NumOps, NumPubOps, and Setters/Getters.
The highest score in this category has NumPubOps with 25 points. NumOps
has 18 points while NumAttr has 17 points. The Setters/Getters metric has
13 points. From these results we can state that the respondents found, if
we only look at the size category, operations important in a class diagram,
specifically operations that are public. This validates our results with our
other questionnaire by looking at question C2B. In that question the results
showed that most of the respondents did not like private and protected

24

0

5

10

15

20

25

30

NumPubOps NumOps NumAttr Setters/Getters

Score Size Category

Points

Figure 7: Score Size Category (Question B1-B4)

operations. In other words, they find public operations better and needs
to be included in a class. As for setters/getters, it has the lowest points in
this category. This indicates that the setters/getters are not an important
element in a class diagram for the respondents. A reason for this could be
that it is a common operation and also can be integrated in other operations
that a system actually needs. NumAttr and NumOps also have a quite
average amount of points. We can say that these metrics are normally
needed in a class diagram but that public operations are more preferred.

3.2.2.2 Coupling Category (Question B5 - B10)

Figure 8 shows the results of the Coupling category. The coupling category
consists of six metrics which are the following: Dep Out, Dep In, EC Attr,
EC Par, IC Attr, and IC Par. As the results show, Dep Out and Dep In
have 17 and 16 points, respectively. These metrics are one of the highest
metrics in this category. In the survey in Chapter 4, many respondents find
relationships in a class diagram important. Therefore, if a class contains
many dependencies, whether they are outgoing or incoming, this class is
important. This could be the reason that many respondents stated that
such a class should be included. EC Attr has 15 points while IC Attr has
17 points. If we compare the points between these two metrics and EC Par
(11 points) and IC Par (9 points), there is a huge difference. This indicates
that the classes that are declared and are used as an attribute are more
important than the classes that are declared and are used as a parameter in
class operations.

25

0

2

4

6

8

10

12

14

16

18

Dep_Out IC_Attr Dep_In EC_Attr EC_Par IC_Par

Score Coupling Category

Points

Figure 8: Score Coupling Category (Question B1-B4)

3.2.2.3 Inheritance Category (Question B11 - B13)

The Inheritance category consists of three metrics: NOC, DIT, and CLD.
From the results that are shown in Figure 9, NOC has the most points in
this category which is 20 points. DIT and CLD have 7 points and 5 points,
respectively. With these results we can conclude that the respondents only
need a part of the inheritance tree. If a class has a high NOC then that
means that this class is important because this class has many immediate
children and is normally also high in the inheritance hierarchy. But if a class
has a high DIT then this class is somewhere at the bottom of this hierarchy
which means that there is a possibility that this class is not important. It is
not a surprise that CLD has not many points because normally if a class has
a high number of CLD then the class presents a very high level of abstraction
that sometimes is used to group the classes under this class.

3.2.2.4 Class Inclusion/Exclusion (Question B14)

In this question we asked the respondents’ reason of inclusion or exclusion
of a class in a class diagram. To analyze this, we created several keywords
that are related to the answers given to this question. This question can be
divided into two answers: reason of including a class and reason of excluding
a class. Most of the respondents give the reason on why they include a class
in a class diagram but only 5 respondents have given the answer why they
exclude a class. Thus, the keywords that we have made are specifically for
the answers that said something about including a class. The answers that
were about excluding a class will be summarized. There were 3 respondents

26

0

5

10

15

20

25

NOC DIT CLD

Score Inheritance Category

Points

Figure 9: Score Inheritance Category (Question B1-B4)

that put an irrelevant answer in this question, “Not sure” for example. The
keywords that we have used are the following:

• Size of Class/Diagram
• Complex Class
• Coupling
• Domain Related
• Understandability
• Frequent Class
• Based on Granularity
• Cohesion

An answer in this open-ended question could contain multiple keywords. We
understand that the “Important/Relevant class” is a very broad term but
that is basically what the respondents answered. The respondents stated
that they need a class when it is important but they do not say when such a
class is important. This could be the weakness of this survey for not further
questioning why the answer was given.

Figure 10 shows the results of the question based on the keywords. It
shows that there are three keywords that are being related to the answers
the most. These are Important/Relevant Class (29.6%), Coupling (18.5%),
and Domain Related (25.9%). Like we stated earlier, the keyword Impor-
tant/Relevant class is a broad term but that is what the respondent answered
with. So this answer is really obvious but we do not know when this class
is important for them. Coupling on the other hand is the result that was
expected. We stated in the survey in Chapter 4 that relationships are very
important to understand a class diagram. Here, we found the same result.

27

0

5

10

15

20

25

30

35

Keywords to Include a Class in a Class Diagram

Number of Respondents

Figure 10: Keywords to Include a Class in a Class Diagram

18.5% of the respondents said that if a class has many relations then that
class should be included. The last keyword is Domain Related. These are
classes that are related to the concept or domain. Without these classes,
it is hard for a software maintainer to understand a system. Thus, these
classes must be included in a class diagram.

As we have mentioned earlier, only 5 respondents answered on the rea-
son why they exclude class from a class diagram. One of these respondents
stated that they would exclude a class when this class is too small and that it
can be combined with another class. Another respondent stated that he/she
excludes a class if this class does not contain any important attributes or
operations. Once again, the respondent does not state when an attribute
or an operation is important. One respondent stated that he does not need
any children classes. With other words, he only needs the parent classes.
Another respondent mentioned that he would keep the classes but would
exclude the attributes and operations from these classes to get a high level
abstraction. This answer is not really relevant to what we asked but it is
interesting, because the respondent then only needs the class names and
relations between the classes to understand a system. The last respondent
stated that he/she excludes helper classes or technical-specific classes since
they are not needed to understand a system.

28

3.2.3 Practical Problems

In this part, we tried to access the information about the classes that should
not be included in a class diagram. The information is gathered by allowing
the respondents to choose the classes that should not be included in a class
diagram.

3.2.3.1 Question C1: Referring Figure 9, select the classes that
you think should not be included in a class diagram

In this question, the ATM System class diagram was presented without
attributes and operations (Figure 9 in the questionnaire). We expected to
access the information about the influence of the coupling category and class
names in a class diagram. The overall results of this question are shown in
Figure 11.

0 10 20 30 40 50 60

[Money]

[OperatorPanel]

[Status]

[Deposit]

[Envelope Acceptor]

[ReceiptPrinter]

[Transfer]

[Withdrawal]

[Balances]

[Card]

[Inquiry]

[Message]

[Receipt]

[Account Information]

[Card Dispenser]

[Log]

[Network ToBank]

[Session]

[Card Reader]

[Customer Console]

[ATM]

[Transaction]

Respondents Selection of Classes that Should not be
Included in an ATM Machine System

%

Figure 11: Respondents Selection of Classes that Should not be Included in
an ATM Machine System

The results show that 48% of the respondents chose to exclude the class
Money and 36% of the respondents chose to not include the OperatorPanel

29

and Status class in a class diagram.

From our observation, those 3 classes have the number of coupling <= 2.
32% of the respondents chose to exclude the classes Deposit, EnvelopeAc-
ceptor, ReceiptPrinter, Transfer and Withdrawal. The coupling for those
classes is equal to 2. This means 8 out of 24 classes in this class diagram
were chosen to be excluded in a class diagram based on the amount of cou-
pling.

The classes that were important in this class diagram are Transaction and
ATM. The coupling in ATM is 9 and in Transaction it is 7. This shows
that the amount of coupling plays a major role in selecting the classes that
should or should not be included in a class diagram. In this question, we
found that the meaningful class names seem not to be influenced much for
the respondents. This is shown by 32% of the respondents that chose to ex-
clude domain related classes i.e. Withdrawal, Transfer and Deposit. Those
three classes are the functionality offered by the ATM Machine.

3.2.3.2 Question C2: Referring Figure 10, select the classes that
you think should not be included in this class diagram

A reverse engineered class diagram from a Library System was used for this
question (Figure 10 in this questionnaire). All elements in a class diagram
were presented (HLoD) and we expected to discover the elements that in-
fluence in selecting the classes that should not be included. The results of
the survey are shown in Figure 12.

From the results, it is obviously shown that most of the respondents chose
not to include the classes that have no relationship. The top 7 classes that
were chosen to be excluded in the class diagram were classes that have no
relationship. In this question, we found that class names also play a major
role in determining whether a class should be included or excluded. The top
three classes that were chosen to be excluded are AboutDialog, MessageBox
and QuitDialog. From the class names, the respondents were able to pre-
dict what the functionality of the class is. AboutDialog, MessageBox and
QuitDialog clearly mentioned the functionality of the classes that are used
to display the information. Thus, these classes are not important because
they are only used to display message. On the other hand, the 5 classes
that not many respondents chose to exclude in a class diagram are classes
that are related to the domain and have coupling more than 2. Borrower,
Reservation, Loan, Item and Title are classes that have a meaningful name
that might indicate the functionality of the classes and also closely relate to
the domain i.e. Library System.

30

0 10 20 30 40 50 60 70

[AboutDialog]

[MessageBox]

[QuitDialog]

[BorrowerFrame]

[TitleInfoWindow]

[BrowseWindow]

[MainWindow]

[FindBorrowerDialog]

[Objld]

[TitleFrame]

[UpdateBorrowerFrame]

[BorrowerInfoWindow]

[CancelReservationFrame]

[FindTitleDialog]

[LendItemFrame]

[Persistent]

[ReturnItemFrame]

[UpdateTitleFrame]

[ReservationFrame]

[Title]

[Item]

[Loan]

[Reservation]

[Borrower]

Respondents Selection of Classes that Should not be
Included in a Library System

%

Figure 12: Respondents Selection of Classes that should not be Included in
a Library System

From the analysis of the results, we found that meaningful class names
and number of coupling influenced the selection criteria of important classes
and not important classes for inclusion/exclusion in this class diagram.

3.2.3.3 Question C3: Referring Figure 11, select the classes that
you think should not be included in this class diagram

In this question, the respondents were required to select the classes that are
not important in a forward designed Pacman Game class diagram (Figure 11
in this questionnaire). Most of the classes in this diagram have relationships
and meaningful class names. The complete result for this question is pre-
sented in Figure 13. The results indicate that 64% of the respondents chose
class Direction to be excluded from a class diagram. This class is an Enu-
meration class and the coupling is equal to 0 which might be the reason why
this class should not be included in a class diagram. 52% of the respondents

31

selected to exclude the Iterator Class while 40% of the respondents chose not
to include the Iterable Class. Both classes are only interface classes which
might indicate that those classes are not important. PacShell only contains
a main operation and might be common in programming. That may be the
reason why this class has been chosen by 35% of the respondents to be left
out from this class diagram.

0 10 20 30 40 50 60 70

[Direction]

[Iterator]

[Iterable]

[PacShell]

[GameListenerAdapter]

[MazeIterator]

[ConsoleView]

[GameEvent]

[ConsoleControl]

[GameListener]

[GameLevel]

[Tile]

[Character]

[Ghost]

[Player]

[GameModel]

[Maze]

Respondents Selection of Classes that Should not be
Included in a Pacman Game (Forward Design)

%

Figure 13: Respondents Selection of Classes that should not be Included in
a Pacman Game (Forward Design)

From the results in this question, we found that the enumeration and inter-
face types of classes are not important classes to be shown in a simplified
class diagram.

3.2.3.4 Question C4: Referring to Figure 9, 10, and 11. Which
class diagram do you prefer working with?

Referring to the class diagrams in C1, C2 and C3, the respondents have been
asked which flavor of class diagram is preferred to be used. Class diagram
in C1 presents Low Level of Detail (LLoD) in forward design while class

32

diagram in C2 presents the reverse engineered design. Class diagram C3
presents High Level of Detail (HLoD) in a forward design. In this question,
we tried to discover which class diagram is preferred by the respondents.

Answers Number of

Respondents

in

%

Respondent’s Role Respondent’s Skill

Student Researcher/

Academic

IT

Pro.

Poor Low Avg Good Excellent

I prefer

class

diagram A

(figure 9)

5 20 0 2 3 0 0 2 1 2

I prefer

class

diagram B

(figure 10)

2 8 0 1 1 0 0 2 0 0

I prefer

class

diagram C

(figure 11)

12 48 6 5 1 1 3 6 1 1

I prefer

them all

1 4 1 2 0 0 0 0 1 0

I do not

prefer them

2 8 0 0 2 0 0 0 1 1

It does not

matter

which one

3 12 0 0 1 1 1 0 1 0

Total 25 100 7 10 8 2 4 10 5 4

Table 8: The Preferences between Class Diagram A, B and C

The results in Table 8 show that almost half of the respondents preferred
working with class diagram C. This diagram is a HLoD forward design class
diagram. 48% of the respondents preferred diagram C because they men-
tioned that the class diagram is clear, the necessary information are pro-
vided e.g. attributes and operations and most of the classes that are pre-
sented are important. This diagram was preferred most by students and
researchers and one IT Professional. 20% of the respondents preferred to
use class diagram A. Most of the respondents that chose this diagram were
Researchers/Academic and IT Professionals with the skill in class diagram
ranging from Average to Excellent. It seems that most of the respondents
that have a good skill and experience in class diagrams prefer to use this dia-
gram. The respondents mentioned that they preferred this diagram because
it is simple, less technical, domain oriented, systematic and has meaningful
classes. 12% of the respondents mentioned that it did not matter which
diagram they get while only 4% of the respondents preferred all the pre-
sented class diagrams. 8% of the respondents preferred class diagram B and
another 8% did not prefer all the presented class diagrams. They did not

33

prefer the class diagrams because they mentioned that there is “no story”
in the class diagrams and the class diagrams only show the solution, not the
foundation of the domain.

3.2.3.5 Question C5: Referring Figure 12, select the classes that
you think should not be included in this class diagram

This class diagram was derived from the domain of a Pacman Game. It is
slightly different with the class diagram presented in question C3 because
this class diagram was constructed by using a reverse engineering technique.
The Pacman Game implementation is closely following the forward design
and that is the reason why there is a small difference between the forward
engineered class diagrams and the reverse engineered class diagram. In
this question, we tried to discover if there was any difference of selecting the
classes that should not be included in a class diagram in a reverse engineered
class that is close or almost similar with the forward design class. We also
tried to discover which class diagram was preferred which was asked in a
later question.

0 10 20 30 40 50 60 70 80

[Direction]

[PacShell]

[GameListenerAdapter]

[ConsoleControl]

[ConsoleView]

[GameListener]

[MazeIterator]

[Ghost]

[Character]

[GameEvent]

[GameLevel]

[Maze]

[Player]

[GameModel]

[Tile]

Respondents Selection of Classes that Should not be
Included in a Pacman Game (Reverse Engineered

Design)

%

Figure 14: Respondents Selection of Classes that should not be Included in
a Pacman Game (Reverse Engineered Design)

The complete result of this question is shown in Figure 14. The result
shows that the class Direction and PacShell were selected by 72% of the

34

respondents to be left out from the class diagram. The reasons could be that
those classes have no relationship to other classes, it is an enumeration class
(Direction) and it is a common programming class (PacShell). Compared to
the question C3, the Iterator and Iterable classes were differently presented
in this reverse engineered diagram. The interface class is automatically
presented in the class that is connected to the interface class. For instance,
the interface class Iterator is presented in the Maze class. This result shows
that coupling influenced the selection of a class to be excluded in a class
diagram.

3.2.3.6 Question C6: Referring Figure 11 and 12, which class
diagram do you prefer working with and why?

From question C4, the result shows that most of the respondents prefer
to use the forward engineered class diagram. This question (C6) tried to
discover which type of class diagram was preferred by the respondents i.e.
between the reverse engineered and the forward engineered class diagrams.
The reverse engineered class diagram is different with the reverse engineered
class diagram in question 2 because this class diagram (figure 12) was derived
from a system that was implemented (or coded) closely with the forward de-
sign.

Answers Number of

Respondents

in

%

Respondent’s Role Respondent’s Skill

Student Researcher/

Academic

IT

Pro.

Poor Low Avg Good Excellent

I prefer class

diagram D

(figure 12)

10 40 1 7 2 1 1 5 2 1

I prefer class

diagram C

(figure 11)

4 16 1 0 3 0 1 1 1 1

I prefer them

both

3 12 1 2 0 0 0 2 1 0

I don’t prefer

them

3 12 2 1 0 0 2 0 0 1

It doesn’t

matter which

one

5 20 2 0 3 1 0 2 1 1

Total 25 100 7 10 8 2 4 10 5 4

Table 9: The Preference between Class Diagram C and D

The results in Table 9 show that most of the respondents (mainly researcher)
preferred to use the reverse engineered class diagram (Class Diagram D).
40% of the respondents chose this diagram because it is more detailed, clear,

35

there is no interface class and it is easier to understand. 20% of the respon-
dents did not choose any of the two class diagrams because for them it does
not matter which one. The reason mentioned by these respondents was that
both class diagrams are equally good and similar. On the other hand, 16%
of the respondents preferred class diagram C. The respondents mentioned
that class diagram D has a complete view of the attributes and operations
and all classes are successfully linked. There is no pattern of selection pre-
sented in this result in terms of the respondents’ role and skill.

If we compare the results of this question and the results of question C4, we
found that the reverse engineered class diagram is chosen if the source code
was closely implemented based on the forward design. These kinds of source
codes are capable to construct a very helpful class diagram that is mostly
comparable with the forward design class diagram and are sometimes even
better. This means that reverse engineered class diagrams that are mostly
similar with the forward design are preferred for the software engineer to
understand a system design.

3.3 Discussion

In this section we discuss the results and findings presented in the previ-
ous section. This section is divided into 5 parts which are the following:
Respondents’ Background, Software Design Metrics, Class Names and Cou-
pling, Class Diagrams Preferences, and Threat of Validity.

3.3.1 Respondents’ Background

In Part A, we have accessed the respondents’ background information. The
information is about the respondents’ status and also skills and experience
in working with class diagram. As the result, the respondent’s status in this
questionnaire was quite evenly distributed. We also asked about the loca-
tion of the respondents and the result showed that most of the respondents
are from The Netherlands and Malaysia.

In terms of the respondent’s skill and experience with class diagrams, we
found that 72% of the respondents have more than 1 year of experience
and that 76% of the respondents have rated themselves average or above
if it comes to creating, modifying and understanding class diagrams. Even
though 28% of the respondents said that they have less than one year of
experience, we can still state that all the respondents have knowledge about
class diagrams. The respondents that have less than one year experience
also answered that they have low or poor skill aside from one respondent
that rated average. With these results we can confirm that the respondents
are truthful to their experience and their skills regarding to class diagrams.

36

This also confirms that every respondent had the minimum knowledge to
answer this questionnaire.

3.3.2 Software Design Metrics

In Part B, the respondents were asked about the indicators of a class to be
included in a class diagram based on the selected software design metrics.
The analysis was done based on the Size, Coupling and Inheritance cate-
gories. In the Size category, we found that the higher the number of public
operation is the higher the possibility of a class is to be included in a class
diagram. Public operations are not restricted to be accessed internally but
they also can be accessed publicly from other classes. This might be the
reason why the respondents found public operations more important than
operations in general which also contains private and protected operations.
The Setters/Getters metric had the lowest points (13 points). Setters and
getters are operations that are used to access value (getters) and update or
modify value (setters) of attributes in a class. These kinds of operations
can be merged into operations that are needed for the system to function.
Thus, if a class has many getters and setters then this class should not be
included in a class diagram.

In the Coupling category, we have discovered that classes that have many
incoming and outgoing dependencies are important since the points that
they have are 17 and 16, respectively. These points are not high if you com-
pare it with the other categories but in this category these two metrics are
one of the highest, next to IC Attr with also 17 points. We thus discovered
that dependencies are important. Dependencies are also relationships and
if we look at the results of the next part of the questionnaire we see that
coupling (with other words: relationships) is an influencing factor if we want
to include or exclude a class. We have mentioned earlier that attributes are
a common element in a class. Here, we found that IC Attr and EC Attr
have a high amount of points (17 and 15, respectively). They have more
points than EC Par (11 points) and IC Par (9 points). The reason might
be that the class that is declared as an attribute is more important because
the class could be used for every operation in the class. Meanwhile, if the
class is only declared as parameter in an operation, the object of the class
can only be used by the operation internally.

In the Inheritance category, we discovered that for a class that has a high
number of children (NOC), the class should be included in a class diagram.
This parent class is helpful to show the abstraction of a group of classes. On
the other hand, DIT and CLD show the lowest scoring among the software
design metrics. For DIT, the higher number of DIT does not indicate it is
an important class because it basically means that this particular class is

37

located very low in the inheritance hierarchy which means that this class is
too detailed and most of the times not needed. For CLD, if a class has a
high frequency of this metric then this means that this class is very abstract,
meaning that this class alone will not be enough to understand the whole
hierarchy. So it is basically a class that presents an abstraction of classes.

As for the complete results, we found that NumPubOps has the highest
points of all the metrics. Also all the metrics have a positive score. This
means that all software metrics that were used in this study is useful. A
negative score means that the class is not useful and should not be included
in a class diagram. As we mentioned before, the main purpose of this study
is to get the important metrics that influence the class inclusion in a class
diagram. Based on the result, we can get this information by ranking the
score of these metrics. The overall ranking of the score is shown in Table
10. This result could be applied for a software designer to simplify a class
diagram during the documentation phase. This result is a little bit contra-
dicting with the result in Part C. In Part C, a lot of metrics that are related
to relationship have a higher score than the metrics from the Size category.
Part C shows that relationship is an important element in a class diagram.

No. Software Metrics Score

1 NumPubOps 25

2 NOC 20

3 NumOps 18

4 NumAttr 17

5 Dep_Out 17

6 IC_Attr 17

7 Dep_In 16

8 EC_Attr 15

9 Setters/Getters 13

10 EC_Par 11

11 IC_Par 9

12 DIT 7

13 CLD 5

Table 10: Overall Score for Software Design Metrics

3.3.3 Class Names and Coupling

Based on the results in Part C, we discovered that a very influencing factor
when we are trying to exclude classes from a class diagram is coupling. Based

38

on the results, we have seen that most of the respondents exclude classes
that have no coupling at all, meaning that these classes does not have any
relationships. Many respondents also exclude classes that have coupling <=
2. Another influencing factor is the class name. Many respondents excluded
GUI related classes in the Library system because of the class name and
coupling. However, sometimes this element is not an influencing factor as
we have seen in the ATM system because many respondents actually ex-
cluded domain related classes, classes that are needed for the functionality
of the ATM system.

Aside from these two big influencing factors, many respondents excluded
the type of classes like enumeration and interface. Either of these classes
did not contain any information in it or the coupling was very low. Another
reason of why the interface classes are excluded could be that these classes
are GUI related.

3.3.4 Class Diagram Preferences

In question C4, the respondents were required to choose between forward de-
sign (LLoD), reverse engineered design (HLoD) and forward design (HLoD).
Based on the results, we discovered that most of the respondents preferred
to use HLoD of the forward design. The reasons the respondents gave was
that this class diagram is clearer and the necessary information is provided
in this class diagram. This result seems to indicate that the forward design
with High Level of Detail was preferred by the respondents. Meanwhile, in
question C6, the respondents were required to choose between the forward
design (HLoD) and reverse engineered design (HLoD) of the same system.
In this question, the result was different from the result in question C4. Most
of the respondents had chosen the reverse engineered design (HLoD). The
reason might be that the reverse engineered design that was provided for
this question was almost similar with the forward design. The respondent
stated that they preferred this diagram because they find it more detailed,
clear, and it is easier to understand. Some of the respondents also mentioned
that the interface classes are removed and is thus a better class diagram.

From our observation, the reverse engineered class diagram of the Library
system was not preferred because the structures of the classes were not well-
presented. This might be because the implementation was not conforming
to the design or there was no design in the system before implementation.

3.3.5 Threat of Validity

Although the respondents of this survey was quite well distributed between
the status roles (Student, Researcher/Academic and IT Professional), we

39

consider that the amount of full responses were not enough. The locations
of the respondents were also not well distributed in this survey because most
of the respondents came from The Netherlands and Malaysia. Most of the
questions in this study require the respondent to choose the best answers.
We needed to do predictions on why the respondents chose these answers
and this prediction may not be accurate. This questionnaire should contain
question in which it asks why the respondent chose the answer to get the
reason.

3.4 Conclusion

In this survey we have discovered the most important elements in a class
design that should be included in a class diagram. We also discovered what
flavor of class diagrams is preferred to work with. We discovered these
findings by doing an online questionnaire. There were 25 respondents that
completed this questionnaire.

From the results, we discovered that the most important software design
metric is the Number of Public Operations. This means that if a class has
a high number of public operations then this indicates that this class is
important and should be included in a class diagram. In this survey we
also discovered that the class names and coupling are influencing factors
when selecting a class to be excluded from a class diagram. Classes that
have number of coupling less or equal to 2 are most likely to be excluded
from the class diagram. Our most significant discovery of this survey is the
preference of class diagrams the respondents had. The reverse engineered
design is being preferred over the forward design. However, the source code
must implement the forward design so that the reverse engineered design is
mostly similar to the forward design.

With these results we can now highlight the reverse engineered class dia-
grams if they are good for understanding a system or not. We can also
highlight which classes should be included or excluded based on our results
and analysis by looking at the metrics and behavior the respondents had
in Part C. Although the number of responses of this questionnaire is not
that high, we still managed to find some influencing factors when selecting a
class to be included or excluded in a class diagram and we discovered what
type of class diagrams these respondents prefer which are some important
elements that could be used for simplifying UML class diagrams.

40

4 Class Diagram Simplification: What is in the
developer’s mind?

Class diagrams are diagrams that should support the software developer in
understanding a system. However, sometimes the class diagram is too com-
plex to easily understand a system in a short period of time. Is there a way
to simplify this diagram? This survey is to enquire the information about
what type of information they would include or exclude in order to simplify
a class diagram. This survey involved 32 software developers with 75 percent
of the participants having more than 5 years of experience in class diagrams.
We discovered various elements that are important in a class diagram such
as relationship, class names and properties. We also discovered elements
that are not important in a class diagram such as GUI related information,
private and protected operations, and constructors without parameters.

The outline of this chapter is the following: we first describe the survey
methodology. Then, we show our results and give our findings based on
these results. We end this chapter by discussing our findings and presenting
our conclusions based on our analysis of this questionnaire.

4.1 Survey Methodology

In this section, we describe i) The questionnaire design that explains how
the questionnaire was designed and why; and ii) The experiment description
which explains how the experiment was conducted.

4.1.1 Questionnaire Design

The questionnaire was organized into three parts i.e. Part A, B and C.
In total, there were 15 questions. In Part A, we aimed to discover the
information about the respondent’s personal characteristics, knowledge and
experience with UML class diagrams. Meanwhile in Part B and C, we aimed
to discover the information about how the respondents indicate classes that
should be included in a class diagram. For this survey, we organized the
questionnaire by dividing this questionnaire into 2 different sets of questions.
Both sets of questions had the same questions for Part A and C. However,
we differentiated the questions in Part B. The questionnaire can be found
at [20].

4.1.1.1 Part A: Personal Questions

Part A consisted of six questions. Questions 1 to 4 in this questionnaire
were intended to access the information about the status of the respondents,
years of working with class diagrams, where they learned UML, and how
the respondents rate their skills in class diagrams. In questions 5 and 6, we

41

wanted to compare the respondents’ preferences for UML models or source
code for understanding a system.

4.1.1.2 Part B: Practical Problem

This part contained 3 questions and each question consisted of a class dia-
gram. In this part, the respondents were required to mark information that
that can be left out in provided class diagram without affecting their under-
standing of the system. They were also allowed to write any comments or
suggestions according to what information they find unnecessary in a class
diagram. The following class diagrams were involved in this survey:

1. Automated Teller Machine (ATM) simulation system: This
fully functional system has a class design and complete implementa-
tion source code. The class design was made by using forward design.
The case study is an ATM simulation example developed by the De-
partment of Mathematics and Computer Science, Gordon College [9].
This simple simulation system is used to show the overall process of
UML usage in analysis, design and implementation phase. The com-
plete software documents based on UML that were provided consists
of 22 design classes. We reverse engineered the design of this system
for this study.

2. Pacman Game: Pacman’s Perilous Predicament is a turn based im-
plementation on the classic Pacman arcade game. To accommodate its
turn based nature, gameplay mechanics will be changed into more of
a puzzle game [11]. In this survey, we used the diagram from the 2nd
phase or in this project called Milestone 2. The amount of classes in
the source code in this system is 17 while only 15 classes are stated in
the class diagram design. Both forward and reverse engineered designs
were used in this survey.

3. Library System: Library System is a system that enables a user to
borrow a book from a library. This system is taken from [13]. This
complete system consists of 24 classes in the source code. The reverse
engineered design was used for this survey.

As mentioned, this survey consisted of two different set of questions. This
part differentiates the set of questions by providing different types of class
diagrams. The information about the sets of class diagrams are shown in
Table 11.

Every set of the questionnaire had both MLoD and HLoD. In set A, ATM
system in MLoD and Library System in HLoD were used and in set B, ATM
system in HLoD and Library System in MLoD were used. Different Level of

42

No Class Diagram Set A Set B

1 ATM System Medium Level of De-
tail (MLoD)

High Level of Detail
(HLoD)

2 Pacman Game Forward Engineered
Design

Reverse Engineered De-
sign

3 Library System High Level of Detail
(HLoD)

Medium Level of Detail
(MLoD)

Table 11: Information on Set A and Set B

No Class Diagram Ele-
ments

Medium Level of
Detail (MLoD)

High Level of
Detail (HLoD)

1 Classes YES YES
2 Attributes YES YES
3 Type in Attributes NO YES
4 Operations YES YES
5 Operations Return

Type
YES YES

6 Parameters in opera-
tion

NO YES

7 Relationships YES YES

Table 12: Level of Detail Description

Detail (LoD) were used to simulate different types of details that normally
exist in a class diagram. We also used different sources of class diagrams by
setting forward design and reverse engineered class diagrams to simulate the
different flavors of class diagrams that exist in the software industry. Table
12 explains about the Level of Detail.

4.1.1.3 Part C: Class Diagram Indicators for Class Inclusion

This part consisted of six open-ended questions. The aim of these questions
was to discover what the developers think about the information that is
needed in a class diagram and the information that should be left out. Table
13 describes the questions in part C.

4.1.2 Experiment Description

The experiment was conducted on 6th of June 2012 at Leiden Institute
of Advanced Computer Science (LIACS), Leiden. The participants of this
survey were software developers from all over the Netherlands. In total, there

43

No. Question Description

1. Question C1: In software documentation, particularly in class

diagrams, what type of information do you look for to understand a

software system? (for example: relationships, operations, attributes,

etc)

To learn what type of

information is important to

understand the software system.

2. Question C2: In a class diagram, what type of information do you

think can be left out without affecting your understanding of a

system?

a. Classes (for example: Helper class, Interface class, Library

class, ….)

b. Operations (for example: private, protected, public,

constructor, ….)

c. Relationships (for example: labels, multiplicities, self-

relations)

d. Other(s):

To find out what type of

information can be left out from

a class diagram.

3. Question C3: Do you think that a class diagram should show full

hierarchy of inheritance? If not, which parts could be left out? (for

example : parent, child, intermediate parent/child, leaf, …)

To find out what type of

information in the inheritance

relationship is important.

4. Question C4: What criteria do you think indicate that a class (in a

class diagram) is important for understanding a system?

To discover how the developers

recognize the criteria of a class

that is important in a class

diagram.

5. Question C5: If you try to understand a class diagram, which

relationships do you look at first?

(Example: dependencies, inheritance, associations, etc)

To determine which relationship

that can be considered important

in a class diagram.

6. Question C6: If there is a tool for simplifying class diagrams (e.g.

obtained from reverse engineering), what features\functions would

you expect from such a tool?

To find out what kind of features

or functions are needed for a

class diagram abstraction tool.

Table 13: Detailed Explanation Part C

were 32 respondents and all of them were a member of a survey community
called Devnology [17]. The participants had to answer every question and
were free to ask any questions during the questionnaire session. The time
given to answer the questionnaire was 60 minutes.

4.2 Results and Findings

In this section you will find our analysis and results of the answers given
by our respondents. We have split this section up in three parts. In the
first part we give our findings of part A of the questionnaire in which we
asked the respondents some personal questions. In the second part we give
our findings of part B of the questionnaire which consisted of the practical
problems. In the last part we give our findings of part C of the questionnaire.
A full explanation of these parts is given in section 2: Survey Methodology
and the responses for this survey are available at [21].

44

4.2.1 Part A: Personal Questions

This part consists of six questions related to personal characteristics, know-
ledge and experience. We will give our findings on each question in this part
as well as the other parts. In part “Others” we present several combinations
of the results.

4.2.1.1 Question A1: What is your role at the moment?

In this question the respondent should state his/her role in software deve-
lopment. The choices of answers that have been given to the respondents
are Project Manager, Architect, Designer, Programmer, and Tester. The
respondents were allowed to select more than one answer.

Project

Manager
Architect

% 9 50

0

20

40

60

80

100

p
e
rc
e
n
ta
g
e

Role of the Respondents

Analyst Designer Programmer Tester

13 28 81 3

Role of the Respondents

Figure 15: Role of the Respondents

As for the results, 81% of the respondents are programmers and half of
the respondents are software architects. As shown in Figure 15, 28% of
the respondents are software designers. Figure 15 also highlights that the
majority of the respondents are involved in the Design and Implementation
phase in software development. 14 out of 26 programmers (54%) are also
software architects or software designers. This means that half of the pro-
grammers are involved in designing the software. All project managers that
were involved in this study are also programmers. This indicates that all the
respondents that participated in this study are directly involved in software
development.

4.2.1.2 Question A2: How many year(s) of experience do you
have in working with class diagrams?

This question is about the experience of the developer in working with class
diagrams. Out of 32 respondents only 28 (88%) of the respondents answered
this question. Figure 16 shows the complete results of this question. From

45

these results we found that 50% of the respondents are experienced with
class diagrams for more than 10 years. This is expected because most of the
participants of this survey indicated that they know UML when we asked
them before the questionnaire was handed over. The results also show that
75% of the respondents have experience with class diagrams for more than
5 years. There are only about 11% (3 respondents) having less than 1 year
experience in class diagrams. Even though they have less experience in class
diagrams, they have knowledge about UML based on the results in Question
A3.

> 10 years 7 to 9 years 5 to 6 years

% 50 11

0

10

20

30

40

50

60

p
e
r
c
en

t

Respondents Experience with Class Diagram

5 to 6 years 3 to 4 years 1 to 2 years < 1 year

14 7 7 11

Respondents Experience with Class Diagram

Figure 16: Respondents Experience with Class Diagrams

4.2.1.3 Question A3: Where did you learn about UML?

This question asks about where the respondent learned about UML. We
expected to discover where the respondent learned about UML and also
whether all the respondents know about UML or not. In this question, the
respondents were allowed to choose more than one answer. The choices
were the following: Did not learn UML, From Colleagues/Industrial Prac-
tice, Professional Training, Learn by Myself, and HBO/University. The
results show that 47% of the respondents had learned about UML in HBO
or University and 25% have taken professional training to learn UML. This
indicates that 72% of the respondents had formal training of UML. Mean-
while, 38% of the respondents learned UML by themselves and 19% learned
from their colleague(s) or from industrial practice. There were no partici-
pants that answered ‘No’. This shows that all participants of this survey
have knowledge of UML. Figure 17 shows the complete results of this ques-
tion.

46

0

HBO/University

Learn by Myself

Professional Training

From Colleagues / Industrial practice

Did not learn UML

Where did the Respondent Learn about UML

10 20 30 40 50

percent

Where did the Respondent Learn about UML

Figure 17: Where did the Respondent Learn about UML

4.2.1.4 Question A4: How do you rate your own skill in creating,
modifying and understanding a class diagram?

This question was aimed to gain knowledge about the skills of the respon-
dents in creating, modifying, and understanding class diagrams. Based on
Figure 18, most of the respondents (88%) have average or good skills on
creating, modifying, and understanding class diagrams and only 3% have
excellent skills related to class diagrams. This indicates that over 90% of
the respondents have average skills or above related to class diagrams. Mean-
while, 2 respondents (6%) have low skills and only 1 respondent (3%) has
poor skills related to class diagrams. The 2 respondents that have low skills
are software architects (with no other role) and the only one respondent that
has poor skills is a programmer (with no other role).

Poor Low

Series1 3 6

0

10

20

30

40

50

p
er

ce
n

t

Respondent's Skill on Creating, Modifying and

Understanding Class Diagram

Average Good Exellent

44 44 3

Respondent's Skill on Creating, Modifying and

Understanding Class Diagram

Figure 18: Respondent’s skill on Class Diagram

47

4.2.1.5 Question A5: Indicate whether you (dis)like to look at
source code for understanding a system? + Question A6:
Indicate whether you (dis)like to look at UML models for
understanding a system?

0

5

10

15

20

Strongly Dislike Dislike Neutral Like Really Like

Respondents Like or Dislike Source Code vs. UML for

Understanding a System

Source Code UML

Figure 19: Respondents Like or Dislike Source Code vs UML

Question A5 and A6 was aimed to discover the respondent’s opinion about
the usage of UML and Source code as an artefact to understand a system.
From the nature of the respondents whereas most of the respondents of this
survey are programmers, we expected that the respondents would choose
source code over UML. To present this result, we combined these two ques-
tions for a comparison between the respondent’s like or dislike for UML and
the respondent’s like or dislike for source code. The results shown in Figure
19 indicates that in general there is no significant difference between Like
or Dislike of Source code versus UML design. We may say with this overall
result that even experienced programmers found that UML is helpful for
understanding a system. We further investigated this result by separating
this according to the role of the respondents, specifically programmer, soft-
ware architect, and software designer.

0

5

10

15

Strong Dislike Dislike Neutral Like Really Like

Programmers Like or Dislike UML for Understanding a System

UML Source Code

Figure 20: Programmers Like or Dislike Source Code vs UML

48

Figure 20 shows the results of question A5 and A6 for respondents with the
role of a programmer. The results show that the programmers are a bit more
positive about source code than UML but the difference is not significant.
These results seem almost the same with the overall results shown in Figure
19. These results were expected because an experienced programmer could
understand source code in a short time limit.

0

5

10

15

Strongly

Dislike

Dislike Neutral Like Really Like

Software Architect Like or Dislike UML for Understanding a

System

UML Source Code

Figure 21: Software Architects Like or Dislike Source Code vs UML

0

5

10

Strongly Dislike Dislike Neutral Like Really Like

Software Designer Like or Dislike UML for Understanding a

System

UML Source Code

Figure 22: Software Designers Like or Dislike Source Code vs UML

It was quite a surprise to see that a lot of software architects like using source
code more than UML to understand a system (Figure 21). The same goes
for the software designers, they like using source code more than UML to
understand a system (Figure 22). However, these results may not be purely
accurate because as we can see in question A1 (role of respondents), most
of the designers and architects in this survey are involved in development or
are also a programmer.

49

4.2.1.6 Others:

Combination of Question A2 & A3

less than 1

year

1 to 2

years
3 to 4 years 5 to 6 years 7 to 9 years

more than

10 years

From Colleagues / Industrial

practice
1 0 0 0 1 3

Learn by Myself 1 1 0 0 0 9

Professional Training 0 1 0 2 1 3

HBO/University 1 0 2 2 2 5

No 0 0 0 0 0 0

0

5

10

15

20

25

N
o
 o

f
R

e
sp

o
n

d
e
n

ts

Years of using Class Diagrams and Education of UML

Figure 23: Years of using Class Diagrams and Education of UML

Figure 23 combines the answers given on question A2 with the answers given
on question A3. This figure shows that 45% of the respondents with 10 years
of experience and above learned UML by themselves. Also, most of the re-
spondents that answered “Learned by myself” came from this group. The
respondents that answered HBO/University are more spread out over the
years of experience and this option has been answered the most if we look
at question A3. Figure 23 also proves that all respondents in this survey
have minimum knowledge of UML even though there are respondents that
have answered that they have experience in UML for less than one year.

Combination of Question A1 & A4
The combination of results in question A1 and A4 is shown in Figure 24.
Overall, if we consider that the minimum skill on class diagrams is Ave-
rage; over 90% of the respondents have the skill of creating, modifying, and
understanding class diagrams. The only respondent that has poor skills
in class diagrams is a programmer (no other role) and both respondents
that have low skills are software architects (with no other role). This result
surprisingly shows that there were software architects that rated themselves
poor in creating, modifying, and understanding class diagrams. However,
based on our informal interview with these respondents, a software architect
mentioned that they only use boxes and lines for their architectual work.
This may be the reason why there are software architects that have a poor
skill in class diagrams.

50

Poor Low Average Good Excellent

Tester 0 0 1 0 0

Programmer 1 0 12 12 1

Designer 0 0 3 5 1

Analyst 0 0 2 1 1

Architect 0 2 6 7 1

Project Manager 0 0 0 3 0

0

5

10

15

20

25

30

N
o
 o

f
R

es
p

o
n

d
en

t

Class Diagram Skill per Role

Figure 24: Class Diagram Skill per Role

4.2.2 Part B: Practical Problems

In Part B, the respondents have been provided with three class diagrams
from different systems and domains. For all class diagrams they were asked
to mark or give any suggestions about what can be excluded in the class
diagram without affecting the understanding of the system. The results of
this part were analyzed by combining the answers based on the following
categories: Attribute, Operation, Class, Relationship, Inheritance, Package,
and Others.

4.2.2.1 Category 1: Attribute

Figure 25: Attribute Category

51

In the Attribute category, we divided this category into two subcategories:
Properties and Type of Attribute. We divided the Properties subcategory in
three elements: Protected, Public and Private. This basically means that if
a respondent marked the private variables in a class diagram or mentioned
about excluding the private attribute, we considered that the respondent
chose not to include the Private attribute element in a class diagram. The
same goes for the other elements in this subcategory. We also divided the
Type of Attribute subcategory into three elements: No primitive type, GUI
related, and Constant. No primitive type is an attribute that does not have
any primitive type. GUI related attributes are attributes that are related
to Graphical User Interface (GUI) libraries that are provided by the devel-
opment tools such as Textbox, Label and Button. Constant variables are
variables that cannot be changed. Figure 25 illustrates subcategories and
elements in the Attribute category.

GUI Related Private Constant Protected
Instance

Variable

% 25 19 19 13 6

0

5

10

15

20

25

30

P
er

ce
n

ta
g

e

Information of Attribute that Should be Left out

Figure 26: Information of Attribute that Should be Left out

Figure 26 shows the results of the Attribute category. Out of 6 elements
from all subcategories, only five elements are shown in Figure 26 because
there were no respondents that chose to exclude Public attributes in a class
diagram. 25% of the respondents chose not to include the GUI related
attributes. This information seems not important and based on our informal
interview the respondents were more concerned on classes that are created
by the programmer or software designer. 19% of the respondents like to
leave out Private and Constant types of attributes. It follows with 13%
of respondents that proposes to leave out Protected attributes. 3 out of
32 respondents (9%) think that all attributes should be left out from class
diagrams. These respondents commented they only need class names and
relationships in a class diagram.

52

4.2.2.2 Category 2 : Operation

Figure 27: Operation Category

The Operation category is divided into two subcategories namely Properties
and Type (Figure 27). The Properties subcategory consists of four elements
and these are Private, Protected, Public and Return Type. The Type sub-
category also consists of four elements and these are Event Handler, General
Function, Getters/Setters and Constructor. The element Event Handler is
an operation that handles events such as “addItemButton Clicked” and “on-
Button1 Clicked”. General Function is a function that is commonly used
such as “toString()”. Getters/Setters are operations that are used to access
and update a variable in a class. In this study, we consider an operation as
a getter or setter if the function uses the word ‘get’ or ‘set’ in the beginning
of the name of a function e.g. getName, setCounter. For the Constructor e-
lement, we divided this element into 2 groups and these are With Parameter
and Without Parameter because the respondents seem to differentiate this
information.

0

1

2

Private Protected Public Return Type

Operation Properties that Should be

Excluded in a Class Diagram

No of Response

Figure 28: Operation Properties

53

Figure 28 shows the Operation Properties that have been chosen by the
respondents to be excluded in a class diagram. It shows that there is only
one respondent for every operation property that have chosen these elements
that should not be included in a class diagram. The results show that
the majority of the respondents have chosen that all elements in Operation
Properties should be included in a class diagram.

Constructor

Without

Parameter

Getters/Setters Constructor
General

Function
Event Handler

% 25 19 16 9 6

0

5

10

15

20

25

30

P
er

c
en

ta
g

e

Types of Operation that Should be Excluded in a Class Diagram

Figure 29: Type of Operation that Should be excluded in a Class Diagram

The results of the Type of Operation category are presented in Figure 29.
The results show that 25% of the respondents chose to exclude Construc-
tors Without Parameters. This type of operation is not important because
it does not indicate any important information because the default initial-
ization of an object is without parameters. Nevertheless, 16% of the respon-
dents suggested that all Constructors should be left out in a class diagram.
For Getters and Setters, 19% of the respondents suggested that these o-
perations should be excluded in a class diagram. A reason for this could be
that it is a common operation that is created for accessing and modifying
variables in a class diagram. 9% of the respondents mentioned that General
Functions should not be included in a class diagram because these functions
are commonly used and well-known to programmers. Event Handlers were
chosen to be excluded from a class diagram by 6% of the respondents. Most
of the event handlers in the class diagrams in this survey are derived from
GUI libraries. Apart of the result presented in Figure 29, 15% of the respon-
dents indicated that all operations should be excluded from a class diagram.
These respondents mentioned that only class names and relationships are
needed in a class diagram.

4.2.2.3 Category 3: Class

As shown in Figure 30, the Class category is divided into two subcategories
which are Type of Class and Role. The Type of Class subcategory consists
of Interface, Enumeration, and Abstract elements while the Role subcate-
gory consists of five elements which are Console, Listener, Input/Support

54

Figure 30: Class Category

Classes, Log, and GUI Related. The Role subcategory means that classes
have specific role in a system. To exclude a class in a class diagram, we
focus on the classes that perform a supporting role in a system such as GUI
Related classes, Log classes and Console classes. For instance, class Log in
the ATM system is categorized in the Role subcategory.

Enumeration

% 38

0

10

20

30

40

p
er

ce
n

ta
g
e

Type of Class that Should not be Included in a Class Diagram

Interface abstract

19 13

Type of Class that Should not be Included in a Class Diagram

Figure 31: Type of Class that Should not be Included in a Class Diagram

For the subcategory Type of Class (Figure 31), 38% of the respondents chose
not to include Enumeration classes. This is followed by Interface classes
with 19% and 13% suggested that Abstract classes should not be included
in simplified class diagrams. Enumeration classes are classes whose values
are enumerated in the model as enumeration literals, which are not needed
to understand a system.

Figure 32 shows the Role subcategory results. It shows that half of the
respondents suggested that GUI related classes and classes for logging tasks

55

GUI Related Log Input Listener Console

% 50 50 22 6 3

0

10

20

30

40

50

60

P
er

ce
n

ta
g

e
Class Role that Should be Excluded in a Class Diagram

Figure 32: Class Role that Should be Excluded in a Class Diagram

should be left out in order to simplify a class diagram. Most GUI related
classes were presented in the Library system and the Log class was presented
in the ATM system. The respondents suggested eliminating these classes
because without these classes you can still understand the system. The
Input function is a class that is used to take the input from the interface or
device. In the case of the ATM system, the “Money” and “Card” classes are
an example of input function classes. 22% of the respondents said that this
type of class should not to be included in a class diagram. The “Console”
and “Listener” functions appear in the Pacman Game in Part B. These
classes can be considered as classes that interact with the user input and
other system input. There are 6% of the respondents that chose to exclude
the listener function from the class diagram while 3% of the respondents
chose to exclude the console function.

4.2.2.4 Category 4: Relationship

Figure 33: Relationship Category

The Relationship category is divided into two subcategories which are Role
and Coupling <= 1. The Role subcategory means the role of the relationship

56

that is labeled on this relationship. Coupling <= 1 means classes that have
relationships equal to 1 or no relationship to other classes at all. Figure 33
shows the information about the subcategories for the Relationship category.

Classes with Coupling

<= 1
Role

% 31 6

0

20

40

P
er

ce
n

ta
g

e

Information about Relationship that Should

be Left out

Figure 34: Information about Relationship that Should be Left out

Almost all the respondents that participated in this survey agreed that the
Relationship element is important in a class diagram. However, there is
some information related to the Relationship element that should not be
included in a class diagram which are Classes with coupling less or equal to
1 and the Role of a relationship. 31% of the respondents intend to exclude
classes with Coupling <= 1 because it seems that classes that only have
coupling <= 1 are not important and more seen as a helper class. 6% of
the respondents chose to remove the Role of relationship. The results are
shown in Figure 34.

4.2.2.5 Category 5: Inheritance

Figure 35: Inheritance Category

There is only one subcategory in the Inheritance category which is Inherited
Operations. The Inherited Operations (see Table 14) are operations that
are inherited from the parent class. This seems to be unnecessary to be
presented in a class diagram. Figure 35 illustrates this subcategory of the
Inheritance category.

57

Inheritance No of Respondents

Inherited Operations 3

Table 14: Results of the Inheritance Category

4.2.2.6 Category 6: Package

Package

Separation of

Class Diagram

Figure 36: Package Category

In the Package category, there is only one subcategory which is Separation
of Class Diagram. Figure 36 shows the structure of the Package category.
This category was introduced because there were several respondents that
separated the class diagram in such way that there were two class diagrams
instead of one. Table 15 shows the results of the Package category.

Package No of Respondents

Separation of Class Diagram 4

Table 15: Results of the Package Category

The amounts of classes in the three class diagrams are ranging from 15 to 22.
Specifically in the Library System class diagram, there were 4 respondents
that drew several lines to separate the GUI related classes from the classes
that were created by the software developer. They suggested that the class
diagram should be separated into two different diagrams. This basically
means that they wanted to keep the GUI related classes and classes created
for the system separated. There was one respondent that mentioned that the
class diagram is too big and also there was one respondent that suggested
that the class diagram should only consist of 5 to 7 classes in a class diagram.
In Psychology there is a theory that humans can only focus on 7 ± 2 objects
at the same time otherwise there are too many objects to focus on.

58

Figure 37: Others Category

4.2.2.7 Category 7: Others

Figure 37 shows several class names as a subcategory related to the “Others”
category because we did not know in which other element they would fit in.
PacShell, MazeIterator, Ghost, and GameEvent are in the Pacman class di-
agram. EnvelopeAcceptor and OperatorPanel are in the ATM System class
diagram while the ObjId class is in the Library System class diagram.

PacShell
GameEve

nt

MazeIter

ator
ObjId

Envelope

Acceptor
Ghost

Operator

Panel

% 47 16 16 9 6 6 3

0

10

20

30

40

50

p
er

ce
n

ta
g
e

Others

Figure 38: Result of the Others Category

Figure 38 shows the overall results of this category. In this figure there are
46% of the respondents that chose to exclude the PacShell class from the
Pacman Game. The PacShell class consists of the main function and this
type of class is perhaps common in the programming language. 15% of the
respondents excluded GameEvent and MazeIterator classes in the Pacman
Game class diagram. The GameEvent class is excluded because the class
looks like a helper class and it is only related to one class (i.e. coupling =
1). The MazeIterator class also looks like a helper class for another class

59

(i.e helper class for the class Maze in the Pacman Game).

9% of the respondents excluded the ObjId class. A possible reason for this
is that this class is a helper class that gives input to another class. Although
this class has a lot of connections with other classes, it seems this helper
class is not required to be shown in a class diagram. 6% of the respondents
chose to exclude EnvelopeAcceptor and Ghost. The EnvelopeAcceptor class
is only a helper class that is used to transfer data to another class. This
could be the reason that the respondents decided to exclude this class. For
the Ghost class, this may be a misinterpretation of the name of the class.
There is a possibility that the respondents did not understand the role of
the ghost in Pacman and they perhaps think that the Ghost class is a helper
class or a dummy class. In fact, the Ghost class is an actor in the Pacman
Game. 3% of the respondents chose to exclude the OperatorPanel class be-
cause the name is likely to present as a GUI related class.

Hence, from our analysis we may say that most of the classes that have
been named in this category are either helper classes or GUI related classes.
The respondents find such classes not important. This statement also be-
comes more valid if you look at Figure 40 in Part C (question C2A), which
is described later.

4.2.3 Part C: Class Diagram Indicators for Class Inclusion/Exclusion

Part C consists of six open-ended questions. The respondents were free
to give any answer related to the questions. The answers given by the
respondents were either precise or very broad. We initially observed the
answers from the respondents and created several keywords to categorize
these answers.

4.2.3.1 Question C1: In software documentation, particularly in
class diagrams, what type of information do you look for
to understand a software system?

In this question we were expecting to get the type of information that the
respondents look for to understand a system. Based on an early observation
of the given answers, we created several keywords and categorize those key-
words to several categories. The keywords and categories are presented in
Table 16. A detailed explanation of some of these keywords is the following:

1. Relationship/Connectivity/Interaction: The relationship between
classes in a class diagram, which could be an association, inheritance,
direction of the relation, dependency, and multiplicity.

60

No Category Keywords No Category Keywords

1

Relationship /

Connectivity /

Interaction

Association

3

Class

structure /

properties

Abstraction

Inheritance Method/Operation

Direction Attribute

Dependency Public Interface

Multiplicity Class Entities

2

Class

Semantic

Classname

(meaningful) Size Large/Small

Class Behaviour Public Properties

Business Entities Class Hierarchy

Main

Classes/Object/Purp

ose Object related

Class functionality

and responsibility 4

High level

Concept

Domain Design Pattern

properties name and

methods name Overview

Reasoning
5

Others

Data

"starting" point

All Generic

Classes

Table 16: Keywords on Types of Information to Understand a System

2. Semantic: The semantic role of a class. This could be:

(a) The Classname that should be meaningful to understand the
class.

(b) Class behavior is about the behavior of the class: what does
the class do?

(c) Business entities and Domain are about the classes that have
some kind of business value or are meaningful for the domain of
a class diagram, respectively.

(d) Reasoning is about what kind of reason this class is in the class
diagram.

(e) The rest of the keywords in Semantic Role are straightforward.

61

3. Class structure: Types of information about the structural design
of a class.

(a) It could consist of Methods and Attributes.

(b) It could also be an Abstraction or a Public Interface.

(c) Size large/small is about the size of a class.

(d) The rest of the keywords in Class Structure are straightforward.

4. High Level: In other words: High level of detail. This basically
means that the class diagram must be as detailed as possible in which
there are a Concept of the class diagram and an Overview of it.
The class diagram could also contain Design Patterns.

5. Others: This group contains keywords we could not relate to the
other group but that the respondents did say in this question.

(a) Some respondents said that a class diagram should show what
kind of Data a system needs.

(b) Some respondents said that they only need Generic Classes to
understand a system.

Class

Relationship

Class Diagram

Semantic

Class Structure

and Properties
High level Others

% 69 50 34 31 6

0
10
20
30
40
50
60
70
80

P
er

ce
n

ta
g
e

Types of Information the Respondents Look for to Understand

a Software System

Figure 39: Type of Information Look for in a Class Diagram

The results of this question are shown in Figure 39. The results obviously
show that class relationship is the most important information in a class dia-
gram that the respondent searches for understanding a class diagram. 68%
of the respondents mentioned this. 50% of the respondents search for class
semantics such as meaningful class names, class functionality and behavior,
class properties and so on. It is possible that the respondents were trying to
understand the structure of the system by searching for the classes that are
related to the software domain. This means that class diagrams that can

62

present semantics of classes (such as a good class name and class proper-
ties) would provide better software design understanding. About 34% of the
respondents were looking at class properties such as attributes, operations,
class interfaces and so on. This follows with 31% of the respondents that
were looking at the class diagram high level abstraction for example design
concepts, design patterns and class overviews.

From these results, it is obviously shown that the relationships between
classes are important in a class diagram. It is the main information in a
class diagram that most of the software developers look into. The semantics
of a class such as meaningful classes, operations and attributes also play a
major role to assist the software developer in understanding a system.

4.2.3.2 Question C2: In a class diagram, what type of informa-
tion do you think can be left out without affecting your
understanding of a system?

In this question we asked the respondents what type of information can be
left out without affecting their understanding of a system. To make the an-
swer a bit more specific we divided the question into four sections in which
all sections must be answered. These four sections are: Classes, Operations,
Relationships, and Other(s). In the first three sections we gave the partic-
ipants some example answers that they could give as answers. In the last
section they could add some other information that is not related to the first
three sections.

A: Classes (for example: Helper class, Interface class, Library
class, . . .)

Helper Class
Library

Class
Interfaces Logging

Persistency

Classes

Utility

Classes

Not Related

to Domain
Technical

Without

relationship

% 44 25 22 9 3 3 3 3 3

0

10

20

30

40

50

p
er

ce
n

ta
g

e

Information of Classes that Should be Left out

Figure 40: Information of Classes that should be left out

As shown in Figure 40, almost half of the respondents (44%) suggested that
helper classes should not be included in a class diagram. However, it is not
easy to detect a helper class in a class diagram. Detection based on the
class name, operation, and attribute of the class may be used but it is not

63

accurate since the helper class does not have a standard characteristic and
it depends on the system domain and the software developer who exemplify
it. This result also validates our result in the “Others” category in part B
because most of those classes are helper classes as well.

A quarter of the respondents (25%) did not want library classes to appear
in a class diagram. These library classes could make a class diagram more
complex and hard to understand. The classes that should be included in
a class diagram are only the ones that are created by the designer or pro-
grammer. 22% of the respondents suggested that the interface class type
should not to be included in the class diagram. A reason for this could be
that interface classes are GUI related and are not important for understan-
ding a system. 9% of the respondents indicated that the log class should be
excluded. The log class seems not important since it is common to create
a log for a transaction or activity in a system. Also, log classes are nor-
mally linked or related to other classes that could make the class diagram
more complex. Infrastructure, technical, framework, classes not related to
domain, and classes without relationship were said to be left out from a class
diagram by 3% of the total respondents.

B: Operations (for example: private, protected, public, construc-
tor, . . .)

Private
Constructor

/ Destructor
Protected

Getters /

% 66 56 41

0

10

20

30

40

50

60

70

P
er

ce
n

ta
g

e

Information of Operations that Should be Left out

Getters /

setters

Constructor

without

parameter

Supporting

/ default

function

Public
Overload

function

GUI event

handler

16 9 9 3 3 3

Information of Operations that Should be Left out

GUI event

Figure 41: Information of Operations that should be left out

Figure 41 shows that 65% of the respondents chose to exclude private ope-
rations in a class diagram. Constructors and destructors are also types of
operations that are not needed in a class diagram (56% of the respondents)
in order to understand a system while only 9% of the respondents say that
they do not need constructors without parameters. 40% of the respondents
mentioned that protected operations should be left out from a class diagram.
A reason for this could be that this type of operation can be assumed as a

64

private operation but appears public to some classes only. It was quite a
surprise that not many respondents suggested to remove mutator methods
(getters/setters) from the class diagram since these operations can be inte-
grated in other operations that a system actually needs. Supporting/default
functions such as “toString” should be excluded from a class diagram men-
tioned by 9% of the respondents. 3% of the respondents suggested that
public operations, overload functions and GUI event handlers should be left
out.

It was quite surprising to discover that most of the respondents suggested
excluding private operations in a class diagram because from the results
in Part B, only 1 respondent mentioned about this. Hence, this is kind
of contradicting but a reason for this could be that the diagrams that we
have given to our respondents do not provide many private operations which
means that there is a possibility that they have not seen these private ope-
rations in these class diagrams.

C: Relationships (for example: labels, multiplicities, self-relations)

0

1

2

3

4

5

6

7

Multiplicities Labels Self Relations

Information of Relationship that Should be Left

out

Self Relations References

Information of Relationship that Should be Left

%

Figure 42: Information of Relationship that should be left out

Multiplicity is what most respondents mentioned that is not needed in a
class diagram (see Figure 42). However, only 6% of the respondent men-
tioned this, which is a quite low percentage. 3% of the respondents do not
need any labels (or roles of the relationships), self relations and references
in a class diagram.

D: Other(s)
As shown in Figure 43, about 9% of the respondents said that private fields
should not be included in a class diagram. Only 3% of the respondents
suggested technical, duplicates and UI information not to be included in a

65

0

2

4

6

8

10

Private Fields Technical Duplicates

Other Information in Class Diagram that

Should be Left out

User

Interface

Other Information in Class Diagram that

Should be Left out

%

Figure 43: Other Information in Class Diagram that should be left out

class diagram.

4.2.3.3 Question C3: Do you think that a class diagram should
show the full hierarchy of inheritance? If not, which parts
could be left out? (for example: parent, child, interme-
diate parent/child, leaf, . . .)

This question aimed to discover whether inheritance in a class diagram
should be shown in full hierarchy or not and if not, which part of the inher-
itance information should be left out.

Relevant/Key/

Important

Full

Hierarchy

Parent/abstrac

t Classes

% 25 25 9

0

5

10

15

20

25

30

p
er

ce
n

ta
g

e

Inheritance Structure that is Required to be Presented

Parent/abstrac

t Classes
only 1 level

Leave out

Library

Classes

Concept

Related
<= 2 level

9 9 3 3

Inheritance Structure that is Required to be Presented

Figure 44: Inheritance structure that is required to be presented

Figure 44 shows that 25% of the respondents suggested that only rele-
vant/key/important classes should be presented in a class diagram regardless
if it is in an inheritance hierarchy while another quarter of the respondents
want the full hierarchy of the inheritance to be shown in a class diagram
(answered ‘Yes’). 9% of the respondents only want the parent class to ap-
pear in the class diagram and also 9% of the respondents suggested that the

66

hierarchy should only consist of 1 level of children or parents. 3% of the re-
spondents mentioned that they only need inheritance that is concept related
and another 3% mentioned that a maximum hierarchy level of 2 should be
enough.

This result shows that the respondents needs full hierarchy, but if the classes
can be identified as key/important/relevant classes, the inheritance can be
simplified by only showing these key/important/relevant classes.

4.2.3.4 Question C4: What criteria do you think indicate that a
class (in a class diagram) is important for understanding
a system?

In this question we try to discover what criteria indicate that a class in a
class diagram is important for understanding a system.

Relationships
Meaningful

Classnames

Business /

Domain Value

Position of

Class

Functionality /

Responsibility
Size of Class

Simplified

Classes

Highlighted

Information

% 38 16 16 16 9 9 6 3

0

10

20

30

40

P
er

ce
n

ta
g

e

Important Criteria in a Class Diagram for Understanding a System

Figure 45: Important criteria in a Class Diagram for Understanding a Sys-
tem

As the results in Figure 45 show, 38% of respondents think that relationship
is the most important criterion in a class diagram which also validates our
results in question C1. 16% of the respondents think that meaningful class
names, business or domain value, and the position of class are the important
criteria in a class diagram. This result shows that semantics and the meaning
of a class play a role in understanding a class diagram. Some respondents
preferred to search for the position of the class and most of them mentioned
that the middle of a class diagram should contain the important classes. 9%
of the respondents mentioned that the size of a class determines if a class
is important or not which is structural related. Another 9% said that the
functionality/responsibility of a class is important which is again semantic
related. Simplified classes and highlighted information were used as answers
by 6% and 3% of the respondents, respectively. These results are aligned
with the results for question C1 where the important criteria in a class
diagram are relationship and semantic information.

67

4.2.3.5 Question C5: If you try to understand a class diagram,
which relationships do you look at first? (Example: de-
pendencies, inheritance, associations, etc)

This question aims to find out the type of relationship the respondents look
at first to understand a class diagram. Three types of relationships were
provided as example answers. The answers are quite biased because most
of the answers only mentioned about these types of relationships. None of
the respondents answered other types of relationship such as composition,
aggregation, and realization.

Association Dependency

% 41 19

0

20

40

60

p
e
rc

e
n

ta
g

e

The Type of Relationship in the Class

Diagram that the Respondents Look at

First

Inheritance

9

The Type of Relationship in the Class

Diagram that the Respondents Look at

Figure 46: The Type of Relationship in a Class Diagram that the Respon-
dents Look at First

Figure 46 shows the results of this question. It shows that 41% of the re-
spondents liked to search for association relationships first while 19% search
for dependency relationships. Only 9% of the respondents search for in-
heritance relationships. Several respondents answered with more than one
relationship and some respondents ordered these three relationships in an
order of importance. We only took the first answer given so if someone
answered “association and dependency” for example then we only took the
first relationship which is association in this example. This result obviously
shows that the association relationship is the most important relationship
in a class diagram. The association relationship is important to show the
relationship between classes.

4.2.3.6 Question C6: If there is a tool for simplifying class di-
agrams (e.g. obtained from reverse engineering), what
features/functions would you expect from such a tool?

In this question, we try to discover what kind of features the respondents
are looking for if there is a tool which could simplify class diagrams.

68

Hide/Unh

ide

Informati
on

Drill

up/down

Show

more

Informati
on

Navigatio

n/Change

Layout

Give

Advice

Generate

Source

Code

Generate

from

different
XMI files

Classify

Classes in

Importanc
e

UI

Classifier

Visual

indication

of data.

Generate

from

Source
Code

Change

Log

% 31 22 16 13 6 3 3 3 3 3 3 3

0

5

10

15

20

25

30

35

P
er

ce
n

ta
g
e

The Features which a Tool Should have for Simplifying UML Class Diagrams

Figure 47: The Features that a Tool Should have for Simplifying UML Class
Diagrams

Figure 47 shows the results of this question. The results show that the re-
spondents mainly want a tool that can hide/unhide information (31% of the
respondents). The other feature that relates to this is the drill up/down
feature because when you are drilling up, the amount of information of a
class diagram will be less and vice versa. 22% of the respondents want such
a feature. These two features are different from each other because in the
first feature you can manually mark the information that you do not want
and the second feature automatically lessens the information when you are
zooming out.

16% of the respondents want to see more information about a class by hover-
ing over a class in a class diagram for example. This could show you different
kinds of information, for example the amount of relationships this class has.
Another feature that many respondents want (13% of the respondents) is
the changeable layout of the class diagram in which the navigation can be
improved. An option could be to resize the layout of the class diagram. 6%
of the respondents want to have a feature in the tool that can give advice
that could improve the class diagram. The other features that are shown in
this figure are being desired by only 1 respondent (3%) each.

Thus, these results show that the respondents want a tool in which the
user of this tool can manipulate the level of detail of a class diagram by
hiding/showing information or zooming out/in of the class diagram.

69

4.3 Discussion

In this section we discuss the results and findings presented in the previ-
ous section. The discussion is divided into five subsections: Respondents’
Background, Class Properties, Class Role and Semantics, Class Diagram
Simplification Tool Features, and Threat of Validity.

4.3.1 Respondents’ Background

In Part A, we have accessed the information about the respondents’ skills
and experiences in UML, particularly in class diagrams. Most of the roles of
the respondents were programmer and half of them are software architects.
Although there were respondents that are project managers, they were also
a programmer. This shows that the respondents of this survey were directly
involved with the software development process. None of the respondents
in this survey chose the answer ‘No’ for question A3 which means all of the
respondents have knowledge in UML. 75% of the respondents have more
than 5 years experience in class diagrams where 50% of the respondents
have experience over more than 10 years. In terms of learning UML, most
of the respondents that have more than 10 years experience learn UML by
themselves.

In terms of the respondent’s skill in class diagrams, we found that 88%
of the respondents have at least average skill in creating, modifying and
understanding class diagrams. Then, we tried to discover the artefacts that
the respondents prefer for understanding a system. The artefacts are source
code and UML (class diagrams). The results show that there is no sig-
nificant difference between the usage of source code and UML in order to
understand a system. However, it was quite a surprise when we found that
most of the software architects and software designers prefer source code
rather than UML to understand a system. A reason for this result could
be that the software architects and software designers have a good knowl-
edge in programming or they have other techniques rather than UML for
understanding a system. From our informal discussion, some of the respon-
dents mentioned about sequence diagrams that are more helpful to show the
behavior of the system and some of them use boxes and lines to show the
component interaction of the system. Further research why these respon-
dents do not prefer to use class diagrams should be done in order to get
what type of information that is lacking in UML class diagrams.

4.3.2 Class Properties

Based on the results in Part B and Part C, it is not a surprise that we
discovered that the most important element in a class diagram is class re-
lationship. It is well-known that the relationship in a class diagram is an

70

important element to show the structure of classes in a class diagram. With-
out relationships, a class diagram would only be a list of classes without
showing which class is involved with the other. In terms of inheritance, a
quarter of the respondents needs full hierarchy of the inheritance tree to
be presented but another quarter of the respondents mentioned only classes
that are relevant or important should be presented. Most of the respondents
in this survey looked at association relationships first. This shows that the
association relationship is important in class diagrams. However, this result
is not really accurate since the respondents only gave the answer within the
examples given in the questions.

In this survey, we found that most of the respondents suggested leaving
out or separating the GUI related information from the class diagrams. In
Part B we provided three class diagrams and they were required to eliminate
information that is not important without affecting their understanding of
the system. The results showed that most of the respondents suggested
that the GUI related information should be excluded in a class diagram.
From our observation, the respondents focuses more on the class diagrams’
information (e.g. Attributes, Operations, Classes) that is created by the
programmer or software designer. The GUI related information exists in
source code (also appeared in reverse engineered design) when a developer
used GUI libraries provided by Rapid Application Development (RAD) tools
such as JBuilder, Delphi and Visual Basic. The Library system’s class dia-
gram shows a lot of GUI Information and many respondents suggested this
information should be left out. Also, there were several respondents that
drew a border between the software developer created classes and classes
that were derived from the GUI library.

In terms of class operations, most of the respondents suggested to leave
out the private and protected type of operations. These types of operations
are only used for internal classes and member classes for protected ope-
rations. It seems not to be important because they could not be accessed
publicly from other classes. We also discovered that constructor/destructor
operations should not appear in simplified class diagrams. Particularly in
Part B, we found that most of the respondents suggested that constructors
without parameters should not be presented in a class diagram. Mostly,
the constructor is a default function provided by development tools when a
class is created. It is not important to have default constructors (without
parameter) information in a class diagram but the constructors that have
parameters are crucial to be presented in a class diagram because it is used
for object initialization purposes.

71

4.3.3 Class Role and Semantics

One of our useful discoveries in this study is the importance of the class
role and semantics in a class diagram. Class roles based on class name are
important because from our observation the respondents seemed to try to
understand a system based on class name and role. Not only class names
can present a role of a class, the operation name and attribute name are also
crucial. This showed when we asked about the important criteria in a class
diagram for understanding a system, most of the respondents mentioned
‘meaningful’ class names, business and domain value related and also func-
tionality or responsibility. From these meaningful class names, they tried to
understand the structure and also interact between classes in a system. By
using this information, they can get an overall idea on how a system works
and get some hints of the functionalities of classes in a class diagram.

In this survey we also discovered that classes that should be left out in a
class diagram are helper classes, library classes and interfaces classes. Most
of the respondents suggested leaving out helper classes. Nevertheless, it is
not easy to automatically identify helper classes based on the class name or
other information because it only can be identified manually by the software
developer and the results are different based on the software developer’s ex-
perience. Helper classes could possibly be detected if the criteria of the
helper classes would be available.

4.3.4 Class Diagram Simplification Tool Features

From this survey, we found out that most of the respondents need tools for
simplifying a class diagram that can hide/unhide information and drill up
and down a class diagram. These features are needed most because they are
able to zoom in and zoom out in a class diagram. With this feature they
can use the tools to understand the system in general by leaving out the
details and they can get more information when they want to modify the
system. From our informal discussion with the respondents, simplification
of class diagram is needed when they want to understand the overall system
design but detailed information in class diagrams is needed in modification
tasks. Hence, both simplified and detailed designs are needed.

4.3.5 Threat of Validity

The statement of the questionnaire in the introduction “The task focuses
on software design comprehension after the software implementation phase
or during software maintenance phase” is a too broad area. The respondent
may get confused that the class diagram is constructed after the maintenance
(for documentation purpose) or the class diagram is constructed before the
maintenance phase. Also, in Part A, the respondents may get confused

72

whether to choose software architect or software designer because both roles
were used in different terms but with the same meaning.

4.4 Conclusion

This study presented a survey on how to simplify a class diagram without
affecting their understanding of a system. In particular, the questions in this
survey were about what information should be left out from a class diagram
and also what kind of important information should remain. 32 software
developers from the Netherlands participated in this survey.

From the results, it is not a surprise that the most important element in
a class diagram is the relationship. Class relationship is important to show
the structure of a system. The type of relationship that the developers look
at first is the association and dependency after. In this survey we discovered
that the class diagram’s role and semantics are important because most of
the respondents search for meaningful class names and class roles in order
to get high-level understanding on how a system works. This means, mea-
ningful class names, operation names and attribute names are important to
show the functionality or responsibility of a system.

To simplify a class diagram, most of the respondents chose to exclude GUI
related information and also library classes. This shows that most of the
software developers need the information about the classes that are created
or designed, but not the classes that are generated or commonly used (e.g.
Library class). Most of the respondents also mentioned that helper classes
should be excluded to simplify a diagram however it is not easy to automa-
tically identify a helper class. Private operations, protected operations and
constructors (without parameter) are types of operations that should be left
out in order to simplify a class diagram. These types of operations seem not
to be important. Although we are aware that research on validation of our
approach needs to be done, we found several useful indicators that could be
used in the future for class diagram simplification.

5 Conclusions

In this chapter we present a summary of our findings of this study. Then, we
present several recommendations based on our analysis. Next, we describe
some future works that can be done after this study. Finally, we present our
conclusions based on the analysis of these two questionnaires.

73

5.1 Summary of Findings

In this section we present a summary of our findings and present the simi-
larities and contradictions of the given responses between the two question-
naires.

In part A, we asked the respondents in both questionnaires about their back-
ground. Some questions between these two questionnaires were, however,
different. We discovered that 88% of the respondents in the non-structural
questionnaire had rated themselves average or above for their skills in cre-
ating, modifying and understanding class diagrams while for the structural
questionnaire, 76% of the respondents rated themselves average or above.
In term of percentage, there was not much difference but for years of expe-
rience the respondents of the non-structural questionnaire had higher years
of experience than the respondents of the structural questionnaire.

In part B and C of the non-structural questionnaire, we have discovered
that relationship is the most important element to show the structure of the
classes in a class diagram. This can also be validated if we look at part C
in the structural questionnaire. Coupling was a very influential factor for
the respondents when it comes to excluding classes from a class diagram.
Most of the times, classes were excluded when the coupling was <= 2. This
means that if a class contains many relations then this class is important.
Also, the Dep Out and Dep In metrics were one of the highest scores in the
coupling category, which further validates this discovery.

In terms of inheritance in the structural questionnaire, we discovered that
if a class contains a high number of children, then this class is important.
This metric scored 20 points and was the highest in the inheritance category.
In the non-structural questionnaire, we discovered that one quarter wants
the full hierarchy and another quarter only wants the relevant classes. This
last result validates the result of the structured questionnaire since DIT and
CLD are one of the lowest scoring metrics and the respondents thus do not
need the full hierarchy.

In the non-structural questionnaire we also discovered that classes that GUI
related should be excluded since the respondents were more focused on the
information that was created by the programmer or software designer. This
discovery was also found in the online questionnaire. Most of the respon-
dents excluded classes like “AboutDialog”, “MessageBox”, and “QuitDia-
log” in the Library system, which are GUI related classes. Also interface
classes were excluded by most of the respondents in the Pacman class dia-
gram.

74

In terms of operations, we discovered that in both questionnaires the respon-
dents preferred public operations since these operations are not restricted to
one class. In the structured questionnaire, the metric that counts the num-
ber of public operations scored 25 points and was also the most important
metric based on the results. In the non-structural questionnaire, we dis-
covered that most of the respondent suggested leaving out the private and
protected operations, hence our statement that the respondents preferred
public operations. Other discoveries in the non-structural questionnaire are
that respondents also suggested leaving out the constructors, specifically
constructors without parameters. This is because the constructor is a de-
fault function provided by development tools when a class is created.

One of our useful discoveries in this study is the importance of the class
names. We have found out in the non-structural questionnaire that the re-
spondents seemed to try to understand a system based on the class names
and roles. This was shown when we asked the important criteria in a class
diagram for understanding a system. Many respondents mentioned that
there must a story around the class diagram and should show the func-
tionality and flow of the system. Most of respondents mentioned that a
class diagram needs to contain “meaningful” class names and must be do-
main related. This can be further validated by inspecting the structured
questionnaire. In question 14 of part B we discovered that the keyword
“Domain related” was one of the most important keywords in this question
that the respondents mentioned. Also, the class names were an influential
factor in part C of the structured questionnaire.

Another useful discovery is that the respondents preferred the reverse engi-
neered class diagram in the structured questionnaire. However, the source
code must correspond with its forward design in order to get a good reverse
engineered class diagram. Thus, this is the reason why the respondents pre-
ferred the reverse engineered design of Pacman over the reverse engineered
design of the Library system because the Library system might not corre-
spond to its forward design.

Another discovery in the non-structural questionnaire was that most of the
respondents suggested leaving out helper classes. Nevertheless, it is not easy
to automatically identify a class as a helper class. As for the class diagram
simplification tool features, most of the respondents wanted a feature to
manually hide/unhide information in a class diagram. Another feature many
respondents desired is to zoom in and out of the class diagram so that the
class diagram shows more or less information.

75

5.2 Recommendations

We recommend highlighting the classes in a class diagram based on our
analysis. These highlighted classes can be used to advise the software devel-
oper/maintainer as a hint on which classes should be included or excluded
in a simplified class diagram.

We also recommend that all classes in a class diagram should have a mean-
ingful name that can present the functionality or the features that is provided
by the class. This also applies with the names of the attributes and opera-
tions. By using meaningful names, the software developer can understand
better and faster because they can predict the flow of the system and the
class’ functionality.

Coupling is also a very important element in a class diagram. Hence, it is
advisable to focus on classes that have a high amount of coupling. These
classes may present that the class is important. This study is about simpli-
fying class diagrams. However, this information can be used for the software
developer on how to read a class diagram based on the important elements.

5.3 Future Works

This study was an early experiment on how to simplify a class diagram and
we see a number of ways to extend this work. In Part B of the non-structural
questionnaire, we have used the reverse engineered class diagram and for-
ward engineered class diagram in two separate groups. Also, we have used
the different Levels of Detail in different sets of groups. The comparison
of these different flavors of class diagrams in terms of what information the
respondents suggest to leave out can be the future work to extend this study.
It would be interesting to compare the results between these class diagrams
and see if there are any differences in what the software developers are ex-
cluding from these diagrams. Besides this, it would be interesting to further
research the preferences of the respondents between the forward design and
the reverse engineered design.

Also from this study, we have discovered information that should be left out
to simplify a class diagram and what metrics are important. By using this
information, a simplified class diagram could be produced. We propose to
validate the resulting class diagram by using an industrial case study and
discover the suitability of the simplified class diagram for the practical us-
age. This proposed study may discover other information that is needed in
a class diagram and other information that can be excluded. It would also
be interesting to include other metrics that we have not chosen and check
whether they are important or not.

76

From the results, we found that class role and responsibility are one of the
important indicators in a class diagram. The role and responsibility of a
class are detected by using the class names, operation names and attribute
names. We would like to suggest a study on names (class, operation and at-
tribute) that the software developers find important or meaningful in order
to understand a system. The results of this study can be used to predict
the important classes in a class diagram.

Our last suggestion is about the two questionnaires itself. We discovered
some flaws in both questionnaires and our suggestion is to make these two
questionnaires better by adding questions that we have not asked yet or
changing the current questions to better understandable questions. Also,
our amount of responses, especially in the online survey, can be considered
as low. It would be interesting to see what the results are with a larger
group of respondents.

5.4 Conclusions

In this study we have created two different questionnaires to find out what
kind of information should be left out and what metrics are important in
a class diagram in order to simplify a class diagram. One of the two ques-
tionnaires was created online and we received 25 complete responses. In
the other questionnaire, 32 software developers from The Netherlands par-
ticipated in this survey. We have discovered the important elements that
should be included in a class diagram.

We discovered that the relationship is one of the most important elements in
a class diagram, which is obvious and also not a huge surprise. This has been
an important element in both of the questionnaires. We also discovered that
class names are one of the most influential factors when trying to exclude
classes from a class diagram. This means that the class diagram’s mean-
ingful names that represent the classes’ role and semantics are important.
In this study we also discovered that public operations are preferred by the
respondents. The NumPubOps metric was the highest scoring metric and
in the other questionnaire, most of the respondents mentioned that they do
not prefer private and protected operations. Also, constructors, especially
constructors without parameters, should be excluded in a class diagram.

Most of the respondents also mentioned that they would exclude GUI related
information and also library classes. This basically means that the software
developers only want classes that are created by the designer. Helper classes
and the type of classes should be omitted in a class diagram. However, it is

77

not easy to detect a helper class.

In this study we discovered that respondents preferred the reverse engineered
class diagram over the forward designed class diagram. However, these re-
verse engineered designs must correspond with its source code that imple-
mented the forward design. By doing this, a reverse engineered class diagram
will be created that is similar to the forward design or even better. In terms
of inheritance, many respondents only need the important/relevant/key
classes in the hierarchy. We also found out that if a class has a high number
of children, then this class is important. Overall, based on our results, we
have found various important elements that should be included in a class
diagram. We hope to see in the future that the class diagrams are created
in such way that it is easier for the software developers to understand what
the system does. We hope that we have contributed some important infor-
mation to achieve this goal.

References

[1] Enterprise Architect. http://www.sparxsystems.com.au/.

[2] Limeservice. https://www.limeservice.com/en/.

[3] Research Methodology: An Introduction. http://www.

newagepublishers.com/samplechapter/000896.pdf.

[4] SDMetrics. http://www.sdmetrics.com/.

[5] Wikipedia: Unified Modeling Language. http://en.wikipedia.org/

wiki/Unified_Modeling_Language.

[6] S. Bassil and R. K. Keller. Software visualization tools: Survey and
analysis, volume 67, pages 7–17. IEEE, 2001.

[7] B. Bellay and H. Gall. A Comparison of Four Reverse Engineering
Tools, pages 2–11. IEEE Computer Society Press, 1997.

[8] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on uml class
diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

[9] R. C. Bjork. Atm system. http://www.math-cs.gordon.edu/

courses/cs211/ATMExample/.

[10] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recov-
ery: A taxonomy. IEEE Software, 7(1):13–17, 1990.

78

[11] A. Craig, A. Dinardo, and R. Gillespie. Pacman game. http://code.

google.com/p/tb-pacman/.

[12] A. Egyed. Automated abstraction of class diagrams. ACM Trans.
Softw. Eng. Methodol, 11(4):449–491, 2002.

[13] H.-E. Eriksson, M. Penker, B. Lyons, and D. Fado. UML 2 Toolkit.
Wiley, 2004.

[14] A. M. Fernández-Sáez, M. Genero, M. R. V. Chaudron, and I. Ramos.
A Controlled Experiment on the Impact of UML Diagram Origin on
Maintenance Performance. Submitted for publication.

[15] Y.-G. Guéhéneuc. A Systematic Study of UML Class Diagram Con-
stituents for their Abstract and Precise Recovery, pages 265–274. IEEE,
2004.

[16] R. Koschke. Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of Software
Maintenance and Evolution Research and Practice, 15(2):87–109, 2003.

[17] F. Leemhuis. Devnology community. http://devnology.nl/.

[18] A. Nugroho and M. R. V. Chaudron. A Survey of the Practice of De-
sign - Code Correspondence amongst Professional Software Engineers,
pages 467–469. Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement, September 20-21,
2007.

[19] H. Osman and M. R. V. Chaudron. An Assessment of Reverse En-
gineering Capabilities of UML CASE Tools, pages 7–12. 2nd Annual
International Conference Proceedings on Software Engineering Appli-
cation, September 12-13, 2011.

[20] H. Osman and A. van Zadelhoff. Non-structured questionnaire. http:
//www.liacs.nl/~hosman/Questionnaire.rar.

[21] H. Osman and A. van Zadelhoff. Non-structured questionnaire re-
sponses. http://www.liacs.nl/~hosman/SurveyData.rar.

[22] H. Osman and A. van Zadelhoff. Structured questionnaire.
http://www.liacs.nl/~hosman/The_Presence_of_Classes_in_

Class_Diagrams.pdf.

[23] H. Osman and A. van Zadelhoff. Structured questionnaire responses.
http://www.liacs.nl/~hosman/Complete_Results_Structural_

Survey.rar.

79

[24] A. Parasuraman. Marketing Research. Addison-Wesley Publishing
Company, second edition, 1991. http://www.sciencebuddies.org/

science-fair-projects/project_ideas/Soc_survey.shtml.

[25] S. Yusuf, H. Kagdi, and J. I. Maletic. Assessing the comprehension of
uml class diagrams via eye tracking. 15th IEEE International Confer-
ence on Program Comprehension ICPC 07, pages 113–122, 2007.

80

