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Abstract

Social media activity is increasing at an impressive rate. More than ever, compa-
nies and scientists realize there is a lot of value hidden inside the huge amounts
of data, one of which is user influence. This research aims to provide an evidence-
based metric on topical influence to identify conversation leaders and influential
intermediaries based on the content of their messages. We do this by generating
features based on the social graph and content of messages, and investigate the
relation with several goal attributes. We then use this information to find an
easily interpretable measure of topic-based influence.
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Chapter 1

Introduction

In this chapter we will describe the motivating theories for this research and
give a general introduction to the research that has been done on influence
theories in several fields. We will also explain the structure of this research and
explain the scope of our approach.

The concept of how messages, concepts and information spread through human
institutions has been subject to research for a very long time, ranging from the
early philosophers to more advanced (or at least documented) studies in the
last century. It has been examined in the fields of sociology, communication,
marketing and political science. Its dynamics explain how societies function as
a whole, but also how information flows on a lower, more direct level. It explains
the function of the smaller agents in the larger ecosystem of society, and how
every action has a reaction of different size. Most interestingly, it might also
explain how to control the system. In marketing and advertising specifically,
prior to the 1950s the production concept was commonly used; it was the belief
that when goods are widely available and cheap, people will buy them. It was
a concept in which everyone was equally influential, or even did not play a role
in the decision making process.

In a study done by Katz and Lazarsfeld [23], it was shown that in many
situations, information only reaches the majority of the people through opinion
leaders, who in turn receive their information from media. This concept is called
the two-step flow of communication model. These opinion leaders are portrayed
to be the large cogs, influencing the decision making process of smaller cogs. It
introduced the term “personal influence”, meaning the opinion leader’s ability
to intervene between the media’s message and the opinion of the majority. One
possible effect of this research was the increased use of known personalities in
messages of both political as commercial parties.

In marketing, the term market mavens was only recently introduced [15, 9],
as a distinction from “connectors” and “salesmen”: a group of people we trust
with giving us new, valuable information in a certain area. In the advertising
business, the recognition of the existence of these “trust centers”, led to an
increase of advertising based on well-known figures. Actors, singers and sports
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players were often used as brand associations, hoping to influence the many.
However, it was also clear that the message of these mavens is not spread
directly from them to the millions who receive and/or adopt it. Rather, there is
a large chain-reaction of intermediaries that spread the message through their
respective word-of-mouth networks.

In recent years, more modern studies have shown that marketing mavens
are not as influential as originally thought [35]. Instead, influential messages are
adopted mostly based on the word-of-mouth network of moderately connected
people as well as the content of the message [43]. This can also be seen in the
quite recent marketing trend of evangelism marketing in which companies try
to build such a strong relationship with their customers, that the customer
becomes a voluntary advocate of the company’s products. We can also explain
the rise of review websites and recommender systems from these theories. All
these strategies use the influence of the “reasonably influential” instead of the
“marketing mavens”.

So what is it about the moderately connected that makes them influential?
In research by Nielsen [44] 90% of the respondents trust a recommendation from
“people they know”, an increase of 12 percentage points from 5 years earlier.
70% of respondents also say they trust “consumer opinions posted online”. The
Edelman Trust Monitor [13] has similar observations. These are high percent-
ages compared to the 61% trust in advertisements from TV and newspapers,
and only 55% in radio. Also, in [20] it is shown that so-called leads that are
socially connected are far more likely to buy a product or service when they
are influenced by their connections. Part of this is explained by the indirect
message being perceived independently and authentically.

All these models and evolutions on social behavior form an interesting basis
for interactions on the Internet as well. Many forms of social interactions have
been emulated in virtual environments before: forums as public assemblies,
expert exchanges such as StackOverflow1, Yahoo! Answers2 as expert advice
and education, YouTube3 as entertainment, education and discovery. So when
the concept of social media was introduced, in the form of Facebook, Hyves,
Orkut and Twitter, the intent was clear: create an emulation of the real
life social network. Many social networks started out as almost exact digital
replicas of the social networks already seen in real life, but soon also made
social discovery possible: “befriending” someone who you only know virtually.

It makes a compelling question as to what other forms of social structures
are active when communicating through the Internet. Is there a concept of
word-of-mouth networks and market mavens? Are there certain people who
influence opinion, product sales and concepts more than average?

The characteristics of social media clearly resemble real-world social net-
works: sharing a messages relates to the spreading of new opinions and news

1http://stackoverflow.com
2http://answers.yahoo.com
3http://youtube.com
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with the real-life social network, resharing (or like/retweet) is directly related
to spreading an existing message/product/opinion, and commenting/replying is
related to joining a conversation on an opinion/product/concept in one’s social
network. It has been found [35] that these modern-day electronic word-of-mouth
networks (eWOMs) work similarly as the traditional word-of-mouth networks
(WOMs). With the rise of the social media, the word-of-mouth networks that
were formerly confined to a certain geographical area, have now been given new
boundaries through the internet. What is especially interesting about the online
social networks, is that information that is unattainable in traditional WOMs,
such as who talks to whom and what they talk about, is publicly available on
many social media. Wu et al. [49] found that 46% of Twitter links reach
their recipient not through the original source but through an intermediary.
This indicates the existence of extensive word-of-mouth networks, but how do
we know who the important “sources” and “intermediaries” are? Who do your
customers believe is credible and trustworthy on a brand or topic? Who are the
so-called evangelists?

Social media influence has been studied in many different ways. Often used
measures are in-degree (the number of people following a person), the num-
ber of reshares or replies a message invokes, or a combination to calculate the
total number of impressions a message produces. Influence has been studied
both as a global metric [1], as well as a topic-related issue [8]. Especially the
latter study shows that in-degree has a limited correlation with high numbers
of reshares. Both studies show that most of the “influential messages” orig-
inate from moderately connected persons and not the highly connected elite
and content had a high impact on the spread of the message. This implies met-
rics like Klout [28], which uses metrics like in-degree and number of mentions
to decide on influence, are more a popularity score than a true influence metric.

Our hypothesis is that a person’s relation to a certain topic is a major
factor in his reputation on that topic. He or she might have a high amount
of followers that are also interested in the same topic and are more likely to
spread the message. We will try to find the attributes about persons that have
an impact on both their reshares as well as clicked urls.

1.1 Defining influence

To determine influence, we should first define what influence is. The Webster
Dictionairy [36] defines it as “the power or capacity of causing an effect in
indirect or intangible ways”. In most marketing or social media papers, this
definition is interpreted to mean “generating impressions” or “spreading a mes-
sage”. This seems to stem from the days of broadcasting media, where the
number of viewers (impressions) is the key metric for determining influence. In
this definition, more equals more. In related research on influence on Twitter,
this idea has been translated to influence measures such as in-degree, retweet
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and mention influence. These are measures on how often someone’s name has
been mentioned in a message.

However, with the data that is available through social media, we might also
be able to analyze much more profound metrics. This is something more social
media experts are trying to express: stop looking at the number of followers,
and start using more profound indications such as Trust, Expertise, Tribes [16].
The only difficulty is that these things are very hard to quantify. Even given
a simple definition would be open for arguments. We can agree on what typ-
ically would interest a company that is looking for influentials: messages that
are turned into sales or other actions that benefit the bottom line of the com-
pany, be it sales, clients, subscriptions, advertisement revenue, etc. It is not the
impressions in and of themselves that matter, but the actions that result from
those impressions. In this definition, more may also be less. Arguably, a large
number of impressions might lead to a large number of sales, but this might
not necessarily be the case.

1.1.1 The sales funnel

In internet marketing, there is a concept of the sales funnel. Potential customers
or “leads” enter the sales funnel on one side, and paying customers leave the
sales funnel on the other side. In between the two are usually a series of steps,
such as clicking on a sign-up link, signing up for an account, selecting products
or services, entering payment information, executing the payment. The input
for this funnel comes from several channels, e.g., advertisements, search engine
results and social media. These funnels generally lead to some goal that benefits
the company, such as a sale, sign-up, donation, subscription, etc. Ideally, we
would measure the effectiveness of an input of the sales funnel by calculating
the effectiveness of the sales funnel.

If, for example, 2% of the leads that enter the funnel from advertisements
proceed to becoming a paying customers, that might be fairly good. However,
we only have a single point of reference; what if it turns out that of the leads
that enter through social media, over 14% end up becoming paying customers?
This would mean that it would be very wise to invest more time on social media,
than on advertisements. Our aim is to try to get as close as possible to the end
of the sales funnel, to give more accurate knowledge of how social media can
increase the exit of the sales funnel. Unfortunately, we cannot measure these
sales for they are private information of each company, but we can in some
cases measure the number of clicks that lead into the sales funnel by analyzing
click data, which is already one step closer than the number of impressions of
a tweet, or retweet.

Therefore, our definition of influence is the following:

Definition 1. Influence in a social network is the ability to generate actions
(benefiting the company/topic/subject) of others.
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1.2 Challenges and related work

Trying to find structure and patterns in a large and unstructured network such
as the Twitter graph is a challenging task in the domain of data-mining [27].
This is further explored by the sociological aspect; while in most sciences, the
same actions often lead to the same results, in social sciences this is often not
the case. The number of factors that play a role is simply too large to take into
account. Therefore, even a small correlation between factors can be significant.
Also, on many social media, there are factors that are difficult to recognize and
filter, such as spammers.

The most interesting work on the challenge of finding influential nodes in
large graphs have been from the field of Information Retrieval and Data Mining.
A good example would be Page and Brin, who introduced an important influ-
ence metric called PageRank [31] to their popular search engine Google. But
they lack the distinction of topic-based influence and quantifying the influence
to real-world metrics and application. Haveliwala introduced a topic-sensitive
PageRank metric [19], but this is only applied to Twitter through an algo-
rithm called TwitterRank [47]. Unfortunately this work lacked motivations on
their definition of influence. They assumed the influence of a user is the combi-
nation of the influence of his/her neighbors, and the relative amount of content
their neighbors receive from him/her. They also use a non-random sample of
users, which might cause bias.

With regards to influence measures, Cha et al. [8] empirically investigate
the relation between common measures in influence on social media. However,
when they test topical influence, they only take a small subset of users that have
talked about all their defined topics. They find a strong correlation between
topics, but in our opinion, this could be caused by their selection bias towards
generic Twitter users, who have a tendency to talk about general topics,
instead of also taking into account very topical users that only mention one
topic.

1.3 Approach

Our research will be aimed at performing a comprehensive data-mining analysis
on topic related influence on online social media. Our main goal is to identify
the several types of influentials that have been researched in sociology and
marketing. That means not only looking at the most influential people, but
also on the less influentials and their role in the spreading of messages. To this
purpose, the research will be divided into five distinct steps, each one producing
the data needed for the next:

1. In Chapter 2 we will gather a sample dataset from a social network.

2. In Chapter 3 we then distill topical subgraphs from this dataset.
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3. Data-mining techniques will be applied in Chapter 4 to find important
attributes for evangelism or topical influence.

4. We will then combine these attributes into one or more metrics in Chap-
ter 5 and ...

5. ... in Chapter 5 evaluate this composite attribute.

The steps outlined are schematically shown in Figure 1.1. It shows an example
social network, where each node is a user, including information such as the
content of sent messages. These users are subjected to both graph analysis as
content analysis, dividing the graph into topical subsets, in which each user may
be more or less active (shown as boldness of the node). These will generate the
data we need to train a classifier on certain ground truths of influence, which
will be defined in Chapter 4.

Twitter

2. Topic distillation

1. Mining

3. Analysis

4. Composite metric

5. Evaluate composite metric

attribute attribute attribute attribute

attribute

attribute

attribute

+ +

+

3

2

Click Analytics

Classi�er

Figure 1.1: Schematic representation of the approach of the research.

Our approach is aimed to use topical influence on brands, therefore we
want to have control on the definition of the topics. Our influence measure will
reflect this also; we will define influence as close as possible to the sales process
described in Section 1.1.1.
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Technically, we are limited by the size of online social networks, and will
use sampling of the social network of choice, Twitter, to get a represen-
tative subset. We compare characteristics of this subset to datasets used in
similar research, to verify the similarity of the subset. We also use platform
specific features of the social network Twitter, mostly based on hyperlink
redirection, that makes this research hard to replicate on other networks. Also,
certain design decisions of Twitter are particularly useful in forming topical
relationships, as will be further discussed in Chapter 2. Especially the amount
of public communication on Twitter creates an unique opportunity for this
type of research.

Because of our feature construction approach, we have implicitly limited
the origin of influence to certain factors, such as the popularity of a user and
their use of a topic. This approach is susceptible to missing factors that may
determine our definition of influence, in favor of creating an easily interpretable
explanation of influence.
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Chapter 2

Mining the social web

First, we will provide a short introduction to the social network of choice,
Twitter. Then, we will describe our method for collecting a sample graph
from the network.

2.1 Introduction to Twitter

Twitter1 is an online social network, which is characterized as a social graph
where users are interconnected through relationships and interactions, and are
able to share information among each other. It was founded in 2006 and its
core features are the ability for Twitter users to post messages (tweets) with
a maximum length of 140 characters to their profile, and the ability to follow
other users. The tweets of these other users then show up on their personal
timeline. Relations on Twitter are unidirectional, creating a directed social
graph; being connected to a user, does not automatically mean that the user is
also connected to you. This is contrary to the bidirectional connections of other
popular social networks such as Facebook, Orkut, Hyves and MySpace.

In their messages, Twitter users can reference (mention) each other by
prepending an @ to the referenced username. A special reference is called the
retweet, which is a mention prepended by RT and appended by a exact copy
of the original content of the tweet. This method is used to share content and
propagate messages through the social network. These types of messages have
often been used in research as influence measures [], with the reasoning that
being mentioned a lot, or having one’s message spread through many users is
a sign of being either very popular of very influential.

We will be using Twitter as our social network for data-mining for sev-
eral reasons. As mentioned before, in many other social networks, connections
in Twitter are directed, and thus not necessarily reciprocal. This feature af-
fects many other aspects of Twitter. For example, it means that users can
engage with people they are topically interested in, but are not real-life friends
with (such as celebrities, political figures, industry leaders, etc.). That is, the

1http://www.twitter.com

10

http://www.twitter.com


content of the messages is the primary cause of the relation, rather than the
existing real-life social connections. This unique effect makes the Twitter net-
work interesting for this specific research; more than only a personal network,
content might play a large role in whether someone is popular and/or influ-
ential. Research [8] has shown that reciprocity on Twitter is low (∼ 10%),
suggesting that the network is largely based on one-way ‘interest’ relations. We
get two important measures from this directed social graph: the in-degree is the
number of people following a user, while out-degree is the number of people a
Twitter user is following him/herself (the friends). The in-degree has often
been used as a popularity and influence measure. This is based on the reasoning
that with a high in-degree, one’s messages are being read by a large group of
people (a large audience), giving a high number of impressions, and may thus
impact the decisions or opinions of many other people.

Also, because it so easy to gather a group of followers when your messages
are public, a much larger percentage of Twitter users have a public profile,
allowing one to track many of the conversations that take place on the network.
While collecting our data, we found that only 20% of Twitter users have
protected their messages from public access. A recent survey [34] mentions the
average of protected profiles on online social networks is 58%.

2.2 An example

We will first introduce an example of a (very) small graph, that we will use
as a running example in the subsequent chapters to explain our methods. The
graph in Figure 2.1 consists of 5 nodes. We show the “following” relation with
the edges of the nodes, and the content produced by these fictional users is
shown in the boxes in Figure 2.1. We will reference this example a number of
times in this research to explain the workings of topic distillation and a number
of analytics.

2.3 Accessing the network

Collecting messages from Twitter can be done in several ways. First, there
is a resource named “the Firehose” [46]. This is a stream of all of the messages
sent through Twitter, which as of November 1st 2011 is about 200 million per
day2. This stream reports on all content and users, but not on the social graph
itself. For obvious reasons, this stream is considered a very valuable resource
and access has been limited since Twitter’s early days. Resellers are available,
but are still costly for a research project like ours.

There is a pubicly available sample stream [46], which streams a random
subset of tweets, estimated to be around 1% of the total messages. There is also
a request-based REST interface [45] that supplies information about profiles,

2https://dev.twitter.com/discussions/3914
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1

2
3

4

5

1 Look at the Republican Debates! http://bit.ly/example

I want to thank President Obama for the lovely present.

2

RT       Look at the Republican Debates! http://bit.ly/example

Found this piece on Java programming: http://bit.ly/java

1

What are your thoughts on the recent Python changes?

3 RT      Found this piece on Java programming: http://bit.ly/java

I’m really looking forward to the democratic party tonight.

2

4 Just programmed this library for Flask: http://github.com/test

Working with       on a new C# paradigm

5

RT       Look at the Republican Debates! http://bit.ly/example

RT      Found this piece on Java programming: http://bit.ly/java

1

Go, go Arsenal FC, we can win this time!

2

2

We are now hiring 3 new junior developers!

Woohooo, I’m getting maried in two months! #excited

Looking forward to meeting Rick Santorum later today.

Figure 2.1: Example: a fictitious Twitter-like social network.

tweets by specific users, friend/follower information, etc., which is limited to
350 requests per hour. Contrary to the streaming methods, this interface also
provides information about the social graph. One may request the connections
of others, as well as their posted messages and retweets, provided they are
public messages.

In experiments to get a reasonably deep (rich user information, accurate
knowledge of the social graph, plenty of tweets per user) subsample of the
Twitter social graph, using the sample stream was unsuccessful; most of the
messages that were received, were from different users. When trying to enrich
the stream by collecting graph connections through the REST interface, the
request rate limit caused not only a major time cost to complete the dataset,
but also implicitly limited the dataset to the set of most active users.

Instead we will be solely using the Twitter REST interface. We crawled
a subset of Twitter users using a Forest Fire algorithm, which was proven
to be the most effective means to sample a large graph in [32]. The steps are
outlined in Section 2.4.

2.4 Graph sampling

Our sampling of the Twitter graph was performed using the social network
graph first, and only gathering information about content second. The sampling
described in this section therefore, has no relation to messages or content of
messages.

Because of the limitation set by the request rate limit, it will not be possible
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for us to gather a complete dataset of the entire Twitter network. Therefore,
we will have to retrieve a representative random subset of the original graph.
Leskovec and Faloutsos [32] found that a Forest Fire (FF) algorithm was the
most representative way to sample from large graphs in general. Forest Fire
is an algorithm that picks a random node of the graph and starts randomly
“burning” the outgoing edges recursively until the “fire” is stopped, when the
probability decides no more edges should be burnt (akin to a series of con-
secutive heads when flipping a coin). It then picks another random node and
repeats the process. Our sampling algorithm will be a FF algorithm with a
forward burning probability pf = 0.6, which was found to be a good value for
our kind of graph in the aforementioned paper [32]. We will then compare the
characteristics with some other papers in Secton 2.5 to see if our dataset has
corresponding properties. The crawler ran three times, with slightly adjusted
parameters, collecting up to 33,000 twitterers. This should provide decent sam-
ples of the Twitter graph to use for subsequent chapters. The steps we are
using to gather the subsample are:

1. Select a Twitter user i (by randomly selecting a Twitter user ID).

2. Retrieve all of i’s friends connections and store them into an adjacency
list Ai.

3. Select p random friends from Ai (p following a geometrically random
distribution), forming a subset X ⊆ Ai with |X| = p.

4. Repeat steps 2 and 3 for each j ∈ X.

5. If there are no more nodes to visit, start at 1.

To get to our aimed goal of gathering topical and thus contextual influence
on the network, we also collected up to 1,200 of the most recent messages from
all visited Twitter users. These messages will be used for topic distillation in
Chapter 3 to provide context for their influence performance.

2.5 Dataset characterics

Before we use the data, we will first look at some of the characteristics of the
datasets. We ran several graph metrics on each of our datasets, which only
differ in the length of time they ran, and thus the size of the crawl. We labeled
these datasets small, medium, and large.

We further analyze the graph with common graph metrics. Before online
social media existed, most of these metrics were already used to investigate real-
life social networks [42]. Each metric quantifies some property of the graph, and
tries to explain the structure of the graph. The metrics investigate the way the
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nodes are connected, and if there are common patterns that can be identified.
The results can be found in Table 2.1, but we will first explain these metrics:

Average degree is simply the average number of outgoing and incoming edges
of each node. Put simply, it equalsNe/Nn, whereNe is the number of edges
in the graph, and Nn is the number of nodes.

Density represents the density by comparing the number of edges Ne in the
graph to that in a complete graph with the same Nn (i.e., where all nodes
are connected with all other nodes). Formally, this metric is defined as:
Ne/(Nn ∗ (Nn − 1)).

Modularity is a metric that tries to decompose the graph into modules, in
which nodes are highly-connected, but less connected to nodes in other
modules. It achieves this by creating possible clusters in the graph and
measuring the density inside the cluster and comparing it to the density
between clusters. If the density from one node to nodes in a cluster is
high, and the density from the same node to nodes in other clusters is low,
modularity is high. In the algorithm we used, the clusters were assigned
using an algorithm proposed by Blondel et al. [6]. For the current research,
this will indicate if there are either many groups of friends or topically-
related people (which would be of particular interest to us), or little; which
would indicate that the social network does not contain groups.

Average Local Clustering Coefficient (cc) measures the degree of cluster-
ing in the graph. It looks at the individual nodes of the graph and its
neighbors and compares the connectedness with a complete graph. A high
value for this metric is known to show the “small-world” effect and is an
indication of the way nodes are connected with their neighbors. So, while
Density and cc are both measures of graph density, cc measures the
density on a very local level, while Density primarily is an indication of
global density.

Diameter is the length of a longest path between any two nodes in the graph.

Average Path Length (d) is the average path length between two nodes.
This metric is expected to comply with Milgram’s famous ‘six degree of
separation’ experiment [37]. Our average path length is very close to the
values found by Kwak et al. [29] in their quantitative Twitter research;
they found an average path length of 4.12.

Hyperlinks to external webpages are found in 34% of tweets. The average
number of tweets that contain mentions of other users is around 53%. The
number of retweets is around 32% of the total tweets. Of the retweets, 33%
contain at least one link to an external resource.

Reciprocity, meaning bi-directional connections, thus following each other,
was found to be 13.65% of all the connections in the graph in the medium
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dataset, which is the same order of magnitude as the numbers found in [8, 29],
where a near-complete graph of Twitter was used.

We have developed the methods used in further chapters on both the small
and medium datasets, to keep runtime to a minimum during development, but
all the results in this research paper (unless otherwise mentioned) are gathered
using the large dataset as source. This is the most representative graph and
provides us with more data to work with.

small medium large

Nodes 1, 832 8, 396 31, 891

Edges 6, 543 85, 350 584, 661

Degree 3.581 10.166 18.333

Modularity 0.474 0.416 0.471

Density 0.002 0.001 0.001

cc 0.092 0.114 0.068

Diameter 15 15 13

d 4.778 4.182 4.027

Sample date 6/01/12 – 9/01/12 16/01/12 – 31/01/12 31/01/12 – 27/02/12

Table 2.1: Dataset characteristics

2.6 Empirical analysis

What is immediately apparent from looking at the large dataset in Figure 2.2,
which was organized using Gephi [2] and its Force Atlas algorithm, is the ex-
istence of a few very well-connected users. They have a very large in-degree,
network centrality and high PageRank [31]. However, the in-degree distribu-
tion follows a very sharp decline. As can be seen from Figure 2.3, the in-degree
frequency is decreasing exponentially. While the user with the highest in-degree
of the sample has 2,855 incoming edges, the average is only a little over 18. This
is in accordance with previous work [1, 47, 8].

Next, we decided to look at a list of high-profile users. We have ranked the
Twitter users in the sample by their PageRank and the ten highest ranking
users are shown in Table 2.2. Users are shown with their in-degree (number of
followers), out-degree (number of friends), eigenvector centrality (a measure of
influence of the user in the entire network) and the local clustering coefficient
(a measure of how close the users’ neighbors are to forming a clique [38]). It is
clear that the top users in our sample are also top users in real life. To compare
our subsample with the full graph, we also included the number of followers for
each of the ten users.
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After further inspection by visualizing the graph (again using Gephi’s Force
Atlas algorithm), the Twitter users form clusters that seem to have a topical
relation. Sport players are clustered with each other, as are politicians, as are
technology blogs/influencers, as are social media gurus, etc. This strengthens
our beliefs in the hypothesis that there is some topical relation at play in the
forming of these social networks. This effect can be seen from the overview of
the social network in Figure 2.2.

Figure 2.2: Manually annotated visible clusters.
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Screen Name PageRank In Out Eigenvector Cluster Followersa

BarackObama 0.0043 2,855 668 1.0 0.0062 12,966,898

ladygaga 0.0024 2,501 88 0.7182 0.0075 20,612,266

justinbieber 0.0024 1,974 404 0.6439 0.0119 18,357,753

katyperry 0.0014 1,848 30 0.5271 0.0106 15,997,487

Oprah 0.0024 1,751 21 0.7075 0.0156 9,768,533

TwitPic 0.0025 1,731 83 0.4725 0.0 6,600,021

KimKardashian 0.0020 1,712 63 0.5601 0.0130 13,882,950

britneyspears 0.0013 1,694 271 0.5380 0.0098 13,942,698

aplusk 0.0024 1,689 177 0.7163 0.0179 9,751,009

TheEllenShow 0.0024 1,683 1,348 0.7092 0.0164 9,869,979

a Snapshot from 12 March 2010

Table 2.2: Top users using global metrics, ordered by in-degree.

N
um

be
r o

f U
se

rs

Number of Followers (x10)

Figure 2.3: Distribution of in-degree: number of users with a certain number of
followers, on a logarithmic vertical axis.
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2.7 URL analytics

As can be seen in Section 2.5, almost 34% of the messages on Twitter contain
a link. Because we are interested in the content of the messages, we can attempt
to use these links to get some additional data about the user who has sent them,
and the impact of the particular message. In this section we will explore the use
of links on Twitter and discuss the possibilities of using them as additional
information in our analysis.

First and foremost, we might attempt to collect analytics on these links and
see if any influence can be derived from the resulting data. For example, if a
user shares a link which is seen by other Twitter users 1,000,000 times and
clicked on 100 times, while the same link shared by another Twitter user
is only seen 100,000 times but clicked 2,000 times, we might argue that since
clicks are further down the sales funnel than views, the latter user is actually
more influential. Specifically, if we build our topics around brands, this might
be directly related to our definition of influence: generating more clicks for a
certain brand will cause input into the sales funnel and thus influence sales.

For proper analytics of the links we need to know the answer to the question:
“How many clicks are originated from a given tweet?”. In most circumstances,
this kind of data can only reliably be obtained through analysis of clicks on
the individual websites the links refer to. This information is only available to
the website owners, and not publicly available. However, this is where the 140
character limit of Twitter is of good use.

In most cases on Twitter, people wanted to share large links, and com-
ment with text in the same message (e.g., “Look at what I just found!
http://www.example.com/blog/2010/6/12/look-at-what-I-found”). How-
ever, because of the character limit a type of service called the url shortener ser-
vice was invented. This type of service takes a large link, and uses an algorithm
to generate a unique, short url, which can easily fit in the 140 character limit
(e.g., http://sho.rt/a4bCz1). This provides us with another layer to inspect
analytics on. We found one URL shortener that supports publicly available an-
alytics at all, which is bit.ly3. For every shortened link, we can request the
number of clicks coming from a different referrer. In the past, Twitter click
analytics has always been tricky, because different tweets were often displayed
as the same referrer in the analytics. However, in early 2011, Twitter intro-
duced their own URL shortener t.co, which shortens all URLs, even those that
have already been shortened by bit.ly, and redirects them to their proper des-
tination. By introducing this extra step, which sets the referrer to the unique
t.co URL, we know for certain that analytics are originated from a unique
tweet, or its native retweets.

In our experiments, we found 21.3% of tweets containing links (34% of the
total number of tweets), had their URL shortened by t.co. Of that, 33.2% was

3http://bit.ly
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also shortened by bit.ly. These are the tweets that we can properly perform
click analytics on. This is not a large amount of tweets, but given the size of
the large dataset, the number of links will still be reliable. When using a larger
sample, or even a complete dataset of Twitter, the results will become even
more reliable.

Furthermore, click analytics may be able to provide a guard against spam-
mers and bots, because unfortunately, there are many bots and spammers active
on Twitter. One way they oftentimes try to gather a following is by auto-
matically retweeting messages from popular Twitter users. These retweets
however do not generate any valuable impressions or actions and only promote
the already popular users. Clicks however are not likely to be emulated by bots,
so this could be useful in circumventing bias.
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Chapter 3

Topic distillation

In this chapter we will discuss the possibility of generating content related
attributes for our dataset. We have collected up to 1,200 tweets for every user
in the graph that we can use to analyze this information and use the content
of these messages for our analysis in Chapter 4.

3.1 Distillation techniques

Topic distillation, also called concept mining, subject analysis, topic discovery,
or topic modeling, is a field of research where the goal is to extract as concise
and brief information as possible from a perhaps large dataset [4]. In our case,
the subjects are relatively small 140-character messages, but in many other text
classification applications the contents might be much larger. Search engines,
for example, use these techniques to condense web documents to a set of topics
and return search results that are more accurate than simple keyword-based
matching.

In general, topic distillation techniques will define topics, consisting either
of n-grams (sequences of n words or characters) or a vector of keywords. The
definition of the topics can be done manually or using an automated algorithm.
While the former requires knowledge and understanding of the content of the
corpus, it does lead to more accurate results if the topics are defined properly,
while the latter technique can be used on any dataset.

Common algorithms for topic distillation are probabilistic Latent Semantic
Analysis (pLSA) [12] and Latent Dirichlet Allocation (LDA) [5], which have a
very similar theoretical basis. We consider Latent Dirichlet Allocation, which
is a generative model that assumes documents are a mixture of a number of
topics, and each word in the document is generated from a topic. The topics
it produces are multinomial distributions over words that could be generated
by that topic. First, the algorithm considers all messages as bags of words,
meaning the sequence of the words does not matter; only the frequency of
occurrence matters. Then, the algorithm starts with a random distribution
of the words in the corpus to K topics. An inference algorithm is used to
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train the topics to the documents in the corpus. Most commonly, this inference
algorithm is a Gibbs sampling algorithm [14], a randomized algorithm used
to approximate probability distributions. A topic resulting from the inference
might for example be characterized by the following distributions: 50% cat, 20%
cute, 10% horse, 20% adorable. Its perfect message would contain words exactly
in those proportions (e.g., ”the adorable horse and cat followed the cute cat to
the cat that was hugging the adorable cat. cats are cute.”). This topic could be
interpreted to be about animals, although the algorithm is not context-aware
so this interpretation is quite difficult in some situations.

Figure 3.1: Schematic notation of the LDA model. The outer rectangle repre-
sents documents and the inner rectangle represents the repeated choice of topics
and words within a document.

The probalities of the LDA model as shown in Figure 3.1 are defined by:

α is the parameter of the Dirichlet prior on the per-document topic distribu-
tions.
β is the parameter of the Dirichlet prior on the per-topic word distribution.
θi is the topic distribution for document i,
zij is the topic for the jth word in document i, and
wij is the specific word.

3.2 Topics on Twitter

Regardless of how we define and extract the topics, the result of the topic distil-
lation will consist of one or more attributes about the messages from Twitter
users. These are our topical attributes which we will use to analyse the impact
of content in the influence of Twitter users. We can condense the attributes
on messages to the Twitter users themselves, so we get the frequency of usage
of the topic, the ratio of their messages on this topic compared with their total
number of messages, etc.
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To test our methods, we also used a widely utilized citation dataset, of which
the abstracts of the papers will simulate the content of tweets, and authors of
papers represent Twitter users. Since this dataset is a complete collection, in
contrary to our sampled dataset of Twitter, it should help us to increase the
reliability of the theories described in this chapter.

Influence is explicitly defined on the entities of authors/persons. So in the
topic distillation, we will have to detect and reduce topics from the papers and
tweets (documents) to their respective authors. One can visualize this process
as creating a one-to-many relation between author and his/her documents, and
creating a one-to-many relation between between documents and topics. Lastly,
the topic information is aggregated to the author, so an author is now associated
with a list of topics.

3.3 Citation dataset

To experiment with how to properly extract topics from a graph with meta-
information, and to prevent potential errors in the Twitter dataset to interfere
with the topic distillation, we have first tested these methods for topic distilla-
tion on the HepTh citation dataset [33]. This dataset offers a full history of all
scientific citations in the field of high energy physics for the period 1992–2003,
including some paper meta data like title, authors, etc. When we compare the
kind of data we are looking for, it is not difficult to see the similarities with
the Twitter dataset: authors (persons) write papers (tweets) and in doing so,
reference (mention/retweet) other authors (persons).

Using a measure of importance, namely the subjective importance of an
author in any particular field, we experimented with several algorithms to gen-
erate attributes on the authors, such as PageRank, HITS, betweenness, etc.,
and primarily used these as lessons for the Twitter dataset. Due to inaccu-
racies in names of authors and the use of institutions in the names of authors,
the results were not as reliable as we hoped and we did further experiments on
the Twitter dataset. We did, however, find that the HITS and PageRank
algorithms produced promising results in ranking popular users.

3.4 Twitter dataset

In most of the papers on content-based analysis on Twitter, either Latent
Dirichlet Allocation (LDA) or keyword matching is used [8, 1, 47]. However, in
TwitterRank [47], the use of LDA causes some debatable results. The authors of
[47] generated topics contained many of the same keywords (which makes those
keywords irrelevant) and the topics were very difficult to interpret. Arguably
they failed to serve their purpose of topics altogether, but at least their results
produced topics that we, in this research, would not find useful.

When we tried to use LDA for topic distillation, we found similarly confusing
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topics. An overview of the most significant topics and the related words, in order
of descending probability, can be found in Table 3.1. However, our goal in this
research is to investigate the use of topics that are comparable to the use of
brands, interests and fields. These topics do not have to be exhaustive, but
there has to be a clear field of interest and a certain sociological market/group
for each of the topics. A more precise (in the sense that a whole field/brand is
covered in the topic) is of course preferable, but the size of the data would still
allow us to see the same patterns we would expect to see using a less accurate
description of a topic.

topic keywords

#1 twitter, boy, twitpic, pretty, haha, nice, miss, hahaha,
game

#2 time, thing, ff, guy, back, people, make, question, today,
gonna, girl

#3 blog, art, post, design, climate, car, twitter, top, flu,
recovery

#4 day, radio, green, card, dream, sound, food, san, heart,
bank, chart, car, coffee, drink

#5 vote, today, show, god, sign, winner, join, dog, congrats,
day, family, free, brown, wow, omg

#6 lol, man, van, haha, justin, met, shit, f*ck, dat, b*tch,
n*gga, lmao

Table 3.1: Results of Latent Dirichlet allocation.

Therefore we have decided to create topics based on keywords inferred from
Wikipedia articles. Other papers that have used keyword-based topics [8, 1]
are often using a feature of Twitter, called hashtags : any term preceded
by a hashtag (#) is linked to other messages that contain the same hashtag.
Compared to this approach, our method is more generic and does not rely on
the use of hashtags, while it still includes hashtags. i.e., if one of our keywords is
“network”, then the word “network” used in a sentence, as well as the hashtag
“#network” will be matched. Bakshy et al. [1] use empirically selected topics
by manually binning messages into topics, which might be even more reliable
since there is no confusion about context, spelling, etc. Tweets are on-topic
when they contain at least one of our selected keywords. A tweet might be
on-topic for multiple topics.

Our topics should be non-overlapping and clearly have different types of
people interested in them. By inspecting the timeframe of the messages in the
dataset, one can make reasonable topics based on world events that occurred,
but also on topics that are mentioned constantly on a social network such as
Twitter (e.g., celebrity gossip, programming, fun facts, etc.). By inspecting
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Topic Keywords

Politics democratic republican democrats presidential political
election republicans government executive constitution
federal senators elections congressional representatives
elected politics presidents obama biden gingrich perry
romney santorum

Tech web internet www html computer data software online
browser oss opensource “open source” programmer
programming developer code coding java c c# c++ php
“visual basic” python objective-c perl javascript sql ruby
haskell perl actionscript

Obama obama

Premier League arsenal blackburn chelsea liverpool . . . (list of all clubs
currently in premier league)

Table 3.2: Keywords of the predefined topics.

the types of users, starting for example with the dataset overview in Figure 2.2,
one can also find some very different use cases for using Twitter, be it gos-
siping, talking about fashion, programming, world news or sports.

3.4.1 Wikipedia ontology

Of course, using predefined topics can cause bias towards being either too spe-
cialized or too generic, giving an advantage to either very topical people, or the
very generic ones. To try and circumvent this and make sure we have relatively
complete and reliable topics, we will base our topics on the most frequently
used words in predefined Wikipedia [48] articles. We have manually selected a
few topics that instinctively have little contextual overlap. We then removed
ambiguous words, that could be interpreted differently from our intended con-
text and meaning, such as “foot”, which may mean a physical foot, attached to
one’s leg, or a unit of length. Our resulting topics can be found in Table 3.2.

Additionally, to the “Politics” topic, we appended the last names of the
current presidential candidates and the names of the current president and
vice-president. Also, to the “Tech” topic, we appended the most popular pro-
gramming languages as listed on IEEE’s blog [25].

In Figure 3.2 one can see how this topic distillation works on our example,
for the topics specified in Table 3.2. Bold words are part of the “Politics” topic,
italic words are part of the “Tech” topic and underlined words are part of the
“Premier League” topic.
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1 Look at the [Republican] Debates! http://bit.ly/example

I want to thank [President] [Obama] for the lovely present.

2

RT       Look at the [Republican] Debates! http://bit.ly/example

Found this piece on [Java] [programming]: http://bit.ly/java

1

What are your thoughts on the recent [Python] changes?

3 RT      Found this piece on [Java] [programming]: http://bit.ly/java

I’m really looking forward to eating ice cream tonight. #jum

2

4 Just [programmed] this library for Flask: http://github.com/test

Working with       on a new [C#] paradigm

5

RT       Look at the [Republican] Debates! http://bit.ly/example

RT      Found this piece on [Java] [programming]: http://bit.ly/java

1

Go, go Arsenal FC, we can win this time!

2

2

We are now hiring 3 new junior [developers]!

Woohooo, I’m getting maried in two months! #excited

Looking forward to meeting Rick [Santorum] later today.

Figure 3.2: Topic distillation in our example.

3.4.2 Resulting topic graphs

In this section we will describe the topic graphs that result from the topical
analysis, and which will be used for influence analysis in later chapters. We will
first look at some of the newly introduced attributes that the topic distillation
has generated for our dataset. The most important of these is the topical ratio:
the ratio of messages on-topic on the total original tweets of the user. This
metric is also a decreasing power-law function, as can be seen from Figure 3.3.

We only included a user in the topic graph if he or she mentioned the topic
in at least 0.5% of his/her tweets; the topical ratio must be at least 0.005. Given
the maximum number of collected tweets (1,200), the minimum number of on-
topic messages must thus be greater than 1,200∗0.005 = 6 in the vast majority
of users. This eliminates accidental inclusion of one-time topic participators.
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Figure 3.3: Histogram of topical ratio, vertical axis logarithmic.

Now we will also compare the metrics of these new topic graphs with the
metrics of the global graph (found in Table 2.1). The results of this comparison
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can be seen in Table 3.3. When comparing the metrics, we noticed a few im-
portant differences. It seems that the more specialized the topic is, the larger
the clustering coefficient and the smaller the modularity. This can indicate that
there are less sub clusters within the network, and the amount of clustering
withing the network is larger. We would expect to see these metrics increasing
if we took a sample from the graph that is more connected than a random sub-
set. This can indicate that the more specialized (less keywords or a specialized
subject) the topic is, the more clustered together the network is, while degree
often stays similar.

One might notice that the “Premier League” topic is a special case: in all
aspects it looks more like the global graph (several clusters/highly modular,
not very dense, etc.), but it has a higher clustering coefficient. This seems to
contradict the statements in the previous paragraph, but we think this may
indicate that the people interested in their premier league club might cluster
together, but they do not follow many others from other (competing) clubs.

For each of the topic graphs, we link all content information based on what is
applicable to the topic, so that only topic-related messages are attached to the
topic graphs. This includes messages sent by the user, retweets and mentions
sent and received by the user and also URL analytics (see Section 2.7) for each
of the URLs posted by this user on this topic. In this way, the identification
of these subgraphs also prevents overfitting of solutions in Chapter 4 because
we gather our goal attributes on a per-topic basis. It is therefore very unlikely
that a trend that is common over two or more of these topic graphs is due to
a too specialized solution, thereby overfitting the classifier.

1
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Politics Tech Premier League

1

2
3

4

5

1

2
3

4

5

Figure 3.4: Topic graphs in our example.

Concluding, from the global graph, we have extracted several topic graphs
using the methods described in this chapter. Figure 3.4 shows the resulting sub-
graphs when applied to our example (the semitransparent nodes are removed
from the topic graphs). Each node in the topic graphs has meta-data about
the content they sent and received. This graph and meta-data will be used to
construct features and analyze these features for topical influence in the next
chapter.
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Original Tech Politics Obama Premier League

Nodes 31,891 3,109 1,815 816 897

Edges 584,661 72,213 41,678 15,609 8,057

In-Degree 18.333 23.227 22.963 19.129 8.982

Modulariry 0.471 0.330 0.286 0.234 0.409

Density 0.001 0.007 0.013 0.023 0.010

Avg CC 0.068 0.164 0.184 0.204 0.162

Diameter 13 11 11 10 12

Path Length 4.027 3.273 3.113 2.904 3.965

Table 3.3: Topic graph characteristics.
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Chapter 4

Analyzing influence

Starting from the theoretical definition of influence in Chapter 1, we will now
create some very specific practical influence definitions we can use to analyze the
topic graphs that we have extracted in the previous chapter. First, let us repeat
the original theoretical definition given in Chapter 1: “Influence in a social net-
work is the ability to generate actions (benefiting the company/topic/subject)
of others”.

4.1 Definition

Within our dataset there are several attributes of every Twitter user that we
can interpret as “an action generated by others”. The most often used measures
in social media research fits well in this description, because a Twitter user
mentioning or retweeting another Twitter user can be defined as “an action
generated by others”. In-degree influence can be seen as generating views of the
message. And another common measure of audience influence, is a combination
of the two former definitions by enlarging the number of views by generating
retweet actions. Additionally, we will introduce a measure of influence in social
media that to our knowledge has not been used before: the ability to make
other Twitter users click on a posted link is also a measure of influence.

Because in-degree influence has been studied a lot already, we will try to
explain influence using two different possible definitions.

Definition 2. Influence on Twitter is the ability to generate clicks on posted
URLs.

Definition 3. Influence on Twitter is the ability to generate retweets on
posted messages.

The results from the attribute analysis in this chapter will be used to ex-
periment with combinations of attributes. These combinations will then also be
analyzed using the correlations and data-mining techniques found in this chap-
ter, to create a feedback loop (recall Figure 1.1) that will define a correlated
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metric for influence, which can be used as a predictor for topical citations/tweets
for any user.

4.2 Attributes

Using the topical graphs as described in Chapter 3, we will now expose sev-
eral attributes of Twitter persons and use data-mining techniques to detect
patterns between the attributes and the ground truth(s): features that repre-
sent our definition of influence, if there even is such a pattern. This provides
us with information to determine the major components of our definition of
influence on Twitter. For each of these attributes we will indicate the com-
plexity of retrieving the attributes when we need to build the dataset. Keeping
complexity low for the composite prediction attribute(s) is important, because
the faster we can calculate the new metric, the larger the dataset of Twitter
users we can populate and thus the more reliable our predictions can be. In
these complexity classes we will use n for the number of Twitter users, m for
the number of followers of a Twitter user and p for the number of messages
from a Twitter user x.

Note that these complexities are reflecting very crude and brute-force meth-
ods, and in practice several methods may be combined and optimized when
taken into practice. Nevertheless, it is a good indication and because of our
limited sample size, the required computational resources remained very rea-
sonable, even on the most complex attributes. Furthermore, we will use the
following attributes in the explanation of the attributes:

Ox The set of nodes connected to x through x’s outlinks.

Ix The set of nodes connected to x through x’s inlinks.

Mx The set of all messages sent by user x.

Mtx The set of all messages on topic t by user x.

Ctx The set of all links on topic t by user x.

Rm The set of all retweets of message m.

G The set of nodes in the “large” global graph.

Tt The set of nodes in the topic graph of topic t.

4.2.1 Followers and friends

First and most predictably, we will use the number of followers (in-degree) and
number of friends (out-degree). It is important to note that these numbers are
a snapshot, taken while collecting the dataset. A more complete and correct
metric would be to have an average of the number of followers over a certain
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time, but this is only possible when measuring followers at the time a message
is sent; this would take time but is possible using the streaming methods of
gathering data. Complexity of computation for these attributes is O(n). We
generated the following attributes:

1. Number of followers : The total number of people that have subscribed to
the user’s messages in our subsample of the graph. We will denote this
by |Ix|.

2. Number of friends : The total number of people that this user has sub-
scribed to, denoted by |Ox|.

4.2.2 Mentions and retweets

Traditionally, these metrics have been an important part in the research as
targets of influence measures. We show these metrics on our example in Fig-
ure 4.1. Other research has often used these metrics in the sense that being
talked about is an important aspect of being influential. We will first use these
attributes as source attributes, and later use them as target attributes instead.
Complexity of computation for these attributes is O(n ∗ p). We propose the
following attributes:

3. Total topical mentions: m(t, x) =
∑
i∈Tt

|{j ∈ Mti : x ∈ mentions(j)}|,

where mentions(j) is a function that extracts the set of users mentioned
in messages j.

4. Total global mentions: m(x) =
∑
i∈G

|{j ∈ Mi : x ∈ mentions(j)}|, where

mentions(j) is a function that extracts the set of users mentioned in
messages j.

5. Mean topical retweets per message: rt(t, x) =
1

|Mtx|
∗
∑

m∈Mtx

|Rm|.

6. Mean global retweets per message: rt(x) =
1

|Mx|
∗
∑

m∈Mx

|Rm|.

7. Mean topical retweets per message, per 1000 followers: rpm(t, x) = rt(t, x)/
|Ix|
1000

.

4.2.3 PageRank

PageRank [31] is a link analysis metric on graphs that can be interpreted to
determine direct and indirect influence of a graph’s connectivity. It is most fa-
mously used in the Google search engine to determine relative importance
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Figure 4.1: Followers (|Ix|), friends (|Ox|), retweets (rt) and mentions (m) in
our example.

of web pages by looking at the way other pages link to it. It uses the instinc-
tive reasoning of a random surfer model. This model simulates a surfer that
selects a random node, and repeatedly keeps following a random outlink with
probability d, or jumps to a random node in the graph with probability 1− d.
This probability d is called the dampening factor of the algorithm and prevents
pages that constantly only link to each other (many times) to cause skewed
scores.

We denote the PageRank of a user x by PR(x). In the most simple form,
given a node x, with incoming links (in our case, followers) from nodes a, b and
c, we have

PR(x) =
(1− d)

n
+ d

(
PR(a)

L(a)
+

PR(b)

L(b)
+

PR(c)

L(c)

)
,

where L is a function that returns the number of out-bound links of a node.
We specifically distinguish between local and global PageRank-score: local

PageRank only uses connections/mentions of other users that have used the
topic and made the topical “cut-off” described at the beginning of this chap-
ter, while global PageRank uses connections/mentions from all users in the
dataset.

We included this metric first and foremost because from the theory in Chap-
ter 1, we see similarities in the random surfer model: when people are building
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their interest network they most likely behave like a random surfer. When a
user x is following a user a, who is following users f(a) = {y1, y2, . . . , yn}, it is
very likely that there is a subset I ⊆ f(a) that is interested in the same subject.
When y ∈ I is retweeted or mentioned by a, x might start following this user,
or they could follow another random user that is also interested in the topic. In
fact, Twitter’s follower recommendation system seems to at least take this
“friends of your friends” information into account, although no official source
could be found to support this. We add to our list:

8. Global PageRank: p(x) = PR(x).

9. Local PageRank per topic: p(x, t) = PRt(x), which uses only the nodes/users
that are present in the topic graph Tt.

4.2.4 HITS

Introduced in the same year as PageRank, Hypertext Induced Topic Selection
(HITS) is an algorithm for internet importance that assumes a certain order in
a graph introduced by Kleinberg [26]. It assumes there are two types of pages
on the web: a hub is a node which consists mostly of a large collections of
out-links, while an authority is a webpage that has little out-links, but many
in-links from hubs.

We have included this algorithm because there are some similarities between
the theories in Chapter 1 and HITS. If we assume that the hypothesis that two-
step flow of information [23] is valid for social media networks, we must also
assume there are “media” and “opinion leaders” that influence public opinion.
Media has many links to the public and opinion leaders, who are in turn the
authorities. If we hypothesize the definition of a hub to media, and the definition
of authorities to opinion leaders, we get a pretty accurate picture of the way
two-step flow could be at work in online social media. We again distinguish
between the global and topical graph, and determine these metrics for both:

10. Topical Hub: the hub score of the node in the topic graph, denoted h(x, t).

11. Global Hub: the hub score of the node in the global graph, denoted h(x).

12. Topical Authority: the authority score of the node in the topic graph,
denoted a(x, t).

13. Global Authority: the authority score of the node in the global graph,
denoted a(x).
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Figure 4.2: PageRank (d = 0.15) and HITS in our example.

4.2.5 Topic frequency

Topic frequency is a measure of a user’s usage of the words specific to this topic.
We use two metrics: one is the frequency of use of the topic in all of the tweets of
a user, and the other is a weighted measure using the uniqueness of that word
in the topic. The former metric is a simple addition of the number of tweets that
are on-topic, where the latter uses an algorithm called tf-idf (term frequency-
inverse document frequency) [22]. This is a measure that is used to weigh the
author’s use of a word to the uniqueness of the word in the entire collection.
Term frequency, tf(t, d), is the number of times the term t has been used in a
document d. Inverse document frequency is the inverse of the frequency of use
of the term t in the entire collection of documents D and defined as

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
,

with |D| being the total number of documents in the dataset D and |{d ∈ D :
t ∈ d}| being the number of documents in which the term t is used. Then, the
tf-idf is defined as

tf∗idf(t, d,D) = tf(t, d) ∗ idf(t,D).

The complexity of computation of these attributes is O(n ∗ p). So we add:

14. Frequency; or the number of messages from a user x on topic t, denoted
by f = |Mtx|.

15. Tf-idf, as explained by the formula for tf∗idf(t, d,D), denoted by tfidf (t, x).

4.2.6 Topical interest

To compensate for the inequality of the total number of messages sent by dif-
ferent users, we also use the ratio of on-topic messages and the total number of
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messages sent by the users. The result is an attribute that gives the percentage
of the tweets sent by this user that are related to a certain topic. Calculating
this metric for every user and every message, the complexity is O(n ∗ p). We
define:

16. Topical ratio: r(t, x) =
|Mtx|
|Mx|

.

1 Look at the Republican Debates! http://bit.ly/example

I want to thank President Obama for the lovely present.

2

RT       Look at the Republican Debates! http://bit.ly/example

Found this piece on Java programming: http://bit.ly/java

1

What are your thoughts on the recent Python changes?

3 RT      Found this piece on Java programming: http://bit.ly/java

I’m really looking forward to the democratic party tonight.

2

4 Just programmed this library for Flask: http://github.com/test

Working with       on a new C# paradigm

5

RT       Look at the Republican Debates! http://bit.ly/example

RT      Found this piece on Java programming: http://bit.ly/java

1

Go, go Arsenal FC, we can win this time!

2

2

We are now hiring 3 new junior developers!

Woohooo, I’m getting maried in two months! #excited

Looking forward to meeting Rick Santorum later today.

politics
politics

tech
tech
politics
politics

tech
politics

tech
tech

tech

tech

politics
premier league

f=2, r=1.0

f=2, r=0.5

f=2, r=0.5

f=1, r=0.33

f=1, r=0.33

f=3, r=1.0

f=1, r=0.33

f=1, r=0.33
f=1, r=0.33

Figure 4.3: Frequency f = |Mtx| and topical ratio r in our example.

4.2.7 Topic-sensitive PageRank

The topic-sensitive PageRank extends the original PageRank, described in
Section 4.2.3, and adds a personalization vector based on the topical ratio,
r(t, x), from Section 4.2.6. Based on the work of Haveliwala [19], this variant of
PageRank has another component: a vector of ratios indicating a user’s usage
of a topic. In our case, we will use the topical ratio r(t, x), described above. This
variant is explained by adjusting the equation for PR(x) in Section 4.2.3 to the
following equation of the topic-sensitive PageRank TPR(x) for x, again with
incoming links from nodes a, b and c:

TPR(t, x) = (1− d)T (t, x) + d

(
TPR(a)

L(a)
+

TPR(b)

L(b)
+

TPR(c)

L(c)

)
,
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where T (t, x) is the normalized vector of r(t, x). We let:

17. Topical PageRank: tpr(t, x) = TPR(t, x).

4.2.8 Topical following

For every user there are several measures that indicate the topical interest of
their followers. That is, the sum of the topical interests of his or her followers,
divided by the number of followers. This ratio indicates the level of interest in a
certain topic of his or her followers. If the ratio is low, the followers have either
no significant interests or highly diffused interest. If on the other hand the ratio
is high, the followers have roughly the same interest; we can therefore suggest
that the relationship with the followers is somehow related to this topic. These
are quite resource-intensive attributes, given they need to be calculated over
the followers/friends of all users, using content of all followers/friends, resulting
in a complexity of O(n ∗m ∗ p). We define:

18. Average follower frequency: ff (t, x) =
1

|Ix|
∗
∑
j∈Ix

|Mtj|.

19. Average topical ratio of followers: fr(t, x) =
1

|Ix|
∗
∑
j∈Ix

r(t, j).

20. Ratio of topical followers / total followers: ti(t, x) =
|Ix ∩ Tt|
|Ix|

.

21. Ratio of topical friends / total friends: to(t, x) =
|Ox ∩ Tt|
|Ox|

.

4.2.9 Neighborhood size

Neighborhood metrics stipulate the size of the neighborhood network of the
user; not only its direct followers, but also the followers of his/her followers, the
followers of the followers of his followers, etc. The set of users with distance r
to user i using the in-degree (thus going “against” the direction of the edges) is
denoted by Nr(i). In this way, N1(i) is represents the same set as Ix. We mostly
pay attention to N2(i), or the followers of the people who follow user i. We also
separate the direct neighborhood from the indirect neighborhood by defining
Nd(i) = N2(i) ∩N1(i). This metric constitutes the average number of followers
for each of the current node’s followers. This is an indication of whether this
person is on the outside, or on the inside of the graph. The complexity is
O(n ∗ m

n
∗m). We define:

22. Indirect neighborhood: N2(x) = |Ix
⋃
i∈Ix

Ii|.
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23. Followers of followers: Nd(x) = |N2(x)\N1(x)|.

24. Average followers of followers: fi(x) =
Nd(x)

|Ix|
.

Metric Symbol Complexity Graph-based Content-based

Followers |Ix| O(n)
√

−
Friends |Ox| O(n)

√
−

Mean global retweets rt(x) O(n ∗ p) −
√

Mean topic retweets rt(t, x) O(n ∗ p) −
√

Mean global mentions m(x) O(n ∗ p) −
√

Mean topic mentions m(t, x) O(n ∗ p) −
√

PageRank p(x) O(n)
√

−
Local PageRank p(t, x) O(n ∗ p)

√ √

Topical Hub h(t, x) O(n ∗ p)
√ √

Global Hub h(x) O(n)
√

−
Topical Authority a(t, x) O(n ∗ p)

√ √

Global Authority a(x) O(n)
√

−
Topical frequency |Mtx| O(n ∗ p) −

√

tf-idf tfidf (t, x) O(n ∗ p) −
√

Topical ratio r(t, x) O(n ∗ p) −
√

Topic-sensitive PageRank tpr(t, x) O(n ∗ p)
√ √

Follower frequency ff (t, x) O(n ∗m ∗ p)
√ √

Follower ratio fr(t, x) O(n ∗m ∗ p)
√ √

Ratio of topical followers ti(t, x) O(n ∗m)
√ √

Ratio of topical friends to(t, x) O(n ∗m)
√ √

Neighborhood N2(x) O(n ∗m)
√

−
Followers of followers Nd(x) O(n ∗m)

√
−

Avg followers of followers fi(x) O(n ∗m)
√

−

Table 4.1: Overview of attributes.

4.3 Target attributes

Target attributes are attributes that we would like to predict. In our case, we
would like to predict the attributes that contribute to Definition 2 and Defini-
tion 3. Specifically, for Definition 2 we would like to predict the probability that
a message from a user generated a high number of clicks, and for Definition 3
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we would like to know the the attributes of a user that generated a high number
of retweets on his or her messages.

4.3.1 Click analytics

This metric is our ground truth for influence as defined by Definition 2. For all
messages in the topic graph, we looked for the occurrence of hyperlinks that
are wrapped with t.co and link to a bit.ly address (see Section 2.7). These
messages are relatively rare, but give a solid measure of influence of the person
sending the message. For all of these messages, we have retrieved the number of
clicks from bit.ly that originate from the t.co location, and thus the original
message. It should be noted that retweets do not alter the t.co link, so clicks
include those who originate from retweets of the message.

When targeting this attribute, we only consider the people that have sent
at least one message with such a link. We also reasoned that it is preferable to
consider persons which have a consistent number of clicks, so we also measure
standard deviation of click data, to determine stability.

1. Total clicks: c(t, x) =
∑
c∈Ctx

|clicks(c)|, where clicks(c) is the function that

returns the number of clicks on link c.

2. Mean clicks per message: c(t, x) =
1

|Ctx|
∗ c(t, x).

3. Mean clicks per message, per 1000 followers: cpm(t, x) = c(t, x)/
|Ix|
1000

.

4.3.2 Retweets and mentions

Earlier papers use retweets and mentions as an indication of influence. So for
comparison, we will also use retweet and mention target attributes as defined
in Section 4.2.2 to test influence based on Definition 3. In [8], mentions and
retweets were found to have a high correlation; we will use this observation by
considering a mention as just as important as a retweet. So we let:

1. Total topical mentions: m(t, x) =
∑
i∈Tt

|{j ∈ Mti : x ∈ mentions(j)}|,

where mentions(j) is a function that extracts the set of users mentioned
in messages j.

2. Total global mentions: m(x) =
∑
i∈G

|{j ∈ Mi : x ∈ mentions(j)}|, where

mentions(j) is a function that extracts the set of users mentioned in
messages j.

3. Mean topical retweets per message: rt(t, x) =
1

|Mtx|
∗
∑

m∈Mtx

|Rm|.
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4. Mean global retweets per message: rt(x) =
1

|Mx|
∗
∑

m∈Mx

|Rm|.

5. Mean topical retweets per message, per 1000 followers: rpm(t, x) = rt(t, x)/
|Ix|
1000

.

4.3.3 Correlation between clicks and retweets

Before we try to extract significant attributes with clicks and retweets as target
attributes, it would be interesting to find out whether there is a correlation
between clicks, retweets and mentions. In Table 4.2, we see the Pearson cor-
relation (see Section 4.4.1) between these attributes and find similar values as
in the Twitter research by Cha et al. [8]: mentions and retweets seem to
be highly-correlated. Additionally, there is less correlation between clicks and
retweets, and clicks and mentions, although there seems to be some indication
that in certain topics, retweets and mentions might have a relation with clicks.

Politics Tech Obama

Clicks vs RT 0.27 0.09 0.57

Clicks vs Mention 0.33 0.05 0.44

RT vs Mention 0.62 0.54 0.60

Table 4.2: Correlation between target attributes.

4.4 Extracting significant attributes

Before we start analyzing the relation between our target attributes and our
source attributes in Section 4.5, we can benefit greatly from reducing the num-
ber of source attributes to only attributes that contribute to explaining the
target variables, because this allows for easier interpretation of the eventual
model and removes redundant attributes. This process is called attribute filter-
ing and we will consider several types. To assist us in this process, we will use the
WEKA [18] toolset. WEKA (“Waikato Environment for Knowledge Analysis”)
is a comprehensive set of data-mining tools, which allows for easy experimen-
tation with a dataset like ours. We have used two algorithms to extract the
most significant attributes from the total set of attributes: CfsSubsetEval and
Principal Component Analysis (PCA).

4.4.1 Attribute correlations

To get more information on the exact relations between the attributes and tar-
gets, we will use the Pearson product-moment correlation coefficient (also called
Pearson’s r) on the attributes we have described. Pearson’s r takes value in the
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range [−1, 1], where −1 indicates a perfect inverse correlation, +1 a perfect cor-
relation, and 0 no correlation. We calculate the correlation between each of the
23 attributes from Section 4.2, resulting in a (symmetric) correlation matrix,
which indicates the correlation strength and direction of all attributes. The ta-
bles for the topics “Obama”, “Tech” and “Politics” can be seen in respectively
Tables A.1, A.2 and A.3.

We noticed that overall the correlations are low; what to consider an ac-
ceptable correlation is dependent on the context, or the research and the field
of science; in fields such as biology, chemistry, etc. correlations of 0.95 can be
considered weak, while in the social sciences correlations higher than 0.5 are
considered strong [11]. The main cause is imperfect measuring equipment (data
noise) and the complexity of the experiments. Human behavior is very hard to
predict and while our 23 attributes should provide a good indication, they are
by no means a complete representation, and exact behavior could be influenced
by many other factors, such as sentiment, country, time of day, outside weather,
etc.

It should be noted that these are correlations on the entire topic datasets,
including the users who have no click data. This means that the correlation
of the clicks are very skewed towards 0. Therefore, we have also included the
correlation of the clicks attributes for only users with click data available. From
this we can see the strongest correlation with regards the target of average
clicks is with average topical retweets. This indicates there is a strong relation
between the number of topical retweets a message receives and the number
of times a message is clicked. Also, all attributes relating to the number of
followers are correlated: Topical PageRank, PageRank, Mentions, Followers
and Audience all have strong correlation.

4.4.2 CfsSubsetEval

CfsSubsetEval [17] evaluates the value of a subset of attributes by considering
the predictive ability of each attribute. It also tries to minimize the amount of
redundancy between the attributes, thus giving a subset of attributes with high
correlation with the target attribute, but low inter-correlation. This offers an
insight into which attributes are important, yet does not tell anything about
which feature is most important or the exact relation with target attribute.
The results of this analysis can be seen in Table 4.3. Cfs in CfsSubsetEval is an
acronym for Correlation based Feature Selector. Hence, the indicated merit is
the measure of correlation between the composite of the attribute subset and
the target variable.

We can see that for click data, the HITS hub score h(x), number of followers
|Ix| and global retweets rt(x) and mentions m(x) are the only popularity at-
tributes. The other attributes are related to the relation of the user’s followers
relation to the topic, rather than the relation of the user him-/herself with the
topic. A combination of these two types is represented in the average topical
retweets rt(t, x), which represents popularity of topical messages, which are
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Topic Target Merit Selected attributes

Politics c(t, x) 0.745 ti(t, x) h(x), fr(t, x), rt(t, x)

Politics rt(t, x) 0.360 p(x), ti(t, x)

Tech c(t, x) 0.458 h(x), fr(t, x), rt(t, x)

Tech rt(t, x) 0.454 a(t, x), p(x), ti(t, x), rt(x)

Obama c(t, x) 0.671 h(x), |Ix|, rt(x), rt(t, x), m(x)

Obama rt(t, x) 0.403 a(x), p(x)

Premier League c(t, x) 0.466 ti(t, x), fr(t, x), m(x), rt(t, x)

Premier League rt(t, x) 0.537 tpr(t, x), h(x), a(x), p(x), p(t, x), m(x),
rt(x)

Table 4.3: Results of CfsSubsetEval on topics.

apparently well received by the followers of the user. When we target retweets
instead, we again see the combination of topical and popularity attributes. In
these cases, we mainly see PageRank p(x), global retweets rt(x) and HITS
authority a(x) as the popularity attributes, and topical followers ratio ti(t, x)
as a measure of topical interest.

Taking into account the various correlations found in Section 4.4.1, we can
now filter our original list of attributes into the most significant attributes to
explain the variance in the dataset. We have taken into account the frequency of
occurrence of the attributes and their correlation found earlier in Section 4.4.1.

The most significant attributes were found to be:

• Authority a(x)

• Hub h(x)

• Global PageRank p(x)

• Ratio of topical followers ti(t, x)

• Follower ratio fr(t, x)

• Average retweets rt(x)

• Average mentions m(x)

• Average topical retweets rt(t, x)

4.4.3 Principal Component Analysis

To expand on the attribute correlations in Section 4.4.1, we will also perform
Principal Component Analysis (PCA) on the given attributes. PCA is a statis-
tical method introduced by Pearson [39] which uses orthogonal transformations
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to convert our attributes into a set of uncorrelated variables (principal compo-
nents). The number of principal components is less than the number of original
attributes, thus creating a linear combination of attributes that are correlated.
Note that while the CfsSubsetEval method used in Section 4.4.2 is optimized
using a target attribute, PCA does not have the notion of target attributes.
It purely tries to minimize variance in the dataset by analyzing the source
attributes and generate a set of new (composite) attributes.

We can use the principal components to explain the variance in the source
attributes. In all topic graphs we found a common pattern: the principal com-
ponent with the highest eigenvalue was always related to the popularity of the
user. This includes the number of followers, mentions, retweets, PageRank,
etc. For example, for the topic “Politics”, this component is defined as follows:

0.313a(t, x) + 0.308a(x) + 0.305p(x) + 0.302|Ix|+ 0.293N2(x) + 0.287Nd(x)

+0.282p(t, x) + 0.261tpr(t, x) + 0.22rt(t, x) + 0.179m(t, x) . . .

This principal component will be labeled the popularity component.
When looking at the other significant components, we also consistently

found a principal component which is related to the topic use of the user and
even more so, the topic use of his/her followers. Common attributes are topical
ratio, frequency, average follower topical ratio, topical PageRank and aver-
age topic follower. This indicates that at least a portion of the variance in
the dataset can be explained by looking at the topic of the messages and the
consistent use of this topic by the user and his/her followers.

Again, from the “Politics” dataset:

0.452ff (t, x) + 0.451fr(t, x) + 0.358ti(t, x) + 0.355fi(t, x) + 0.283r(t, x)

+0.262|Mtx|+ 0.179tpr(t, x) + 0.179h(t, x) . . .

This principal component we will label as the topical component.

In this section we have learned that we can reduce the number of attributes by
using correlation-based algorithms. Furthermore, by using PCA, we have dis-
covered there are a range of topical attributes that are relevant to the variance
in the dataset.

4.5 Explaining target attributes

The final step in the analysis is using the (significant) attributes that we re-
trieved in Section 4.4 to explain the target attribute variance. This is the main
goal of this research: identify which attributes contribute to our definitions
of topical influence. This type of problem is also called classification: Which
attributes classify the value of the target attribute?

This idea is frequently used to analyze customer behavior. For example, we
might have an attribute that indicates whether a customer has bought a certain
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product, and a list of attributes that contains properties of the customer: age,
income level, sex, postal area, education, etc. In this scenario, we would like
to know what the attributes of our buyer most likely are, so we can recognize
them. In the case of the current research, we want to identify the most likely
attributes of the person with high influence. It might for example be classified
by followers, PageRank and topical ratio.

The attributes we will use for this classification are determined by our results
from Section 4.4. We have the following two scenarios:

• Using the attributes as indicated to be significant in the CfsSubsetEval
in Section 4.4.2.

• Using the principal components as generated during PCA in Section 4.4.3.

These two sets of attributes are suitable because Langley and Sage stipulate
that in the training of naive Bayes classifiers, no redundant attributes should be
used in order to achieve maximal predictive performance [30]. The algorithms
used to remove the redundancy between attributes should therefore allow us to
generate better results.

There are many known algorithms with varying strengths and weaknesses
for this particular problem set. Most commonly, there are decision trees, which
give a predicted output based on the evaluation of a tree structure. This allows
for dependency of attributes. The actual evaluation done at the node level,
as well as the generation of the tree, is subject to many different algorithms.
Modern algorithms such as Random Forests [7] even use many decision trees
(hence the name forest) and take the mode of the trees. We however, have
one additional demand for an algorithm: the resulting classifier must be easily
interpretable. That is, it should be able to explain the relation between the
attributes and the classifier clearly and easily.

4.5.1 Naive Bayes classifier

Another class of classifiers are known as naive Bayes classifiers. These models
are based on Bayes’ theorem [3] which stipulates how to interpret the probabil-
ity of a certain target attribute based on the probabilities of one or more source
attributes. More specifically, this algorithm uses a probability model that posits
that the occurrence of the target attribute is a function of probabilities of the
source attributes. It is a supervised machine learning algorithm, which means
that there is a training before we can test the classifier. During training, a
prediction of the attributes values is made. Usually, a normal (Gaussian) dis-
tribution is used to estimate these values. During testing, the source attributes
of the unseen instance are used to calculate the probability of the different pos-
sible outcomes of the target attributes. The instance is then classified as the
class that has the largest probability.

What makes this classifier naive is that it assumes independence of vari-
ables. This means that all attributes directly contribute to the probability of
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the outcome, regardless of any dependence between variables. For example, the
probability of an object being a car, given the number of wheels, weight, size,
material, etc, is (naively) assumed to be determined by all of these variables
uniformly, with no dependence between them. Even though in reality, weight
might very well be dependent on material and size. The advantage is that the
model is very simple, the outcome easily interpretable, and the algorithm can
be quickly evaluated even on large datasets. Despite its simplicity, it has been
shown to have good results relatively complex applications such as e-mail clas-
sification, intrusion detection, pattern recognition and document classification.

First, we tried to classify the average clicks (c(t, x)) and average clicks per
1,000 followers (cpm(t, x)) by using a naive Bayes classifier. Our aim is to
minimize the error made in classification, yet keep the solution simple. 10-fold
cross validation is used to test the results of the classifiers. We will use Cohen’s
kappa κ [10] as our measure of error. This statistic takes into account the chance
of random assignment to any class of the target attribute, and the measure
indicates all possibilities between completely random assignment (κ = 0) or
a completely accurate assignment (κ = 1). Because there is no consensus on
what level of κ should be considered significant, we only use it to compare
the different classifiers in the current research and will not assign a subjective
significance to specific scores. Also, we will show the confusion matrix where
the predictions of the classifier are shown against the actual class of the test set
instances. This will be useful in determining whether a specific class of target
attributes are difficult to predict.

First, we use binning to separate the target attribute into 4 possible classes
(denoted by a,b,c,d, in ascending order), for target ln(1 + c(t, x)). The results
on the filtered attributes from Section 4.4.2 on “Politics” resulted in a classifier
with κ = 0.4465 and the following confusion matrix:

a b c d <-- classified as

71 9 2 0 | a = ’(-inf-2.114378]’

28 21 6 0 | b = ’(2.114378-4.228757]’

2 12 23 5 | c = ’(4.228757-6.343135]’

0 0 3 4 | d = ’(6.343135-inf)’

Next, we try the same classification target attribute, but now using the two
PCA attributes from Section 4.4.3. This results in a classifier with κ = 0.238
and confusion matrix:

72 6 4 0 | a = ’(-inf-2.114378]’

39 5 11 0 | b = ’(2.114378-4.228757]’

11 10 19 2 | c = ’(4.228757-6.343135]’

0 1 5 1 | d = ’(6.343135-inf)’

When testing attributes on “Tech”: κ = 0.401

a b c d <-- classified as
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215 16 0 0 | a = ’(-inf-2.64126]’

66 69 21 0 | b = ’(2.64126-5.28252]’

3 30 9 6 | c = ’(5.28252-7.923781]’

0 2 4 0 | d = ’(7.923781-inf)’

When testing PCA on “Tech”: κ = 0.2165

a b c d <-- classified as

193 24 4 0 | a = ’(-inf-2.64126]’

83 31 31 3 | b = ’(2.64126-5.28252]’

19 11 12 3 | c = ’(5.28252-7.923781]’

1 2 3 0 | d = ’(7.923781-inf)’

When looking at the classifier results on “Politics” in Table 4.6, we find that
there is a positive influence from attributes such as PageRank, HITS and
global retweets, but an only slightly increasing influence of topical attributes
such as topical ratio of followers. However, we see that average topic retweets
rt(t, x), being a measure of both popularity as topicality, has a consistent up-
ward moment towards the higher classes. We see a similar pattern when using
PCA attributes in Table 4.4, where clicks increase with popularity, while topical
has a constant, somewhat erratic behavior.

From looking at the results on “Tech” in Table 4.7, we see an even more
interesting topical pattern: while popularity attributes such as PageRank and
HITS are still increasingly important, the topical attributes in this dataset have
a negative relation to the number of clicks. Also, average topic retweets rt(t, x)
shows the same positive influence pattern as in “Politics”. When using PCA on
the same dataset, we can see from Table 4.5 that it follows the same pattern:
topical attributes are more important in the lower two classes than in the higher
two.

When testing the influence of Definition 3, or the influence of retweets, we
found very similar patterns. As one can see from Table 4.8, the topical attributes
follow a similar, erratic behavior with large standard deviations. The classifier
has an accuracy of κ = 0.3961, and the confusion matrix was found to be:

a b c d <-- classified as

884 67 0 3 | a = ’(-inf-2.092772]’

167 126 21 9 | b = ’(2.092772-4.185544]’

32 55 26 19 | c = ’(4.185544-6.278316]’

1 11 6 6 | d = ’(6.278316-inf)’

4.6 Conclusion

Concluding, it was very difficult to find a reliable, easy to understand metric,
especially for the higher classes of clicks and retweets. Also we could not find
a direct topical relation between clicks or retweets in any of the topic graphs.
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We even found a (very weak) negative relation between most of the user’s
topical attributes. However, we can see that one of the most linearly increasing
attributes is average topical retweets rt(t, x), an attribute that is related to
both popularity as well as topicality.

PC 0 1 2 3

Popularity −0.9923 0.1851 2.4967 6.5570

Topical 0.3335 0.7875 0.8005 −0.8308

Table 4.4: NBC on Politics PCA.

PC 0 1 2 3

Popularity −0.1874 1.0652 1.9453 4.3041

Topical 1.6119 0.5065 −0.4157 −1.4424

Table 4.5: NBC on Tech PCA.
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Attribute 0 1 2 3

fr(t, x)

mean 0.0129 0.0179 0.0201 0.0071

std. dev. 0.0203 0.0251 0.0238 0.0040

a(x)

mean 0.0001 0.0002 0.0008 0.0019

std. dev. 0.0001 0.0003 0.0006 0.0008

h(x)

mean 0.0001 0.0001 0.0002 0.0003

std. dev. 0.0002 0.0002 0.0002 0.0003

p(x)

mean 0.0001 0.0002 0.0005 0.0014

std. dev. 0.0001 0.0002 0.0004 0.0012

ti(t, x)

mean 0.3489 0.3908 0.3829 0.2513

std. dev. 0.2056 0.2398 0.2215 0.0901

rt(x)

mean 0.0069 0.0229 0.0831 0.2753

std. dev. 0.0166 0.0359 0.0824 0.2826

m(x)

mean 0.0147 0.0540 0.1421 0.3464

std. dev. 0.0267 0.0611 0.1230 0.3270

rt(t, x)

mean 0.3294 6.5952 35.6487 144.4324

std. dev. 1.0783 8.9119 36.0996 165.8723

Table 4.6: NBC on attributes from “Politics”.
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Attribute 0 1 2 3

fr(t, x)

mean 0.0309 0.0185 0.0118 0.0075

std. dev. 0.0252 0.0133 0.0100 0.0047

a(x)

mean 0.0000 0.0002 0.0004 0.0009

std. dev. 0.0001 0.0003 0.0004 0.0013

h(x)

mean 0.0001 0.0001 0.0001 0.0001

std. dev. 0.0001 0.0002 0.0001 0.0002

p(x)

mean 0.0001 0.0001 0.0003 0.0006

std. dev. 0.0001 0.0002 0.0002 0.0010

ti(t, x)

mean 0.7166 0.6388 0.5218 0.4094

std. dev. 0.2345 0.1991 0.2232 0.2061

rt(x)

mean 0.0052 0.0295 0.0590 0.0583

std. dev. 0.0116 0.0488 0.1067 0.0828

m(x)

mean 0.0354 0.1062 0.2665 0.1742

std. dev. 0.0653 0.2671 0.4972 0.2195

rt(t, x)

mean 0.3675 9.8398 41.1162 129.9801

std. dev. 0.8230 20.4164 85.0027 104.1415

Table 4.7: NBC on attributes from “Tech”.
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Attribute 0 1 2 3

fr(t, x)

mean 0.0143 0.0102 0.0059 0.0040

std. dev. 0.0262 0.0148 0.0057 0.0027

a(x)

mean 0.0001 0.0006 0.0013 0.0017

std. dev. 0.0002 0.0007 0.0012 0.0011

h(x)

mean 0.0001 0.0002 0.0002 0.0002

std. dev. 0.0002 0.0002 0.0002 0.0002

p(x)

mean 0.0001 0.0004 0.0009 0.0014

std. dev. 0.0002 0.0005 0.0010 0.0012

ti(t, x)

mean 0.3510 0.2870 0.2419 0.1931

std. dev. 0.2411 0.1787 0.1342 0.1077

rt(x)

mean 0.0100 0.0618 0.1333 0.1937

std. dev. 0.0250 0.1343 0.1679 0.1373

m(x)

mean 0.0466 0.1796 0.3654 0.2820

std. dev. 0.0829 0.2813 1.2376 0.1756

Table 4.8: NBC on attributes from “Politics”, targeting topical retweets.

48



Chapter 5

Composing a metric

Because we had a demand of using only easily interpretable classifiers, we can
now start using the results from Section 4.5.1 and the most important attributes
from Section 4.4 to build composite attributes that explain a significant amount
of the target attributes. Feeding this new composite attribute back into the
analysis explained in the previous chapter, gives us a predictor for influence
we can then use on each and every user to give an indication of their topical
influence.

The results from PCA in Section 4.4.3 give us a first indication of the ratio
and combination of the attributes selected in Section 4.4.2. We identify two
major components in the PCA attributes: the popularity attributes and the
topical attributes, which include the topical attributes of the direct neighbor-
hood. We interpret these principal components into the following two composite
attributes for given user x and topic t, in which all attributes are standardized:

POPULAR 0.4 ∗ p(x) + 0.3 ∗ a(x) + 0.3 ∗m(t, x)

TOPICAL 0.3 ∗ r(t, x) + 0.35 ∗ ti(t, x) + 0.35 ∗ fr(t, x)

The factors of the attributes are estimated from the eigenvalues in the princi-
pal components, but in future work can be optimized by using machine learning
algorithms.

5.1 Feedback loop

The first way we tested these attributes is by using the same approach as in
Section 4.5.1: training a naive Bayes classifier with these two attributes instead
of the original set of attributes. On the “Politics” topic, this resulted in a
classifier with κ = 0.3169. This classifier, the properties of which are shown in
Table 5.1, is thus slightly more accurate than the model we gathered from the
original set of filtered attributes, while being significantly simpler to interpret.
What is also interesting is that the same characteristics of the original set
still holds: while the topical attributes show a somewhat constant distribution,
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the popular attribute clearly shows an increasing value towards the higher click
classifications. When plotting the parameters of the classifiers in Figure 5.1, this
trend can clearly be seen, although standard deviations are generally high. The
classifier for the “Tech” topic, which can be found in Table 5.3, also maintains
the same properties, although the classifier in this case is weaker than the
original, with κ = 0.2019. We did not include the model for the topic “Tech”
on the target of cpm because it was very unreliable: with κ = 0.0330, results
where only slightly more accurate than random assignment. However, the cpm-
based classifier for “Politics” was more accurate with κ = 0.1295. The classifier
(Table 5.2) shows the positive relation with topic, while the popular metric
changes to nearly constant. This trend can be seen in Figure 5.2.

Attribute 0 1 2 3

TOPICAL

mean 0.0636 0.3144 0.4168 0.0254

std. dev. 0.7157 1.0795 1.1530 0.7204

POPULAR

mean −0.3318 −0.1469 0.4865 2.0915

std. dev. 0.1324 0.3794 0.6886 2.3682

Table 5.1: NBC on composite attributes on “Politics” c(t, x).

Attribute 0 1 2 3

TOPICAL

mean −0.0691 −0.0921 0.2659 0.4494

std. dev. 0.4615 0.3748 0.9870 1.2149

POPULAR

mean −0.2999 −0.2770 0.1728 −0.0103

std. dev. 0.1470 0.2305 1.0340 0.5689

Table 5.2: NBC on composite attributes on “Politics” cpm(t, x).

5.2 Ranking correlations

The second method we used to test these metrics is by using Kendall’s rank cor-
relation τ [24] to compare the rankings produced by our attributes, with those
from PageRank, Topical PageRank and in-degree in Table 5.4. This is sim-
ilar to one of the evaluation used in TwitterRank [47]. This shows the relation
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Attribute 0 1 2 3

TOPICAL

mean 0.6059 0.2029 −0.1240 −0.4018

std. dev. 0.9297 0.7831 0.5256 0.2764

POPULAR

mean −0.1705 0.1595 0.4971 1.5374

std. dev. 0.3171 0.6643 0.7103 3.0082

Table 5.3: NBC on composite attributes on “Tech” c(t, x).

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1  0  1  2  3  4

Topical

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

-1  0  1  2  3  4

Popular

Figure 5.1: Topical (left) and Popular (right) distribution on “Politics”. Average
with standard deviation shown per class of c(t, x) (0-3).

between the attributes we have composed and some of the more traditionally
used metrics. It can be seen that the rankings produced by POPULAR are
largely correlated with the pure popularity measure of , whereas TOPICAL is
much more aligned with topic-sensitive PageRank. In this way, the combina-
tion of POPULAR and TOPICAL have similar characteristics as TwitterRank.

5.3 Optimizing the metric

Finally, we decided to use an optimization algorithm to find an optimal com-
position of the attributes selected by CfsSubsetEval in Section 4.4.2 that maxi-
mizes the Kappa score. To this purpose, we have implemented a simple genetic
algorithm [21], which is an approximation algorithm based on the theory of
evolution. Genetic algorithms, in their simplest form, emulate the way nature
uses evolution to incrementally improve a population of candidate solutions
by random mutation and crossover through reproduction. They use a fitness
function f(x) as an indicator of the quality, and also the probability of survival
of a candidate solution x (also called an “individual”). The major steps of the
algorithm are:

1. Initialize population P0 with n individuals
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Figure 5.2: Topical (left) and Popular (right) distribution on “Politics”. Average
with standard deviation shown per class of cpm(t, x) (0-3).

Tech Politics

PR vs In-Degree 0.7642 0.7554

PR vs TPR 0.5438 0.6147

POPULAR vs PR 0.8319 0.8610

POPULAR vs TPR 0.5291 0.6083

TOPICAL vs PR −0.0800 0.0001

TOPICAL vs TPR 0.3154 0.3453

Table 5.4: Kendall τ of several metrics.

2. For generations g = 0, 1, 2, . . . , n, evaluate population ∀x ∈ Pg : f(x)

3. Select two individuals a, b from Pg, preferring fit individuals

4. Reproduce a, b into individuals c, d, using mutation and/or recombination
and add them to population Pg+1

5. Until some stop criterion s is met, repeat steps 2 through 4.

Our individuals consist of two composite attributes, composed of a total of n
attributes, connected linearly with a weight for each of the attributes in the
range [0, 5] (e.g., 4∗a(x)+3∗p(x) is an an attribute of an individual composed
of attributes a(x) with weight 4 and p(x) with weight 3). As the fitness measure,
we have continued using Cohen’s kappa κ, the metric we have been using for
the evaluation of all classifiers since Section 4.5.1. We have used both naive
Bayes classifiers as well as C4.5 decision trees [40] as classifiers that produce
the kappa metric, and selected the classifiers with the highest kappa.

We have limited our genetic algorithm to use only mutation. The first type
of mutation occurs on the level of the individual by mutating the distribution
of number of attributes in the composites, with p = 0.05 (e.g., an individual
with one composite attribute of 3 attributes and one composite attribute of 4
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attributes might mutate to an individual with composites of respectively 1 and
6 attributes). The second, with probability p = 0.1, happens on the level of
attributes which mutates both the weight and the selected attribute.

Type κ Composite 1 Composite 2

Politics rt(t, x) C4.5 0.467 3 ∗ rt(x) 4 ∗ a(x) + 1 ∗m(x)

Politics c(t, x) C4.5 0.663 4 ∗ rt(t, x) 4 ∗m(x) + 2 ∗ h(x) + 1 ∗ rt(x)
Tech rt(t, x) C4.5 0.469 4 ∗ p(x) 4 ∗ rt(x) + 1 ∗ a(x)
Tech c(t, x) C4.5 0.661 3 ∗ rt(t, x) 4 ∗m(x) + 4 ∗ rt(t, x)

Tech c(t, x) w/o rt(t, x) C4.5 0.444 2 ∗ rt(x) 4 ∗ ti(t, x) + 3 ∗m(x) + 2 ∗ a(x)
Politics c(t, x) w/o rt(t, x) C4.5 0.458 2 ∗m(x) 4 ∗ a(x) + 3 ∗ rt(x) + 3 ∗ h(x)

Table 5.5: Composite metrics

To first find the optimal number of attributes that keep increasing the fitness
of the best solution, we first ran the algorithm with several maximum number
of attributes n, starting at n = 2. The results in Figure 5.3 and Figure 5.4 show
that when targeting both average retweets rt(t, x) as average clicks c(t, x), the
number of attributes that contribute to the best classifier are limited to four
attributes in total.

The optimal composites as seen in Table 5.5 clearly show the influence
of topical retweets. There are some popularity metrics such as h(x) and m(x).
These popularity attributes are even more pronounced when we want to explain
rt(t, x). Also, the models for rt(t, x) are far less accurate than the models for
c(t, x). In our observation, this is due to the large accuracy improvement the
topical retweets provide. When removing rt(t, x), the accuracy of the classifier
decreased to 0.444 — 0.458, as can be seen in the last two rows in Table 5.5,
and consisted mostly of popularity attributes such as global retweets, HITS
authority, global mentions. It seems the addition of topicality to the retweet
interactions is accountable for most of the improvement beyond the popularity
attributes.

Concluding, in this chapter, we have experimented with several compositions of
the attributes that were found to be relevant in the previous chapter. We first
found classifiers that relied mainly on popularity attributes. However, when
using optimization techniques on the composite attributes, the average topical
retweets was found to be the most important attribute, that improved the
previous classifiers significantly. Together with some popularity attributes, it
produced classifiers that were better than the classifiers in the original attribute
space in Section 4.5.1.
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Chapter 6

Conclusion

In this report, we have conducted a data-mining experiment on the social net-
work Twitter, with the purpose of discovering the topical relations that tie
users in the network. After collecting a subsample of the social graph using
a Forest Fire algorithm and investigating it empirically, we first divided the
graph into topical subgraphs by analyzing the use of certain predefined top-
ics. The following data-mining process consisted of filtering and classifying the
graph based on a large number of attributes of Twitter users. This showed
us that the attributes based on topical content are much less important than
the popularity when looking at the number of clicks they generated on posted
links. However, the attribute of topical retweets was found to be predominant
in all classifiers that were found. This attribute is a combination of popularity
and topicality and seems correlated to the number of clicks in a certain topic.
Note that this research is only meant to indicate correlation, and only suggests
a relation between the attribute(s) and our specific definition of influence. The
causation of the relation might have other reasons than the purely correlated
attributes.

We believe that this is in accordance with and expands on earlier work. Bak-
shy et al. [1] found that the number of followers does not represent influence in
the spreading of messages, and that large retweet cascades are originated mostly
from many “less connected” ordinary users. Our finding that clicks correspond
to high topical retweets, support this finding in that popularity is secondary to
on-topic retweets and that the ability to generate topical activity is primary.
Romero et al. [41] add that influence is determined by activity of followers,
instead of passive attributes such as followers. This is confirmed by the fact
that topical retweets are an activity from followers and not a passive metric
such as followers or topical interest. Cha et al. [8] also suggest that followers
are not the most important metrics, but content value is. Also they conclude
that this influence is built over time. We believe topical retweets are an indi-
cation of content that fits well with the user’s audience, which has been built
over time, thus being a metric for both popularity, community and persistent
content value.

In future work, we would like to use the methods used in this paper on a
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larger scale to verify the results and investigate the patterns over time on the
features we introduced (or other features that we have not considered). When
verified, the results may be used in generating topical rankings based on the
features that proved to be relevant. Among features we have not considered,
time-based features (e.g., average follower growth, retweet average per month,
etc.) would be an interesting addition to the current research. We could also
see an influence ranking application (like Klout) use some of the methods to
verify the significance of their influence signals.

Concluding, when looking for topical influence, we believe it is most helpful
to primarily investigate the interactions the user causes on his topical mes-
sages, especially regarding retweets. Only then should popularity be taken into
account.
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