
Roy Kensmil Page 1 6/20/2013

Page 1 of 16

Modeling Kahn Process Networks in the
Dynamic Dataflow Formalism
Roy Kensmil
Leiden Institute of Advanced Computer Science (LIACS),
Leiden, The Netherlands
rkensmil@liacs.nl

ABSTRACT

In this paper an overview will be given of the processes and tools used to express Khan Process Networks generated by the
Compaan Tool chain in the Dynamic Dataflow model of Ptolemy II.

General Terms
 Embedded Systems Design, Computer Science

Keywords
Process Networks, Kahn Process Networks, Ptolemy II, Dynamic Data Flow, Synchronous Data Flow, Cloog, Threading,
Scheduling

1. INTRODUCTION

Compaan [1] is an effort to automatically compile a subset of imperative programs into a concurrent representation. Compaan
uses Matlab language as the imperative language and compiles programs in this language into a concurrent representation: a
particular version of Process Networks, Kahn Process Networks [2].
Kahn process Networks that have been generated by the Compaan compiler need to be made accessible in such a way that the
results can be analyzed by means of visualization and simulation. To perform simulation and analysis on the process network
the Ptolemy II [3] framework is used.
The Ptolemy II is a software framework that can be used for modeling, simulation, and design of concurrent, real-time
embedded systems. PtolemyII offers the possibility to simulate and visualize the process networks based on specifications
according to a chosen computation model.

Compaan generates the network description in MoML, which is a modeling markup language based on XML used in
Ptolemy II for specifying interconnections of parameterized components. The process generation step in this case, generates
the Ptolemy II actors in the PN-domain. A MoML description can be executed as an application using a command-line
interface or as a visual rendition in the Ptolemy II block diagram editor Vergil.

Figure 1 :An Example of a simple network with 3 nodes

Roy Kensmil Page 2 6/20/2013

Page 2 of 16

In the MoML description of the network the following code is specified:

<entity name="ND_1" class="wild.ND_1">
 <property name="ehrhart" class="ptolemy.data.expr.Parameter" value=""></property>
 <port name="ND_1OP_1" class="ptolemy.actor.TypedIOPort"></port>
</entity>

<entity name="ND_2" class="wild.ND_2">
 <port name="ND_2IP_1" class="ptolemy.actor.TypedIOPort"></port>
 <port name="ND_2IP_2" class="ptolemy.actor.TypedIOPort"></port>
 <port name="ND_2OP_1" class="ptolemy.actor.TypedIOPort"></port>
 <port name="ND_2OP_1_d1" class="ptolemy.actor.TypedIOPort"></port>
</entity>

<entity name="ND_3" class="wild.ND_3">
 <port name="ND_3IP_3" class="ptolemy.actor.TypedIOPort"></port>
</entity>

In the generated java code the following functions for the actor ND_1 are specified in Figure 2:

public void initialize() throws IllegalActionException {
 super.initialize();
 boolean loaded = true;
 _returnValue = true;
}

/** fire the actor. */
public void fire() throws IllegalActionException
{
 System.out.println("START Node ND_1");
 for (int j = (int) ceil(1) ; j <= (int) floor(1) ; j += 1) {
 //Init(out_0) ;
 // Variable: a_1(j)
 ND_1OP_1.broadcast(new DoubleToken(out_0));
 } // for j
 System.out.println("FINISH Node ND_1");
}

/** post fire the actor. */
public boolean postfire() throws IllegalActionException {
 return false;
}

Figure 2 Java code for a simple actor

2. Problem Statement

Within the group the need has been expressed to expand the Compaan compiler with the ability to express the generated
process networks [4] in the PtolemyII Dynamic dataflow formalism [5]. To understand the need a short summary will be
presented with the differences between the KPN model and the DDF model. In the KPN model and DDF model each actor
has its own input and output ports connected to FIFO channels. The main difference lies in the usage of threads. In the KPN
model each actor is assigned to a separate thread. An actor in the KPN model can perform read or write operations. For a read
operation to complete successfully the required data must be available in the neighboring channel of the input port. If the data
is not available the actor will block on the read operation until data is available. For a write operation to complete
successfully the channel of an output port must be able to accommodate data. If the data cannot be accommodated the actor
will block until the channels have room to store data. A process network that uses this threading model has no control over
the scheduler of the threads since the operating system is responsible for scheduling the threads. Using the KPN-model, the
possibility exists that if one or more threads are blocked in a read or write operation the whole network can enter the
deadlock state permanently. Figure 3 contains a graphical description of a process generated by the Compaan compiler.

Roy Kensmil Page 3 6/20/2013

Page 3 of 16

Figure 3 graphical description of a process

The input ports are:

A: referred to as ND_3IP_1_in_0 in Figure 7
B: referred to as ND_3IP_2_in_0 in Figure 7

C: referred to as ND_3IP_3_in_1 in Figure 7
D: referred to as ND_3IP_4_in_1 in Figure 7
The output ports are:

E: referred to as ND_3OP_1_d1_out_0 in Figure 7
F: referred to as ND_3OP_1_out_0 in Figure 7
G: referred to as ND_3OP_3_out_2 in Figure 7

The workings of an actor can be depicted as a table described in Figure 4

A B C D E F G

0 1 0 1 0 1 1

0 1 1 0 0 1 1

0 1 1 0 0 1 1

0 1 1 0 0 1 1

0 1 1 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 0 1 1

Figure 4 Firing sequences of the actor in Figure 3

The value 0 in the table means that a port of an actor is in the inactive state and the value one means that the port of an actor
is the active state. In the inactive state no data is read from its neighboring channel. If there is a one supplied in the column
for an input port, the input port is in the active state. In the active state data is read from its channel.
One row of the table describes an execution cycle of an actor. A row of the table the displays the input ports and output ports
that will be active during an execution cycle are described. Given that the execution of the actor will start in row one the
actor will read data from the neighboring channels of input ports B and D and data will be output to the neighboring channels
of ports F and G. In the second execution cycle (described in row2) data will be read from neighboring channels of input
ports B and C and data will be output to neighboring channels of output ports F and G.

Roy Kensmil Page 4 6/20/2013

Page 4 of 16

Figure 5 and Figure 6 contain a graphical description of the first an second execution cycle of the actor.

Figure 5 firing during the fist execution cycle of the actor

Figure 6 firing during the second execution cycle of the actor

In the current implementation of the Compaan the table necessary to specify an actor’s execution is generated by programs
written in Matlab. These programs can generate a text file that contains the patterns of zeros and ones describing the state of
input and output ports during an execution cycle of an actor.

The text file for the actor described in Figure 3 has the following form:

ND_3IP_1_in_0_schedule: 20
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
ND_3IP_2_in_0_schedule: 20
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
ND_3IP_3_in_1_schedule: 20
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1
ND_3IP_4_in_1_schedule: 20
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0
ND_3OP_1_d1_out_0_schedule: 20
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1
ND_3OP_1_out_0_schedule: 20
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
ND_3OP_3_out_2_schedule: 20
1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,

Figure 8 Initialization code for an actor in the PN domain

Roy Kensmil Page 5 6/20/2013

Page 5 of 16

The name ND_ is used as a prefix for the names of the output and input ports. The first four ports are input ports and the last
3 are output ports. The value 20, next to the name of each output ports defines the number of execution cycles the actor has
to perform. An application making use of this text file must read the file in the following way:

• Input port ND_3IP_1_in_0_schedule has value zero meaning that it will be inactive
• Input port ND_3IP_2_in_0_schedule has value one meaning that it will be active
• Input port ND_3IP_3_in_1_schedule has value zero meaning that it will be inactive
• Input port ND_3IP_4_in_1_schedule has value one meaning that it will be active

• Output port ND_3OP_1_d1_out_0_schedule has value zero meaning that it will be inactive
• Output port ND_3OP_1_out_0_schedule has value one meaning that it will be active
• Output port ND_3OP_3_out_2_schedule has value one meaning that it will be active.

An application reads the text file column by column.

Each actor contains the initialize method. During the initialization of an actor in the process network the execution patterns
generated using Matlab are read from the text file and loaded into system memory. The code for this process is given in
Figure 8.

public void initialize() throws IllegalActionException {
 super.initialize();
 // Load the schedule program from file
 boolean loaded = loadProgram();
 N = ((IntToken) parameter_N.getToken()).intValue();
 K = ((IntToken) parameter_K.getToken()).intValue();
 _returnValue = true;
}

Figure 8 Initialization code for an actor in the PN domain

/** fire the actor. */
public void fire() throws IllegalActionException {
 for(int scheduleT = 0; scheduleT< 20; scheduleT++){
 System.out.println(" Node ND_3 value for scheduleT = " + scheduleT);
 if (ND_3IP_1_in_0_schedule[scheduleT] != 0) {
 in_0 = (new Double(((DoubleToken)ND_3IP_1.get(0)).doubleValue())).intValue();
 }
 if (ND_3IP_2_in_0_schedule[scheduleT] != 0) {
 in_0 = (new Double(((DoubleToken)ND_3IP_2.get(0)).doubleValue())).intValue();
 }
 if (ND_3IP_3_in_1_schedule[scheduleT] != 0) {
 in_1 = (new Double(((DoubleToken)ND_3IP_3.get(0)).doubleValue())).intValue();
 }
 if (ND_3IP_4_in_1_schedule[scheduleT] != 0) {
 in_1 = (new Double(((DoubleToken)ND_3IP_4.get(0)).doubleValue())).intValue();
 }
 // -- Function Call --
 // [out_0, out_1, out_2] = Vectorize(in_0, in_1);

 if (ND_3OP_1_out_0_schedule[scheduleT] != 0) {
 ND_3OP_1.broadcast(new DoubleToken(out_0));
 }
 if (ND_3OP_1_d1_out_0_schedule[scheduleT] != 0) {
 ND_3OP_1_d1.broadcast(new DoubleToken(out_0));
 }
 if (ND_3OP_3_out_2_schedule[scheduleT] != 0) {
 ND_3OP_3.broadcast(new DoubleToken(out_2));
 }
 }
}

Figure 9 code for the fire method of an actor of Figure 3 implemented in the PN domain

In the fire method of the actor the read and write operation are performed. Based on the values generated in the Matlab file
the actor will perform the pre specified number of iterations. Using the code sample specified in Figure 9 the problem of the
blocking read/write can be demonstrated. The number 20 in the ‘for loop’ specifies the number of execution cycles for the
actor. Notice the if statements specified for the input ports (ND_3IP_1_in_0_schedule, ND_3IP_3_in_1_schedule,

Roy Kensmil Page 6 6/20/2013

Page 6 of 16

ND_3IP_3_in_1_schedule, ND_3IP_4_in_1_schedule). If the ‘if statement’ evaluates to true a read operation will be
performed. But if there is no data available on the neighboring channel of the input port the operation of the actor will block
at this point in the execution until the data is available. For the output ports, the same problem the problem of blocking can
also occur. For the write ports there are also if statement specified. If a write port is active in an execution cycle and its
channel is full, the write action will block until the channel has space. The post fire method is only used to determine if the
actor has completed all executions.

/** post fire the actor. */
public boolean postfire() throws IllegalActionException {
 return false;
}

Figure 10 code for the postfire method of an actor in the PN domain

2.1 A strategy for implementing KPN expressed in the PtolemyII PN domain in the
PtolemyII DDF domain

The Dynamic Dataflow (DDF) domain is a superset of the Synchronous Dataflow (SDF) and Boolean dataflow (BDF)
domains. In the SDF domain, an actor consumes and produces a fixed number of tokens per firing. Hence scheduling is
performed only at compile-time . In the DDF domain, an actor could change the production and consumption rates after each
firing. The scheduler makes no attempt to construct a compile-time schedule; neither does it attempt to statically answer
questions about deadlock and boundedness, which are fundamentally undecidable. Instead, each actor has a set of sequential
firing rules (patterns) and can be fired if one of them is satisfied, i.e., one particular firing pattern forms a prefix of sequences
of unconsumed tokens at input ports. The scheduler dynamically schedules the firing of actors according to some criteria.
From the information provided in the previous section, it is clear that the Kahn Process Networks heavily rely on the thread
scheduling mechanism of an operating system. In DDF Domain the scheduling is done differently. As mentioned in the
previous paragraph, an actor in the DDF domain can dynamically schedule production and consumption before each firing.
Dynamically scheduling of the production and consumption rates provides the possibility to determine whether an input port
of an actor can receive data or not and whether the output ports of an actor can send data or not. If it is known beforehand
which actors should produce/consume data and which actors should not produce/consume data, the blocking reads and writes
can be prevented. During an iteration of the network, all actors in the network that have the capability to produce or consume
or both produce and consume data can be enabled to perform firings. Such a network does not require a separate thread for
each actor. The scheduling of the actors that are able to perform operations without causing a read or write block can be done
by one thread that functions like a scheduler.
In order to implement the actor executing in the PN domain as an actor running in the DDF domain, some of the properties of
the actors in the PN domain needed to be investigated more thoroughly. Since both the PN and DDF are part of the Ptolemy
II environment, the actors exhibit some of the same properties. In the DDF model, the execution of the actor is divided into
three states. It is now also known that in the DDF domain it is possible to dynamically schedule consumption rates of an
actor. Analyzing the file used for specifying the actors execution in the KPN domain, it can be concluded that actions
specified in Figure 7 can be used a basis for specification of variable consumption rates during the execution of an actor.
The actor’s execution in DDF can be divided into three states. These are the prefire, fire and postfire. The prefire state is
initial state of the actor. In the prefire state conditions can be specified such as the ports that that will be enabled to read or
write data. The fire state is the state in which the actors can send or receive data.
The postfire state is the state after the actor has completed the firing state. The postfire state is typically used for setting
variables and 'cleaning up'. Actions necessary to be performed in the postfire state are setting values of the ports that will be
disabled or enabled in the next iteration. In the postfire state it is also possible to indicate if the actor has completed all
execution cycles in order to reset global variables. In the next section, a detailed overview will be given on how to express a
sample application of a Kahn Process Network in the DDF formalism.

3. Solution approach

Roy Kensmil Page 7 6/20/2013

Page 7 of 16

In order to Expanding the Compaan compiler to generate Kahn Process Networks expressed in the DDF model, the complex
QRvr algorithm has been used. The QRvr algorithm [6] that has been provided for this project is a process network expressed
in the KPN formalism and executable under the PtolemyII PN formalism. In the following subsections an overview will be
given of:

1. the basic requirements for expressing a network in the KPN-formalism in the DDF formalism
2. Rewriting of a sample network in the KPN-formalism to a network expressed in the DDF formalism
3. Automating the process of conversion by making use of the ouput of Cloog.
4. Analyzing the output that Cloog [7] and automating the parameterization of the execution of the actors based on the

output of Cloog.

3.1 Basic requirements for expressing a network in the KPN-formalism in the DDF formalism

In order to express a Process Network in the DDF formalism, a few basic steps must be undertaken:

1. Replace the for loop construction as specified in the actors running under the PN domain by a set of global variables
which will control the execution.

2. Before an actor enters the fire state, the production and consumption rates of an actor must be set.

The changes proposed under point one can be realized by making use of the actors initialize, prefire and postfire methods.
From the name of the initialize function it is clear that this function can be used for initializing global variables and other
properties of the actor. In the case of an actor specified in the DDF domain the consumption pattern for the first cycle of the
actor’s fire method is set in the initialization method. The fire method of an actor specified in the DDF formalism should only
determine which input ports and output ports should be activated based on the consumption patterns set in the previous
iteration. As described earlier the post fire state of the actor is the state in which the actor enters after completing the firing
state. The post fire method of an actor expressed in the DDF formalism method is the method that will be used to set the
firing patterns (consumption/production rates) for the next firing cycle of an actor. Since the post fire state is the last state an
actor can enter during its execution, the loop variable for keeping track of the number firing cycles to be performed can be
incremented and a checked in this post fire state.

3.2 The QRvr example application

The code fragments in Figure 12, Figure 13 and Figure 14 show the code of the actor of the example QRvr application
expressed in the Ptolemy II PN domain. Figure 11 shows the input file used for activation or deactivation of input ports.

ND_2OP_1_d1_out_0_schedule: 25
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,1, 1, 1, 1

ND_2OP_1_out_0_schedule: 25
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,0, 0, 0, 0

Figure 11 Input file used to activate or deactivate input and output ports. The number 25 specifies the number of iterations an actor has to perform

public void initialize() throws IllegalActionException {
 super.initialize();
 // Load the schedule program from file
 boolean loaded = loadProgram();
 N = ((IntToken) parameter_N.getToken()).intValue();
 K = ((IntToken) parameter_K.getToken()).intValue();
 _returnValue = true;
}

Figure 12 initialization code for an actor in the PtolemyII PN domain

/** fire the actor. */
public void fire() throws IllegalActionException {

 for (int T = 0; T < 25; T++) {
 System.out.println(" Node ND_2 value for T = " + scheduleT);

 // -- Function Call --
 // [out_0] = Read();

Roy Kensmil Page 8 6/20/2013

Page 8 of 16

 if (ND_2OP_1_out_0_schedule[T] != 0) {
 ND_2OP_1.broadcast(new DoubleToken(out_0));
 }
 if (ND_2OP_1_d1_out_0_schedule[T] != 0) {
 ND_2OP_1_d1.broadcast(new DoubleToken(out_0));
 }
 }
 System.out.println("FINISH Node ND_2");
}

Figure 13 code for the fire method of an actor in the PN domain

/** post fire the actor. */
public boolean postfire() throws IllegalActionException {
 return false;
}

Figure 14 code for the postfire method of an actor in the PN domain

In this QRVR example application, the file generated by Matlab (figure11) is still used to determine which ports can read or
write data during iteration. The main difference between the code for an actor in the DDF domain lies in the execution of the
iterations of the actor. In the fire method, the only verification to be done is to determine which input port or output port is
enabled. The code fragments from Figure 15 until Figure 24 show how the example QRvr application has been rewritten to
execute in the PtolemyII data formalism.

public void initialize() throws IllegalActionException {
 super.initialize();
 // Load the schedule program from file
 patternCreator(scheduleT);
 _returnValue = true;
}

Figure 15 code for the initialization method of an actor in PtolemyII DDF domain

public boolean prefire() throws IllegalActionException {
 return true;
}

Figure 16 code for the prefire method of an actor in the PtolemyII DDF domain

 /** fire the actor. */
 public void fire() throws IllegalActionException {
 if(executionSetter()){
 System.out.println(" Node ND_2 value for scheduleT = " + scheduleT);

 if (testVariant1) {
 execVar1();
 if (_debugging) {
 _debug("fire OP1");
 }

 }
 else if (testVariant2) {
 execVar2();
 if (_debugging) {
 _debug("fire OP2");
 }
 }
 }
 System.out.println("FINISH Node ND_2");
 }
Figure 17 code for the fire method of an actor in the PtolemyII DDF domain

/** post fire the actor. */
public boolean postfire() throws IllegalActionException {

 if(testVariant1){
 testVariant2 = true;
 testVariant1 = false;
 }
 else if(testVariant2){

Roy Kensmil Page 9 6/20/2013

Page 9 of 16

 V2_j++;
 if(V2_j > loopMaxV2){
 V2_j = 2;
 V1_i++;
 if(V1_i > loopMaxV1){
 testVariant2 = false;
 endCheck = true;
 }
 else{
 testVariant2 = false;
 testVariant1 = true;
 }
 }
 }

 scheduleT++;
 if (_debugging) {
 _debug(" schedCheck "+ scheduleT);
 }

 if(executionSetter()){
 patternCreator(scheduleT);
 return true;
 }
 if (_debugging) {
 _debug(" Actor wrapup ");
 }
 return false;
}

Figure 18 code for the postfire method of an actor in the PtolemyII DDF domain

In the postfire method of the actors, the loop variable is incremented and the verification is done to determine if the actor
must stop executing.

public void patternCreator(int T_In) throws IllegalActionException {

 if(testVariant1){
 setVariant1();
 }
 else if(testVariant2){
 setVariant2();
 }

 if (_debugging) {
 _debug("Pattern creator called");
 }
}

Figure 19 The PatternCreator function

public boolean executionSetter(){

 if(!endCheck){
 return true;
 }
 return false;
}

Figure 20 The ExecutionSetter function. Determines whether all the firing cycles of the actor have completed

public void setVariant1() throws IllegalActionException{
 ND_2OP_1_outputPat0= new IntToken(1);
 ND_2OP_1_tokenConsumptionRate.setToken(ND_2OP_1_outputPat0);

 ND_2OP_1_d1_outputPat1= new IntToken(0);
 ND_2OP_1_d1_tokenConsumptionRate.setToken(ND_2OP_1_d1_outputPat1);
}
Figure 21The setVariant1() function. A function for setting production and consumption rates

Roy Kensmil Page 10 6/20/2013

Page 10 of 16

public void setVariant2() throws IllegalActionException{
 ND_2OP_1_outputPat0= new IntToken(0);
 ND_2OP_1_tokenConsumptionRate.setToken(ND_2OP_1_outputPat0);

 ND_2OP_1_d1_outputPat1= new IntToken(1);
 ND_2OP_1_d1_tokenConsumptionRate.setToken(ND_2OP_1_d1_outputPat1);
}

Figure 22 The setVariant2() function. A function for setting production and consumption rates

public void execVar1() throws IllegalActionException{
 ND_2OP_1.broadcast(new DoubleToken(out_0));
}

Figure 23 The ExecutionSetter function. Specifies output of data to a port

public void execVar2() throws IllegalActionException {
 ND_2OP_1_d1.broadcast(new DoubleToken(out_0));
}

Figure 24 The ExecutionSetter function. Specifies output of data to a port

Notice the difference between the firing methods and the post fire methods of the PN and the DDF model. In the PN model,
the firing method contains a for loop. Once the firing function is entered it will be executed for a fixed number of iterations.
The ‘if statements’ used in the ‘for loop’ of the firing method of the PN Domain are the main cause of the blocking read/write
problem mentioned in the problem statement. During each iteration the input and output ports for an actor will be set in an
inactive or active state as can be seen seen in the ‘if statements’. But there is no mechanism built in to check whether the
channel of an input or output port contains data or can receive data. The firing method of the actor expressed in the DDF
Domain does not contain a for loop. The number of iterations to be performed is now controlled by a global variable
(scheduleT) which is updated in the postfire method seen in Figure 18. The global variable is initialized to zero at the start of
the actor’s execution. In the firing method, the iteration variable is not used anymore. In the fire method only the activation of
input and or output ports occur, based on the consumption rates set in the previous iteration of the actor. Figure 17 shows the
fire method only making use of two Boolean variables testvar1 and testvar2 for activation of input or output ports. The
postfire method contains the code for incrementing the variable for the number of iterations the actor should perform and the
method for setting the consumption and production rates for the next iteration the actor. In the postfire method of the actor
seen in Figure 18, a call to another method is specified, named the patternCreator. The patternCreator method is used to set
the consumption and production rates (firings) for the actors in the DDF model. Before an actor enters the firing state, it is
possible to specify if the actor will be sending or receiving data or perform both actions. Having this information available, it
can also be determined which channels of an input port contains data and which channels output port can receive data. When
the actor enters its firing state the read and write operations will not be blocked due to empty channels or full channels.

3.3 Analyzing the output that Cloog generated for the matrices generated in Matlab

CLoog [7] is free software and library generating loops for scanning Z-polyhedra. CLoog has been originally written to solve
the code generation problem for optimizing compilers based on the polytope model. Using an input matrix, such as the matrix
in Figure 25 specified for an actor in KPN, Cloog generates a series of loops and nested loop. In the loop structures for a
KPN actor the following statements and variables are generated:

• Variables M and N
• if conditions for the variables M and N
• for loops
• nested for loop
• Variables for the iterations of loops(i,j,k)
• Statements S(1)...S(n) with or without parameters.

The values of variables M en N determine which ‘for loop’ statements can be executed by an actor. Using the values of
variables M en N the if statements can determine which loop statements will be executed during execution of the code.
The statements that will be executed in the loop statements can be mapped one to one to the input ports and output ports of an

Roy Kensmil Page 11 6/20/2013

Page 11 of 16

actor in a process network.
The above implies that the statically generated patterns can be replaced by the values which are dynamically generated by
Cloog.

language: C
c

parameters
4 4
1 -1 0 16
1 1 0 -1
1 0 -1 1000
1 0 1 -1
0

2

1
5 6
1 1 0 0 0 -1
1 -1 0 0 1 0
1 0 1 0 0 -1
1 0 -1 1 0 0
0 0 1 0 0 -1
0 0 0

1
5 6
1 1 0 0 0 -1
1 -1 0 0 1 0
1 0 1 0 0 -1
1 0 -1 1 0 0
1 0 1 0 0 -2
0 0 0
0

0

Figure 25 An example input matrix for Cloog for the actor describe in section 3.2

/* Generated from ..\\test\ND_2.cloog by CLooG v0.14 12/07/07 bits in 1.00s. */
if (M >= 2) {
 for (i=1;i<=N;i++) {
 S1(j = 1) ;
 for (j=2;j<=M;j++) {
 S2 ;
 }
 }
}
if (M == 1) {
 for (i=1;i<=N;i++) {
 S1(j = 1) ;
}

Figure 26 Output generated by Cloog based on the input matrix seen in Figure 25. This code will be used for the parameterization of the actor
specified in section 3.2

As can be seen from Figure 26 The value M in the code fragment determines which output ports of an actor will be active
during the iterations of an actor. If the value of variable M equals 2, output ports 1 and 2, specified as S1 and S2 in Figure 26,
of the actor will be active during the iteration of an actor. If the value of variable M equals 1, output ports 1, specified as S1
and in Figure 26, of the actor will be active during the iteration of an actor.

3.4 Automating the parameterization of the execution of the actors

In the previous section it has been proven that it is possible to convert Kahn Process Networks processes expressed in the
Ptolemy II PN Domain to Kahn Process Networks processes expressed in the Ptolemy II DDF Domain. But the solution
suggested in section 3.3 requires that the process of conversion must be performed by hand. Automating the process of the
conversion requires a ‘bridge’, that can translate the code generated by Matlab and Cloog to Java code that can be processed

Roy Kensmil Page 12 6/20/2013

Page 12 of 16

in the Java code generated by the Compaan compiler. The decision was made to use the Java Native Interface. The Java
Native Interface (JNI) is the native programming interface for Java that is part of the JDK. The JNI allows Java code that runs
within a Java Virtual Machine (VM) to operate with applications and libraries written in other languages, such as C, C++,
and assembly. In addition, the Invocation API allows programmers to embed the Java Virtual Machine into native
applications. Programmers use the JNI to write native methods to handle those situations when an application cannot be
written entirely in the Java programming language.
To capture the structure of the code generated by Cloog, some classes have been created to represent the various data
structures generated by Cloog. Such elements include:

• a class for representing if statements,
• a class for representing for-loop statements
• a class for representing assignments that can occur within a ‘for’ or ‘if statement’.

The list of statements executed within an ‘if-statement’ or ‘for loop’ are included as strings in the respective classes. In the
Compaan compiler a Tree data structure (a ParseTree) has been implemented to represent various constructs generated by a
program. To represent the structure of code generated by Cloog the C program mentioned above uses the JNI to invoke the
existing methods of the ParseTree data structure created in Compaan. Figure gives a description of the classes and the
relationships between the classes developed in Java to represent the data structures generated by Cloog. At the top of the
hierarchy is the Cloog Constuct. The Cloog Construct serves as a template for every new data structure to be created for the
Parse Tree of the Compaan Compiler. Figure 28 and Figure 29 give an overview of the diagrams for modeling an ‘if
statement using’ theory from compiler construction. Figures 30 and 31 give an overview of how the if and for constructs have
been modeled based on the ParseTree datastructure of Compaan. Using the code fragment from Figure 26 an overview will
be given of the new data structures created for the Parse Tree of the Compaan Compiler. The guards of the if construct, as
seen in figure 30, contains two variables and an operator. Using Figure 26 the guard can be associated with the expressions
M >= 2 and M == 1. The Variant data structure consist of at least one VariantString. A VariantString data structure can be
associated with the statement S1 and S2 of the code in Figure 26. As mentioned at the end of section 3.3 statement S1 and S2
can be associated with the output ports of the actor. Thus the Variant data structure represents the output and input ports that
will be active if the condition specified in the Guard of the ‘if statement’ is satisfied. In the case of the for statement, as
depicted in Figure 31, the expression determines the number of iterations that the variant(collection of input and output
ports) will be active. If for example in Figure 26 the condition M == 1 is satisfied the variant containing S1 would be active
for iterations 1 to N. Figure 32 depicts a diagram for representing an actor expressed in the DDF formalism in the Compaan
Compiler.

Figure 27 Diagram of the Java classes

Roy Kensmil Page 13 6/20/2013

Page 13 of 16

Figure 28 If construct

Figure 29 For construct

Roy Kensmil Page 14 6/20/2013

Page 14 of 16

Figure 30 If Construct represented in Compaan

Figure 31 For Construct represented in Compaan

Roy Kensmil Page 15 6/20/2013

Page 15 of 16

Figure 32 the Tree structure for the example program

4. Conclusion

Through investigation and experiments it has been proven that the Process Networks generated by the Compaan compiler for
the Ptolemy II Process Network Domain can be expressed in the PtolemyII Dynamic Dataflow Domain. The main problem to
be solved in the conversion process was the removal of the blocking read/write operation caused by the structure of the ‘for
loops’ in the Kahn Process Networks generated by the Compaan compiler. Having recognized the capability of Cloog to
generate optimal code for the execution ‘for loops’, the decision was made to apply the data structures generated by Cloog to
express the Process Networks generated by Compaan in the PtolemyII Dynamic Dataflow formalism. The code generated by
Cloog has the same execution patterns as the code of processes expressed in the PtolemyII Dynamic Dataflow formalism.
To enable Compaan to automatically generate a process network expressed in the PtolemyII Dynamic Dataflow formalism
it is necessary to convert the data structures generated by Cloog into data structures which can be used in Java. The
conversion of the data structures generated by Cloog is done by making use of the Java Native Interface. By making use of a
dynamic link library (.dll) the data contained in the Cloog data structures are passed on to the Java data structures of the
Compaan Compiler.

ACKNOWLEDGEMENTS

I would hereby like to thank Bart Kienhuis for his support during the development phase of the project and for the support
given during the writing of this paper.

Roy Kensmil Page 16 6/20/2013

Page 16 of 16

REFERENCES

[1] The Compaan Project: http://www.liacs.nl/~cserc/compaan/

[2] Kahn Process Networks: http://ptolemy.eecs.berkeley.edu/~kienhuis/ftp/DATE_04.pdf

[3] The Berkeley PtolemyII Framework: http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm

[4] The Process Network (PN) Domain of the PtolemyII Framework:
 http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/pn/doc/body.htm

[5] The Dynamic Dataflow (DDF) Domain of the PtolemyII Framework:
 http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/ddf/doc/body.htm

[6] QRvr matrix decomposition algorithm

R.L. Walke, R.W.M. Smith, and G. Lightbody. 20GFLOPS QR processor on a Xilinx Virtex-e FPGA. In proceedings of
SPIE advanced signal, 1999

[7] Cedric Bastoul, A Loop Generator For Scanning Polyhedra
 Edition 2.1, for CLooG 0.14.1, October 15th 2007
 http://www.bastoul.net/cloog/documentation.php

