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Abstract

Evolutionary conservation implies that similar biological mechanisms occur in similar species, and
those mechanisms can be studied using cross-species studies. Cross-species studies use multiple
microarray experiments from different species to study gene expressions in those species simulta-
neously, where these studies can either analyse the microarrays separately and compare the results
between species, or combine the data from all microarrays and analyse all gene expressions to-
gether. However, challenges arise during cross-species analyses, such as varying gene expressions in
different species, noisy data and discrete homology assignments. This study is therefore aimed at
suggesting an algorithm that is able to deal with all those challenges in cross-species analyses and
obtain biologically relevant results from microarray experiments. The algorithm suggested here is
a new and promising method that so far has only been applied to a cross-species study on immune
response genes. This study will therefore use this algorithm for a different biological case study
(brain ageing), and the sensitivity (choice of parameters) and scalability (convergence and runtime)
of the algorithm will be assessed.
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Chapter 1

Cross-species data analysis

1.1 Background of cross-species data analysis

Due to evolutionary conservation, certain biological mechanisms are conserved in evolutionary-
similar organisms, and so many of the genes in those mechanisms are conserved as well[54].
Early cross-species analyses involved analysing sequence similarity between species, using those
similarities to identify core interaction modules and compare regulatory mechanisms in related
species[42, 47]. Nevertheless, sequence similarity involves static data (DNA sequences), and since
interactions and expressions of genes change across time and in different conditions, sequence anal-
ysis is not powerful enough to study such interactions[24, 31]. For this reason, researchers use
microarrays to measure dynamic, condition-specific gene expressions in order to analyse these in-
teractions and identify deregulated genes that are influenced by transcriptional changes (genes that
change in statistically significant terms across different biological conditions). By studying certain
transcriptional changes and deregulated genes in multiple species, it is possible to identify core
groups of deregulated genes that are conserved across those species, thus showing major players in
conserved biological mechanisms.

1.2 Challenges in cross-species analysis

When studying a microarray from a single species for a single condition, challenges that need to be
addressed include searching in large datasets and noisy data. However, when considering multiple
microarrays for multiple species, additional challenges include (1) handling homology assignments
between species, (2) comparing continuous gene expressions in different species (sequence data
is only based on 4 letters, while expressions of homologous genes might vary largely in different
species), (3) a wide range of conditions makes it difficult to compare data between species (extensive
biological variations), and (4) different microarray studies use different analysis techniques. In
addition, since cross-species analysis often involves comparing data from different laboratories, the
data is even noisier than when dealing with a single microarray. To overcome these issues, there
are 3 general approaches that can be applied to perform cross-species analysis of microarray data:
(1) studying individual microarrays and then combining their results (meta-analysis); (2) using the
same microarray to study different species; and (3) analysing the data from all species concurrently
(combined analysis)[36]. Since bioinformatics deals with the analysis of microarray data rather
than with the microarray experiment design itself, approach (2) will not be dealt with here, and
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approaches (1) and (3) are discussed in depth.

1.3 State of the art

1.3.1 Meta-analysis

The meta-analysis of microarray data detects deregulated genes in different species with differ-
ent gene expression ranges, finds common expression patterns in genes from multiple species and
explains the evolution of gene expressions and co-regulation. This approach involves two general
methods: co-expression meta-analysis and expression meta-analysis.
Co-expression meta-analysis searches for gene modules with similar expression patterns in individ-
ual species, and then finds modules of homologous genes that are co-expressed in other species. This
technique can use data from different microarray studies with different experimental conditions,
allowing genes to be studied in groups rather than individuals with noisy and varied expressions.
This technique deals with challenges (2) and (3) in Section 1.2, as it does not compare between gene
expressions from different species directly, and therefore does not deal with the extensive biological
variations, but rather compares overall patterns that occur between the genes[36].
Expression meta-analysis directly analyses expression profiles of homologous genes in order to find
differentially expressed genes (DEGs) conserved in multiple species. The DEGs are often derived
from published papers on different microarrays in different species, and expression meta-analysis
searches for overlapping DEGs between different species. Again, since this technique does not com-
pare gene expressions from different species directly, it tackles challenges (2) and (3) in Section 1.2.
Another variant of expression meta-analysis, called indirect comparisons, uses the DEGs in each
species to find functional annotations (gene ontology (GO) categories, KEGG pathways) that are
over-represented in this species, and then the overlap between functional annotations across differ-
ent species can be found. Since this technique does not test for overlap between homologous genes,
it allows to compare even distant species with few homologous genes, thus it also tackles challenge
(1) in Section 1.2. In addition, indirect comparisons generate a more biologically significant answer
than simply deriving overlapping homologous genes, as specific biological mechanisms and gene
groups can be observed[36].
One challenge that meta-analysis still faces is the fact that different published papers use different
analyses for their microarrays, and therefore they are inconsistent and difficult to compare. Nev-
ertheless, this can be corrected by using published microarrays rather than results, and analysing
them with the same technique to find overlapping deregulated genes.

1.3.2 Combined analysis

From Section 1.3.1, it is seen that indirect comparisons can account for all 4 challenges in cross-
species analysis. However, it might still be necessary to search for ’core’ groups of deregulated
genes across different species, and in this case, meta-analysis does not sufficiently account for
homology assignments between genes. Meta-analysis has a binary homology assignment (genes are
either homologous or not), and this limits the comparison of differentially expressed genes to the
homology annotations, without considering similarity measures of a continuous nature (e.g. E-value
in BLAST). The combined analysis combines the microarray datasets from different species first,
and then analyses all the data together, where it is also capable to integrate continuous homology
scores in the analysis.
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One algorithm which employs such continuous homology score approach was developed by Lu
et al.[37]. This technique used Markov Random Fields (MRFs), an undirected graphical model
that analysed cell cycle data from human and budding yeast. The model used genes from both
species (and their expression patterns) as nodes, and similarity between sequences as edges. The
scores along the edges allowed a more flexible threshold for the homology, which affected borderline
scores by increasing scores for similarly expressed homologous genes and decreasing scores for
non-homologous genes[37]. The technique was later adapted to study genes involved in immune
responses in different species, different cell types and different bacteria types. The study used
Gaussian Random Fields (GRFs), which are similar to MRFs, except that gene nodes in GRFs
are represented by continuous random variables with Gaussian distributions, whereas MRFs are
represented by discrete random variables that do not necessarily have Gaussian distributions (see
Figure 1.1)[38]. The GRF technique deals with all challenges in Section 1.2: to deal with challenge
(1), it uses continuous homology scores, which are more lenient than binary ones; to deal with
challenges (2) and (3), the technique compares overall patterns of deregulated genes between both
species (human and mouse), thus avoiding dealing with variable gene expressions; and to deal with
challenge (4), all genes from different species are brought under the same graph and analysed with
the same technique.

Figure 1.1: Gaussian random field model implemented by Lu et al. 2010
This Gaussian random field model was used to find genes involved in immune responses in

different species (human/mouse marked as h/m respectively), different cell types
(macrophage/dendritic marked as m/d respectively) and against different bacteria types (gram

positive/negative marked as +/- respectively)[38]. Figure (a) shows white (latent) nodes
representing class labels of genes under different conditions, and the black nodes represent

expression scores of genes in those conditions. Figure (b) shows genes with edges between them to
show they are similar to a certain extent.

1.4 Aim of study

As can be seen from Section 1.3, there have been multiple techniques suggested to account for the
challenges of cross-species analysis, but the two most beneficial techniques suggested are indirect
comparisons and combined analysis (specifically the GRF technique used by Lu et al. from 2010).
Nevertheless, indirect comparisons can only account for functional annotations in a general sense,
whereas combined analysis is able to account for specific deregulated genes in different species
that can later be studied for deregulated functional annotations as well. Therefore, this study
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focuses on implementing a combined analysis algorithm using the GRF technique and describing
the pseudocode concisely so the implementation is clear and allows readers to implement the code
themselves. Another aim of this study would be to assess the sensitivity (how changing the pa-
rameters affects the algorithm) and scalability (how fast the algorithm is, how efficiently it can
deal with large datasets) of the algorithm by modifying its parameters and measuring its runtime.
A secondary aim of this study involves finding deregulated genes between two opposing biological
conditions in two evolutionarily-similar species, where the results (set of deregulated genes found)
will be evaluated by comparing them with previous knowledge of the biological conditions. Since
the model constructed here would be very similar to that by Lu et al., the hypothesis is that this
model could be applied to any biological conditions for two evolutionary-similar species to find
conserved deregulated genes in both species, an assertion made by Lu et al.[38]. The model used
for this study is the same as that shown in Figure 1.1(b).
Section 1.5 discusses biological background of ageing (the biological condition chosen to be stud-
ied), Chapter 2 gives an explanation of how the GRF algorithm works (including its complexity),
Chapter 3 shows the results of the algorithm when run on synthetic data (scalability and sensitivity
of the algorithm) and biological data (finding genes deregulated in ageing) and Chapter 4 gives the
conclusion of the results and an evaluation of the performance of the algorithm.

1.5 Biological background of ageing

1.5.1 Ageing in general

Ageing is a progressive, irreversible process that can be divided into 3 stages: metabolism, damage
and pathology of cells. To sustain life, metabolism takes place in different types of cells, and at
the same time produces toxins, which accumulate in cells to generate toxin biological products.
The toxins are stored in specific storage cellular organelles, where they accumulate up to a certain
threshold when they shift the balance of metabolism. During the lifetime of an organism, mito-
chondria produces much ATP as cell energy and few reactive oxygen species (which are related
to ageing pathology). When enough toxins accumulates, ATP-deficient mitochondria begin to ac-
cumulate, while more reactive oxygen species are produced. These changes trigger apoptosis (cell
death) pathways, leading to cell death, failing of organs and finally organism death[46].
Since ageing in humans involves gene perturbations and large environmental variances, full exper-
iments on the ageing mechanisms in humans are very difficult, which is why model organisms are
studied. Model organisms, including Caenorhabditis elegans (C. elegans), Drosophila and mice,
have genes orthologous to human genes, which allows to study ageing mechanisms in organisms
with low environmental variation, and derive information about ageing mechanisms in humans[53].
Studying ageing-associated genes in model species, it is possible to find conserved genes and bio-
logical pathways in humans, as well as to further strengthen the evidence of human genes found
to be ageing-associated[5]. Such studies have already shown that reduced activity of gene daf-2
(homologous of insulin growth factor receptors) causes slower ageing in C. elegans[33], mutant line
Methuselah gene (homologous to G-protein coupled receptors) causes 35 percent increase in average
life-span in Drosophila[34] and Cav-1 gene is an important control for healthy neuronal ageing in
mice[25].
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1.5.2 Ageing in cross-species studies

As mentioned in Section 1.5.1, studying ageing in model organisms allows to derive information
about ageing mechanisms in humans. Furthermore, when studying ageing in multiple species si-
multaneously, there is additional support for the existence of conserved ageing mechanisms. One
such study was done by McElwee et al., and focused on the insulin/insulin-like growth factor-like
signalling (IIS) pathway in mutants of mice, flies and worms. Using expression meta-analysis, they
searched and compared deregulated genes between datasets they generated themselves and publicly
available ones, but they couldn’t find any significant conservation at the gene level. However, using
indirect comparisons, they identified several GO categories as evolutionarily conserved, includ-
ing sugar catabolism, energy generation, glutathionine-S-transferases and other processes linked
to cellular detoxification[40]. Another experiment conducted by McCarroll et al. studied ageing-
deregulated genes in humans, yeast, fly and worm using expression meta-analysis as well, and found
mitochondrial metabolism, DNA repair and cellular transport as evolutionarily conserved processes
involved in ageing[39]. These studies therefore show some functional annotations that can be con-
sidered as ageing-related, and can be useful to evaluate the final results of this study.
Since ageing is a process involved in many biological mechanisms such as various signalling path-
ways, cell cycle and late-onset diseases, there are many ageing-associated genes to discover. Some
such ageing-associated genes are consistent over different cell types, involved in mechanisms intrin-
sic to cells, while others are cell specific. It is important to mention that in the process of ageing,
some cells die, other grow and yet other simply remain quiescent[13]. From a physiological perspec-
tive, ageing causes accumulation of damage in cells belonging to muscle tissue (skeletal muscles and
heart), liver, kidney and brain, and so cell types of those organs/tissues are highly interesting in
the study of ageing-deregulated genes. The studies above look at several microarrays from several
species, but they do not consider the genetic difference in tissues as much. The study by Magalhães
et al., on the other hand, studies exactly that, comparing microarrays for human, mice and rats
in different tissues (such as skeletal muscles, lungs, kidney, heart, hippocampus, frontal cortex and
eye), and showed the data was associated with GO categories of mitochondria, metabolism and
apoptosis[13]. After a quick look at the datasets, it was decided to use brain datasets, due to
the important role ageing plays in increasing susceptibility to certain mental disorders (such as
Alzheimer’s disease), as well as its effect on certain higher brain activities such as learning and
memory. Section 3.3.1 elaborates on the brain datasets used for human and mouse.

1.5.3 Brain ageing

The brain is considered a highly crucial organ for many organisms, and is considered especially
complex and intricate in humans. Humans are especially distinguished from other organisms due
to large brains and cognitive and behavioural abilities that transcend those of other animals. In
addition, humans have a disease profile that does not occur in other organisms, not even in pri-
mates, including vulnerability to neurodegenerative disorders (such as Alzheimer’s disease), AIDS
and certain epithelial cancers. Humans also have longer lifespan than other primates and com-
monly used model organisms (C. elegans, Drosophila and mice), which means humans have higher
susceptibility to ageing-related diseases, such as certain neurodegenerative disorders[43]. Therefore,
ageing-related neurodegenerative disorders can only be studied in humans. Nevertheless, for the
sake of studying gene expressions in ageing brains, this is actually beneficial: the study of Nutrition,
Ageing and Memory in the Elderly (NAME)[45] showed that dementia increases in humans with
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age, particularly after the age of 80, but even within the sample of individuals over 80, only 40%
were diagnosed with dementia. Therefore, it is necessary to acknowledge that some deregulated
genes in old individuals result from late-onset neurodegenerative disorders, and not by ageing itself.
With this in mind, cross-species analysis of genes from brain cells allows to downplay the statistical
significance of human genes deregulated in neurodegenerative disorder , since their homologs will
probably not appear deregulated in other species.
Ageing in relation to the brain is mostly associated with brain atrophy, where neurons die out,
losing the connectivity between them, and often resulting in smaller brain size. This decline can be
seen in humans at a rate of about 5% per decade after the age of 40 years, and the rate increases
over the age of 70 years, where the highest decline can be seen in the gray matter of the frontal
cortex (higher mental functions involving moral judgement, social behaviour and predicting conse-
quences of actions) and parietal cortex (involving integrating sensory information and visuospatial
processing)[46].
Other regions affected by ageing are the hippocampus and prefrontal cortex, which take part
(among other things) in memory, thus showing elderly people as having decline in spatial and
episodic memory. Particular associations have also been drawn between age, reduction in pre-
frontal cortex volume and decrease in ability to perform executive functions (functions involving
organising incoming stimuli data, processing it and planning response to it)[46].
On the gene and protein level, protein synthesis is crucial to maintain neural networks and electrical
potentials for acquiring and storing memory. A particular set of genes known as immediate early
genes (IEGs) are expressed to allow input and processing of data from the environment. Those
include transcription factors, which control the regulation of other neuronal-related genes, and ef-
fector genes, such as neuronal activity regulated pentraxin (NARP), hypothesised to be related to
processing sensory-specific information[30], and activity regulated cytoskeletal gene (Arc) necessary
for maintenance of long-term memory[46]. When researching other genes related to ageing, it was
found that some up-regulated genes in the brain (increasing with age) related to Ca2+ pathways
contribute to formation of fibrillar Aβ protein in Alzheimer’s disease, and some down-regulated
genes related to energy metabolism contribute to memory deficiency[46]. Therefore, in analysing
microarrays of brain cells while looking at ageing as the different biological conditions (young and
old), IEGs and genes related to metabolism and Ca2+ pathways are of particular interest.
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Chapter 2

Algorithm design

2.1 Algorithm elaboration

2.1.1 Algorithm overview

As mentioned in Section 1.4, the aim of this project is to implement the GRF combined analysis
technique used by Lu et al.[38], and use it to find deregulated genes from microarray datasets of
two evolutionary-related species. The algorithm represents maximum likelihood estimation (MLE)
aimed to estimate certain parameters to maximise the overall likelihood of the GRF, where the
algorithm incorporates belief propagation as it is faster and more efficient than standard MLE. The
input portion of the algorithm consists of gene expression scores calculated from certain microarrays,
some class association for each gene an a matrix with alignment scores between proteins related
to those genes. The processing step involves first the initialisation of node potential functions and
global distribution parameters (see Section 2.1.4), and then recalculation of those variables using
belief propagation nested loops that run until the variables converge. In the processing step, the
inner loop calculates messages from each node to each neighbouring node and converge when the
messages do not change largely between iterations, and the outer loop calculates beliefs for each
gene and the global distribution parameters until the global distribution parameters converge (see
Section 2.1.5). This algorithm finally maximises a likelihood function and obtains for each gene
a posterior probability to indicate which class it most likely belongs to (see Section 2.1.6). The
diagram of the algorithm can be seen in Figure 2.1.

Table 2.1 gives a list of supporting algorithms (such as calculating posterior probabilities and
deriving normal distributions), and Table 2.2 shows the procedure used to derive the weight matrix
for the genes. In addition, the algorithms at the end of this chapter give a full elaboration of the
pseudocode, where Algorithm 1 shows how the GRF is initialised, Algorithm 2 shows the belief
propagation, Algorithm 3 shows how the global distribution scores are updated, and Algorithm 4
shows how the algorithms are combined and run until the global distribution scores converge.

2.1.2 Input

Microarrays allow to study multiple gene expressions at the same time in multiple samples, where
certain genes are deregulated under different biological conditions. As such, deregulated genes will
have a larger expression ratio between samples with different conditions than non-deregulated genes.
This fact allows to derive the expression score si for each gene, which represents the expression
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Figure 2.1: Gaussian random field (GRF) algorithm diagram
The diagram shows data in ellipses, calculations in rectangles and convergence checkpoints in
diamonds.
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profile of gene i in all samples. In addition, in order to distinguish between the deregulated and
non-deregulated genes, it is necessary to divide them into classes, so each gene has a label indicating
it belongs to one of the classes. The initialisation of the labels depends on the biological condition
and previous knowledge about it: for example, when studying the biological condition of aging, it
is necessary to label genes that are known to be aging-related as belonging to class 1, while the
rest belong to class 0.
Each gene is related to a protein, and each protein might have similar sequences with other proteins,
be it within the same species (paralogs) or between different species (orthologs). It is important
to mention that genes/proteins with highly similar sequences might have similar expressions in
organisms, and possibly similar functions. Therefore, to account for the similarity between genes,
the second input for the algorithm is a weight matrix of scores between homologous proteins (see
Section 2.1.3 for an elaboration on the matrix calculation).
The final input to the algorithm is a positive hyperparameter λ used for calculating messages
between gene nodes (see Algorithm 2).

2.1.3 Computing the weight matrix

As asserted by Zhu et al.[55], the weight matrix of the GRF is equal to the inverse of a marginal
covariance matrix, where the marginal dependency between genes is captured by alignment scores
between their equivalent proteins. As such, by computing the alignment score matrix between
proteins, it is possible to calculate its inverse to find the weight matrix for the equivalent genes in
the GRF model.
The first step involves using the annotation packages in R for both species that are studied, in order
to retrieve all the unique Entrez gene IDs. Those gene IDs are then mapped to Uniprot IDs using
the official Uniprot website, and their sequences are retrieved directly from the NCBI (National
Centre for Biotechnology Information) using a Matlab command that matches the Uniprot ID with
its sequence. Given all the protein sequences, they are aligned with each other using pairwise local
sequence alignment to generate an alignment score matrix, whereas a score below a certain threshold
is replaced with 0 as indication for no homology between the proteins in question. For alignment
score matrices that are not too large, simple matrix inversion can be done in either Matlab or
R. However, if the matrix is too large (comparing tens of thousands of genes to each other), it
is converted into diagonal block matrices by Markov clustering algorithm[17]. The diagonal block
matrices, which are small clusters of the original matrix, are inverted using the Sparse Approximate
Inverse Preconditioner[21], a computationally cheap approach to find matrix inverses. The inverse
matrices for all blocks are then combined, and are used as the weight matrix for the GRF. The
overview of this procedure can be seen in Table 2.2 and it is further elaborated in Section 3.2.1.

2.1.4 Initialisation

Computing node potentials

The node potential indicates, based on the gene expression data, whether a gene is deregulated
between differing biological conditions (e.g. young and old) or not. To begin with, each gene node
in the GRF model has a label ci, and in this study the labels used are 0 and 1. The initialisation of
the labels is elaborated in Sections 3.2.2 and 3.3.3 for the synthetic and biological data, respectively.
Given these initial labels for all genes and their expression scores, the naive Bayes algorithm derives
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global distribution parameters (mean and standard deviation) for each species and class combina-
tion (there are 2 species and 2 classes, so 8 parameters are calculated). Given the distribution
parameters and expression scores, the prior probabilities for each gene to be in either class, given
the expression score, is calculated. Combined with the class probabilities, the posterior probability
pi for each gene to be in class 1 is calculated (see Algorithm 1). The posterior probabilities are
then transformed using the probit function (inverse cumulative distribution function), and those
probit transformations are used to construct probability density functions (PDFs) used as the node
potentials in the GRF:

ψi(Yi) = φ(Yi|µ = Φ−1(pi), σ
2 = 1)

where ψi(Yi) is the PDF of the normally distributed random variable Yi and Φ−1(pi) is the probit
function of the posterior probability pi when Yi is considered in isolation. It is important to
mention that the posterior probabilities may be 0 or 1 if the prior probability of class 1 or class
0 are very small, respectively, and when these values are transformed with the probit function, it
would generate node potential functions with means of −∞ or ∞, respectively. Since the means
of the node potential functions cannot be infinity or negative infinity (the algorithm cannot work
with those values), the posterior probabilities are adapted so they cannot take values of 0 or 1. Any
posterior probability below ε is replaced with ε, and any posterior probability over 1− ε is replaced
with 1− ε.
The relation between Yi and si allows to calculate the random variable probability of being in a
certain range instead of using naive Bayes for the class and expression scores:

Pr(ci = 1|si) = Pr(Yi > 1) Pr(ci = 0|si) = Pr(Yi ≤ 1)

Theoretically, the node potential functions are calculated for random variables. Practically, the
construction of random variables can be circumvented to save computation time, and this is done
by representing each node potential function as a mean and variance from the random variable PDF.
The following sections in this chapter will display the algorithm techniques from both theoretical
(random variables) and practical perspectives (means and variances).

2.1.5 Processing

Inference by belief propagation

Given the node potentials for all genes and their similarities (based on the weight matrix), it is
possible to construct messages between genes, such that each gene i neighbouring gene j can send a
message to gene j regarding what it ”believes” its distribution is. Those messages are constructed
between each two neighbouring genes in the GRF, and is based on a marginal distribution for all
messages coming to the receiver from its neighbourhood:

mij(Yj)←
∫
ψij(Yi, Yj)ψi(Yi)

∏
k∈NG(i)\j

mki(Yi) · dYi

where NG(i) is the neighbourhood of node i on the GRF graph and ψij(Yi, Yj) is the edge potential
function calculated as

ψij(Yi, Yj) =

{
exp{−λ|Wij |(Yi − Yj)2} if Wij ≥ 0

exp{−λ|Wij |(Yi + Yj)
2} if Wij < 0
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Figure 2.2: Gaussian random field (GRF) message passing
The message passed from gene i to gene j (mij) is based on the node potential of gene i and the

messages from neighbour nodes k to i (mki).

where Wij is the weight matrix entry for genes i and j. The importance of the edge potential
function is that it reflects on the effect of different λ values on the algorithm, such that a large
λ value would indicate a low edge potential function, and a small λ value would indicate a high
edge potential function. The edge potential function reflects on the similarity between genes, such
that a large λ value would mean only genes with large alignment scores are emphasised, making
the algorithm stricter, and when λ is small, even genes with low alignment scores are emphasised,
and the algorithm becomes more lenient. This is particularly important for the study of λ values
in Section 3.2.2.
The integration operation above is computationally heavy, and it is possible to avoid it using direct
calculations of means and variances of messages (See Algorithm 2). The messages from each gene to
each other gene are calculated iteratively, and are tested for convergence using Euclidian distances
between messages of a certain iteration and messages of a previous iteration. It is important to
note that the messages from node i to each neighbouring node j depend on the messages going
from the other neighbouring nodes of node i into it, as shown in Figure 2.2.

By marginalising bivariate Gaussian distributions, it is possible to derive mean v and variance
ρ2 for further calculations:

fij(Yi) = ψi(Yi) ∗
∏

k∈NG(i)\j

mki(Yi) ∼ N(vij , ρ
2
ij)

This can be further simplified using the general rule for deriving means and variances from a
product of Gaussian distributions:

µ =

∑
i

(µi/σ
2
i )

1/σ2
i

(2.1a)

σ2 = (
∑
i

(1/σ2
i ))
−1 (2.1b)

This is followed by further calculations (see Algorithm 2), which then derive the mean and variance
of all messages.
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Once the messages converge, the belief of each random variable Yi is updated:

bi(Yi)← (1/zi)ψi(Yi)
∏

k∈NG(i)

mki(Yi)

Again, using Equations 2.1, it is possible to calculate the mean and variance directly, where this
time the shortcut also circumvents the necessity to normalise the belief using normalising factor z,
and uses the means and variances of beliefs as they are. Finally, it is important to state that the
belief of each gene is not the node potential function, but a random variable that is used to derive
the new posterior probability for each gene.

Updating the score distribution

Given the belief bi(Yi) of each gene i (where in this study, a gene is either ageing-related or not),
it is possible to calculate the posterior probability for that gene to be in class 1 or in class 0:

p
(t)
i = Pr(Ci = 1|Θ(t)) =

∫ +∞

0
bi(Yi) dYi q

(t)
i = Pr(Ci = 0|Θ(t)) = 1− p(t)

i

The posterior probabilities for genes to belong to class 1 is first used to recalculate ψi(Yi) by using

the probit of the new posterior probabilities, such that ψi(Yi) = N(probit(p
(t)
i ), 1), where t is the

outer loop iteration. The posterior probabilities for genes to be in either class are then used to
calculate the global distribution parameters:

µ
(t+1)
0 = Σiq

(t)
i si/Σiq

(t)
i µ

(t+1)
1 = Σip

(t)
i si/Σip

(t)
i

σ
2(t+1)
0 =

Σiq
(t)
i (si − µ(t+1)

0 )2

Σiq
(t)
i

σ
2(t+1)
1 =

Σip
(t)
i (si − µ(t+1)

1 )2

Σip
(t)
i

2.1.6 Outcome

The aim of the algorithm is to maximise a likelihood function L, and it does so by calculating the
global distribution parameters until they converge. The likelihood can be expressed as the following
function:

L =
1

Z

∏
i

ψi(Yi)
∏
i

ψij(Yi, Yj)

where Z is the normalising term. Although the likelihood function is maximised, it is not explicitly
calculated, and the output obtained from the algorithm is a list of posterior probabilities for all
genes and global distribution parameters for each species and each class. The probabilities are used
to predict the class each gene belongs to, and the classification can be compared with the actual
gene classes to see the error rate of the algorithm.

2.1.7 Algorithm complexity

The GRF algorithm constitutes of two main convergence loops: an inner message convergence
loop, which converges when the Euclidian distance of the messages is below ε, and an outer overall
convergence loop, which converges when the Euclidian distance of the global distribution parameters
is below ε. The inner loop calculates the messages from node i to every neighbour j, so there is a
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Method Explanation

naiveBayes (class,predictor vars) computes the conditional a-posterior probabilities
of a categorical class variable given independent
predictor variables using the Bayes rule

probit(Y) computes the probit transformation of probabili-
ties in Y

dnorm(X,µ, σ2) density of values in X within normal distribution
N(µ, σ2)

pnorm(n, µ, σ2) area under the curve for the lower tail of a normal
distribution N(µ, σ2) from −∞ to n; this can be
expressed as a cummulative distribution function
(CDF), where Pr(X ≤ x) = CDFµ,σ2(x)

Table 2.1: List of supporting functions in R-base

Input Process Tool/source used Output

Microarray probe IDs
from two species (e.g.
mouse and human)

Retrieve Entrez gene IDs Annotation packages in
R

Unique genes from both
species

Unique genes from both
species

Map Entrez genes to
protein IDs

Website
www.uniprot.org

Unique proteins from
both species

Unique proteins Retrieve protein se-
quences

Matlab, getgenpept
command

tab-delimited file with
protein sequnces

Protein sequences Pairwise local sequence
alignment for all se-
quences against each
other

Alignment command
and scoring system 2.1.3

Matrix with alignment
scores for all sequences

Matrix with alignment
scores

Calculate an inverse ma-
trix

see Section 2.1.3 for elab-
oration

Inverse alignment score
matrix (weight matrix
for GRF)

Table 2.2: Procedure to create GRF weight matrix
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Algorithm 1 Initialise GRF

Input: matrix containing Entrez gene IDs, and for each gene ID its equivalent Uniprot protein
IDs, score expressions, binary class association (e.g. non-aging-related or aging-related) and
binary organism association (e.g. human or mouse)

Extract score expressions, class and organism associations from input matrix

(1) s ← score expressions

(2) c ← class assiciation

(3) o ← organism association

Retrieve global distribution parameters for organism 0 using Naive Bayes model, where
[c0, s0] are subvectors of [c,s] ∀oi = 0

(4) paramsm = [µ0m, σ0m, µ1m, σ1m]= naiveBayes(c0, s0) (See Table 2.1)

Retrieve global distribution parameters for organism 1 using Naive Bayes model, where
[c1, s1] are subvectors of [c,s] ∀oi = 1

(5) paramsh = [µ0h, σ0h, µ1h, σ1h]= naiveBayes(c1, s1) (See Table 2.1)

Derive class probabilities Pr(ci = 0) and Pr(ci = 1) for both organisms from the respec-
tive naiveBayes models

Derive prior probabilities Pr(si|ci = 0) and Pr(si|ci = 1) for both organisms from the
respective naiveBayes models

for i ∈ c do

(6) Pr(si|ci = 0) = dnorm(si, µ0h, σ
2
0h)⊕ dnorm(si, µ0m, σ

2
0m)(See Table 2.1)

(7) Pr(si|ci = 1) = dnorm(si, µ1h, σ
2
1h)⊕ dnorm(si, µ1m, σ

2
1m)(See Table 2.1)

(8) pi = Pr(ci = 1|si) = Pr(si|ci=1)Pr(ci=1)
Pr(si|ci=1)Pr(ci=1)+Pr(si|ci=0)Pr(ci=0)

Adapt posterior probabilities when they are equal to 0 or 1 (see Section 2.1.4)

(9) µ=probit(p)

for i=1 to length(p) do

ψi(Yi) is a probability density function for random variable Yi

(10) ψi(Yi) ∼ N(µi, 1)

Output: paramsh, paramsm,ψ(Y)
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Algorithm 2 Belief propagation

Input:

(a) ψ(Y): node potential function for random variables (See Algorithm 1)

(b) W: weight matrix

(c) λ: positive hyperparameter

t and g are counters for convergence of outer loop and inner loop, respectively

Messages are initialised as normal distributions N(0,1), but are not used for the first inner
loop, i.e. when t=1 and g=1

(1) while
√∑

j∈NG(i)(E(mij)− E(old mij))2 > ε ∀i ∈ m do

Obtain all messages for node Yi from its neighbours

for i = 1 to length(ψ(Y)) do

Initialise old messages as current messages

(2) old mij = mij

Calculate the message distribution for each neighbour of Yi

(3) for j ∈ NG(i) do

if g=1 & t=1 do

In very first iteration, messages are initialised with ψ(µ, σ2)

(a) vij = E(ψi(Yi))

(b) ρ2
ij = Var(ψi(Yi))

else

(a) vij =

∑
k∈NG(i)\j(E(mki)/Var(mki))+E(ψi(Yi))/Var(ψi(Yi))∑

k∈NG(i)\j(1/Var(mki))+1/Var(ψi(Yi))

(b) ρ2
ij = 1/(

∑
k∈NG(i)\j(1/Var(mki)) + 1/Var(ψi(Yi)))

Derive mean and variance scores for messages from gene i to gene j

(d) αij = 2λ|W ∗ij |, where Wij is the weight matrix entry for nodes i and j

(e) rij = 1/ρ2
ij

(f) µ̂j = sign(W ∗ij)vij

(g) σ̂2
j = 1

rij
+ 1

αij

Update messages from node i to each node j in the GRF, where µ̂j is the mean
of the message and σ̂2

j is the variance of the message

(i) mij(Yi) = [µ̂j , σ̂
2
j ]

Update belief of each node

(4) for i = 1 to length(ψ(Y)) do

(a) bi(Yi(µ)) =

∑
k∈NG(i)(E(mki)/Var(mki))+E(ψi(Yi))/Var(ψi(Yi))∑

k∈NG(i)(1/Var(mki))+1/Var(ψi(Yi))

(b) bi(Yi(σ
2)) = 1/(

∑
k∈NG(i)(1/Var(mki)) + 1/Var(ψi(Yi)))

Output b(Y): belief distribution for each node i
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Algorithm 3 Update global distribution parameters

Input:

(a) paramsh and paramsm: global distribution parameters in both species in different
groups

(b) b(Y): belief distribution, derived from Algorithm 2

Update score distributions

(1) for i=1 to length(b(Y)) do

Calculate the probability of the label of node i being 0 or 1 given parameters at
time t

(a) pi(t) = Pr(ci = 1|params(t)) =
∫ +∞

0 bi(Yi) dYi=1-pnorm(0,E(bi(Yi)),Var(bi(Yi)))

Adapt posterior probabilities when they are equal to 0 or 1 (see Section 2.1.4)

(b) qi(t) = 1− pi(t)
The posterior probability that any gene is in class 1 is used to recalculate the node
potential functions

(2) ψi(Yi)(t) = [probit(pi(t)), 1]

Parameters are stored for all iterations of the outer loop

(3) Calculate new parameters

µ0m = Σiqisi/Σiqi where i ∈ oi = 0 AND ci = 0

σ2
0m =

√
Σiqi(si−µ0m)2

Σiqi
where i ∈ oi = 0 AND ci = 0

µ1m = Σipisi/Σipi where i ∈ oi = 0 AND ci = 1

σ2
1m =

√
Σipi(si−µ1m)2

Σipi
where i ∈ oi = 0 AND ci = 1

µ0h = Σiqisi/Σiqi where i ∈ oi = 1 AND ci = 0

σ2
0h =

√
Σiqi(si−µ0m)2

Σiqi
where i ∈ oi = 1 AND ci = 0

µ1h = Σipisi/Σipi where i ∈ oi = 1 AND ci = 1

σ2
1h =

√
Σipi(si−µ1m)2

Σipi
where i ∈ oi = 1 AND ci = 1

Output paramsh(t) and paramsm(t): updated global distribution parameters for outer it-
eration t
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loop for each gene i and a nested loop for each of its neighbours j. If there are n genes in the data,
the loop for neighbours j (which contains basic operations) is at most of time complexity O(n− 1)
(depending on threshold for alignment scores, not every node may be interconnected with every
other node), and the loop for the genes i is therefore of time complexity O(n(n− 1)), which means
it has a quadratic time complexity O(n2). However, the convergence complexities for the inner
and outer loop are difficult to calculate, as they depends on multiple factors (such as convergence
threshold and λ values). Since it is yet unclear which factors affect the convergence complexities,
the complexity can be written as O(Nouter, Ninner, n

2), where Nouter is the complexity of the outer
loop, and Ninner is the convergence of the inner loop. The algorithm complexity is further studied
and expanded on in Section 3.2.
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Algorithm 4 GRF convergence algorithm

Input:

(a) matrix containing Entrez gene IDs, and for each gene ID its equivalent Uniprot protein
IDs, score expressions, binary class association and binary organism association

(b) weight matrix W

(c) positive hyperparameter λ

(1) Initialise node potential functions and global distribution parameters for both species (See
Algorithm 1)

params = [paramsm, paramsh]

while
√∑

(params− old params)2 > ε do {Main Loop}

(2) Use belief propagation to derive belief for each node (See Algorithm 2)

(3) Update global distribution parameters and node potential functions (See Algorithm 3)

(4) From updated node potential functions, derive inverse probit functions for the means to get
ageing posterior distributions

Output p (ageing posterior probabilities for each gene) and params (final global distribution
parameters)
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Chapter 3

Results

In the GRF algorithm, there are three important inputs: the expression scores of genes in different
samples, their association with a certain biological condition and the weight matrix indicating the
similarity score between proteins synthesised from the genes. The algorithm was run on synthetic
data in order to study its sensitivity and scalability, and it was run on biological data in order to
obtain some biological results regarding brain ageing (see Section 1.5.3). Since the synthetic data
is used to study the algorithm performance, the data must be small and easy to handle, so 20
homologous genes were chosen from human and mouse (see Section 3.2). The biological data will
be using complete microarrays from human and mouse, resulting in tens of thousands of genes (see
Section 3.3.1).

3.1 Hardware and software architecture

All computations were run using Intel(R) Core(TM)2 Duo CPU model E7400 with 2.80 GHz, 2 GB
RAM and Operating system of Windows 7 Ultimate 2009. The software used were R 2.13, Matlab
R2011a and Microsoft Excel 2007.

3.2 Synthetic data

3.2.1 Weight matrix selection

Since the synthetic data is small, it is used to study different possible alignment techniques and
their runtime. Choosing which technique to use is particularly critical for the biological data, as
the scores should be obtained quickly and efficiently for a large dataset. In sequence alignment, 3
options must be considered:

(1) Pairwise or multiple alignment - pairwise alignment compares two sequences directly with
each other, giving a specific alignment score, whereas multiple sequence alignment searches
for conserved sequence regions in a group of sequences that are evolutionarily related

(2) Local or global alignment - local alignment is used for dissimilar sequences with different
lengths, but with similar sequence motifs, whereas global alignment compares sequences that
are roughly of equal size
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(3) Substitution matrix - a generally agreed-upon matrix accounting for the alignment scores
between specific amino acids within protein sequences

Since the microarrays contain many various genes, it is feasible to assume they differ largely in
length (preferable local rather than global alignment), and most likely do not have overall conserved
sequence regions (preferable pairwise rather than multiple alignment). Two types of local pairwise
alignment techniques that are often used are the Smith-Waterman algorithm and BLAST (Basic
Local Alignment Search Tool) algorithm, where BLAST is considered faster than Smith-Waterman
because BLAST finds the approximate optimum score, while Smith-Waterman finds the actual
optimum. Both algorithms were compared to choose which one is better in terms of results and
runtime. For the substitution matrix, several options are available, and those are discussed in depth
in Section 3.2.1.

Smith-Waterman algorithm

Smith-Waterman (SW) algorithm is based on dynamic programming (DP), which is a technique
used to maximise the similarity between two sequences using scores for matches, mismatches and
gaps. DP relies on a recursive definition of the optimal score, a DP matrix that remembers multiple
optimal scores for subproblems, a bottom-up approach that solves the subproblems from smallest
to largest, and a traceback that recovers the optimal solution from the matrix. Unlike DP, though,
SW focuses on the optimal local score without considering other subproblems.
Given two sequences (DNA, RNA or protein) x and y of lengths M and N respectively, the SW
algorithm initialises a DP matrix D such that Di0 = D0j = 0 for 0 ≤ i ≤ M and 0 ≤ j ≤ N ,
meaning that the first row and first column of the DP matrix are equal to 0. For each following
matrix elements in position (i, j), any of 3 possible cases may occur: (1) xi is aligned with yj , (2)
xi is aligned with a gap, or (3) yj is aligned with a gap. The optimal alignment would be the
highest score from these cases, unless all 3 cases return a negative score, in which case the score is
0. Avoiding negative score creates a situation where the algorithm focuses on finding similarities
between sequences and avoids considering dissimilarities. The matrix score S(i, j) is a score based
on all previous scores, and can be expressed mathematically as follows:

S(i, j) = max


S(i− 1, j − 1) + σ(xi, yj)

S(i− 1, j)− γ
S(i, j − 1)− γ
0

where σ(xi, yj) is the alignment score between the character xi and yj and γ is a positive number
representing a gap penalty. Once all scores are obtained, the algorithm finds the highest score in
matrix D, and finds the optimal alignment by traceback of the sequence until it reaches a score of
0. The SW algorithm is also able to find a local optimal alignment that is not necessarily as long
as the sequences, deeming it as a local alignment technique[48, 15].
The time complexity of this algorithm can be calculated by looking at its 3 main steps: (1) ini-
tialisation, (2) matrix filling, and (3) traceback. The initialisation includes simple operations of
filling the first and column of the matrix with 0, so it has a time complexity of O(M + N). The
matrix filling (calculating scores for each position in the matrix) is also based on simple operations
(finding max value from 4 values), so filling an M ∗ N matrix has a time complexity of O(MN).
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Finally, traceback of the optimal score involves a reverse version of the matrix filling, with a time
complexity not higher than O(MN) (can be lower if the optimal alignment is local). As such, the
total complexity of this algorithm is O(M +N) +O(MN) +O(MN) = O(MN).

BLAST 2 sequences

The BLAST 2 sequences (bl2seq) algorithm is a pairwise local alignment that is based on the
BLAST algorithm, which is similar to SW algorithm. Nevertheless, BLAST is a heuristic algo-
rithm, meaning it runs faster and generates approximate results. To speed up BLAST compared
to SW algorithm, BLAST contains a pre-alignment step that generates a database of one sequence
aligned with several smaller sub-sequences, and then compares them with another sequence. Given
a protein sequence x, the positions of all possible words within it of length w (3 by default set-
tings) are generated in a hash table (speeds up the algorithm), and each word is aligned with a
database containing all possible word combinations of proteins of length w (i.e. 20w words). Using
a certain statistical significance threshold, all statistically significant word matches, also known as
High-scoring Sequence Pairs (HSPs), are kept. Each HSP is then extended to the left and right
until its alignment with the segment of another sequence y generates a score not below threshold
X. This generates a set of sub-sequences in y that align with sub-sequences in x, which rather
than studying the optimal alignment alone, allows biologists to observe the multiple motifs that
are similar in both sequences[49]. For an elaboration on the complexity of BLAST, see [6].

Substitution matrix selection

Substitution matrices reflect on how likely it is that 2 residues align with each other based on their
frequency of appearance apart and together. The substitution matrix scores often rely on log-odds
score: given 2 hypotheses (null hypothesis ”the residues aligned are uncorrelated” and alternative
hypothesis ”the residues aligned are correlated”), the log-odds score is the logarithm of the ratio
of the likelihoods of both hypotheses. The log-odds score can be represented as such:

s(a, b) = 1/α log
Pab
fafb

where α is a scaling factor, Pab is the likelihood (probability) that residues a and b are observed as
aligned in homologous sequence alignment (alternative hypothesis), and fa and fb the frequencies
that amino acids a and b are overall observed on average in any protein sequence (null hypothesis).
Therefore, if there is a higher probability that residues a and b are aligned together in homologous
sequences than by chance, than Pab > fafb, so the log-odds score is positive[16].
There are two commonly used substitution matrices known as PAM (Point Accepted Mutation) and
BLOSUM (BLOck SUbstitution Matrix), which use different techniques to calculate the log-odds
score presented in the substitution matrices. Nevertheless, they both rely on the same principle in
sample data selection, which dictates that the evolutionary distance should be small so that amino
acid frequencies can be studied in closely aligned homologous proteins[11].
Point accepted mutations (PAMs) are protein mutations by single amino acids, where one amino
acid is replaced by another amino acid. When these mutations occur in nature, it is preferable for
proteins to change in small degrees, and so preferable PAMs occur between amino acids with similar
chemical and physical properties in order to keep the structure and function of the mutated protein
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similar to those of the original protein. PAM matrices are used to calculate the frequencies of each
amino acid changing into another amino acid within multiple proteins with a certain number of
PAM units. For example, PAM250 gives scores of amino acids mutating to other amino acids in
proteins which are 250 point accepted mutations apart. The first step to calculate a PAM250 matrix
is by taking multiple proteins with 250 PAM units distance, and then calculate M , a matrix such
that Mij is the probability that amino acid in position i in one sequence is replaced by amino acid
in position j in another sequence. Using probability matrix M , the PAM250 matrix is calculated
as a log odds matrix of the substitution probability and frequency of the substituted amino acid.
Therefore, entry of PAM250 at position (i, j) can be represented as follows:

PAM250(i, j) = log10

M250(i, j)

f(i)

where f(i) is the probability that amino acid at position i occurs in the other sequence by chance.
The commonly used PAM250 is multiplied by 10, such that if a score in the PAM250 matrix is
10, PAM250(i, j) = 1, and the substitution of the amino acids in positions i and j within similar
proteins would occur 10 times more frequently than at random. The construction of the PAM250
matrix was done by Dayhoff and Schwartz using phylogenetic trees and related sequences[11].
BLOSUM calculates log odds matrix in a way similar to PAM, except that whereas a specific PAM
matrix is based only on proteins with specific PAM units, BLOSUM creates blocks of sequences
that are clustered if their alignment is above a certain percentage threshold. For example, BLO-
SUM62 uses a threshold of 62%, so if sequences A and B have 62% or more aligned positions, they
would be clustered together. If another sequence C has 62% or more aligned positions with either
A or B (not necessarily with both), it is added to the cluster of A and B. The advantage of such
a technique is that it represents scores of relatively similar sequences, and not just of sequences
with a fixed distance, as is the case in PAM matrices. The BLOSUM62 matrix was constructed by
Henikoff and Henikoff using 504 groups of non-redundant proteins catalogued in Prosite and keyed
in SWISS-PROT[26].

Alignment results

To keep the synthetic data small, it was decided to use 20 pairs of homologous genes from two
evolutionary similar species, in this case a human and a mouse. The 20 pairs of homologous genes
are shown in Table 3.1, along with their lengths. The use of proteins of different lengths shows how
the alignment algorithms compare sequences of varying lengths, from very short to very long. Both
algorithms include various parameters, including penalty costs for gaps and extensions, penalty
for mismatches, word-sizes (for bl2seq) and score thresholds, and the default settings were used in
most cases. The only exception was the expect value threshold for bl2seq, which is the probability
of an alignment to be significant (default is E=10, i.e. 10 matches in the alignment are found by
chance). The default returned several scores equal to 0, as their alignment resulted in an expect
score higher than 10, so to retrieve as many scores as possible, bl2seq was run once with default
settings and once with expect value threshold E=1000.
When generating alignment score matrices, it is possible to use complete alignment matrix (align-
ment of all proteins with each other, including each protein with itself) or a distance matrix (score
between a protein sequence and itself is 0). This distinction has an effect on the diagonal of the
score matrices, and thus on the inverses (weight matrices for the GRF), since the distance matrix
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Protein name Uniprot ID (hu-
man)

Length human
protein (amino
acids)

Uniprot ID
(mouse)

Length mouse
protein (amino
acids)

Adra1a P35348 466 Q8BV77 466

APEX1 P27695 318 Q544Z7 317

ALDOC P09972 364 P05063 363

Ifi27l2a Q9H2X8 130 Q8R412 90

SHC1 P29353 583 P98083 579

Spectrin Q13813 2472 B2RXX6 2477

Dmbt1 Q9UGM3 2413 Q60997 2085

Bai3 O60242 1522 Q6ZQ96 612

BEX3 Q00994 111 Q9WTZ9 124

Septin 4 O43236 478 P28661 478

Table 3.1: Pairs of homologous genes used in synthetic data

Method Algorithm Program Runtime (sec-
onds)

Average run-
time (sec-
onds/iterations)

bl2seq BLAST algorithm BioPerl 28.5 0.136

swalign SW algorithm Matlab 3.5022 0.0167

pairwiseAlignment SW algorithm R 8.45 0.0402

Table 3.2: Average running time for pairwise alignment techniques on 20 genes

would have diagonal 0, but the complete alignment matrix would have alignment scores between
each protein and itself depending on the length of the protein (the longer the protein, the higher
the score). Nevertheless, the GRF algorithm represents a graph with nodes and edges, so since
there is no edge between a node and itself, it makes no sense to calculate a score that represents
such an edge, thus making the distance matrix preferable to the complete alignment matrix.

The alignment techniques used were bl2seq in StandAloneBlast module in BioPerl 2.1.8 run
on ActivePerl 5.12.4.1205, pairwiseAlignment in Biostrings package 2.20.1 in R, and swalign in
Bioinformatics toolbox in Matlab. Appendix A shows the heatmaps of the inverse matrices obtained
for the different sequence alignment techniques, and Table 3.2 shows the total runtime and runtime
per iteration for each technique comparing 20 proteins with each other (210 iterations). The
heatmaps are very similar in terms of alignment scores, meaning that the choice of techniques
and substitution matrices has little effect on the overall pattern of scores. However, the runtime
is unexpectedly much faster for SW algorithm in both R and Matlab compared with BLAST in
BioPerl. Since the alignment patterns are the same (even for different substitution matrices), and
the SW algorithm in Matlab runs the fastest, the Matlab alignment technique with BLOSUM62
will be used to construct the weight matrices for synthetic and biological data. The choice of
BLOSUM62 as the substitution matrix is motivated by the fact that it is known to be useful for
different evolutionary distances[50].
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3.2.2 Synthetic data - Algorithm execution

Data initiation

The algorithm was written and run in the R environment. As mentioned before, 20 homologous
human and mouse genes were used, and each gene was randomly assigned to either class 0 or class 1.
Overall, the genes were equally distributed into classes, such that 5 human genes were classified as 0,
and 5 human genes were classified as 1 (same applied for mouse genes). For all genes in class 0, the
score expressions were random numbers within the normal distribution N(4, 1.5), and for all genes
in class 1, the score expressions were random numbers within the normal distribution N(6, 1.5).
The reason for nearby distributions for class 0 and class 1 genes is that overlapping expression scores
will test the efficiency of the algorithm at finding the correct classes for each gene. In addition, the
message convergence threshold was set to ε, which in R is 2.220446 ∗ 10−16, in order to make sure
the convergence is as accurate as possible, and for the overall GRF the convergence threshold was
set to 0.0005. After several trial runs for the algorithm on the synthetic data, it was found that the
messages converge at a reasonable speed even for threshold 2.220446 ∗ 10−16, but that the overall
GRF underwent many fluctuations in the Euclidean distances and took several hours to run with
such threshold 2.220446 ∗ 10−16, which is why the overall GRF was given a convergence threshold
of 0.0005 (sufficiently small without taking too much runtime). From this point on, any reference
to ε would mean 2.220446 ∗ 10−16.

Algorithm sensitivity

The main results that reflect the GRF algorithm performance are the node potential functions, the
global distribution parameters and the runtime and number of iterations of the GRF. In addition,
if the GRF algorithm is input with the synthetic data (expression scores and classes) and the
weight matrix as they are, the only parameter that can be changed, and therefore might change
the results, is λ. Therefore, the synthetic data was input to the GRF algorithm, while different
λ values (100-1000 with steps of 100, and 1000-10000 with steps of 1000) were tested to see how
changing it would affect the results. Looking at the global parameters for the different λ values in
Table 3.3, it can be seen that the parameters fluctuate up to the λ = 700, where the parameters
stay the same for larger λ values. Figures B.1, B.2 and B.3 show the unique distribution for each
species under each class, showing how the parameters change for different λ values.

Table 3.4 shows the runtime and number of iterations for GRF run with the different λ values,
as well as the runtime per iteration (approximately equal to the average rate at which messages
converge). As can be seen, both runtime and number of iterations decrease quite consistently
as λ increases, until runtime starts increasing again at λ > 4000 (this can also be seen in Fig-
ures B.4, B.5, B.6 and B.7). However, the number of iterations increases to a larger extent than
the runtime, which means that the average runtime of message convergence is slower as λ increases.
Therefore, when λ < 4000, the messages converge relatively quickly, but this causes the overall
GRF to converge slower, while when λ > 4000, the messages converge slower and slower, but the
GRF seems to converge in the same rate as it would for λ = 4000. Therefore, for the synthetic
data, λ = 4000 generates the fastest converging GRF and messages, which means it will be used
for other experiments that need to be executed quickly. The runtime and iteration plots were
made in Excel, so they were tested for different trend-lines (linear, exponential, logarithmic and
quadratic) and their R2 values (explained variance of plotted lines) were measured. Table 3.5 shows
the R2 values for the different trends for iteration and runtime in different λ ranges (100-1000 and
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λ Mean
non-
ageing
mouse

Mean
ageing
mouse

Mean
non-
ageing
human

Mean
ageing
human

Variance
non-
ageing
mouse

Variance
ageing
mouse

Variance
non-
ageing
human

Variance
ageing
human

100 4.437759 5.348929 6.076354 5.491882 0.865905 0.634734 3.023487 1.378011

200 5.028699 4.940149 5.201572 6.219638 1.048593 0.800434 1.324214 1.796387

300 5.028699 4.940149 5.201572 6.219638 1.048593 0.800434 1.324214 1.796387

400 5.028699 4.94015 5.201573 6.21964 1.048594 0.800433 1.324211 1.796393

500 4.595457 5.243736 5.632065 5.55451 0.651986 0.941359 1.438893 2.511147

600 4.595457 5.243736 5.632064 5.554511 0.651986 0.941359 1.438894 2.511142

700 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

800 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

900 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

1000 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

2000 4.595514 5.24373 5.632065 5.554509 0.651983 0.941404 1.438891 2.511153

3000 4.595505 5.24373 5.632065 5.554509 0.651983 0.941397 1.438891 2.511153

4000 4.595479 5.243734 5.632065 5.554509 0.651985 0.941376 1.438891 2.511153

5000 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

6000 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

7000 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

8000 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

9000 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

10000 4.595457 5.243736 5.632065 5.554509 0.651986 0.941359 1.438891 2.511153

Table 3.3: Global distribution parameters
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λ Runtime Iterations Runtime/iteration Lambda Runtime Iterations Runtime/iteration

100 2140.11 64 33.43921875 1000 2225.29 30 74.17633333

200 3320.53 81 40.99419753 2000 1648.26 17 96.95647059

300 2621.41 55 47.662 3000 1389.04 12 115.7533333

400 2185.72 42 52.04095238 4000 1277.21 10 127.721

500 3534.86 63 56.10888889 5000 1383.25 10 138.325

600 3142.67 52 60.43596154 6000 1280.5 9 142.2777778

700 2891.21 45 64.24911111 7000 1382.89 9 153.6544444

800 2711.25 40 67.78125 8000 1400.17 9 155.5744444

900 2561.71 36 71.15861111 9000 1438.25 9 159.8055556

1000 2225.29 30 74.17633333 10000 1454.65 9 161.6277778

Table 3.4: Runtime for GRF on synthetic data
Runtime/iteration gives the average runtime it takes messages to converge for a certain λ value

R2

λ=(100-1000) λ=(1000-10000)
Runtime Iterations Runtime Iterations

Linear 0.008 0.692 0.2866 0.5275

Exponential 0.0035 0.7393 0.2676 0.6309

Log 0.0066 0.6052 0.5814 0.8065

Quadratic 0.3164 0.6931 0.7913 0.8571

Table 3.5: R squared values for runtime and iteration trendlines for GRF

1000-10000), showing the highest pattern to be quadratic. It can therefore be concluded that both
results and convergence speed of the algorithm are sensitive to λ, but when λ is sufficiently large,
the results remain the same (for λ ≥ 700), and the iterations remain approximately the same while
the runtime gradually increases (for λ ≥ 6000). The complexity can therefore be rewritten as
O(NouterNinner(λ)n2), showing the convergence of the inner loop, and therefore the complexity of
the algorithm, depends on λ.

Cross validation and error rates

To determine the extent of error rates generated by the algorithm, it was tested with a cross-
validation (CV) leave-one-out (LOO) technique. In it, a gene was left out, as if its class was
unknown, and the other genes from the same species were used to construct a Naive Bayes model
and predict the class of the LOO gene based on its expression score. This was repeated for all genes,
where the predicted class for some genes was the same as their original class (they are denoted here
as ”Other genes”) and the rest of the genes had classes predicted differently from their original
class. Using λ = 4000, which produces fast results consistent for multiple λ values, the CV-LOO
was executed to find the error rates for leaving different genes out. Table 3.6 shows the error
rates for all LOO genes, and the posterior probabilities for each gene to be ageing-related from the
different CV-LOO tests can be seen in Table B.1.

Given those error rates, the average error rate was calculated to be 46.43%, meaning that
53.571% of the genes were correctly classified by the algorithm. Although the error rate is less
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LOO gene Classification Number misclassified genes %Error

Other genes No changes 9 45

76933 0→ 1 9 45

11792 0→ 1 9 45

328 0→ 1 9 45

6464 0→ 1 9 45

20740 1→ 0 11 55

6709 1→ 0 9 45

Table 3.6: Error rates from cross-validation with λ = 4000
The column ”LOO gene” shows the Entrez ID of the gene left out and the second column shows

the original class and what it was predicted to be.

LOO gene Classification Number misclassified genes %Error

Other genes No changes 10 50

76933 0→ 1 12 60

11792 0→ 1 9 45

328 0→ 1 10 50

6464 0→ 1 9 45

20740 1→ 0 10 50

6709 1→ 0 8 40

Table 3.7: Error rates from cross-validation with λ = 100
The column ”LOO gene” shows the Entrez ID of the gene left out and the second column shows

the original class and what it was predicted to be.

than half, it is still quite high, which indicates that either the algorithm is not very good at correct
classification of genes, or that the synthetic data was not well constructed to retrieve the correct
gene classifications. The possible causes for this error rate are further discussed in Section 4.1.
In Section 3.2.2, it was shown that different λ values can return different distribution results, and
so the CV-LOO was repeated with a different λ value of 100. Table 3.7 shows the error rates for
all LOO genes, and the posterior probabilities for each gene to be ageing-related from the different
CV-LOO tests can be seen in Table B.2. These executions show an error rate of 48.57%, which is
even higher than before, indicating that in this case a higher λ value gives more accurate results.

Algorithm scalability

As seen in Table 3.4, generally an increase in λ speeds up the convergence of the GRF algorithm.
Nevertheless, it does not account for the convergence speed of the messages, which affects the
algorithm complexity as well. To study the message convergence, the test which generated the
most iterations was chosen, which was λ = 200 for the synthetic data without LOO genes (81
iterations). Figures B.8 and B.9 show the plots for the runtime and number of iterations of the
messages, respectively, and Figure B.10 shows the ratio between them. Table 3.4 shows that the
average runtime of message convergence is 40.99, which is quite consistent with Figure B.8. It can
be seen that the runtime and iterations are kept relatively constant throughout the algorithm (at
a rate of , meaning that given a certain dataset and λ value, the rate of GRF message convergence
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Iteration 1 Iteration 2 Iteration 3

5.771021 0.739699 0.703344

2.073092 0.05902 0.057702

0.194114 0.002863 0.002744

0.008771 0.000118 0.000107

0.000271 3.98E-06 3.46E-06

1.46E-05 1.17E-07 1.09E-07

3.33E-07 4.35E-09 4.00E-09

1.85E-08 1.99E-10 1.96E-10

6.25E-10 6.97E-12 5.35E-12

4.08E-11 3.84E-13 3.75E-13

1.21E-12 1.41E-14 1.23E-14

8.47E-14 9.70E-16 9.13E-16

2.77E-15 1.22E-16 2.43E-17

2.88E-16

4.18E-18

Table 3.8: Euclidean distances for message convergence
The table shows the Euclidean distances between messages for the first 3 iterations of the GRF on

synthetic data with λ = 200.

would have a relatively constant time complexity regardless of the iteration number of the outer
loop. In addition, the minor fluctuations in message convergence rate show that the messages ac-
tually change (since their Euclidean distances change), and an additional evidence for that can be
seen in Table 3.8, which shows that the Euclidean distances of the converging messages in different
iterations are different.

The second consideration for algorithm scalability is how the number of genes affects the algo-
rithm runtime. Using λ = 4000, which generates the fastest GRF convergence, the synthetic data
was run on the GRF with 20, 18, 16, 14, 12 and 10 genes each time (no genes removed up to 10
genes removed). The genes were removed in pairs from the same species every time, making sure
that when a mouse gene with highest expression from class 0 was removed, a mouse gene with
lowest expression from class 1 was removed. This was done to keep the balance in classes, as well
as to remove the overlap in expression scores between classes as much as possible. As can be seen
in Table 3.9, there is no clear pattern of increase or decrease in runtime and number of iterations,
most likely due to the fact that the GRF algorithm does not converge simply based on number of
genes, but also on the expressions of those genes. As such, genes who are clearly separated into
classes based on their expression scores will probably converge fast, whereas genes from different
classes and overlapping expression scores would probably converge slower. Therefore, it might be
possible to predict the runtime of the GRF algorithm primarily based on the number of genes it
tests and the distribution of their expressions scores. Given those effects on the algorithm, the
complexity can now be rewritten as O(Nouter(n, s), Ninner(n, s, λ)n2), showing that the outer loop
is influenced by both number of genes n and their expression scores s and that the inner loop is
affected by n, s and λ. Although it wasn’t tested fully, several initial trials showed that when the
convergence thresholds for the messages and the GRF overall were modified between ε and 0.0005,
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Number of genes removed Runtime Iterations

No genes removed 1280.12 10

2 genes removed 1186.08 18

4 genes removed 1819.14 37

6 genes removed 219.14 6

8 genes removed 381.58 22

10 genes removed 31.23 2

Table 3.9: Runtime and iterations with different gene numbers

the runtime of the algorithm changed as well. Therefore, the algorithm complexity depends on ε1
(message convergence threshold) and ε2 (overall convergence threshold), giving a final complexity
O(Nouter(n, s, ε2), Ninner(n, λ, s, ε1)n2). However, the exact complexity of the convergence elements
cannot be calculated theoretically, and must be empirically deduced (in the same way the quadratic
pattern was found for different λ values).

3.3 Biological data results

3.3.1 Datasets used

For the biological case, data from complete microarrays is used, which usually consist of tens of
thousands of genes. Due to computational and time restrictions, it was preferable to use only a
small portion of the microarray, and so the GRF analysis was preceded with a filtration step. In
addition, microarray data is usually noisy due to technical variations occurring in the microarray
experiment (such as extraction of RNA and its labelling), so the microarray data used must be
normalised to remove technical variations[7]. However, there are various normalisation techniques,
and no single normalisation is always better than others. Therefore, for the biological data, several
normalisation techniques were applied to the data and evaluated using quality control plots (see
Section 3.3.3). The weight matrix will be calculated from the bit-score matrix obtained by the
swalign algorithm in Matlab used for the synthetic data in Section 3.2.1. The biological data
used in this study were derived from human and mouse brains, particularly the frontal cortex and
hippocampus, respectively. The choice for this dataset is due to the extensive changes occurring in
these particular parts of the brain during ageing, and by studying microarrays from these regions
it might be possible to find genes that affect information processing and storage in the ageing brain
(see Section 1.5.3). The datasets were made publicly available via GEO accession numbers GDS707
for the human dataset[35] and GDS2082 for the mouse dataset[52]. Table 3.10 shows the tissue
type tested, the number of samples and their ages, and the microarray platform with the number
of probes they contain.

In total, 18255 unique gene IDs are found in both human and mouse. Those gene IDs were
mapped to Uniprot protein IDs, finding that only 16917 genes were mapped to 26961 unique pro-
teins. However, not all sequences appear in NCBI, and only 23462 protein sequences were retrieved.
This means that the alignment score matrix has (23462*23461)/2=275,220,991 entries. Neverthe-
less, since this is a very large number of entries, the data is filtered to reduce the number of genes
that are dealt with. It is also important to mention that some gene expressions in the microarray
are missing, so the data is imputed (See Section 3.3.3).
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Biological sys-
tem

Tissue No. of
samples

Age MA platform

Human (18 male
and 12 female)

Frontal cortex 30 26-106 years old Affymetrix Human
Genome U95 Ver-
sion 2 Array (12488
probes)

Mouse Hippocampus 23 2 months and 15
months

Affymetrix Murine
Genome U74 Ver-
sion 2 Array (12625
probes)

Table 3.10: Biological datasets

Biological system No. probes No. annotated probes No. unique genes

Human 12625 12133 9041

Mouse 12488 11930 9217

Table 3.11: Probe and gene counts for the datasets

3.3.2 Data preprocessing

Missing data

The clustering technique of k-nearest neighbours (knn) is commonly used in pattern recognition
to distinguish between samples according to their features, and it can also be used to find missing
gene expressions. This technique works by finding k genes with expression profile similar to a gene
with missing data, and computing a weighted average of values for the missing data based on the
expression in other genes. For example, a microarray was used to measure gene expressions for
thousands of genes in N experiments, and gene i has a missing value in experiment 1. The technique
finds k genes that have similar gene expressions for N − 2 of the other experiments, and uses the
neighbour gene expressions from experiment 1 to calculate a weighted average value, whereas the
weight of each neighbour on the average value depends on how similar its gene expression profile
is to the profile of gene i. The similarity of gene profiles is based on log Euclidean distances, since
logarithm transformation of Euclidean distances (which are sensitive to outliers) reduces the outlier
effect[51].

Data filtration

Microarrays often contain tens of thousands of genes, but when using t-test, only a small percent-
age of those are deregulated, so testing many genes for their deregulation for a certain biological
condition is time consuming and reduces the power of the experiment to detect deregulated genes.
Filtering out genes with potential to be non-deregulated therefore saves time and ensures a powerful
test. Nevertheless, if filtering is not acknowledged as a statistical test, and search for deregulated
genes is done on filtered data as if filtering was not actually done, the result would be optimistic
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p-values and a larger false positive (type I error)[4].
To solve the problem of increasing type I error, the filtration is done with a criterion that is inde-
pendent of the statistic used to find deregulated genes (e.g. t-test). This was shown by Bourgon et
al.[4], where the filtration criterion were independent of the labels assigned to the samples (biolog-
ical conditions), including overall mean and variance, median or inter-quartile range (IQR). Thus,
as long as the criterion for filtering does not involve the sample labels (in this case, age), genes can
be filtered without creating optimistic p-values and while leaving the false positive unchanged.

Normalisation techniques

In microarray experiments, multiple samples hybridise against separate arrays of probes, which can
be used to determine mRNA expression in the samples. However, due to technical variations, the
intensities cannot be compared directly and must be calibrated, or normalised. Therefore, the nor-
malisation techniques variance stabilisation and normalisation (VSN) and quantile normalisation
were chosen to reduce the technical variation while emphasising the biological variation. There are
various normalisation techniques, but those two specific ones are chosen as they are frequently used
in microarray preprocessing[2].
When dealing with distributions of probe intensities, the variance of distributions often depends
on the mean of those distributions. This variance-mean dependence poses a problem, since one
assumption of linear models holds that variances are kept constant throughout a distribution, and
due to the variance-mean dependence, the intensity distribution does not follow this assumption in
low intensity ranges (see Figure 3.1)[29]. The VSN normalisation technique performs rescaling of
between-sample variations, such that the variance of probe intensities for each sample is approxi-
mately independent of the mean of the probe intensity. This technique uses an inverse hyperbolic
sine transformation, through calibrating and shifting the scales of variations between samples, such
that the mean is not linearly dependent on the variance, so transcriptional changes can be detected
as significant even for lowly expressed genes[29].

Quantile normalisation is used to adjust all intensities within and between samples by calibrat-
ing all samples to have the same intensity cumulative distribution. In this technique, the averages
of intensities for each probe are taken, while the probes in each sample are ranked from strongest to
weakest intensity. The ranked probe intensities in each sample are then replaced with the ranked
probe averages, such that all samples have the same distribution overall, but different probe rank-
ing. This technique normalises probe intensity from multiple arrays such that between-sample
variations are minimised[3].
VSN focuses on reducing the within-sample variance by removing the variance-mean dependency in
each sample separately, while quantile normalisation reduces both within-sample variance (through
reducing the intensities to average intensities) and between-sample variance (by giving all samples
the same distribution). This implies that VSN corrects the technical variation without influencing
the biological one too much, while quantile normalisation corrects for technical and biological vari-
ation by bringing samples with similar genetic profiles closer to each other[2].
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Figure 3.1: Dependence of variance on mean in microarray data distribution
In this figure v is variance, u is the mean. The figure shows how the variance values from

microarray data are not linear for lower means[29].

3.3.3 Biological data initialisation

Data imputation and filtration

The imputation of the data was done with default settings (k = 10). The filtration of the data
was done using the inter-quartile range (IQR) criterion, because it was observed by Bourgon et
al.[4] that non-deregulated genes are detected reliably through low variability across samples, and
because IQR is robust to outliers. Filtration was done using non-specific filter (nsFilter) and the
Bioconductor annotation packages for human (hgu95av2.db version 2.5) and mouse (mgu74av2.db
version 2.5) in R to remove probes that are not annotated, control probes and probes with a low
IQR (default threshold at var.cutoff = 0.5, meaning that about 50% of the genes with lowest IQR
are filtered out). In addition, the IQR criterion was used with the annotation file to filter probes
annotated to the same genes, such that only the probe with the highest IQR was kept[4].
After filtering the data with default settings, about 8000 genes were retrieved in total for both
datasets. They were merged with the genes mapped to proteins and with the protein sequences
retrieved from NCBI, so that each gene had a unique Uniprot ID and unique protein sequence. A
total of 7718 protein sequences were found, and retrieving the alignment scores for them (7717 ∗
7718/2 = 29779903 entries) took about 57 hours and 13 minutes.
An attempt was done to input the alignment score matrix into R, but the alignment matrix was too
large to be input into R (not enough virtual memory), so it was filtered further using var.cutoff =
0.9 for the human and mouse datasets. This returned 1764 genes from the human microarray, and
1762 genes from the mouse microarray, returning an alignment matrix for 3136 proteins.
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Data normalisation and quality control

After both normalisation techniques VSN and quantile were applied to the human and mouse
datasets separately, it was necessary to determine which normalisation technique is better. As part
of this quality control, 3 approaches were employed: (1) MA plots, which show the extent the vari-
ance of gene expressions depends on the mean, (2) boxplots, which are used to compare the overall
distribution of samples to determine whether they are comparable, and (3) Principal component
analysis (PCA), used to determine whether the samples are distinguishable according to their age
groups. MA plots are pairwise comparisons of log-intensities between arrays used to identify inten-
sity biases by looking at their ratio and average. The Y-axis represents the log-ratio M between
two arrays, and is calculated as M = log2

array1
array2 , while the X-axis represents the average intensity

A of two arrays, and is calculated as A = log2(array1∗array2)/2. The target MA plot would show
the genes under symmetric and even distribution for any two arrays compared. The boxplots are
used to compare the overall distribution of the genes in each sample (each box is a sample), and
the target plot should be boxes that are similarly distributed[8]. Finally, PCA is a technique that
treats the samples as points with n dimensions (where n is the number of probes), and reduces
the dimensionality of the samples by finding k new variables (where k < n) as linear combinations
of the n variables. The new variables are called principal components, and they account for the
variation of the n variables while being uncorrelated and orthogonal to each other[44]. The target
PCA plot would show the samples clearly separated for different age groups (in mouse case, 2 and
15 months; in human case, below the average age and above the average age of the samples).
As can be seen in Figures C.1, C.2 and C.3, the quantile distribution in both human and mouse
improve on the gene distribution compared to their raw forms (VSN normalisation does not im-
prove the distribution as much). Therefore, boxplots show a disposition to quantile normalisation.
The MA plots are somewhat difficult to interpret, because VSN generates much smaller expressions
for the genes than the quantile normalisation, so MA plots for VSN normalised data are spread in
a smaller region and may seem more evenly distributed than the quantile normalised data. Nev-
ertheless, if the scale of the expressions are ignored, Figures C.4, C.5, C.6 and C.7 show human
and mouse are more evenly and symmetrically distributed in the quantile normalised data than
in the VSN normalised data, which indicates MA plots show quantile normalisation as preferable.
Finally, the PCA plots were done separately on mice ages 2 and 15 months, and separately on
humans below age of 60 years and above age of 60 years (60 being the mean and median age). Fig-
ures C.8, C.9, C.10, C.11, C.12 and C.13 did not show a clear separation of samples from different
age groups, thus leaving PCA as inconclusive for this data. The final decision was to use quantile
normalisation on the data, since the boxplots show a clear improvement in sample distribution
compared to raw data and VSN normalised data, and its MA plots show an even distribution for
the quantile normalised data compared with the VSN normalised data.

Expression scores biological data

In the paper by Lu et al.[38], the expression scores were calculated as follows:

si =
max(expression[i])−min(expression[i])

|age(max(expression[i]))− age(min(expression[i]))|
Nevertheless, in the case of Lu et al., the data represented gene expressions of cells attacked
by bacteria at different time-points, thus focusing on the same cells at different time-points, so
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Ageing Non-ageing Total Percentage ageing genes

Mouse 96 8714 8810 1.089671

Human 354 8464 8818 4.014516

Table 3.12: Number of ageing and non-ageing genes in unfiltered datasets

that the expressions have gradual changes. However, the ageing biological data involved samples
from multiple individuals, so all expressions of every gene had to be considered. Since the filtering
guaranteed that every gene is represented by a single vector of probe intensities, the probe intensities
were separated into age groups young and old (2 and 15 months for mouse, above or below 60 years
for humans). Calculating the difference between young and old samples in both species employed
the use of Euclidean distances:

si =
√

(E(score oldi)− E(score youngi))2

Ageing-related genes

The list of ageing genes was retrieved from two main sources: (1) the Gene Ontology (GO) website
Amigo[1], used to retrieve all annotations of genes and proteins (Entrez gene ID, MGI IDs, Ensemble
IDs and so on) in human and mouse that belong to the GO category of ageing or its children, and
(2) the Human Ageing Genomic Resources (HAGR) website[12], used to retrieve all human and
mouse genes that were found in studies up to 2010 to be ageing related, but were not necessarily
put in ageing gene ontology. From Amigo, 463 entries were obtained for both mouse and human,
and from HAGR, 261 Entrez IDs were found for human and 68 gene symbols were found for mouse.
With the unfiltered datasets mentioned in Table 3.10, the number of ageing genes in human and
mouse was retrieved with the Amigo and HAGR references (see Table 3.12).

With 1% ageing genes in mouse and 4% ageing genes in human, there is a risk that the ageing
genes would be under-represented in the Naive Bayes model, and as such the GRF algorithm might
tend to give most (if not all) genes a non-ageing classification. Nevertheless, it was attempted to
see if this will really happen. To save computation time, both human and mouse datasets were
filtered with var.cutoff = 0.99, returning 89 genes from each dataset. They were mapped to their
equivalent proteins, and their alignment scores were extracted from the alignment matrix with 3136
compared proteins. The final number of genes mapped to proteins and present in the alignment
matrix was 154, where 79 genes are from human dataset (4 of which are ageing-related) and 75
genes are from mouse dataset (3 of which are ageing-related).

3.3.4 Biological data - Algorithm execution

Since the number of genes in the biological data is higher than in the synthetic data, it was necessary
to reduce the number of neighbours for each gene to allow the algorithm to run faster. As such,
the median of the alignment matrix was retrieved (32), and every score below 32 was set to 0. In
that way, on average every gene would send messages only to half of its original neighbours (about
77 neighbours on average), so messages would be computed faster and therefore converge faster.
In addition, λ was set to 4000 (as it ran fastest for the synthetic data), the message convergence
threshold was set to ε as before, and the convergence threshold for the GRF overall was set to
0.0005 (allowing faster retrieval of results).
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The GRF algorithm did not converge even after 180 hours (648864.25 seconds) and 121 iterations,
although it showed signs of slow convergence. The first iteration generated a Euclidean distance of
41089, and within 4 iterations it was reduced to 1579.853. Nevertheless, the Euclidean distances
kept fluctuating, as can be seen in Figure 3.2.

Figure 3.2: Euclidean distances biological data
This plot shows the Euclidean distances of iterations 34 to 121

Another phenomenon observed was that the number of iterations for message convergence re-
mained relatively the same (14-15), and the message convergence runtime also remained in a specific
range (5200-5800 seconds), with an average message calculation time of 380 seconds per iteration
(so calculating all messages for all genes takes approximately 380 seconds). This has been seen be-
fore in the investigation of the inner loop (message) convergence (runtime of message convergence
is 37-44 seconds for synthetic data; see Section 3.2.2), and it is possible that the extent to which
the message convergence runtime fluctuates depends on the number of genes and their neighbours
tested (more neighbours means more calculations and longer convergence runtime).
Since the algorithm did not converge, the iteration with lowest Euclidean distance so far was re-
trieved (in this case, iteration 94 had Euclidean distance of 150) and all genes with ageing posteriors
above 0.5 were retrieved. 82 genes were found to have such posterior probabilities, including ageing-
related genes ”57142”, ”7345” and ”1191” in human and gene ”14681” in mouse that had posterior
probabilities of 1 (ageing-related genes ”11676” and ”11816” in mouse and gene ”348” in human
had very low posterior probabilities). It should be noted that every posterior probability of 1 is
actually 1− ε (see Section 2.1.4 for a reminder).
The results show that even with a small number of ageing genes to begin with and with no con-
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vergence of the Euclidean distances, multiple genes that are initially non-ageing show high ageing
posterior probabilities. Among the 154 genes tested, also several homologous pairs were retrieved,
with varying posterior probabilities:

• Aldolase A (ALDOA), an enzyme involved in cytoskeletal protein binding[41], has high pos-
terior probabilities for variants from both species

• Cholecystokinin (Cck), a protein involved in calcium signalling pathways[23], has a mouse
variant with high posterior probability, but a human variant with low posterior probability

• Dynamin 1 (Dnm1), a GRF binding protein that functions as parts of signalling complexes
used to remodel the actin cytoskelaton[22], has a human variant with high posterior proba-
bility, but a mouse variant with low posterior probability

• Metallothionine 3 (Mt3), a metal-binding protein involved in zinc regulation during neural
stimulation[18], has a human variant with high posterior probability, but a mouse variant
with low posterior probability

• Neurochondrin (Ncdn), a protein that regulates calcium-related processes and may be essen-
tial for spatial learning processes[10], has a human variant with high posterior probability,
but a mouse variant with low posterior probability

• Neurogranin (Nrgn), a gene that encodes a protein substrate that compensates for calcium
absence in related pathways[27], has high posterior probabilities for variants from both species

• Prostaglandin D2 synthase (Ptgds), a neuromodulator (alters nerve impulse transmissions)
as well as a factor in the central nervous system[28], has a human variant with high posterior
probability, but a mouse variant with low posterior probability

• Proteolipid protein 1 (Plp1), a myelin protein related to axon degradation[20], has low pos-
terior probabilities for both species

Aldoase A and neurogranin are both interesting due to high posterior probabilities for both species,
but also due to their functions (involvement in cytoskeletal structure of the cell and involvement
in calcium pathways), which have been shown to be ageing related in Section 1.5.3. The other
homologous gene pairs, which are partly related to ageing, also show functions that are related
to ageing (cell cytoskelaton and structure deterioration, neural stimulations, learning process and
calcium pathways), which means that given more time for the algorithm convergence, they might
show high posterior probabilities for both variants. Therefore, it can be seen that even with a small
initial number of ageing-related genes, the algorithm is able to retrieve multiple homologous genes
that are related to the ageing process in the brain, which shows that it can indeed be used to find
deregulated genes in cross-species studies other than immune-response microarrays.
The number of genes with posterior probabilities of 1 in iteration 94 is 78, showing that most genes
with posterior probabilities bigger than 0.5 are converging to 1. Therefore, it can be expected that
if it is allowed to run until the end, the GRF algorithm will probably retrieve all genes with two
distinct posterior probabilities of ε and 1− ε. Other genes with posterior probabilities close to 1 are
human GRIN1 involved in calcium ion transmembrane transport[1], human creatine kinase involved
in brain development[1], mouse neurogranin which may regulate Ca2+-sensitive enzymes[32] and
mouse reticulon 3 involved in apoptosis (cell death)[1]. Therefore, it can be seen that some genes
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appear to be ageing-related even though their homologous pairs are not present in the filtered data.
Furthermore, it is possible that if the complete microarray would be run, the homologous genes for
those genes may be found to be ageing related as well due to high alignment scores pushing the
posterior probabilities of the homologous genes higher.
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Chapter 4

Conclusion and discussion

4.1 Algorithm performance

In Section 2.1, the GRF algorithm, originally designed by Lu et al.[38], was fully expressed in terms
of a pseudocode and fully explained regarding the use of genes as nodes and alignment scores to
establish edges. This explanation will allow future readers of this thesis to implement the algorithm
themselves for their own uses.
As mentioned in Section 3.2.2, the GRF algorithm complexity isO(Nouter(n, s, ε2), Ninner(n, λ, s, ε1)n2),
showing that it is difficult to theoretically determine how each factor would affect the complexity,
and in the same way as in Section 3.2.2, the complexity factors have to be studied empirically. Sec-
tion 3.2.2 also showed the algorithm has an error rate smaller than 50%, but it is still sufficiently
low to consider the algorithm highly accurate at classifying genes. Since the algorithm has been
tested before by Lu et al. and was found to work well on biological data both for immune response
genes and for brain genes here, it is very likely that the synthetic data was not constructed correctly
(it is unclear whether the algorithm can deal with highly overlapping gene expressions for different
classes).
It must also be acknowledged that the algorithm implementation here is likely to be different from
that mentioned by Lu et al., since certain calculations, such as node potential function initialisa-
tion (naive Bayes) and convergence calculation (Euclidean distances), were done differently from
the original. Therefore, to test whether the GRF implementation done here was correct, it is nec-
essary to recreate the experiment by Lu et al. to see whether the results using the current GRF
algorithm diverge much from the original results.

4.2 Biological conclusions

As mentioned in Section 1.5.3, the hippocampus and frontal cortex are brain regions highly rele-
vant to memory and executive functions, where both diminish in capability as ageing progresses.
Particular brain genes deregulated by ageing include immediate early genes (IEGs), which consist
of transcriptional factors and effector genes, and genes related to Ca2+ pathways or metabolism.
As seen in Section 3.3.4, the GRF algorithm discovers genes that may be ageing-related, as well
as homologous genes that are ageing-related. Even though there is no indication of the error rate
for the biological data, the fact that the GRF algorithm finds several genes to be ageing related,
especially those who have functions which suggest association to ageing, indicates that the GRF
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algorithm definitely has potential for cross-species studies in various biological conditions. Never-
theless, since the algorithm was not run to its full convergence, the results are incomplete, and so
it will be necessary to run the algorithm for the same dataset (possibly non-filtered) on a stronger
computer that will be able to reach the convergence faster. It should also be emphasised that even
after convergence, when the algorithm claims several genes to be ageing-related, those are all statis-
tical findings based on mathematical computation of posterior probabilities, and additional proof
of those genes being ageing-related can be found by performing biological validation experiments.

4.3 Outlook

The main problem that was faced during this project was the lack of computational resources,
which prevented analysing large biological datasets. Commonly, microarray datasets study tens of
thousands of genes, and even a dataset of 12000 brain cell genes (one of the smaller microarrays)
was too large for the available computers to deal with. Although the filtering technique used here
is very helpful on focusing on genes with high variation (likely to be deregulated), it was used here
out of necessity rather than choice, and with the severe filtration of the datasets to about 1% of
their original size, it is possible many biologically relevant genes were lost in this step. Therefore,
given the ability to use a computer with a stronger processor and more RAM, the algorithm could
have been run on the entire biological data to find more ageing-related genes.
The design of the algorithm involves multiple loops and nested loops, as well as slow fluctuating
convergence, which can take a very long time for large datasets. It is likely that the algorithm can
be modified in order to run more efficiently in terms of space (storage of large biological datasets)
and time to calculate the messages faster, and it is also necessary to study the algorithm empirically
further to deduce how the convergence can be sped up without creating inaccurate results. The fact
that the algorithm is properly explained in Section 2.1 will allow readers to criticise it, to find ways
to improve on its performance and to study its complexity further. In addition, it is likely that the
complexity of the algorithm can be lowered using any of the algorithmic approaches suggested by
Felzenszwalb and Huttenlocher[19], DiMaio and Shavlik[14] or Coughlan and Shen[9].
Felzenszwalb and Huttenlocher suggest how to use belief propagation (BP) for early vision and
pixel labelling (based on quantities to estimate the pixels, such as intensity). Their first suggestion
involves using negative logarithms for messages to find their message minimums, thus allowing for
calculations simpler than message integration (see Section 2.1.5). Another suggestion involves using
messages in a bipartite graph, where messages are only established between nodes from different
groups, and not from the same group. Finally, they suggest a coarse-to-fine multiscale BP that
would calculate a coarse estimate of the messages in the first message iteration and use those as
initial messages, while also creating node blocks with the same labels to save computation time on
many nodes and their neighbours. Nevertheless, the last suggestion applies to hierarchy structures
that can group messages together, and this may not be applied to genes without hierarchy in the
same way[19]. DiMaio and Shavlik mention the fact that BP is often used for tree-structured
graphs (graphs without cycles), and that in graphs with arbitrary topology there is no guarantee
that the optimal results will be found. The topology of the graph was not considered to be an issue
in this thesis, but it is possible that certain topological occurrences (such as loops and incomplete
node connectedness) might create some computational problems. In addition, DiMaio and Shavlik
suggest using an aggregated BP (AggBP), which assumes that if all edge potential functions are
equal in a given structure (or substructure), all messages along those edges are the same, and
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therefore can be easily aggregated and calculated for multiple edges at a time. Nevertheless, this
aggregation may not apply in cases of incomplete topology (not all nodes are connected), and so
may not apply for the biological data in this thesis (see Section 3.3.3). Another suggestion was to
apply Fourier transformations to the messages, which should reduce the complexity of calculating
message products[14]. Coughlan and Shen suggest a technique that reduces the complexity of the
message calculation by considering sparse neighbourhoods of each gene i, and using constant values
for those neighbouring genes who are not in the same state as gene i[9]. The main problem with
the techniques here, is that they only apply to Markov Random Fields (MRF), and thus assuming
the node values are discrete and can either be grouped or treated as hierarchies, which does not
apply for the GRF used in the thesis.
The particular novelty of this study is in the research of the stability and scalability of the GRF
and BP algorithm, as well as its ability to classify genes as being deregulated or non-deregulated for
ageing. Nevertheless, GRF and BP techniques have been thoroughly used for pattern recognition,
graphical models, such as optical flow, 3D biological and chemical imaging (e.g. protein folding
structures) and speech recognition, and so the algorithm used here could possibly be adapted for
other applications.

4.4 Summary

Cross-species analyses are useful studies to find deregulated genes in multiple microarrays from
different species. Nevertheless, there are multiple problems that need to be considered when com-
paring microarrays from different species, such as different microarray platforms, different ranges
of gene expressions and noise due to large environmental variations. The Gaussian Random Field
algorithm suggested by Lu et al.[38] was used to perform such cross-species analysis on human
and mouse cells to find immunity-associated genes. As the algorithm seemed to perform success-
fully, and was claimed to be applicable to other organisms and other biological conditions, it was
adapted to find ageing-associated genes in brains of mice and humans. First of all, the algorithm
was thoroughly explained, and its scalability and its sensitivity were studied. It was also shown
that although the biological results found were not conclusive due to use of the small fraction from
the studied microarrays, the algorithm has the potential to find ageing-related genes in the data,
and might therefore be applicable in further cross-species studies.
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Appendix A

Heatmaps for different sequence
alignment techniques
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(a) Expect value threshold = 1000 (b) Expect value threshold = 10

Figure A.1: Heatmap comparison BioPperl

(a) BLOSUM62 (b) PAM250

Figure A.2: Heatmap comparison R
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(a) BLOSUM62

(b) PAM250

Figure A.3: Heatmap comparison Matlab
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Appendix B

Synthetic data plots and tables

45



Genes Other genes 76933 11792 328 6464 20740 6709

20416 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

76933 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

11549 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

11676 1 1 1 1 1 2.22E-16 1

11792 0.999887 1 1 1 1 2.22E-16 1

230 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

328 2.22E-16 2.22E-16 1.23E-14 2.22E-16 2.22E-16 1 2.22E-16

6464 1 1 1 1 1 2.22E-16 1

148 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

83982 1 1 1 1 1 2.22E-16 1

20740 1 1 1 1 1 2.22E-16 1

12945 1 1 1 1 1 2.22E-16 1

210933 1 1 1 1 1 2.22E-16 1

12070 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

18952 1 1 1 1 1 2.22E-16 1

6709 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

1755 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

577 1 1 1 1 1 2.22E-16 1

27018 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

5414 2.22E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

Table B.1: Posterior probabilities from cross-validation leave-one-out with λ = 4000
The first row represents the LOO gene IDs, and the numbers represent the posterior probability

for the genes to be ageing-related.
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Genes Other.genes 76933 11792 328 6464 20740 6709

20416 2.22E-16 1 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

76933 3.82E-09 1 2.22E-16 1 1.82E-09 1 2.22E-16

11549 1 2.22E-16 1 1 1 0.999872 2.22E-16

11676 1 1 1 1 1 2.22E-16 2.22E-16

11792 0.999584 3.56E-12 1 0.999989 0.999928 2.22E-16 1

230 2.22E-16 1 2.22E-16 2.22E-16 2.22E-16 1 2.22E-16

328 0.999632 0.999753 0.999999 0.999985 0.99993 5.79E-12 0.00031

6464 1 1 1 1 1 2.22E-16 2.22E-16

148 1 2.22E-16 1 1 1 2.22E-16 0.999668

83982 1 2.22E-16 1 1 1 4.45E-07 1

20740 1.25E-05 2.22E-16 1 1.38E-12 2.05E-08 1 5.49E-06

12945 1 2.22E-16 1 1 1 2.22E-16 1

210933 1 2.22E-16 1 1 1 6.11E-13 1

12070 2.22E-16 1 2.22E-16 1.86E-06 2.22E-16 1 2.22E-16

18952 1 1 1 1 1 2.22E-16 2.22E-16

6709 4.51E-11 1 7.02E-07 2.22E-16 4.77E-14 1 2.22E-16

1755 1 3.11E-05 1 1 1 2.22E-16 0.999998

577 1 2.22E-16 1 1 1 2.22E-16 1

27018 0.999992 1.67E-05 0.00016 1 0.999988 1 2.22E-16

5414 1 2.22E-16 1 1 1 1.83E-05 7.97E-07

Table B.2: Posterior probabilities from cross-validation leave-one-out with λ = 100
The first row represents the LOO gene IDs, and the numbers represent the posterior probability

for the genes to be ageing-related.
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Figure B.1: Distribution of global parameters for synthetic data with λ=100

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Distribution of global parameters

Events

D
en

si
ty

Mouse non−aging
Mouse aging
Human non−aging
Human aging

Figure B.2: Distribution of global parameters for synthetic data with λ=200
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Figure B.3: Distribution of global parameters for synthetic data with λ=800

Figure B.4: Runtime of the GRF algorithm for λ = (100, 1000)
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Figure B.5: Iterations of the GRF algorithm for λ = (100, 1000)

Figure B.6: Runtime of the GRF algorithm for λ = (1000, 10000)
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Figure B.7: Iterations of the GRF algorithm for λ = (1000, 10000)

Figure B.8: Runtime of GRF inner loop with λ = 200
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Figure B.9: Iterations of GRF inner loop with λ = 200

Figure B.10: Runtime/Iteration of GRF inner loop with λ = 200
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Appendix C

Biological data plots and tables
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Figure C.1: Boxplots for raw mouse and human data
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Figure C.2: Boxplots for VSN normalised mouse and human data
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Figure C.3: Boxplots for quantile normalised mouse and human data
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Figure C.4: MA plots for mouse samples of same age
The samples tested are both of age 2 months
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Figure C.5: MA plots for mouse samples of different ages
The samples tested are 2 months old and 15 months old
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Figure C.6: MA plots for human samples of same age group
The first sample is from an individual age 48 years, and the other is from an individual age 56 years
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Figure C.7: MA plots for human samples of different age groups
The first sample is from an individual age 48 years, and the other is from an individual age 90 years
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Figure C.8: PCA plot for raw human data
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Figure C.9: PCA plot for VSN normalised human data
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Figure C.10: PCA plot for quantile normalised human data
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Figure C.11: PCA plot for raw mouse data
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Figure C.12: PCA plot for VSN normalised mouse data

59



−0.215 −0.210 −0.205 −0.200 −0.195 −0.190

−
0.

4
−

0.
2

0.
0

0.
2

Mouse quantile PC 1  vs. PC 2

PC 1  with variance  85.57

P
C

 2
  w

ith
 v

ar
ia

nc
e 

 3
.9

1

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

Age groups

15 months
2 months

Figure C.13: PCA plot for quantile normalised mouse data
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