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Abstract

The Capacitated Vehicle Routing Problem (CVRP) is a widely studied, NP-
hard problem with many real-world applications. Exact approaches are in-
feasible for solving large problem instances, due to the superpolynomial time
complexity. Therefore, most solution approaches over the years have been
metaheuristics, such as the Genetic Algorithm (GA). This thesis presents
a Hybrid GA, which incorporates problem-specific heuristics and domain
knowledge into the algorithm. This causes the parameter settings to behave
slightly different from regular GAs. To take care of the parameterization,
an additional GA is used, acting on the Hybrid GA. This will be referred
to as the Meta-GA. In addition to solving all known problems optimally
or within 1% of the optimum, it manages to find a new best result within
research literature for M-n200-k16, one of the largest problem instances.
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Chapter 1

Introduction

The Vehicle Routing Problem (VRP) is a combinatorial optimization prob-
lem first described over half a century ago in [Dantzig and Ramser, 1959].
In its most general form the VRP can be described as finding the optimal
set of routes for a fleet of vehicles which serve a set of customers. It is a
widely studied problem both due to its complexity and thanks to its practical
relevance in areas such as transportation, distribution and logistics.

Many solution approaches have been proposed over the years. Exact so-
lutions are only applicable to smaller problem instances due to the NP -
hardness [Lenstra and Kan, 1981]. Therefore, most solution approaches have
been heuristics or metaheuristics. In this thesis Genetic Algorithms will be
used, which belong to the class of Evolutionary Algorithms.

A general overview of the Vehicle Routing Problem will be given in Chapter
2. Genetic Algorithms are discussed in Chapter 3, extending into Chapter
4 on meta techniques. Chapter 5 covers the implementation details and
results are presented in Chapter 6. Chapter 7 concludes this thesis.
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Chapter 2

Vehicle Routing Problem

The Vehicle Routing Problem is the problem of optimally routing a fleet
of vehicles from one or more depots to a set of geographically dispersed
customers. A customer has a certain demand and a vehicle has a certain
capacity. Each customer has to be assigned to exactly one vehicle in a
specific order, without violating the capacity constraints of the vehicles.
Figure 2.1 (left) shows a typical problem instance. The green circle is the
depot and the black dots represent the customers. Demands and capacities
are not depicted here for the sake of simplicity. All vehicles depart from
the depot, visit the customers they have been assigned to and return to the
depot. The set of routes which forms the minimal total travel cost is referred
to as the optimal solution. Figure 2.1 (right) is the optimal solution for the
juxtaposed problem instance.

Figure 2.1: VRP problem instance (left) and its optimal solution (right)

The most basic version of VRP is the Capacitated Vehicle Routing Problem
(CVRP), which will be used throughout this thesis. In a CVRP there is
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always one depot and the graph is complete and symmetric, which means
that there exists a path from and to every vertex and the distance between
vertices is identical both ways. The travel cost is defined as the distance
between vertices.

2.1 Problem definition

The mathematical model of the CVRP is defined on a graph G(V,E) where:

• G is complete and symmetric.

• n is the number of customers.

• V = {v0, v1, . . . , vn} is the set of all vertices with depot v0.
The set of all customers corresponds to V − v0.

• E = {(vi, vj) ∈ V : i �= j} is the set of all edges.

• d(vi) : i ∈ {1, ..., n} denotes the demand for customer i.

• cij = δ(vi, vj) =
√
|vix − vjx |2 + |viy − vjy |2 is the travel cost between

vertices vi and vj.
cij = cji and cii = 0 hold in CVRP.

• Ri : i ∈ {1, ...,m} = (v0, vi1 , ..., vik , v0) is a route for one vehicle.
Each route starts and ends at the depot.

• S = {R1, . . . , Rm} is the set containing all routes, forming the solution.

• Cost(Ri) =

ik−1∑
j=1

(cij ij+1) + c0i1 + cik0 is the travel cost for Ri.

• Every customer is visited exactly once by one vehicle:
∀i(vi ∈ V − v0 ⇒ ∃j : vi ∈ Rj∧ � ∃j �= k : vi ∈ Rj ∧ vi ∈ Rk)

• Total demand in routes does not exceed vehicle capacity K:

∀r(Rr ∈ S ⇒
ik∑
j=1

d(vrj ) ≤ K)

The goal is to minimize the total travel distance, thus the objective function

Cost(S) =
m∑
i=1

Cost(Ri) =
m∑
i=1

(

ik−1∑
j=1

(cij ij+1)+ c0i1 + cik0) is to be minimized.

3



2.2 Variants

Many VRP variants exist, usually extending the basic problem by adding
constraints in an attempt to make the problem more realistic. The most
important ones are described in this section.

• Multiple Depots
Instead of having only one, this variant utilizes multiple depots from
which the vehicles can depart. In principle they return to the depot
they departed from, but surely there exists an adaptation where this
is not a constraint and returning to any depot will suffice.

• Time Windows
Customers must be visited within a certain time window. Each cus-
tomer is therefore extended with an interval in which it should be
served. Failure to visit a customer within that window will result in a
penalty or an infeasible route.

• Pickup and Delivery
It is possible for customers to put commodities into the visiting vehicle.
This commodity is then taken back to the depot or delivered to another
customer en route. Vehicle capacity constraints cannot be violated.

• Split Delivery
The constraint that a customer is visited exactly once by one vehicle
is dropped, thus making it possible for a customer to demand more
than the truck capacity.

The cost function can be extended with fuel cost, initial running cost per
vehicle, labor, fines for not meeting deadlines, etc. The graph does not have
to be complete or symmetric either, e.g. in case of one-way roads or roads
with an incline.

Nearly all variants can be combined, creating a problem that more closely
resembles the routing problem as encountered in real life.

2.3 Related problems

The Traveling Salesman Problem (TSP) is the problem of finding the short-
est path for a salesman who wants to visit a number of cities (each city ex-
actly once), departing from and returning to his hometown. CVRP limited
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to a single vehicle, given enough capacity for the demands of all customers,
is equivalent to the TSP.

The goal in the Bin Packing Problem (BPP) is to pack objects of different
volumes into a number of bins with a certain capacity that minimizes the
number of bins used. This relates to VRP in that customers with different
demands should be ‘packed’ into a route or vehicle which minimizes the
amount of vehicles used.

The CVRP can therefore be regarded as a combination of these two prob-
lems.

2.4 Complexity

In computational complexity theory, a decision problem is a question in
a formal system with a yes-or-no answer, e.g. given a number n ∈ N, is
n prime? A decision problem which can be solved by an algorithm is a
decidable problem. Decidable decision problems can be categorized by how
‘difficult’ they are, in terms of solving the problem using the most efficient
algorithm. If the problem can be solved by a polynomial-time algorithm
(worst case complexity O(nk)), the problem is categorized under complexity
class P , which stands for polynomial time. Decidable decision problem for
which no polynomial-time algorithm is known but the answer can be checked
in polynomial time fall under the complexity class NP (nondeterministic
polynomial time). These complexity classes are visualized in Figure 2.2.

Figure 2.2: Complexity classes

A problem is considered NP -hard if any problem in NP can be reduced to
it in polynomial time. Reducing a problem to another is translating an in-
stance of a problem to the problem in question. A problem is NP -Complete
if it is both NP -hard and in NP . To date, it is unknown whether P = NP

5



and this is a major unsolved problem in computer science. The class of
NP -Complete problems is interesting because if any of those problems can
be solved in polynomial time, it follows that all problems in NP -Complete
are solvable in polynomial time, which would imply P = NP . It is gener-
ally assumed that problems in NP -Complete are not solvable in polynomial
time, partly because people have been trying to do so for the past 50 years.
This is known as the NP -hardness assumption [Aaronson, 2006].

The CVRP is NP -hard [Lenstra and Kan, 1981]. The issue in solving such
problems is that it takes superpolynomial time to find exact solutions. Cur-
rently, exact approaches are feasible for problem sets up to 100 customers.
Larger problem sets introduce a phenomenon referred to as ‘combinatorial
explosion’, increasing computational effort very rapidly (i.e. exponentially
or worse).

Therefore most attempts on solving CVRP instances involve the use of meta-
heuristics, which deliver ‘good results in acceptable time’, even in very large
search spaces. This technique is further elaborated in the next chapter.

2.5 Real world applications

Few combinatorial optimization problems have as many practical applica-
tions as the VRP. Parcel delivery, transportation of goods, garbage collec-
tion, fuel distribution to gas stations, it is everywhere. Efficient routing
solutions can save companies both time and money, so the demand for good
routing software is very present.

SINTEF, a Norwegian research institute, have done a lot of research on
VRP and created a solver which they call Spider, which they have coupled
to actual maps, thereby creating a usable solver for real world applications
[Hasle, 2010]. It also accepts problem instances used in research literature,
which allows for performance comparisons.

An example of a commercially available solver which works on both research
problem sets and actual maps is Xtreme Route [Xtreme Route, 2011], which
seems to be holding the record for a very large problem instance used in
literature.
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Chapter 3

Genetic Algorithms

3.1 Background

In 1859 Charles Darwin published ‘On the origin of species’ in which he
introduced the scientific theory that populations of species evolve over the
course of generations. Key mechanisms in evolution are natural selection,
mutation, genetic drift and gene flow. Darwin stated that individuals with
favorable characteristics were more likely to reproduce, thereby supplying
the offspring with their favorable genes. In this process the less favorable
individuals will disappear from the population over time. This is known as
survival of the fittest.

Fast forward one hundred years, the 1950s saw the rise of the metaheuristic
(although the term was first used in [Glover, 1986]), a technique used to
find solutions to combinatorial optimization problems by iteratively trying to
improve a candidate solution. Metaheuristics can search in very large search
spaces and return decent results in reasonable time, though the optimum
can not be guaranteed.

Starting in the 1960s, researchers have been proposing metaheuristics in-
spired by Darwinian evolution. They contain a population of individuals
representing candidate solutions, fitness criteria and genetically inspired op-
erators for creating newer generations from the current population. These
metaheuristics are referred to as Evolutionary Algorithms (which is part of
the field Evolutionary Computation, which in turn is part of Natural Com-
puting). The Genetic Algorithm is one of them.
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3.2 The algorithm

First described in [Holland, 1975], the Genetic Algorithm (GA) iteratively
improves a population with the evolutionary inspired operators recombina-
tion, mutation and selection. The outline is shown in Algorithm 3.1.

Algorithm 3.1 Genetic Algorithm
t← 0
initialize(Pt)
evaluate(Pt)
while not terminate do

P ′
t ← select−mates(Pt)

P ′′
t ← recombine(P ′

t , pc)
P ′′′
t ← mutate(P ′′

t , pm)
evaluate(P ′′′

t )
Pt+1 ← selection(P ′′′

t )
t← t+ 1

end while

Pt denotes the population at generation t. A population contains a number
of individuals representing candidate solutions to a problem. To distinguish
good solutions from bad ones, each individual has a fitness value, which is
calculated during evaluation. The algorithm starts by generating an (often
random) initial population and evaluating it. Then the main loop starts:
temporary derivative populations are created through recombination and
mutation operators and form the next generation. This is repeated until
a certain stopping criteria is met, i.e. a pre-set maximum number of gen-
erations (loop iterations), a certain fitness value is reached or there is no
further improvement in the newly generated population.

Deciding how the fitness value is calculated is a very important step, because
the GA will continuously try to improve solutions using the fitness value as
its only reference point. The main objective in a problem is usually obvious,
so often that is used to calculate the fitness value. It can be extended
with additional constraints, assigning a penalty to the fitness value if such
constraints are not met.

The number of individuals in a population is a fixed number. Upon initial-
ization, μ individuals are created, forming the ‘parents’ of that generation.
In the recombination phase λ offspring are produced. In the selection phase
μ individuals will be chosen from the λ offspring (optionally including the
μ parents too) to form the next generation.

Individuals represent candidate solutions. The set of possible solutions in
their natural representation is referred to as the phenotype space. The evo-
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lutionary operators (usually) cannot operate on such phenotypes thus a
translation has to be made to genotypes using encoding/decoding functions.

3.3 Classical GA

So how exactly do individuals represent a candidate solution? Since the
operators in the classical GA operate on binary strings, its genotype should
be, according to the classical theory, a binary string as well. Consider a
GA trying to find the best input value for the objective function f(x) = x2

(x ∈ {0..15}) which is to be maximized. The genotypes should be binary
encodings of the phenotypes. The encoding/decoding function here is simply
converting integer to binary and vice versa.

3.3.1 Initialization

In this step μ individuals are randomly generated and evaluated:

Genotype Phenotype Fitness

0100 4 16
1001 9 81

The genotype is the result of randomly generating a bitstring. The pheno-
type is the solution the genotype represents (achieved by decoding). Upon
evaluation the fitness is calculated, which here is identical to the objective
function.

3.3.2 Recombination

Recombination is usually achieved by 1-point crossover. Two parents are
selected, a cut point is defined and the portion left of the cut point is copied
from the first parent into the offspring, the remainder is copied from the
second parent into the offspring:

Parent 01|00
Parent 10|01

Offspring 0101

Parent 1|001
Parent 0|100

Offspring 1100

Parent 010|0
Parent 100|1

Offspring 0101

9



3.3.3 Mutation

Mutation is done via bit-flip mutation, altering each bit of the genotype
with probability pm, usually defined as 1

l such that on average one bit is
flipped throughout the genotype:

0101→ 0111
1100→ 1101
0101→ 0001

3.3.4 Selection

Prior to this step the offspring created this iteration are evaluated:

Genotype Phenotype Fitness

0111 7 49
1101 13 169
0001 1 1

The selection mechanism is called proportional selection (also known as
roulette wheel selection). It assigns a probability of being chosen to each in-
dividual as F itness

ΣF itness . If both parents and offspring are considered for passing
on to the next generation the pool of individuals looks like this:

Genotype Phenotype Fitness pselection
0100 4 16 5.1%
1001 9 81 25.6%
0111 7 49 15.5%
1101 13 169 53.5%
0001 1 1 0.3%

Imagine a roulette wheel where each individual is assigned to a part of the
wheel. The sizes of the parts are proportional to the selection probability.
The population size was μ, so now μ individuals should be picked from
the pool. The fictional roulette wheel is spun μ times and the resulting
individuals pass on to the next generation.

It’s likely that the fittest individuals survive the selection phase so the pop-
ulation for the next generation could look like this:

Genotype Phenotype Fitness

1001 9 81
1101 13 169

10



The process is repeated for new generations. Ultimately the GA should
be able to generate the optimal genotype (1111), although this is never
guaranteed.

3.4 Characteristics and parameters

3.4.1 Strategy and local optima

In the selection phase individuals are chosen to form the population of the
next generation. A distinction can be made in considering only the new
offspring or to also include the originating parents. The former is known as
comma strategy, the latter as plus strategy. GAs with μ parents generating λ
offspring using comma strategy are denoted (μ,λ)-GAs whereas plus strategy
would be a (μ+λ)-GA.

A characteristic of the comma strategy is that it allows for deterioration. If
all offspring have worse fitness than their parents the next generation will
be worse than the preceding one. While this sounds like a bad idea, it can
prevent a population from getting stuck in a local optimum.

Figure 3.1: Fitness landscape

Figure 3.1 shows a fitness landscape, a visualization of the search space,
containing several local optima. A (μ+λ)-GA can get stuck in one of those
because worse solutions (the ones trying to get out of the local optimum)
are eliminated during selection, thereby missing out on the global optimum
(depicted as the highest peak).
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3.4.2 Population size and selective pressure

Since μ individuals will be selected to form the next generation, λ is usually
chosen greater than μ, especially when using comma strategy (else the new
population will contain duplicate individuals which kills diversity). If the
population size is too small, the GA may not explore enough of the solution
space to consistently find good solutions.

Selective pressure is a term used to characterize the emphasis of selection on
the best individuals [Bäck, 1994b]. In proportional selection the probability
of picking the best individual is equal to its share in the pool (this is inherent
to the technique). A widely used selection mechanism that allows for more
control in selective pressure is tournament selection. It selects K individuals
randomly from the population and then chooses the best individual from
that pool. It can be extended by implementing a ranking-based selection
within the pool, providing even more control over selective pressure. Both
tournament selection and ranking selection are separate selection schemes
and they are discussed in [Goldberg and Deb, 1991].

When implementing tournament selection for the algorithm (more details in
Chapter 5), ranking selection was inadvertently incorporated. The resulting
variation on the tournament selection operator is described in Algorithm
3.2. Choosing p = 1 corresponds to the operation of the original tournament
selection operator. The algorithm selects one individual from the pool, so
within the selection phase of the GA it should be executed multiple times.

Algorithm 3.2 Tournament selection with ranking

choose K (the tournament size) individuals from the population randomly
choose the best individual from the pool with probability p
choose the second best individual with probability p ∗ (1− p)
choose the third best individual with probability p ∗ (1− p)2

and so on...

By adjusting the tournament size the selective pressure can easily be ad-
justed. Setting K = 1 is equivalent to random selection. Increasing the
tournament size increases the probability of a good individual will be picked.
Population size coupled with the amount of selective pressure determine how
fast a GA progresses towards the result.

Figure 3.2 shows the progress of a (20+50)-GA with tournament sizes 2
(left) and 10 (right) on problem instance A-n32-k5 (more details on problem
instances in Chapter 5). Note that the Y-scale is different in both graphs.
The optimal value for the problem instance is 784. The green line is the
average fitness over the entire population, the red line is the best individual
from the population. Neither runs were able to reach the optimal value due
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Figure 3.2: No convergence versus premature convergence

to incorrect selective pressure settings. In run depicted by the left plot it was
so low that fit individuals were not treated important enough to make it to
the next generation. The run shown by the right figure focused too heavily
on good individuals, such that within 20 generations the entire population
was filled with the same individual.

It should be clear that accompanying population size with a matching tour-
nament size is very important to achieve good results. Unfortunately there
is no ‘optimal formula’ for what the tournament size should be. It should
generally be between 2 and 5. Values up to 10 can be applied, but only
in large populations. Figure 3.3 shows some runs using different population
sizes and tournament sizes. The global best individual is displayed to obtain
a cleaner graph.

In the runs represented by the green and yellow lines the selective pressure
was too high (premature convergence). The run indicated blue could be
improved with a higher pressure. Even though the result is good, larger
populations should converge faster than smaller populations (i.e. the red
line), since more offspring is generated per generation. Values between 5
and 10 seem to work well for a (100+300)-GA (cyan and purple lines),
whereas these values are far too high for a (10+30)-GA.
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Figure 3.3: Influence of selective pressure
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3.5 GA for CVRP

In this section a GA is presented for the CVRP. It will turn out to be
different from the Classical GA described in Section 3.3 due to the different
individual representations.

3.5.1 Phenotype and genotype

The most natural representation for a CVRP solution is a set of routes with
each route containing the customers in the order they are visited. Since
each customer is visited only once, concatenating the customers in a solution
yields a permutation. Each route should start and end at the depot, but
this can be omitted from the representation for simplicity.

Route Customers

1 2 5
2 3 1 6
3 7 8 4

Encoding permutations to binary form is certainly possible but it does not
cope well with the operators of the classical GA. Simple 1-point crossover
between two binary encoded permutations is not likely to yield a genotype
which is a valid permutation and bit-flip mutation is guaranteed to break
the permutation. The GA is not bound to binary operators, however, the
genotype should be compatible with the operators. Instead of using repair
algorithms, it is better to go with the most natural representation and in-
corporate the knowledge of the problem into the operators such that they
would ‘intelligently’ avoid building illegal individuals [Michalewicz, 1996].

Two common approaches exist in permutation-based genotype design in
VRP. The first approach encodes the phenotype by simply concatenating
the customers into one permutation. Decoding is achieved by exhaustively
assigning customers to vehicles. The pseudocode for technique is shown in
Algorithm 3.3.

The upside of having one permutation is that many operators already exist,
of which a good overview can be found in [Bäck et al., 1997]. Also this
method takes care of the ‘packing’ problem, since vehicles are efficiently
filled. A major downside is that there are certain configurations for which
x = decode(encode(x)) does not hold. In other words: the genotype is not
able to represent every possible solution. Figure 3.4 illustrates a setting
where exhaustive routing is not able to represent the optimal solution (top,
travel cost 24). The depot is marked D and there are four customers, each
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Algorithm 3.3 Exhaustive routing

Require: UnroutedCustomers
i← 1
while any UnroutedCustomers do

if Current customer fits in Route i then
Append current customer to Route i

else
i← i+ 1

end if
end while

with a demand of 1 and the truck capacity is 3. Concatenating (encoding)
the optimal solution yields (1, 2, 3, 4). Exhaustive routing will then
always assign the first three customers into the first vehicle and assign the
last customer to the next vehicle, resulting in the bottom solution of Figure
3.4 with travel cost 28.

Figure 3.4: The problem with exhaustive routing

Initially this approach was chosen but when it became clear that the geno-
type could not represent the optimal solution for certain problems, the sec-
ond approach was adopted: genotype = phenotype. This eliminates the
need for encoding/decoding functions, but does introduce the necessity of
using specialized operators within the GA. These are elaborated in the next
sections.
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3.5.2 Fitness value

Each individual has a fitness value assigned to it, measuring the quality
of the solution it represents. The objective in CVRP is to minimize the
total travel distance, defined in Section 2.1. Problem instances come from
TSPLIB, a library for sample instances for TSP and related problems (in-
cluding CVRP) from various sources. Distances between vertices are Eu-
clidian and rounded to the nearest integer, as described in the TSPLIB
documentation [Reinelt, 1995]. The total travel cost for a single route starts
at the depot, visits all customers in the specified order and finishes at the
depot the route started from. The sum of the travel cost of all routes in the
solution yields the fitness value.

Additional constraints can be added to the fitness value, e.g. assigning a
penalty in case some routes overlap. Upon inspecting some optimal solutions
it turned out that some optimal solutions actually have overlapping routes
(Figure 2.1 shows one of them). It was therefore decided not to implement
additional constraints in the fitness function.

3.5.3 Useful heuristics

Heuristics are methods that solve often large problems where exhaustive
search methods would take too long to compute. They might not always
find the best solution, but they are guaranteed to find a good solution in
reasonable time. A couple heuristics on graph problems are discussed here.
These can be incorporated in the operators of the GA.

3.5.3.1 Push Forward Insertion Heuristic

The Push Forward Insertion Heuristic (PFIH) [Solomon, 1987] is an effi-
cient method to route vehicles across various customers. Being a greedy
algorithm, it only looks for the most cost-efficient insertion at each step.
This behavior leads PFIH often right into a local optimum. For small sets
of customers it works reasonably well, but it cannot be used to solve entire
CVRP instances. Nevertheless it is useful when a few customers need to be
routed. The outline is given in Algorithm 3.4.

A list of unrouted customers should be supplied. Upon creating a new route
the most distant customer is inserted. After that PFIH tries to insert the
most cost-efficient feasible (vehicle capacity not exceeded upon insertion)
vertex into the route, which can be either a customer or a depot. If returning
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Algorithm 3.4 Push Forward Insertion Heuristic

i← 1
while any unrouted customers do

if Route i is empty then
Find most distant customer and append it to Route i

else
vertex← most cost-efficient insertion (feasible customers or depot)
if vertex is a customer then

Append customer to Route i
else

i← i+ 1
end if

end if
end while

to the depot is more cost-efficient then the current vehicle is returned to the
depot and a new route is created.

3.5.3.2 2-Opt

2-Opt [Croes, 1958] is a simple local search algorithm which eliminates in-
tersections in routes, originally intended for use in TSP. All pairs of non-
adjacent edges are checked for intersections. If they intersect 2-Opt rear-
ranges the edges, creating a route without intersections. Figure 3.5 shows
the effect of one iteration: all intersections are removed. The operator can
be used to optimize each route, since separate routes are essentially inde-
pendent TSP problems. Pairs of edges are checked resulting in a complexity
of O(n2).

Figure 3.5: Before and after 2-Opt
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3.5.4 Initialization

The very first population is created in the initialization step. Each individ-
ual is evaluated and assigned a fitness value according to the fitness function.
From here on the GA will enter its main iteration cycle. With some knowl-
edge about CVRP, the initial population can be ‘steered’ into an area in the
search space where the optimal solution is expected to be, which can reduce
the execution time. However, by generating the initial population entirely
random, the GA will be able to scan a larger portion of the search space and
is thereby able to ‘think outside the box’. It is important that individuals
within the initial population differ from each other (have a certain diver-
sity). Initializing using PFIH is a bad idea because that would very likely
generate the same individuals over and over again.

3.5.4.1 Random initialization

Creating a random CVRP solution can be easily achieved using exhaustive
routing. First, a random permutation of all customers is generated. Then
the routes are constructed using exhaustive routing, as described in Algo-
rithm 3.3. The inability of exhaustive routing to represent every possible
solution is not really important as creating the initial population is a one-
time action. The individuals will be improved through the other operators.

3.5.4.2 Bearing initialization

This operator was created to have an initial population close to a promising
area in the search space. Looking at solutions to many VRP problems, a
‘butterfly’ pattern is visible, illustrated in Figure 3.6.

Figure 3.6: Butterfly pattern
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This operator attempts to form the individuals of the initial population
in the direction of these butterfly shapes. Starting at a certain bearing
(i.e. 0◦) from the depot node, scan clockwise for customers which will be
exhaustively added into the routes, without violating constraints. The idea
originates from the scanning operation of a radar. To prevent ending with
identical individuals, certain variation should be introduced. This comes
from using different start bearings for each individual. Ideally they should
be (360/μ)◦ apart. The pseudocode is in Algorithm 3.5.

Algorithm 3.5 Bearing initialization

Require: 0 ≤ StartBearing < 360
Calculate bearing for each customer as seen from the depot
Order the customers by bearing as seen from the depot
Starting from StartBearing, exhaustively create routes

Figure 3.7: An individual created by bearing initialization

Figure 3.7 shows the result of one individual generated using bearing ini-
tialization. The depot is in the center, surrounded by the customers. The
bearing for each customer is calculated as seen from the depot. Customers
in i.e. the top-right quarter of the circle will have bearings varying from 0◦

to 90◦.

A start bearing of 0◦ was chosen for this instance. The algorithm scans
clockwise for customers, starting from the chosen start bearing. Each en-
countered customer is added to a route using exhaustive routing. Slight
variations can be created by using different start bearings.
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3.5.5 Recombination

A recombination operator applicable to CVRP should take characteristics
from both parent individuals and create a new offspring which forms a valid
solution. A number of permutation-based recombination operators have
been proposed, but not all are suitable for CVRP. Any permutation can be
turned into a CVRP genotype through exhaustive routing, but they often
result in solutions that resemble neither parent. An intelligent CVRP re-
combination operator should recognize existing routes in the parents and
use them efficiently, i.e. by inserting non-overlapping routes from both par-
ents into the new offspring. Several of such operators have been proposed
in other literature, they will be reviewed in this section.

3.5.5.1 Best Cost Route Crossover

An operator named ‘Best Cost Route Crossover’ (BCRC) is introduced in
[Ombuki et al., 2006]. Designed for VRP with Time Windows, it aims at
minimizing the number of vehicles and cost simultaneously while checking
feasibility constraints.

Figure 3.8: Best Cost Route Crossover

Figure 3.8 visualizes how the operator works. Two parents serve as input
and two new offspring are generated in the process. One route is picked from
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each parent of which the elements are then removed from the other parent.
In this case, the route from Parent 1 containing customers 1 and 2 is picked,
resulting in customers 1 and 2 being removed from Parent 2. The customers
which have just been removed will be re-inserted sequentially in the best
possible (most cost-efficient) position. Each possible insertion position is
evaluated. In case of a tie (equal insertion costs in two or more positions) a
random position is chosen within those positions. The operator can create
a new route if there are no feasible insertion slots or in case creating a new
route results in the minimal increased travel distance.

The offspring resembles the originating parent heavily because it is actually
just an optimization of that parent using intelligent insertion techniques.
The operator probably works best when re-inserting a small number of cus-
tomers, because it never looks further than the current customer. When
re-inserting a larger number of customers, a technique such as PFIH will
likely produce better results.

3.5.5.2 Alvarenga Crossover

Another recombination operator is proposed in [Alvarenga et al., 2007]. It
has not been given a name so it will be referred to as ‘Alvarenga Crossover’.
The operator attempts to take as much entire routes as possible from both
parents when generating the new offspring. The outline is given in Algorithm
3.6.

Algorithm 3.6 Alvarenga Crossover

while Feasible route exists in both parents do
Copy random feasible route from Parent 1 into offspring
Copy random feasible route from Parent 2 into offspring

end while
Attempt to insert unrouted customers in current routes if feasible
Route remaining customers using PFIH

In theory this operator creates an offspring resembling both parents equally,
although this is very dependent on the problem set. Large problem sets
utilizing few vehicles have routes with many customers. If one such route
is inserted into the offspring, often no other route is feasible for insertion
any more. Routes are often already optimized, especially after a number of
iterations, so attempting to insert new customers into existing routes is not
likely to happen much.

What is left is a case of ‘PFIH to the rescue’ to route the remainder, which
can be a considerable large group.
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Theoretically this operator will rely the least on PFIH in problem sets with
many vehicles and small routes. It would then generate offspring with many
routes coming directly from both parents. This behavior corresponds to the
original intent of the recombination operator.

3.5.6 Mutation

The idea behind the mutation operator is to make a small change to the
individual, thereby creating a new offspring which is close to the original
in the fitness landscape. In the classical GA this would correspond to flip-
ping a random bit in the genotype bit-string. The genotype for the GA
constructed in this section is more complex, which calls for more sophisti-
cated operators. The recombination operators mentioned in last section are
aimed towards improving individuals (through evaluating many variations
of the current solution), rather than exploring the search space. A simple
mutation operator suitable for the current representation is the swapping
of customers (within the feasibility constraints), be it intra- or extra-route.
This is, however, not likely to improve the solution, it just adds a bit of
randomness to it. When using intelligent operators such randomness is un-
desired, it would only deteriorate the solution created in the recombination
step. This section will present two intelligent operators capable of improving
solutions even further.

3.5.6.1 Merge routes

This operator breaks up a random number of randomly selected routes and
re-orders the now ‘route-less’ customers using PFIH. Some experiments were
done to determine the amount of routes that should be broken up and it
turned out that keeping it random yielded the best results. The operator is
very efficient in the initial populations because the solutions are often only
preliminary. When the solutions evolve the operator is not able to improve
in many occasions. Figure 3.9 illustrates the problem.

In preliminary solutions the arrangement of routes is not very efficient as
there are many overlapping routes. This improves as the solution evolves.
Breaking routes at random and improving the overall solution will only work
in a few lucky occasions. If the operator attempts to merge e.g. the top-left
and bottom-right routes it will not lead to a better solution, as there is no
better way to route them.
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Figure 3.9: A preliminary solution (left) and an evolved solution (right)

3.5.6.2 Adjacent reorder

This operator was implemented in an attempt to address the issue with the
‘Merge routes’ operator. When solutions have evolved the best place to
try to improve the solution is in adjacent routes, especially the ones that
overlap. The operator works by selecting a random customer. From there
the nearest customer in a different route is located. The routes from both
customers are then deleted, leaving the customers unrouted. They will be
re-routed using PFIH. This way a maximum of two routes will be merged
and they are very likely to be adjacent, which is exactly where the solution
has a high probability of being improved.

In practice it will probably take longer for the solution to evolve using this
operator but the end result might be better. A combination of the two
mutation operators would perhaps be best: in the first couple of generations
use ‘merge routes’ to quickly improve the initial solutions and once the
solutions have evolved use the ‘adjacent reorder’ operator.

3.5.7 Optimization

Besides recombination and mutation an additional step is added to the GA:
optimization. In this step each individual will be optimized using the 2-
Opt heuristic, described in Section 3.5.3.2, which eliminates intersections
within routes. Through the triangle inequality it follows that a route without
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intersections is always shorter than one with intersections. Thus, optimizing
an individual with 2-Opt can only lead to equal or better solutions. The
heuristic can be heavy on computation in solutions with large routes due to
the O(n2) complexity for each route.

3.5.8 Selection

The only selection operator used in the GA will be tournament selection with
ranking based selection incorporated, described in Section 3.4.2, because of
the great controllability over selective pressure. The operator will only be
used for selecting new individuals for the next generation. The mates in the
recombination step are chosen randomly.

3.5.9 GA classification

The outline for the GA constructed in this section is given in Algorithm 3.7.

Algorithm 3.7 Hybrid GA
t← 0
initialize(Pt)
while not terminate do

P ′
t ← recombine(Pt, pc)

P ′′
t ← mutate(P ′

t , pm)
P ′′′
t ← optimize(P ′′

t , pm)
Pt+1 ← selection(P ′′′

t )
t← t+ 1

end while

The GA uses heuristics in some operators and an additional optimization
step is added. GAs incorporating other techniques within their framework
(such as heuristics) are called Hybrid GAs, so from now on this GA will be
referred to as such.
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Chapter 4

Meta-GA

The proposed Hybrid GA in last chapter has many parameters, which need
to be set up correctly in order to get good results. This can be very difficult,
as the relationship between parameters can be unclear. Instead of manually
setting all parameters through trial and error, it is possible to let another GA
tune the parameter set. This GA acts on the Hybrid GA and is therefore
called a Meta-GA (Greek: μετα = ‘after’, ‘with’, ‘self’). The concept is
visualized in Figure 4.1.

Figure 4.1: Meta-GA model

4.1 Related work

Finding the optimal set of parameters is actually also an issue in the clas-
sical GA, where crossover and mutation rate (and to lesser extent popula-
tion size and tournament size) should be tuned. Unfortunately there is no
general optimal setting for these parameters, as different problems call for
different representations and different parameter sets [Eiben et al., 2000].
Some ‘best practices’ in setting these parameters have emerged over the
years. Crossover rate is supposedly best kept between 0.6 and 0.95, muta-
tion rate should be somewhere near 1/l, l being the length of the bit-string
[Bäck, 1994a].
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One of the first experimentations in tuning the parameter set of a GA using
another GA was performed in [Grefenstette, 1986]. This approach has since
been dubbed as using a Meta-GA for parameter tuning. Grefenstette’s Meta-
GA managed to improve the manually set parameters by 3% in a search
space of 218 different parameter combinations. The runs were limited to
the creation of 2000 meta-individuals (parameter sets) due to the available
computing power at that time.

More recent work on parameter tuning using meta-algorithms can be found
in [de Landgraaf, 2006], where manual calibration is compared to automated
tuning with a Meta-GA. One of the hypotheses, ‘using meta-evolutionary
algorithms in finding parameters instead of exhaustive search or manual cal-
ibration will show a drastic reduction of time required ’, was found to be
true.

Other than the aforementioned papers, not many people have put much ef-
fort in this field. This is a shame, because in 30 years of parameter calibra-
tion not much has changed, and questions such as ‘are there optimal settings
for the parameters of an EA in general? ’ and ‘are there robust settings for
the parameters of an EA that produce good performance over a broad range
of fitness landscapes? ’ remain without solid answers [De Jong, 2007]. The-
oretically, the Meta-GA could give the answers to these questions or even
eliminate the need for them altogether, though its effectiveness is sometimes
questioned [Clune et al., 2005].

4.2 Meta-GA for the Hybrid GA

This section elaborates on a Meta-GA which targets automatic parameter
calibration for the Hybrid GA constructed in Section 3.5. The main charac-
teristic of the Meta-GA is that it should have a small parameter set, because
spending extensive time tuning the meta parameter set renders the entire
idea pointless. Therefore the Meta-GA will be implemented as a classi-
cal GA (described in Section 3.3), using classical operators such as 1-point
crossover and bit-flip mutation, both of which require no tuning. Coupled
with classical tournament selection, the only parameters for the Meta-GA
will be population size, selection strategy and tournament size.
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4.2.1 Phenotype and genotype

The following parameters need to be set in order to run the Hybrid GA:

• μ ∈ N
+

• Selection strategy ∈ {Comma, Plus}
• λ ∈ N

+, usually μ� λ

• Maximum number of generations ∈ N
+

• Recombination operator ∈ {BCRC, Alvarenga}
• Mutation operator ∈ {Merge routes, Adjacent reorder}
• Mutation probability ∈ [0, 1]

• Tournament size ∈ N
+ ≤ λ

• Initialization operator ∈ {Random, Bearing}

Since the Meta-GA will be implemented as a classical GA, the genotype
should be a binary string. Thus, all the parameters in the phenotype will
have to be encoded. A variable such as μ should vary somewhere in the range
[2 : 1000] and λ should be even greater. Using regular binary encoding, this
takes up at least 10 bits each, resulting in a very lengthy bit-string. This
would create a very large search space for the Meta-GA, since there are 2l

possible configurations, where l is the length of the bit-string. Keeping the
bit-string as short as possible results in a smaller search space and faster
execution. Not all values in the range really matter (setting μ to 600 or 650
will probably not make a notable difference). By increasing the step sizes,
a more efficient encoding can be achieved.

In case of μ, the range was adjusted to [8 : 1024] with step size 2n, resulting
in an encoding requiring only 3 bits: 000 → 8, 001 → 16, 010 → 32 up to
111 → 1024. In a similar way the amount of bits to represent λ is reduced.
Since λ should always be greater than μ, it will be defined as a multiple of
μ.

Table 4.1 shows the complete coding table. The length of the resulting
bit-string is 15.
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Parameter Range Bits

μ [8 : 1024] (step size 2n) 3
Selection strategy Comma or Plus selection 1
λ [2μ : 5μ] (step size μ) 2
Recombination operator BCRC or Alvarenga 1
Mutation operator Merge routes or Adjacent reorder 1
pmutation [0.3 : 0.9] (step size 0.2) 2
Tournament size [2 : 17] 4
Initialization operator Random or Bearing 1

Bit-string 15

Table 4.1: Coding table

4.2.2 Maximum number of generations

The maximum number of generations was omitted from the genotype be-
cause it should not be tuned by the Meta-GA for two reasons. First, it
would be a shame when the Meta-GA finds the optimal parameter set but
only allows it to run for two generations. Second, it should be dependent on
the population size. Larger populations reach good results in fewer genera-
tions than smaller populations. This can be observed from Figure 3.3 in the
previous chapter. This does not necessarily mean that larger populations
are faster, since more offspring are generated per generation. So instead
of limiting the maximum number of generations, there should be a maxi-
mum number of offspring generated. This would give both small and large
population sizes equal running time thereby creating a fair comparison.

The amount of individuals generated in a run of the Hybrid GA is μ +
n ∗ λ where n is the number of generations. Table 4.2 shows a number
of runs for a problem set with 60 customers using a preliminary manually
tuned parameter set. The number enclosed in brackets shows roughly how
many offspring were generated during execution. There seems to be a trend
that larger populations are able to get to the optimum faster than smaller
populations, which could be due to the fact that larger populations are
able to scan the search space more efficiently (upon initialization it is more
distributed among the search space).

The goal is to derive a maximum number of generations based on the number
of offspring created. During testing of the Hybrid GA some promising results
were achieved on a 200-customer problem after creating around 500,000
individuals. A good result on a large problem instance seems to be a safe
upper limit so the maximum number of generations does not have to exceed
500, 000/λ.
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Hybrid GA 1% from optimum in generation Optimum in generation

(20+50) 496 (≈25,000) -
(100+300) 89 (≈27,000) 990 (≈300,000)
(200,500) 25 (≈13,000) 469 (≈235,000)
(500,1000) 26 (≈27,000) 109 (≈110,000)
(1000,3000) 20 (≈61,000) 32 (≈100,000)

Table 4.2: 60 customer problem

4.2.3 Execution time

Table 4.3 shows the time it takes for the Hybrid GA to generate 100,000
individuals for several problem sets with different sizes. Larger problem sets
take longer because more computational effort is required in finding a good
insertion spot for a customer or evaluating the solution.

Problem instance size Time to 100,000 individuals

32 1m
44 1m
53 2m
63 2m
78 3m
80 3m
101 8m
151 10m
200 12m
262 13m

Table 4.3: Hybrid GA execution time

The fitness evaluation of one meta-individual corresponds to running the Hy-
brid GA with the specified parameter set. If the Meta-GA were a (10+30)
configuration and the maximum number of generations for the Hybrid GA
were set to 100,000/λ, each generation of the Meta-GA would take around
an hour for a 44-customer problem to 6 hours for a 200-customer prob-
lem. It seems that Grefenstette’s problem in falling short of computational
resources, now nearly 30 years ago, is still very present.

Thanks to clever coding the search space is not that large (215 = 32, 768
combinations, fewer than Grefenstette used) so the Meta-GA might not
need to run for many generations. Preliminary testing showed that coupled
with higher selective pressure good results can be achieved in as little as 10
generations. This puts the execution time in finding the optimal parameter
set for an 80-customer problem around 15 hours. Note that these are ‘worst
case’ estimations, where every meta-individual runs for the full generation of
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100,000 offspring on the Hybrid GA. In practice, some runs are cut off early
because of erroneous selective pressure settings which can lead to premature
convergence, such that the total running time of the Meta-GA is shorter.

4.3 Research objective

The main objective of this research is to determine the effectiveness of au-
tomated parameter tuning using the Meta-GA approach. This can be dis-
tributed among the following points:

• Performance: Is the Meta-GA able to match or improve manually
tuned parameter sets?

• Time: Is the Meta-GA able to match or improve the time it takes to
manually tune a parameter set?

• Robustness: Do the parameter sets obtained by the Meta-GA per-
form consistently?

Another interesting question, although only concerning the Hybrid GA, is
whether parameter sets that perform well on one problem instance can be
re-used on other problem instances, thereby still achieving good results. The
previous section shows that, for very large problem instances, the Meta-GA
approach simply takes too long. It would be interesting to see how parameter
sets obtained from smaller problem instances behave on larger problems.

These questions will be investigated through experiments in Chapter 6.
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Chapter 5

Implementation details

This section elaborates on some implementation details of the program that
was written to solve the CVRP instances. The GAs described in Chapters
3 and 4 were implemented using C#.

5.1 Problem instances

A large library of (among others) CVRP problem instances is hosted on
[Branch and Cut, 2003]. These instances are used throughout literature
such that it is easy to compare performance between the different solu-
tion approaches. A problem instance contains the coordinates and demands
for all nodes (customers and depot). The distances between nodes are in
Euclidian distance, but they are rounded to the nearest integer, such that
the total travel distance will always be an integer value.

The actual instances originate from papers such as [Augerat et al., 1995]
and [Christofides and Eilon, 1969]. Problem sets can be classified into the
general ‘type’ of problem, where the dispersion of customers forms the most
important factor, as done in Table 5.1. The difference between a clustered
and a dispersed problem instance is visualized in Figure 5.1.

5.2 Visualization

Implementations are often written as console applications and visualization
is achieved using gnuplot, but only after the algorithm has finished, making
it impossible to see (visually) how the solution evolves. The C# imple-
mentation of the program used in the thesis incorporates a graphical user
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Set Instances Customers Type

Augerat et al, Set A 27 32-80 Dispersed
Augerat et al, Set B 23 31-78 Clustered
Augerat et al, Set P 24 16-101 Dispersed
Christofides and Eilon, Set E 11 22-101 Dispersed
Christofides et al, Set M 5 101-200 Mixed
Gillet and Johnson 1 252 Dispersed

Table 5.1: Types of problem instances

Figure 5.1: Clustered (left) and dispersed (right) problem instances

interface to visualize every intermediate solution. It was initially developed
as a ‘small bonus’, but turned out to be very useful during the development
of new mutation operators.

A screenshot of the program which solves instances using the Hybrid GA is
shown in Figure 5.2.

All parameters can be set from the user interface. GA progress including
current population best fitness, average population fitness, global best fit-
ness, percent over optimum is displayed and hovering over a node shows
additional information on the specified node such as coordinates and de-
mand. All visualizations of problem instances and solutions in this thesis
are taken as screenshots from this user interface.
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Figure 5.2: The user interface

5.3 Multi-threading

A generation of the Hybrid GA consists of the following steps: recombina-
tion, mutation, optimization, evaluation and selection. Each of these steps
involve iterating over λ individuals in the population:

// Regular for-loop, serial execution

for (int i = 0; i < lambda; i++) {

mutate(population.Individuals[i]);

}

All iterations within the steps can be executed in parallel, because there
is no shared data. It doesn’t matter to the GA if the phase is carried out
sequentially or in parallel, as long as all individuals get mutated. Microsoft
introduced the Task Parallel Library in .NET 4.0 which provide basic forms
of structured parallelism through the Parallel class. Basically it is a slightly
different syntax for for-loops which allows the content to be executed in
parallel, without having to worry about the technical details involved in
threading.
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// C# Parallel extensions

Parallel.For(0, lambda, i => {

mutate(population.Individuals[i]);

});

The same goes for the initialization, recombination, optimization and selec-
tion phases, everything can be executed in parallel, creating huge perfor-
mance gains on multi-core machines. The test machine used has an AMD
Phenom II X4 940 quad-core processor operating at 3.0 GHz. The following
table shows the improvement when using the Task Parallel Library.

Instance Serial Parallel Speedup

A-n32-k5 26s 10s 2.6x
A-n80-k10 78s 31s 2.6x

Table 5.2: Parallelization speedup in (100+300)-GA to 50 generations

A traditional method for parallelizing GAs is the Master-Slave scheme,
where all fitness calculations are done by slave processes. This is only useful
when fitness calculation takes very long, i.e. in the meta approach. Another
method is the Island model, where every processor runs an independent GA,
using a separate subpopulation. Recent work in parallelization includes a
hybrid model, reaching speedups of 2.3x [Shinde et al., 2011] on an Intel
Core i7 quad-core processor. GPU-accelerated parallelization was imple-
mented in [Zheng et al., 2011], but the final results deteriorated slightly.
Both aforementioned papers used C/C++ and they had to implement the
parallelization part themselves. The benefit of using a modern language such
as C# is that parallelization is included in the library. Utilizing the Task
Parallel Library is completely trivial, as can be seen from the code snippets
in this section. The gained speedup surpasses that of the mentioned papers
and final solutions cannot deteriorate from this parallelization.
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Chapter 6

Results

This chapter contains a selection of the results achieved by the Hybrid GA
and the Meta-GA, of which the implementation has been discussed in the
previous chapters. Experimental runs are performed to give an indication
on how altering parameters affects the final result. In the last section the
final result table is presented.

6.1 Hybrid GA

This section will focus primarily on experimental runs, with the goal of get-
ting an understanding how the Hybrid GA behaves using different parameter
settings.

6.1.1 Population size and selective pressure

Figure 6.1 is a visualization of the performance of the Hybrid GA on problem
instance A-n53-k7, a dispersed problem set containing 52 customers. The
optimal value is 1010. Different population sizes and varying tournament
sizes were used in the runs in order to get an idea of how these parameters
influence the overall performance. Best Cost Route Crossover (BCRC) was
used for recombination, Adjacent Reorder (AR) was used for mutation and
the initial populations were generated randomly.

The fitness values shown are taken as averages from three runs, thus a to-
tal of 315 instances of the Hybrid GA were launched to construct the plot.
Lower fitness values indicate better solutions. All runs were limited to the
generation of 100,000 offspring, giving each run equal execution time. The
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Figure 6.1: Results of various runs on the Hybrid GA using varying popu-
lation sizes and tournament sizes

plot shows the importance of accompanying population size with a matching
tournament size (TS), which was discussed earlier in section 3.4.2. Tour-
nament sizes between 3 and 6 seem to work well when using smaller pop-
ulations. Increasing the tournament size, thereby increasing the selective
pressure, leads to worse results. In very large population sizes, the tourna-
ment size can vary a lot without affecting performance, still outperforming
smaller population sizes.

Population size TS Configuration average

(5+15) 11 1034
(10+30) 5 1020
(30+100) 14 1029
(100+300) 5 1019
(200+500) 6 1023
(200+500) 8 1017

(1000+3000) 7 1014
(1000+3000) 14 1015

Table 6.1: Configurations resulting in the optimum

Table 6.1 shows which configurations resulted in the optimum. The average
fitness over three runs from those configurations is also included, to give an
impression whether the configuration is able to consistently achieve good
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results, or if the optimal was just a lucky shot. In this case, smaller popu-
lation sizes which were able to achieve the optimum generally have a higher
average fitness, indicating that the performance of those configurations fluc-
tuates. Configurations with larger population sizes tend to perform more
consistently, but it is too early to draw any conclusions from these results,
since too many parameters were pre-set.

6.1.2 Recombination and mutation

Two recombination operators have been implemented: Best Cost Route
Crossover (BCRC) and Alvarenga Crossover. BCRC focuses heavily on in-
serting customers in the best possible (cost-wise) location, where Alvarenga
Crossover attempts to keep as much of the originating parent individual
intact.

These recombination operators can be coupled to the two mutation opera-
tors: Merge Routes (MR) and Adjacent Reorder (AR). The Merge Routes
operator randomly picks routes and reorders them, Adjacent Reorder fo-
cuses on adjacent routes only. It is expected that Merge Routes performs
faster, but Adjacent Reorder will eventually find a better solution.

Figure 6.2 shows how the operator combinations perform with a (100+300)-
GA on A-n53-k7, which is the same problem instance used in Figure 6.1.

Figure 6.2: Performance of operator combinations with (100+300)-GA on
A-n53-k7

From the plot it is very clear that BCRC in combination with Adjacent
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Reorder performs best, regardless what tournament size is used. In Figure
6.1 it can be seen that the worst performing BCRC/AR combinations (small
population sizes, high selective pressure) yield a fitness of around 1050,
which is even better than any Alvarenga Crossover combination manages to
achieve using a larger population size. It can be concluded that, at least for
this particular problem instance, the combination BCRC/AR consistently
results in the best solutions.

6.1.3 Selection strategy

Discussed in Section 3.4.1, the selection strategy determines whether the
parents of the current generation are taken into account in the selection
phase. Plus strategy includes them, comma strategy omits them. Comma
strategy allows for deterioration of the fitness of a population over time,
where plus strategy is less likely to do so. This could prevent the comma
strategy from getting stuck in local optima.

Figure 6.3: Performance of operator combinations with (100,300)-GA on
A-n53-k7

Figure 6.3 is the result of essentially the same setup as in Figure 6.2, except
it was done with a GA using comma strategy. The shape of the plane is
similar, but do note that the Y-scale is different in both plots. The BCRC
combinations perform well, but Alvarenga Crossover has some issues with
the comma strategy.

Figure 6.4 shows the difference between comma and plus strategy using
BCRC/AR (the best performing combination). Overall, comma strategy
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yields slightly better results.

Figure 6.4: Difference between (100+300)-GA and (100,300)-GA using
BCRC/AR on A-n53-k7

It is interesting to see how the GA progresses towards the result using the
different selection strategies. A typical execution on A-n53-k7 using a tour-
nament size of 5 for both GAs is illustrated in Figure 6.5.

Figure 6.5: Comma (left) and plus (right) selection strategy

The blue line, indicating the global best solution found so far, is almost
identical in both runs. The other two lines show major differences. The
best individual from the current generation, indicated green, can get worse
over time using comma strategy. The fact that the line bounces up and down
indicates that this is also happening. Plus selection strategy, on the other
hand, continuously tries to select the best individuals in the population,
often causing the current generation’s best individual to be the global best
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individual as well. This makes it very prone to getting stuck in a local
optima, although the operators could be intelligent enough to prevent this
from happening. The GA using comma selection strategy tends to be less
‘narrow-minded’ in its search for good solutions. From the plot it would
appear that it scans over a much larger portion of the search space.

6.1.4 Clustered and dispersed problem instances

Only A-n53-k7, a dispersed problem instance, has been analyzed so far.
Figure 6.6 shows the difference in selection strategy B-n57-k9, a clustered
problem instance with an optimum of 1598, using BCRC/AR operators and
varying tournament sizes. The average of three runs was taken.

Figure 6.6: (30+
, 100)-GA (left) and (100+

, 300)-GA (right)

The plot is almost identical to Figure 6.4. Again, comma selection strategy
has the edge. Its performance is very consistent over the entire range of
tournament sizes, where performance decreases in plus selection strategy
when using larger tournament sizes. The optimum is found, so it appears
there is no modification needed in the parameter settings in order to solve
clustered problem instances.

6.1.5 Results

The goal of the previous sections was to gain knowledge on how the differ-
ent parameter settings affect performance. The performance of the operator
combination BCRC/AR was better than the other combinations in the anal-
ysis, so that combination will be used throughout this results section. Table
6.2 shows the results of test runs on problem instances in Augerat et al, Set
A. In most runs, initially a (100+

, 300)-GA was launched to see how it per-
formed. If the optimum was not reached, the population size was increased,
since larger population sizes tend to perform slightly better.
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Instance Optimum Hybrid GA Difference GA TS

A-n32-k5 784 784 - (100+300) 5
A-n33-k5 661 661 - (100+300) 5
A-n33-k6 742 742 - (1000,3000) 5
A-n34-k5 778 778 - (50+100) 5
A-n36-k5 799 799 - (100,300) 5
A-n37-k5 669 669 - (100,300) 5
A-n37-k6 949 949 - (100,300) 5
A-n38-k5 730 730 - (1000,3000) 5
A-n39-k5 822 822 - (1000+3000) 5
A-n39-k6 831 831 - (1000,3000) 12
A-n44-k6 937 937 - (100+300) 5
A-n45-k6 944 948 - (1000,3000) 12
A-n45-k7 1146 1146 - (1000,3000) 7
A-n46-k7 914 914 - (1000,3000) 5
A-n48-k7 1073 1073 - (1000,3000) 5
A-n53-k7 1010 1010 - (100+300) 7
A-n54-k7 1167 1168 - (1000,3000) 15
A-n55-k9 1073 1073 - (1000,3000) 5
A-n60-k9 1354 1354 - (100+300) 5
A-n61-k9 1034 1035 +0.1% (1000,3000) 10
A-n62-k8 1288 1300 +0.9% (1000,3000) 7
A-n63-k9 1616 1627 +0.7% (1000,3000) 10
A-n63-k10 1314 1314 - (1000,3000) 5
A-n64-k9 1401 1411 +0.7% (1000,3000) 10
A-n65-k9 1174 1178 +0.3% (1000,3000) 11
A-n69-k9 1159 1159 - (1000,3000) 15
A-n80-k10 1763 1766 +0.2% (1000,3000) 10

Table 6.2: Results for instances of Augerat et al, Set A

The overall performance of the Hybrid GA is excellent, as the optimum for
every problem instance having fewer than 60 customers is reached and the
results of larger instances remain within 1% of the optimum. The execution
time varied between seconds for the smaller instances, to up to 15 minutes
for larger problem sets. The initialization operator was not significant for
the results, so it is not mentioned. The mutation probability varied between
0.6 and 0.9, but never seemed to make an important contribution.

Further test runs were done on Augerat et al, Set B, which contains only
clustered problem sets. The parameter settings were kept identical to those
of the test run on Set A. Only the largest problem instances were tested.
The results are in Table 6.3.
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Instance Optimum Hybrid GA Difference GA TS

B-n57-k9 1598 1598 - (100,300) 5
B-n63-k10 1496 1523 +1.8% (100,300) 10
B-n64-k9 861 861 - (1000,3000) 10
B-n66-k9 1316 1319 +0.2% (1000,3000) 10
B-n67-k10 1032 1032 - (1000,3000) 10
B-n68-k9 1272 1286 +1.1% (1000,3000) 10
B-n78-k10 1221 1221 - (1000,3000) 10

Table 6.3: Results for larger instances of Augerat et al, Set B

These results are very good as well. The (1000,3000)-GA with BCRC/AR
operators is capable of achieving good results in almost every problem in-
stance, which makes it a very robust parameter set. The only exception lies
in B-n63-k10, where smaller population sizes yielded better results. Thus,
larger population sizes are not the solution to everything.

6.2 Meta-GA

The previous section contains a lot of analysis on parameter settings, in
order to come up with a setting that works well over a range of problem
sets. The idea of the meta approach is not having to worry about parameter
sets, as they will be figured out automatically by the Meta-GA.

This section covers some test runs and the results achieved by the Meta-GA.

6.2.1 Parameters

The Meta-GA does need some parameters, such as population size and selec-
tion strategy. In Chapter 4 it was determined that the Meta-GA cannot have
large population sizes due to the excessive computational effort. A (10+30)-
GA with maximum of 10 generations coupled with tournament selection
(tournament size 5) was chosen as the parameter set for the Meta-GA. Each
meta-individual executes an instance of the Hybrid GA. Those instances are
limited to the generation of 100,000 individuals, providing equal execution
time between small and large population sizes.
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6.2.2 Results

Figure 6.7 shows the progress of the Meta-GA on two instances. A tourna-
ment size of 5 in a (10+30)-GA makes the selective pressure quite high and
because of the plus selection strategy, the current best individual is often
identical to the global best individual. High selective pressure causes a GA
to find results very rapidly at the risk of premature convergence. In case of
the Meta-GA, slow convergence is not desired because computational effort
must be limited.

Figure 6.7: Meta-GA progress on A-n80-k10 (left) and B-n63-k10 (right)

The test run depicted in the right plot shows another interesting phenomenon.
After the sixth generation the population deteriorates, despite the plus se-
lection strategy. This can happen because a certain parameter set is never
guaranteed to return the same result, because it launches an instance of the
Hybrid GA. The Meta-GA will then think it has found a good parameter
set, which might have been a lucky shot. The algorithm will continue with
this seemingly good individual, only to find out later its performance was
not consistent. Taking the average over multiple runs for one parameter set
is not a solution, because that would multiply the total running time. It
is not really a problem, because good results are found either way, perhaps
more an anomaly.

Table 6.4 shows the results of the Meta-GA runs on various problem in-
stances. The results from the manually tuned Hybrid GA are included,
they correspond to Tables 6.2 and 6.3. In every occasion, the Meta-GA
performs better than or equal to the manually tuned algorithm.

Some parameter sets came as a surprise. For the B sets, containing clustered
problem instances, smaller population sizes work better than larger popu-
lation sizes. Due to the limitation on offspring created, smaller population
sizes run for more generations than larger populations, which perhaps gives
the edge in clustered instances. After the analysis on the Hybrid GA in
the previous section, this came as a bit of a surprise, as a (1000,3000)-GA
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Instance Hybrid GA Meta-GA GA Operators TS

A-n62-k8 1300 1292 (256+256) BCRC/MR/R 3
A-n63-k9 1627 1616 (256+768) BCRC/AR/R 4
A-n64-k9 1411 1411 (1024,2048) BCRC/AR/B 14
A-n69-k9 1159 1159 (512,1536) BCRC/AR/B 8
A-n80-k10 1766 1765 (128+640) BCRC/AR/B 7
B-n63-k10 1523 1504 (32,160) BCRC/AR/R 9
B-n64-k9 861 861 (16,48) BCRC/AR/R 8
B-n68-k9 1286 1273 (16,64) BCRC/AR/R 7
B-n78-k10 1221 1221 (256,768) BCRC/AR/B 8

Table 6.4: Meta-GA results

seemed to be able to solve everything. To ensure the parameter set was no
lucky shot, a (1000,3000)-GA and a (32,160)-GA were launched on B-n63-
k10, without a limitation on the amount of offspring generated. The results
are in Figure 6.8.

Figure 6.8: Hybrid GA progress on B-n63-k10 with (32,160)-GA (left) and
(1000,3000)-GA (right)

The final result of the (32,160)-GA was 1498, which is an improvement over
the result mentioned in Table 6.4. The (1000,3000)-GA performed worse
than the (100,300)-GA from Table 6.2, as it was only able to reach 1537. It
was definitely no glitch, smaller population sizes appear to work better on
clustered instances, as the Meta-GA already discovered.

In case of dispersed problem instances, as expected, larger problem instances
are the way to go. In terms of operator combinations, BCRC/AR performs
best, analogous to the findings in the previous section.
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6.3 Final results

The best results from the previous sections have been combined into Table
6.5:

Instance Optimum Hybrid/Meta-GA Difference GA TS

A-n60-k9 1354 1354 - (100+300) 5
A-n61-k9 1034 1035 +0.1% (1000,3000) 10
A-n62-k8 1288 1292 +0.3% (256+256) 3
A-n63-k9 1616 1616 - (256+768) 4
A-n63-k10 1314 1314 - (1000,3000) 5
A-n64-k9 1401 1411 +0.7% (1000,3000) 10
A-n65-k9 1174 1178 +0.3% (1000,3000) 11
A-n69-k9 1159 1159 - (1000,3000) 15
A-n80-k10 1763 1765 +0.1% (128+640) 7
B-n57-k9 1598 1598 - (100,300) 5
B-n63-k10 1496 1504 +0.5% (32,160) 9
B-n64-k9 861 861 - (1000,3000) 10
B-n66-k9 1316 1319 +0.2% (1000,3000) 10
B-n67-k10 1032 1032 - (1000,3000) 10
B-n68-k9 1272 1273 +0.1% (16,64) 7
B-n78-k10 1221 1221 - (1000,3000) 10

Table 6.5: Final results for larger instances of Augerat et al, Set A and B

Even larger problem instances are contained in Christofides et al, Set M. The
largest problem instance is probably G-n262-k25, by Gillet and Johnson.
Unfortunately, these problem instances are too large to be solved using the
Meta-GA, as they require the generation of more than 100,000 individuals
to get good results, yielding an execution time of several days.

All problem instances within the M set are dispersed, so the best way to solve
them, based on the results from previous sections, is using a (1000,3000)-GA
with large tournament sizes and no limitation on the amount of individuals
generated. As a result these runs take a couple of hours each. The best
results can be found in Table 6.6.

No exact optimum is known for these problem instances because they are
simply too large to compute in an exact way. A comparison is made to
results which can be found in other research literature. It appears that a
new best known is found for M-n200-k16, at least within research literature.
Figure 6.9 is a visualization of the solution.

Outside research literature there are commercially available programs, some
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Instance Hybrid GA Best published Xtreme Route

M-n151-k12 1025 1021 [Schneider, 2003] 1015
M-n200-k16 1307 1335 [Herrero et al., 2010] 1284
M-n200-k17 1303 1296 [TNL, 2011] 1281
G-n262-k25 5628 5574 [Guimarans et al., 2010] 5543

Table 6.6: Results for large instances

Figure 6.9: Solution to M-n200-k16 with cost 1307

of which also work with the test sets mentioned. One of those is called
Xtreme Route [Xtreme Route, 2011]. It is a one-man project which, ac-
cording to the author, ‘uses some local searching’ and is ‘certainly a branch-
and-cut alike algorithm, although there isn’t any cutting’. Regardless, it
outperforms every approach proposed in research literature.
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Chapter 7

Conclusions and Outlook

The initial idea for this thesis was to research how well an order-based
GA performs on CVRP. Various new operators have been implemented and
analyzed. The overall performance of this ‘Hybrid GA’ is excellent, nearly all
known problems can be solved optimally or within 1% of the known optimum
and a new best known within research literature for a large problem instance
was found. The drawback was the large amount of operator combinations, so
it was decided to extend the research towards a meta-evolutionary approach.

The main focus of this thesis is to determine the effectiveness of automated
parameter tuning using the Meta-GA approach. To determine this, three
research questions have been defined, which will be answered in this section.

Is the Meta-GA able to match or improve manually tuned parameter sets?
Yes, but only for problem instances up to 100 customers. Larger instances
simply take too long to execute (several days), as follows from Section 4.2.3.
The Meta-GA results are presented in Table 6.4. All results are better than
or equal to the manually tuned parameter sets.

Is the Meta-GA able to match or improve the time it takes to manually tune
a parameter set?
Section 6.1 elaborates on the impact of different parameter settings in the
Hybrid GA. The plots took several hours to construct, after which some
general knowledge is gained on parameter settings for a specific problem
instance. It is at that point unknown whether changing parameter settings
according to one plot results in the expected behavior on another problem
instance. It it assumed that parameter sets behave more or less equally in
identical ‘types’ of problem instances, i.e. clustered and dispersed, but this
link only become clear after extensive testing.

A single Meta-GA run takes up to 15 hours and returns the best parameter
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set and result it can find, requiring no further analysis whatsoever.

If there is no prior knowledge on parameter settings, the answer is a clear
‘yes’. Given knowledge, it is possible to find a good parameter set within
the time it takes for the Meta-GA to finish. In that case it is a trade-off
between time and effort. Running the Meta-GA is effortless but takes time,
manually tuning parameters requires effort but less time.

Do the parameter sets obtained by the Meta-GA perform consistently?
Yes, in Figure 6.8, the parameter set found by the Meta-GA was re-used for
another run on the Hybrid GA and the result remained good.

So, how effective is the Meta-GA? Given problem instances up to 100 cus-
tomers and no knowledge about parameter settings, it is extremely useful.
But even after analyzing many parameter sets and being under the impres-
sion of having a good understanding on the influence of the parameters, the
Meta-GA can still surprise with some settings which apparently work very
well too, but never came to mind. This is the power of GAs in general: the
ability to think ‘outside of the box’.

It has to be concluded that the Meta-GA is very useful, but its use is often
limited due to time constraints. The approach is very suitable for paral-
lelization and with modern CPU technology focusing heavily on multi-core
architecture, the time constraints might be overcome. If time is an issue,
the Meta-GA could provide an insight into suitable parameter settings from
a single run.

Furthermore, the Meta-GA could be turned into a Mixed-Integer Evolution
Strategy (MI-ES), which is able to generate all possible parameter sets.
The current Meta-GA approach uses a simplification through the use of
step sizes. It has been an assumption that values between those step sizes
were not relevant, but this has never been demonstrated.
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Appendix A

Solutions

Note that node IDs, rather than indices, are mentioned. Thus, the depot
has ID 1 and the first customer has ID 2.

M-n151-k12:

Route #1: 1 53 107 83 49 125 47 126 46 9 115 84 19 90 1

Route #2: 1 133 2 52 104 10 121 82 34 103 51 112 1

Route #3: 1 78 4 130 80 79 35 136 36 137 66 72 67 21 129 123 1

Route #4: 1 29 77 117 69 81 151 122 30 25 135 110 13 139 1

Route #5: 1 106 111 5 140 40 68 26 56 131 55 150 27 1

Route #6: 1 97 105 100 62 17 87 114 18 85 6 119 61 1

Route #7: 1 8 48 37 144 50 65 12 108 20 124 63 149 89 1

Route #8: 1 1 147 128 32 11 109 127 64 91 33 132 31 71 102 70 28 1

Route #9: 1 41 22 74 73 75 76 57 24 134 23 42 146 116 3 138 1

Route #10: 1 88 145 58 16 44 43 143 15 141 39 120 45 142 92 101 118 1

Route #11: 1 148 7 60 94 86 99 38 93 98 96 95 1

Route #12: 1 54 59 14 113 1

Cost 1025

M-n200-k16:

Route #1: 1 61 119 85 174 18 114 87 141 39 15 120 193 101 118 1

Route #2: 1 123 104 162 72 66 137 36 136 165 35 79 186 77 1

Route #3: 1 70 163 102 71 91 33 132 161 129 67 189 21 31 2 1

Route #4: 1 38 99 86 194 92 192 45 142 17 62 6 7 1

Route #5: 1 95 96 98 93 152 60 94 105 100 97 184 54 1

Route #6: 1 107 195 8 125 47 37 144 50 65 182 64 127 109 190 11 1

Route #7: 1 153 138 145 58 16 44 143 43 173 88 14 113 157 1

Route #8: 1 41 74 73 172 75 134 23 42 146 116 179 3 59 1

Route #9: 1 181 22 199 198 76 24 187 57 111 180 139 155 1

Route #10: 1 148 84 200 126 46 175 9 115 154 19 167 90 1

Route #11: 1 28 168 128 191 32 160 63 149 89 53 147 1

Route #12: 1 83 49 48 169 124 20 108 176 12 183 1

Route #13: 1 112 51 103 158 34 82 121 10 52 177 133 1

Route #14: 1 106 27 150 196 13 151 81 69 117 185 29 1

Route #15: 1 5 156 140 188 40 68 171 26 56 166 131 55 1

Route #16: 1 197 78 159 4 80 130 170 122 30 25 164 135 178 110 1
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Cost 1307

M-n200-k17:

Route #1: 1 19 115 9 175 47 125 48 169 49 83 154 53 147 1

Route #2: 1 107 195 8 124 20 37 144 50 65 12 176 108 183 1

Route #3: 1 112 158 34 82 121 10 162 104 52 2 133 1

Route #4: 1 99 194 92 192 142 45 141 39 15 120 193 101 38 152 93 118 1

Route #5: 1 29 185 197 117 78 4 159 103 51 177 28 1

Route #6: 1 70 123 129 21 189 67 72 66 137 36 136 165 35 79 1

Route #7: 1 54 106 196 110 178 151 81 69 13 139 155 1

Route #8: 1 77 186 80 130 170 122 30 25 164 135 131 55 150 27 1

Route #9: 1 180 166 56 26 171 68 40 188 140 156 5 111 199 1

Route #10: 1 113 1

Route #11: 1 7 97 60 94 86 62 174 85 6 119 1

Route #12: 1 90 167 61 84 200 126 46 18 114 87 17 100 105 1

Route #13: 1 157 148 184 95 96 98 88 153 59 1

Route #14: 1 181 22 73 198 57 187 24 76 134 23 75 41 1

Route #15: 1 14 138 3 116 179 145 173 43 143 44 16 58 146 42 172 74 1

Route #16: 1 168 109 91 127 64 182 33 132 161 31 71 102 163 1

Route #17: 1 89 149 63 160 190 11 32 191 128 1

Cost 1303

G-n262-k25:

Route #1: 1 167 235 69 143 233 232 203 140 2 230 72 32 206 134 6 205 1

Route #2: 1 141 165 257 189 35 96 183 29 161 26 142 1

Route #3: 1 40 234 33 79 148 160 135 159 61 111 30 98 76 1

Route #4: 1 24 49 144 15 108 213 46 188 129 121 1

Route #5: 1 176 259 25 246 128 41 18 56 48 57 243 1

Route #6: 1 112 237 197 175 99 241 118 254 258 223 166 1

Route #7: 1 19 13 212 91 62 222 130 131 50 125 256 174 261 28 1

Route #8: 1 208 73 186 20 80 262 192 31 1

Route #9: 1 34 253 245 116 146 101 139 22 97 1

Route #10: 1 210 100 71 109 156 77 155 88 5 82 187 173 1

Route #11: 1 153 145 193 185 219 120 240 36 260 157 8 75 1

Route #12: 1 191 9 4 216 105 214 113 1

Route #13: 1 127 251 47 92 51 95 152 150 87 248 89 78 94 201 200 117 1

Route #14: 1 247 209 181 64 217 162 180 23 45 119 124

Route #15: 1 123 227 202 52 68 133 106 86 38 7

Route #16: 1 147 103 16 220 137 177 39 224 44 1

Route #17: 1 65 194 102 14 168 90 249 122 107 190 154 149 252 1

Route #18: 1 3 171 231 10 27 115 126 1

Route #19: 1 74 199 55 138 229 54 66 207 84 196 1

Route #20: 1 59 184 151 221 37 218 1

Route #21: 1 17 93 179 211 42 110 21 228 85 1

Route #22: 1 136 53 163 60 172 182 170 244 1

Route #23: 1 70 178 238 63 250 158 225 164 1

Route #24: 1 255 67 169 104 114 81 195 198 43 11 239 12 242 236 1

Route #25: 1 204 58 132 215 226 83 1

Cost 5628
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