
Internal Report 2011–11 December 2011

Universiteit Leiden

Opleiding Informatica

Automated Verification

of Programs with Pointers

Jurriaan Rot

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Automated Verification of Programs with Pointers

Jurriaan Rot

Master thesis

LIACS – Leiden University

Supervisors:

prof. dr. F.S. de Boer

dr. M.M. Bonsangue

Abstract

We present a fully automated method for the verification of annotated re-
cursive programs with dynamic pointer structures. Assertions are expressed
in a dialect of dynamic logic extended with nominals and tailored to heap
structures, in which one can express complex properties such as reachabil-
ity. Verification conditions are generated using a novel calculus for comput-
ing the strongest post-condition of statements manipulating the heap, such
as dynamic allocation and field-assignment. Further, we introduce a new
decidable tableaux-based method to automatically check these verification
conditions.

Contents

1 Introduction 2

2 Heaps, programs 5

2.1 Heaps . 5
2.2 A simple programming language 6

3 A logic for heap abstraction 9

3.1 Syntax and semantics . 9
3.2 Annotated programs . 12

4 Deciding entailment 14

4.1 A modular approach . 14
4.2 Running the entailment checker 17

5 Verification 19

5.1 Strongest postconditions of assignments 19
5.2 Automated verification . 22
5.3 Structure of the implementation 25
5.4 Running the verifier . 26

6 Future directions 27

A Full proofs 30

B Maude source code 35

1

Chapter 1

Introduction

Dynamic allocation and assignments result in complicated structures in the
heap, which may easily lead to subtle bugs. Even in small programs un-
expected behaviour may arise through notorious events such as aliasing.
Programs with complicated heap structures are ubiquitous; think for exam-
ple of object-oriented languages supporting the dynamic creation of objects,
which may refer to each other through instance fields. Unfortunately but
not unexpectedly, it is in general very hard to formally reason about the
heap in these kinds of programs.

In this thesis we nevertheless approach this problem and consider the
verification of annotated pointer programs, which are simply sets of method
declarations complemented with contracts, pre- and postcondition specifica-
tions in an assertion language. Partial correctness of such programs with
respect to their outline means that whenever on the execution of a method
the precondition is satisfied initially, then after the execution, if it terminates
– hence partial correctness – the postcondition of the method holds. In order
to focus on the main aspects, we introduce a simple imperative program-
ming language which supports assigments including dynamic allocation, and
standard constructs as while loops and recursive procedure calls.

As assertion languages are usually based on first-order logic, automated
verification of annotated programs is mostly undecidable. In this thesis
we introduce a fully automated formal method for checking the correctness
of annotated pointer programs. Our starting point is the development of
an expressive yet decidable logic, based on propositional dynamic logic [8].
Heap structures can be regarded as labelled transition systems, where states
are labeled with variables and transitions are labeled with fields. This is
reflected in our logic, where program variables are modeled as a specific kind

2

of propositional variables and the basic modalities are fields. In our setting
propositional variables thus are nominals, i.e., true in precisely one location
of the heap – reminiscent of hybrid logic [4] – and transitions (fields) are
deterministic. To deal with these specific features, we introduce a tableaux
method for deciding entailment of formulas.

We then introduce syntactic characterizations of the strongest postcon-
ditions of assignments of variables and fields, and of dynamic allocation.
This basic calculus is extended to the abstract execution of programs to
automatically generate verification conditions, which can be proven or dis-
proven by a specifically tailored decision method for entailment of formulas.
Our method is fully tool-supported with a working prototype written for
the rewrite engine Maude [7].

Related work There are many logics and proof systems for verifying prop-
erties of the heap, of which separation logic [12] is an increasingly popular
one. Further proving correctness of object-oriented programs has been stud-
ied intensively (see e.g. [2, 1]). However these logics are in general unde-
cidable; for example, in [5] it is shown that even the purely propositional
part of separation logic is not decidable. Further, often these logics are
based on first-order logic and thus require additional constructs to express
reachability. Consequently the correctness of pointer programs still defies
automation.

A decidable logic similar to ours was introduced in [3], also including
nominals and deterministic fields. While basic reachability is expressible
in this logic, there are no nested modalities, in contrast to the logic intro-
duced in this thesis. Further [3] contains no characterization of weakest
preconditions or strongest postconditions.

In the recent work [14] a hybrid µ-calculus is used to express strongest
pre- and postconditions of low level pointer updates. Preconditions are
however expressed in an undecidable dialect including converse modalities.
The strongest postconditions are expressed in a decidable hybrid µ-calculus
(c.f. [13]); however this is a very complex logic including global modalities.
Further in contrast to [14] we focus on a high-level programming language.
Finally [14] lacks a proof of correctness of the strongest postconditions.

As for the decidability result of our dynamic logic, there are many ex-
isting tools for satisfiability of propositional dynamic logic [9], including
methods for (hybrid) logics with nominals [10, 13]. Unfortunately none of
these results fit to the exact characteristics of our logic, which, apart from
nominals, includes deterministic fields. We developed a tableaux method

3

which exploits precisely these characteristics resulting in a modular ap-
proach, which first resolves propositional connectives, then resolves nominals
and finally checks eventualities.

Summary of the contributions This thesis is based on the paper F.S.
de Boer, M.M. Bonsangue, J. Rot. Automated Verification of Recursive
Pointer Programs. Our main contribution is a tool-supported1 method for
automated verification of pointer programs, consisting of the following core
ingredients:

• An expressive program logic for heap abstraction

• A syntactic characterization of the strongest postconditions of assign-
ments together with a rigorous proof of correctness

• A tableaux method for deciding entailment

Outline This thesis is structured as follows. In Chapter 2 we introduce
a formalization of heap structures and define the programming language.
In Chapter 3 we introduce and discuss our logic and define the notion of
annotated programs. Chapter 4 details the tableaux method for seman-
tic entailment of formulas. Then in Chapter 5 we introduce the strongest
postcondition calculus and show how to apply this to the verification of an-
notated programs, concluding with a report of checking a simple program
on our prototype implementation. Finally in Chapter 6 we conclude with
various directions for future research.

1The full source code can be downloaded from http://www.liacs.nl/ jrot/verify

4

Chapter 2

Heaps, programs

In the first section of this chapter we formalize the notion of a heap in
terms of transition systems, where edges are labelled with fields and states
with variables. Then the second section defines our programming language,
together with a formal operational semantics.

2.1 Heaps

Throughout this thesis we assume an infinite set V of variables including
a distinguished variable nil ∈ V and ranged over by x, y, z, and an infinite
set of fields F ranged over by f, g. Further we have finite sets VP ⊂ V and
FP ⊂ F of program variables and program fields, respectively. A heap H
is a pair 〈v, h〉 of a variable assignment v : V → N and a field assignment
f : F → (N → N). We write H(x) for v(x), and H(f) for h(f). For a
set of variables V ar and a set of fields Fld we denote by RH(V ar, F ld) the
set of reachable states in H starting from these variables over fields in Fld,
defined as the least set X such that H(V ar) ⊆ X and H(f)(X) ⊆ X for
all f ∈ Fld. For technical convenience we assume that for every heap H,
RH(V, F) is finite. We denote variable update by H[x := n], global field
update and store update by H[f := ρ] and ρ[n := m], respectively, where
ρ : N → N, and, finally, a local field update by H[f := H(f)[n := m]]. We
use the standard notation and definition of simultaneous assignments and
updates.

A brief discussion is in order. Heaps, as introduced above, have both
an infinite domain and an infinite range. The motivation for having an
infinite number of variables and fields is to simplify the introduction of logical
variables in the definition of strongest postconditions, described below. The

5

reason we chose for natural numbers to model “locations” is for an easy
implementation of dynamic allocation. Variable and field mappings are total
functions; however, the requirement that there is a variable nil ∈ V allows to
distinguish between variables (or fields) which are null, and variables which
are not.

2.2 A simple programming language

In this section we introduce a simple imperative programming language
which supports recursion, assignment of variables and update of fields, and
dynamic allocation. In order to proceed we assume finite sets VP ⊂ V and
FP ⊂ F of program variables and program fields respectively. A recursive
program P is a collection

P = {p1 :: S1, . . . , pn :: Sn}

of procedure declarations where each Si is a statement defined by the fol-
lowing grammar:

S ::= if B then S1 else S2 fi | while B do S od | p | S1;S2 | ǫ

A ::= x := y | x := y.f | x.f := y | x := new

B ::= x = y | x 6= y

where x, y are program variables ranging over VP , f ranges over FP and p is
a procedure identifier ranging over the procedure names of P . The expres-
sions A are called assignments; note that these include dynamic allocation.
Let us first discuss informally the semantics of this language. The state-
ments x := y and x := y.f are basic assignments, updating x to point to
(the location referred to by) y or y.f respectively. Field update x.f := y
affects the location to which x points, and may thus also affect aliases of x.
Note that we have defined nil as a variable whereas it should be constant,
and so we disallow field updates to variables aliased with nil . Dynamic al-
location x := new assigns to x a new location unreachable in the heap from
any other program variables over program fields. The meaning of condi-
tional statements, sequential composition and while loops is as expected. A
procedure identifier p is simply a call to the procedure p. Finally ǫ is the
empty statement, which we include for technical convenience.

At first sight the navigation expressions in the basic assignments and
conditions in this language may seem to be rather limited. More general
expressions and updates, however, can be encoded – in a sequential setting

6

– using only basic assignments and composition. For example, a statement
x := y.fi1 . . . fik is encoded as x := y.fi1 ;x := x.fi2 ;x := x.fi3 ; . . . ;x :=
x.fik . In fact, even the operation x := y is not strictly necessary in presence
of the others, as it can be encoded as z.f := y;x := z.f .

We turn to the formal operational semantics of this language, described
by means of a transition relation → between configurations which are pairs
〈H,S〉 of a heap H and a statement S. The semantics of assignments is
described by the following transitions:

〈H,x := y〉 → 〈H[x := H(y)], ǫ〉

〈H,x := y.f〉 → 〈H[x := H(f)(H(y))], ǫ〉

Field update x.f := y affects aliases of x. As mentioned above we require
that x is not equal to nil for a correct execution of such an update:

H(x) 6= H(nil)

〈H,x.f := y〉 → 〈H[f := H(f)[H(x) := H(y)]], ǫ〉

Finally the transition of dynamic allocation is as follows:

〈H,x := new〉 → 〈H[x := n][f̄ := ρ̄], ǫ〉

where

• n ∈ N \ RH(VP , FP) denotes a location not reachable from program
variables through navigation expressions over program fields; such a
location always exists by the assumption on heaps that RH(V, F) is
finite,

• f̄ is the sequence of program fields FP ,

• ρ̄ is a sequence such that for every i: ρi = H(fi)[n := H(nil)].

The extention to sequential composition, if-then-else, while loops and proce-
dure calls is defined in a standard way, which we include here for a complete
presentation. In order to define conditional statements and while loops we
assume a relation |= satisfying H |= x = y iff H(x) = H(y), and H |= x 6= y
iff H 6|= x = y.

〈H,S〉 → 〈H ′, ǫ〉

〈H,S;S′〉 → 〈H ′, S′〉

H |= B

〈H, if B then S1 else S2 fi;S〉 → 〈H,S1;S〉

7

H 6|= B

〈H, if B then S1 else S2 fi;S〉 → 〈H,S2;S〉

p :: S ∈ P

〈H, p;S′〉 → 〈H,S;S′〉

H |= B

〈H,while B do S od;S′〉 → 〈H,S; while B do S od;S′〉

H 6|= B

〈H,while B do S od;S′〉 → 〈H,S′〉

Example 1. The following program inserts an element in front of a linked
list with head x:

y := new; y.next := x;x := y

As an illustration of the basic assignments we execute this program on the
following (partial representation of a) heap:

x, y
next // nil

next

��

This represents a one-element linked list with head x, and y happens to be
aliased with x. Now applying the dynamic allocation statement y :=new
has the following effect:

y

next

��
x

next // nil

next

��

Next by execution x.next := y we update the field next of the location to
which y points, to point to x:

y
next // x

next // nil

next

��

Finally we execute the statement x := y:

x, y
next // •

next // nil

next

��

This concludes our example.

8

Chapter 3

A logic for heap abstraction

In this chapter we define our dialect of propositional dynamic logic. The first
section introduces its syntax and semantics, together with some examples.
We extend in Section 3.2 the programs of the previous chapter with pre-
and postconditions to obtain annotated programs.

3.1 Syntax and semantics

In this section we introduce our logic for abstract specification of heap prop-
erties, based on propositional dynamic logic. The basic modalities are the
fields F , and V is the set of propositional variables. The syntax of dynamic
logic formulas is defined in a standard way as follows:

ϕ ::= ⊥ | x | ϕ ∨ ϕ | ¬ϕ | 〈α〉ϕ

α ::= f | α;α | α+ α | α∗ | x? | ¬x?

where x ranges over V , and f ranges over F . Note that tests occur only on
the level of literals. We define [α]ϕ = ¬〈α〉¬ϕ, and use in addition to the
above the standard connectives from propositional logic (∧,→, . . .). The
expressions α are called navigation expressions. We define satisfaction of
basic formulas ϕ in a standard way [4]; given a heap H together with a
natural number n we have

H,n 6|= ⊥

H,n |= x iff H(x) = n

H, n |= φ1 ∨ φ2 iff H,n |= φ1 or H,n |= φ2

H,n |= ¬φ iff H,n 6|= φ

H, n |= 〈α〉φ iff ∃m ∈ N such that (n,m) ∈ H(α) and H,m |= φ

9

where (the relation) H(α) is the extension of H(f) to arbitrary expressions
α, defined by structural induction in the standard manner:

H(α1;α2) = H(α1) ◦H(α2)

H(α1 + α2) = H(α1) +H(α2)

H(α∗) =
⋃

n∈N

H(α)n

A variable or field z is fresh in a formula ϕ if it does not occur in ϕ. We
define Var(ϕ) as the set of all variables which occur in ϕ, and Field(ϕ) as
the set of all fields occuring in ϕ.

As a first attempt for a notion of validity we define in the usual way
H |= ϕ iff H,n |= ϕ for all n ∈ N. However this forces the semantics of
formulas also to take into account properties of garbage, i.e., unreachable
parts of the heap; this we can solve be redefining validity as H |= ϕ iff
H,n |= ϕ for all n ∈ RH(V, F). Unfortunately, this notion of validity gives
rise to a highly complicated check of the corresponding entailment relation
φ |= ψ: it requires the construction of counterexample models in which φ is
satisfied in every state, which is formalized by the following implication [8]:

|= [(f1 + . . .+ fk)
∗]φ→ ψ

where f1, . . . , fk are the basic modalities occuring in φ and ψ. In order to
make this process more tractable we relativize this general notion of validity
to a local view from the variables, by the introduction of so-called rooted
formulas, given by the following grammar:

Φ ::= @x.ϕ | Φ1 ∧ Φ2

Then for a formula Φ = @x1.ϕ1 ∧ . . . ∧@xn.ϕn and a heap H we define

H |= Φ iff ∀i ≤ n : H,H(xi) |= ϕi

Now given the above Φ and another rooted formula Ψ = @y1.ψ1 ∧ . . . ∧
@ym.ψm, checking the entailment Φ |= Ψ reduces to the construction of a
heap H such that H |= Φ and H |= @yi.¬ψi for some i ≤ m.

Note that we thus have introduced a very restricted use of the bind-
ing operator in hybrid logic [4]: we only allow top-level occrrences of this
operator. Let us discuss the main features of the logic with some examples.

Example 2. Determinism of fields in heaps leads to the fact that the fol-
lowing entailment holds:

@x.〈f〉y ∧ 〈f〉z |= @y.z (3.1)

10

Variables are nominals, i.e., true in exactly one world:

@x.y |= @y.x (3.2)

A formula @x.〈(f + g)∗〉y states that y is reachable from x over fields f and
g. For example, the following entailment holds:

@x.〈f∗〉y ∧@y.〈g〉z |= @x.〈(f + g)∗〉z (3.3)

but the following does not:

@x.〈f∗〉y ∧@y.〈g〉z |= @x.〈f∗〉z (3.4)

Finally, as an example of a linked data structure, some variable x being the
head of a (non-circular) linked list is simply modeled as

@x.〈next∗〉nil (3.5)

Compare this to the formula @x.〈next∗〉¬nil ; heaps (with a finite number
of reachable states) which satisfy that formula must have a loop somewhere,
i.e., have x as the head of a linked list with a loop. To specify that x is the
head of a linked list which does not contain y, we can write

@x.[next∗](¬y) ∧ 〈next∗〉nil (3.6)

We conclude this section with the notion of substitution used in the
definition of strongest postconditions. Substitution of a variable x for z is
denoted Φ[z/x], and substitution of a field f for a navigation expression
Φ[α/f]. Both are defined by structural induction in the standard manner;
the base cases are as follows:

y[z/x] =

{
z if x = y

y otherwise
g[α/f] =

{
α if f = g

g otherwise

Of pariticular interest is the case of the @ operator:

(@y.ϕ)[z/x] = @(y[z/x]).(ϕ[z/x]) (@y.ϕ)[α/f] = @y.(ϕ[α/f])

The relation between substitution in formulas and allocation in heaps is
formalized in the following adaptation of the standard substitution lemma:

Lemma 1 (Substitution). Let H be a heap, Φ a rooted formula, x, z vari-
ables, f a field and α a navigation expression such that H(α) is a function
H(α) : N → N. Then

11

1. H |= Φ[z/x] iff H[x := H(z)] |= Φ

2. H |= Φ[α/f] iff H[f := H(α)] |= Φ

Since we allow substitution of general navigation expressions for fields,
in order for the update H[f := H(α)] to be well-defined we require that
H(α) is deterministic.

3.2 Annotated programs

Given the above logic, we now extend our programs with specifications of
pre- and postconditions, by defining an annotated program P as follows:

P = {{Φ1}p1 :: S1{Ψ1}, . . . , {Φn}pn :: Sn{Ψn}}

where each precondition Φi and each postcondition Ψi is a rooted formula
over variables of VP and fields of FP . Statements are defined as before
with the exception of while loops, which we assume to be equipped with
invariants:

(inv : Φ)while B do S od

We turn to the definition of correctness of programs with respect to their
annotations:

Definition 1 (Partial correctness). Given a statement S, precondition Φ
and postcondition Ψ we define a correctness triple |= {Φ}S{Ψ} to be valid
if for all heaps H:

H |= Φ and 〈H,S〉 →∗ 〈H ′, ǫ〉 implies H ′ |= Ψ

A program P is correct, denoted |= P , if for every {Φ}p :: S{Ψ} ∈ P :

|= {Φ}S{Ψ}

Note that the standard rules of Hoare logic with respect to the program
constructs hold for the above definition of partial correctness.

Example 3. We give as example the following annotation of an implemen-
tation of an insertion into a (non-circular) linked list.

{@x.〈next∗〉nil}y := new; y.next := x;x := y{@x.〈next∗〉nil} (3.7)

Remember from Example 2 that a (non-circular) linked list with head x is
represented succinctly by the formula @x.〈next∗〉nil . Note that according to

12

this annotation the property of non-circularity is preserved by the insertion
of a new element. On the other hand, the annotated program

{@x.〈next∗〉nil}y.next := x;x := y{@x.〈next∗〉nil} (3.8)

is clearly incorrect because if y itself is already part of the list then its
insertion will introduce a circularity, as z sets the next field to point to x.

13

Chapter 4

Deciding entailment

Automated checking of the entailment relation of our logic turns out to be
a crucial to our approach. In this chapter we discuss a method for deciding
entailment which is based on classical tableaux methods for dynamic logic,
but deals with the specific characteristics of our restricted class of models.
This method is detailed in the first section, and in the second section the
output of running examples on the actual Maude implementation is given.

4.1 A modular approach

In this section we sketch the main characteristics of our tableaux method
for deciding entailment between rooted formulas and its prototype imple-
mentation in the rewrite logic engine of Maude. To check an entailment
Φ |= Ψ we search for a counterexample, that is, a heap which satisfies Φ but
does not satisfy Ψ. In our case, for a given Φ = @x1.ϕ1 ∧ . . . ∧@xn.ϕn and
Ψ = @y1.ψ1 ∧ . . . ∧ @ym.ψm this means the construction of a heap H such
H |= Φ and H |= @yi.¬ψi for some i ≤ m.

To this end we introduce in Maude the sorts World, Model, NewWorld
and Config. A term of sort World is constructed by the operation

op . : Nat Form → World

where Form denotes the sort of dynamic logic formulas. The sort of natural
numbers Nat is used to identify “worlds”, as we will call such terms in the
sequel. A heap is represented by a term of sort Model which is constructed
by

op ; ; : Worlds Transitions Nat → Model

14

where Worlds denotes a sequence of terms of sort World, a term of sort
Transitions denotes a set of labeled transitions between worlds represented
by their natural numbers. For technical convenience Nat is used to represent
a bound on the number of worlds in the model. The standard (structural)
tableaux rules for propositional dynamic logic operate on the terms of the
sort NewWorlds constructed by

op [, , , ,] : Nat Field Form Form Next → NewWorld

where

1. the first argument represents its originating world,

2. the second argument represents the transition from that world to this
new world “under construction”,

3. the third argument is a conjunction of formulas which are supposed to
hold in this new world but are still to be processed, whereas

4. the fourth argument represents a conjunction of formulas which are
already processed and therefore do hold., finally

5. the last argument Next is a set of formulas labeled by fields, indicating
the worlds supposed to originate from this one.

Finally a term of sort Config is constructed by

op (|) : NewWorlds Model → Config

op | : Config Config → Config

where NewWorlds is denotes a sequence of worlds of terms of sort NewWorld.
A term of sort Config thus consists of a list of pairs, each of which represents
a set of new worlds which are to be finalized and a term of sort Model which
contains finalized worlds.

For a proper treatment of the identification of nominals our tableaux
method operates on a list of configurations. For example, a disjunction ϕ∨ψ
gives rise to a split of the current configuration into two new configurations
corresponding to the two disjuncts ϕ and ψ, respectively. The entailment
relation Φ |= Ψ (Φ and Ψ as above) is therefore represented by a sequence
of configurations C1, . . . Cm where each Ci consists of an empty model and
a set of worlds under construction representing the formulas:

x1 ∧ ϕ1, . . . , xn ∧ ϕn, yi ∧ ¬ψi

Our method distinguishes the following three (disjoint) sets of rewrite rules
to be applied to indivudual configurations.

15

1. First the standard (structural) tableaux rules for dynamic logic are ap-
plied on the worlds under construction. A literal conjunct for example
is simply transferred to the set of processed formulas. As described
above, a disjunction splits the current configuration into two. A for-
mula 〈α∗〉ϕ at this stage is treated as a disjunction ϕ ∨ 〈α〉〈α∗〉ϕ. A
formula 〈f〉ϕ is transferred both to the processed formulas and to the
set of next worlds. A formula [f]ϕ is treated similarly (note that f is
deterministic). All other formulas are dealt with by the usual reduc-
tion axioms of dynamic axioms.

2. The second phase consists of the merging of finalized worlds containing
the same nominal, and its propagation to the transitions to maintain
the deterministic nature of fields.

3. The final phase consists of a star track, which checks if the eventualities
of the form 〈α∗〉ϕ are indeed validated. This phase is implemented by
computing α∗ using the given bound on the number of worlds.

Every configuration which passes through these three phases and the
consistency check on finalized worlds is a valid counterexample. Other con-
figurations are deleted. We denote by ⇒T the consecutive application of the
above sets of rewrite rules. We have the following main theorem.

Theorem 1. Let Φ and Ψ be rooted formulas as defined above. Further
let C1, . . . , Cm be a corresponding sequence of configurations, also as defined
above. We have

Φ |= Ψ iff C1, . . . , Cm ⇒∗

T ǫ

where ⇒∗

T denotes the transitive closure of ⇒T and ǫ denotes the empty list.

The consecutive application of the above three (disjoint) sets of rewrite
rules, i.e., (1) standard structural rules, (2) propagation of nominal identifi-
cation and (3) checking eventualites, yields a modular method which allows
for a transparant proof. We only observe here that at the heart of the above
theorem lies the basic fact that the consecutive application of the above sets
of rewrite rules is indeed correct because of the deterministic interpretation
of the field names. For example, adding the converse operator on fields, i.e.,
f−1, merging two worlds (because of a common nominal) would in general
require a renewed validation (and corresponding propagation) of a formula
[f−1]φ of the resulting world. On the other hand, a termination proof for our
tableaux method requires this consecutive application of the above rewrite
rules. Intuitively, no rule in the above first set of (structural) rewrite rules is

16

applicable (to a term of sort Config) when all terms of sort NewWorld have
been processed, i.e., transformed into terms of sort World. Distinguishing,
in a configuration, between new worlds and finalized worlds allows a simple
check whether a processed new world already appears as a final world in the
model. In case the processed world already exists we only need to possibly
add a new transition (from the originating world to the corresponding final
world). Nominal identifaction at the first phase on finalized worlds may lead
to divergence. We illustrate this with an informal example.

Example 4. Suppose in a given configuration there exists a final world ϕ∧x
for some ϕ. Furthermore suppose there exists a world under construction in
which the formula [f∗]x is to be made true. Processing this formula leads
to the introduction of a final world in which x ∧ [f][f∗]x is true (assuming
that such a world does not yet exist) and a new world orginating from this
fresh final world in which again [f∗]x is to be made true. Because of the
nominal x occuring both in ϕ ∧ x and x ∧ [f][f∗]x these worlds then can be
identified. As a consequence the above scenario will repeat itself.

4.2 Running the entailment checker

We recall two examples from Chapter 3 and apply the entailment checker
described in the previous section. Example 3.3 has the following output
when run in the Maude interpreter:

rewrite in TABLO :

((x . < f * > y),y . < g > z) |= x . < (f + g) * > z .

rewrites: 1444 in 8ms cpu (10ms real) (168082 rewrites/second)

result DelimConfig: {empty}

which tells us no counterexample could be found, and thus that the entail-
ment holds. On the contrary for Example 3.4 a counterexample is generated:

rewrite in TABLO : ((x . < f * > y),y . < g > z) |= x . < f * > z .

rewrites: 312 in 0ms cpu (1ms real) (355353 rewrites/second)

result DelimConfig:

{(true ; (0 . x & y & - z & (< g > z) & (< f * > y) &

([f][f *]- z) & [f *]- z),(1 . - z & ([f][f *]- z) & [f *]- z),

3 . z; < f,0,1 >,< f,1,1 >,< g,0,3 > ; 4),(...)}

The above output represents a model which we can graphically represent
as follows:

z x, yg
oo f // •

f

��

17

Indeed this model satisfies @x.〈f∗〉y and @y.〈g〉z but not @x.〈f∗〉z.

18

Chapter 5

Verification

The first section of this chapter introduces the strongest postconditions of
assignments. Then in the second section, these strongest postconditions are
extended to a verification condition generator for full programs, which is
combined with the entailment checker, resulting in our method for auto-
mated verification. In the third section we shortly discuss the overall struc-
ture of the Maude implementation, and finally in the last section we provide
and discuss the output of checking an example program in our automated
verification tool.

5.1 Strongest postconditions of assignments

In general, verification of annotated programs is based on the generation
of verification conditions. This can be done systematically by computing
weakest preconditions or strongest postconditions. It is worthwhile to ob-
serve that it is unclear and highly problematic how to generate statically the
weakest precondition in our logic. For instance, the weakest precondition of
x := y.f with respect to the rooted formula @z.x is @y.〈f〉z. Therefore, our
approach is based on computing strongest postconditions, which in contrast
does allow a relatively simple characterization based on substitution. How-
ever, the standard way of expressing the strongest postconditions requires
the introduction of existential quantification to denote the old value of the
updated variable. In our case this would give rise to an undecidable logic.
However in general (top-level) existential quantifiers can be eliminated in the
entailment relation. To show this we first extend our logic with top-level
existential quantification:

ΦE = ∃z.ΦE | ∃g.ΦE | Φ

19

where Φ is a rooted formula, z is a variable and g is a field.
With FVar(ΦE) we denote all variables not bound by a quantifier, and

similarly with FField(ΦE) all such fields. The semantics is defined as follows:

H |= ∃z.Φ iff H[z := m] |= Φ for some m ∈ N

H |= ∃g.Φ iff H[g := ρ] |= Φ for some ρ : N → N

Now we have the following basic logical equivalence, relating existentially
quantified variables and fields in the antecedent to (implicitly) universally
quantified variables in an entailment relation:

Lemma 2. Let Φ and Ψ be formulas. For any z ∈ V \ FVar(Ψ):

∃z.Φ |= Ψ iff Φ |= Ψ

For any g ∈ F \ FField(Ψ)

∃g.Φ |= Ψ iff Φ |= Ψ

Proof. We treat the case of a variable. Suppose ∃z.Φ |= Ψ and H |= Φ for
some heap H. Then since H = H[z := H(z)] by definition H |= ∃z.Φ and
so H |= Ψ by assumption.

Conversely suppose Φ |= Ψ and H |= ∃z.Φ. Then H[z := n] |= Φ for
some n ∈ N, so by assumption H[z := n] |= Ψ. But since z does not occur
free in Ψ, it is easy to show that H |= Ψ.

For the purpose of generating verification conditions, described in the
following section, the above lemma justifies the introduction of fresh vari-
ables in the strongest postcondition without existential quantification. The
strongest postcondition SP(x := y,Φ) of a variable assignment of the form
x := y and a formula Φ therefore is given by the formula

Φ[z/x] ∧@y[z/x].x

where z is a fresh variable, not occuring in Φ or VP . In the special case
of an assignment x := x, we should have that z equals x, which is indeed
taken care of by the substitution in @x[z/x].y. The strongest postcondition
SP(x := y.f,Φ) of a variable assignment x := y.f and a formula Φ is similar
to the above update x := y:

Φ[z/x] ∧@y[z/x].〈f〉x

20

where z is as again a fresh variable. The strongest postcondition SP(x.f :=
y,Φ) of an assignment x.f := y and a formula Φ is given by the formula

Φ[((x?; g) + (¬x?; f))/f] ∧@x.(¬nil ∧ 〈f〉y)

where g is a fresh field name not occuring in Φ or FP . Here g represents
the old value of f . The formula @x.¬nil is required to match the oper-
ational semantics, which states that field update to an alias of nil is not
allowed. For example when Φ = @x.nil, the above strongest postcondition
is a contradiction, which is correct, since any execution of x.f := y on a
heap satisfying Φ would block according to the operational semantics. Fi-
nally the strongest postcondition SP(x := new,Φ) of dynamic allocation
x := new and a formula Φ is given by the formula

Φ[z/x] ∧
∧

f∈FP

(@x.〈f〉nil) ∧
∧

v∈VP [z/x]

(@v.[(f1 + . . .+ fk)
∗]¬x)

where VP [z/x] = VP \{x}∪{z} and {f1, . . . , fk} = FP . Intuitively the above
formula states that x is unreachable from any other program variable after
being allocated, and that its fields are intialized to point to nil .

Example 5. We illustrate the above in terms of insertion into a non-circular
list of Example 3. For notational convenience we assume that FP = {next}
and VP = {y, x}. We first observe that SP (y := new,@x.〈next∗〉nil) equals

@x.〈next∗〉nil ∧@y.〈next〉nil ∧@x.[next∗]¬y ∧@z.[next∗]¬y

Next we compute the strongest postcondition of the above formula for the
assignment y.next := x:

@x.〈π∗〉nil ∧@y.〈π〉nil ∧@x.[π∗]¬y ∧@z.[π∗]¬y ∧@y.(¬nil ∧ 〈next〉x)

where π stands for (y?; f+¬y?;next), for some new field name f . Finally, we
compute the strongest postcondition of this latter formula for the assignment
x := y:

@w.〈π∗〉nil∧@y.〈π〉nil∧@w.[π∗]¬y∧@z.[π∗]¬y∧@y.(¬nil∧〈next〉w)∧@y.x

In Section 5.4 we show that the prototype implementation of our semantic
tableaux method reports that the resulting strongest postcondition entails
@x.〈next∗〉nil . For now we give an informal argument as to why this is the
case. To this end, suppose the above strongest postcondition is true in some
heap H. First note that π agrees with next on every world where y does not

21

hold. Thus since @w.[π∗]¬y holds it follows by induction that @w.[next∗]¬y
does, too; but then from @w.〈π∗〉nil we may conclude @w.〈next∗〉nil , which
again can be shown inductively. So w is the head of a linked list; and since
@y.〈next〉w holds y is, too. Finally @y.x states that x and y are equal, and
so @x.〈next∗〉nil as desired.

We conclude this section with the following theorem, stating that the
above strongest postconditions are sound and complete with respect to the
operational semantics:

Theorem 2. For every formula Φ:

SP (A,Φ) |= Ψ iff |= {Φ}A{Ψ}

where A is an assignment, Var(Ψ) ⊆ VP ∪ Var(Φ) and Field(Ψ) ⊆ FP ∪
Field(Φ).

The proof of this theorem is omitted here to preserve the flow of reading,
but can be found in Appendix A.

5.2 Automated verification

We turn to our method for automated verification, which is based on gener-
ating verification conditions using the above syntactic descriptions of the
strongest postconditions of assignments, and then proving or disproving
the generated conditions using the tableaux method of Chapter 4. Our
method is implemented in terms of a rewrite system in Maude; we give
here a high-level description. This system operates on a sequence of anno-
tated statements or procedure declarations, i.e., a sequence of triples of the
form {Φ}S{Ψ} or {Φ}p :: S{Ψ}. Now rewriting a triple {Φ}S{Ψ} can be
thought of as abstract execution of S, starting in the symbolic state Φ. We
show how to treat each of the programming language constructs. Procedure
declarations of the form {Φ}p :: S{Ψ} are rewritten as follows:

{Φ}p :: S{Ψ} ⇒ {Φ}S; ǫ{Ψ} (5.1)

Here ǫ allows for an easy treatment of sequential composition. For any as-
signment A, we simply compute the strongest postcondition as given above:

{Φ}A;S{Ψ} ⇒ {SP (A,Φ)}S{Ψ} (5.2)

On an if-then-else statement with condition B, we branch into two threads
of execution, one where B is true and one where it is not. Note that B is

22

either an equality or a disequality and thus not strictly a formula in our
logic; with B̂ we denote a logical formula corresponding to the expression
B, which is defined simply as B̂ = @x.y in case B is of the form x = y, and
@x.¬y, in case it is of the form x 6= y. Thus we obtain the following.

{Φ}if B then S1 else S2 fi;S{Ψ} ⇒ {Φ ∧ B̂}S1;S{Ψ}, {Φ ∧ ¬̂B}S2;S{Ψ}
(5.3)

A while loop is treated by proving that the invariant is preserved on execu-
tion of the body and continuing after the loop with the invariant and the
negated loop condition:

Φ |= Θ

{Φ}(inv : Θ)while B do S od;S′{Ψ} ⇒ {Θ ∧ B̂}S{Θ}, {Θ ∧ ¬̂B}S′{Ψ}
(5.4)

On procedure call, we show that the current state entails the precondition
of the callee, and then continue with its postcondition.

{Φi}pi :: Si{Ψi} ∈ P Φ |= Φi

{Φ}pi;S{Ψ} ⇒ {Ψi}S{Ψ}
(5.5)

Finally we terminate succesfully when the current state entails the postcon-
dition:

Φ |= Ψ

{Φ}ǫ{Ψ} ⇒ ⊤
(5.6)

The above (sets of) rules are combined into a relation ⇒, which is lifted to
sets of triples of the form {t1, . . . , tn}, where each ti is either of the form
{Φ}Si{Ψ} or {Φ}pi :: Si{Ψ}.

Definition 2. Let ⇒∗ denote the transitive closure of ⇒. We define

⊢ {Φ}S{Ψ} iff {{Φ}S{Ψ}} ⇒∗ {⊤}

For an annotated program P = {{Φ1}p1 :: S1{Ψ1}, . . . , {Φn}pn :: Sn{Ψn}}
we define

⊢ P iff {P} ⇒∗ {⊤}

We proceed to discuss the correctness of the above approach. Unfortu-
nately, we can not generalize Theorem 2 to statements S as it is impossible
to achieve completeness. The reason for this is that given the combination
of a decidable logic for assertions and a Turing-complete programming lan-
guage, there is no complete Hoare-style axiom system [6]. We continue to
show that our method is sound. A technical difficulty is that for basic as-
signments |= {Φ}A{SP (A,Φ)} does not hold, since SP (A,Φ) introduces a

23

fresh variable or field. To overcome this problem we first define an alterna-
tive version SPE of the strongest postconditions of assignments as follows.
For any A of type x := y, x := y.f or x := new:

SPE(A,Φ) = ∃z.SP (A,Φ)

where z is the fresh variable introduced in SP (S,Φ). Similarly we define

SPE(x.f := y,Φ) = ∃g.SP (S,Φ)

Now by Lemma 2 and Theorem 2 we have the following:

Corollary 1. For any formula Φ and assignment A:

|= {Φ}A{SPE(A,Φ)}

We are now ready to prove the correctness of the method:

Theorem 3 (Soundness). For any program P : if ⊢ P , then |= P .

Proof. We prove that for any triple {Φ}S{Ψ} such that Var(Ψ) ⊆ VP and
Field(Ψ) ⊆ FP :

{{Φ}S; ǫ{Ψ}} ⇒∗ {⊤} implies |= {Φ}S{Ψ}

by induction on the size of statements. The base case, for the empty state-
ment, follows directly from the definition of correctness triples and rule (5.6)
defining ⇒, given that the tableaux method is correct (Theorem 1). Next let
S;S′ be a statement such that S is not a composition, {Φ}S;S′; ǫ{Ψ} ⇒∗ ⊤
and suppose our claim holds for any statement smaller than S;S′. We treat
the case that S is an assignment and the case that S is an if-then-else state-
ment.

• Suppose S is an assignment. Then {Φ}S;S′; ǫ{Ψ} can only be rewrit-
ten by rule (5.2), so {{SP (S,Φ)}S′{Ψ}} ⇒∗ {⊤} and since S′ is
smaller than S, by the induction hypothesis |= {SP (S,Φ)}S′{Ψ}.
Since Var(Ψ) ⊆ VP and Field(Ψ) ⊆ FP but the introduced existen-
tially quantified variable or field in SPE(S,Φ) is not in VP or FP

respectively, it is easy to show that |= {SPE(S,Φ)}S
′{Ψ} holds – this

is in fact a generalized version of a standard rule in Hoare logic for the
introduction of existential quantifiers. Further by Corollary 1 we have
|= {Φ}S{SPE(S,Φ)}. It follows that |= {Φ}S;S′{Ψ} holds.

24

• Suppose S = if B then S1 else S2 fi for some S1, S2 and B. Then
rule (5.3) is applied, so both {{Φ ∧ B̂}S1;S{Ψ}} ⇒∗ {⊤} and {{Φ ∧

¬̂B}S2;S{Ψ}} ⇒∗ {⊤}. Now by the induction hypothesis we have

|= {Φ ∧ B̂}S1;S{Ψ} and |= {Φ ∧ ¬̂B}S2;S{Ψ}, and it easily follows
that |= {Φ}if B then S1 else S2 fi;S{Ψ} holds.

5.3 Structure of the implementation

In this section we shortly discuss the overall structure of our Maude imple-
mentation. We recall that the main components are the automated verifi-
cation generator and the tableaux method. These different components are
structured into the following interdependent modules:

• Verify : The Verify module contains the definition of the program-
ming language, and the implementation of the automated verification
engine.

• Tablo: This module contains the rewrite theory implementing our
tableaux method.

• DL: An algebra of formulas propositional dynamic logic is described
in this module, together with a set of reduction axioms which allow to
put any formula in a normal form.

• Functions : This is a helper module for the tableaux method, in par-
ticular supporting the reachability check for eventualitites and substi-
tution of transitions.

• Subst : The Subst module supplies substitution of variables and fields,
as introduced in Section 3.1.

The dependencies between the different modules are visualized in the fol-
lowing diagram:

DL

Verify

��

;;

// Tablo

��

ee

Subst Functions

25

An arrow from a module A to a module B denotes a dependency. In this
setting this means, for example, that Tablo can only work in the presence of
the theories DL and Subst. Thus the possible order of loading these modules
is obtained by taking any reverse topological sorting of the above diagram.

5.4 Running the verifier

In this section we provide the output of running some of the introduced
examples on our Maude implementation of the tableaux method and the
automated verification.

As an example of the full implementation of the automated verifica-
tion based on generating verification conditions and proving them using the
entailment checker we try to verify first the incorrect list insertion (Exam-
ple 3.8):

rewrite in VERIFY :

ver(m1 . x.< next* >nil . ((y..next):=x); x:=y . x.< next* >nil).

rewrites: 53413 in 91ms cpu (92ms real) (582050 rewrites/second)

result PConfig: (...) {(true ; (0 . x & y & - nil & x ’ & (...)

3 . nil & < ((y ; next’) + (- y ; next)) * > nil ;

< next,0,0 >,< next’,0,3 > ; 7),(...)

This returns as a counterexample a model in which x points to a circular
list; in fact, x.next = x. Interesting to see, however, is that next ′, the fresh
field introduced to represent next before the assignment y.next := x, does
map world 0 to world 3 (in which nil holds); thus, we can see that y.next := x
was exactly the statement introducing the circularity.

The corrected version (Example 3.7) is indeed verified, as expected:

rewrite in VERIFY :

ver(m1 . x.< next * > nil . (y := new[next | x y]) ; ((y .. next) := x)

; x := y . x . < next * > nil) .

rewrites: 13378832 in 25262ms cpu (25270ms real)

(529585 rewrites/second)

result PConfig: success

26

Chapter 6

Future directions

In this concluding chapter we propose several directions for future research.
One interesting thread of research is the optimization of the tableaux method
for entailment. There are several options to explore. First, a straightforward
but non-trivial exercise would be the implementation into a fast imperative
language. Secondly, the deterministic nature of fields should allow for huge
improvements. For example in most (but unfortunately not all) cases it is
sound to generalize the rule for detection of new worlds which already exist
– currently a new world ϕ is added if ϕ does not yet occur in the model – to
a rule which only adds such a world if there exist no world which subsumes
it; i.e., if there already exists a world ϕ ∧ ψ in the model, the new world is
not added. Unfortunately this approach is in general not sound. It would be
interesting to identify precisely the problematic cases, so that we can apply
the optimized rule whenever it is safe to do so.

The introduction of implicitly exisistentially quantified variables in the
strongest postconditions increases the size of the formulas. Possibly these
logical variables can be eliminated using an adapted version of the tableaux
method.

Yet another question is whether there exists a sound and complete ax-
iomatization of our heap logic. In particular, is it possible to axiomatize the
behaviour of nominals? This would open possibilities for algebraic reasoning
about equivalence of formulas.

Finally, our language does not support local variables. In our setting
full recursion with local variables requires adaptation rules suitable for au-
tomated reasoning [11].

27

Bibliography

[1] Martin Abadi and K. Rustan M. Leino. A logic of object-oriented
programs. In Nachum Dershowitz, editor, Verification: Theory and
Practice, volume 2772 of Lecture Notes in Computer Science, pages
11–41. Springer, 2003.

[2] K. R. Apt, F. S. de Boer, and E.-R. Olderog. Verification of Sequential
and Concurrent Programs, 3rd Edition. Texts in Computer Science.
Springer-Verlag, 2009. 502 pp, ISBN 978-1-84882-744-8.

[3] M. Benedikt, T.W. Reps, and S. Sagiv. A decidable logic for describing
linked data structures. In Proceedings of the 8th European Symposium
on Programming Languages and Systems, ESOP ’99, pages 2–19, Lon-
don, UK, 1999. Springer-Verlag.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Cambridge
University Press, 2001.

[5] J. Brotherston and M. I. Kanovich. Undecidability of propositional
separation logic and its neighbours. In LICS, pages 130–139, 2010.

[6] E.M. Clarke. Programming language constructs for which it is impos-
sible to obtain good hoare-like axioms. volume 26 of Journal of the
ACM, pages 126–147, 1979.

[7] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of maude. In
J. Meseguer, editor, Electronic Notes in Theoretical Computer Science,
volume 4. Elsevier Science Publishers, 2000.

[8] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press. 2000.

[9] U. Hustadt and R.A. Schmidt. A comparison of solvers for propositional
dynamic logic. In B. Konev, Renate A. Schmidt, and Stephan Schulz,

28

editors, Proceedings of the Workshop on Practical Aspect of Automated
Reasoning (PAAR-2010), 2010.

[10] M. Kaminski and G. Smolka. Terminating tableaux for hybrid logic
with eventualities. In Jürgen Giesl and Reiner Hähnle, editors, IJCAR
2010, volume 6173 of LNCS (LNAI), pages 240–254. Springer, Jul 2010.

[11] D. A. Naumann. Calculating sharp adaptation rules. Information Pro-
cessing Letters, 77:2001, 2000.

[12] J.C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, LICS ’02, pages 55–74. IEEE Computer Society,
2002.

[13] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In Proceedings
of the First International Joint Conference on Automated Reasoning,
IJCAR ’01, pages 76–91, London, UK, UK, 2001. Springer-Verlag.

[14] Y. Yuasa Y. Tanabe, T. Sekizawa and K. Takahashi. Pre- and post-
conditions expressed in variants of the modal µ-calculus. IEICE Trans-
actions, pages 995–1002, 2009.

29

Appendix A

Full proofs

Theorem 2. Let Φ be a formula, A a heap update, and Ψ a formula such
that Var(Ψ) ⊆ VP ∪ Var(Φ) and Field(Ψ) ⊆ FP ∪ Field(Φ). We do not
treat assignments of the form x := y, as their proof is analogous to the case
x := y.f .

Assume SP (A,Φ) |= Ψ, and let H be a heap such that H |= Φ. To prove
is that if 〈H,A〉 → 〈H ′, ǫ〉, then H ′ |= Ψ. We continue by cases on A.

1. (A = x:=y.f) To show : H[x := H(f)(H(y))] |= Ψ.

Let z be the fresh variable introduced in SP (x := y.f,Φ), then

H[z := H(x)] |= Φ[z/x]

since z does not occur in Φ. Let

H ′ = H[z := H(x)][x := H(f)(H(y))]

Then H ′ |= Φ[z/x] since x does not occur in Φ[z/x].

Next we distinguish two cases. If x = y we have H(y) = H(x) =
H[z := H(x)](z) = H ′(z) so

H ′(f)(H ′(z)) = H ′(f)(H(y)) = H(f)(H(y)) = H ′(x)

Otherwise if x 6= y, then H ′(y) = H(y) so

H ′(f)(H ′(y)) = H ′(f)(H(y)) = H ′(x)

It follows that H ′ |= @y[z/x].〈f〉x holds in both cases. Thus H ′ |=
SP (S,Φ) and by assumption H ′ |= Ψ. Since z does not occur in VP
or Var(Φ), by assumption it does not occur in Ψ, and it follows that
H[x := H(f)(H(y))] |= Ψ.

30

2. (A = x.f := y) If H(x) = H(nil) then 〈H,x.f := y〉 blocks. Thus
we continue to prove that H[f := H(f)[H(x) := H(y)]] |= Ψ holds
whenever H(x) 6= H(nil).

Assume H(x) 6= H(nil). Let g be the fresh field of SP (x.f := y,Φ)
not occuring in Φ. Then

H[g := H(f)] |= Φ[((x?; g) + (¬x?; f))/f]

Let H ′ = H[g := H(f)][f := H(f)[H(x) := H(y)]]. Since changing
the value of H(f) at H(x) does not affect the truth of Φ[((x?; g) +
(¬x?; f))/f] in H[g := H(f)], we have

H ′ |= Φ[((x?; g) + (¬x?; f))/f]

Further H ′ |= @x.〈f〉y and by assumption H |= @x.¬nil from which
it follows that H ′ |= @x.¬nil . Thus H ′ |= SP (S,Φ), and again by
assumption H ′ |= Ψ. Since g does not occur in FP or Field(Φ), it does
not occur in Ψ, and we have H[f := H(f)[H(x) := H(y)]] |= Ψ.

3. (A = x := new) To show: H[x := n][f̄ := ρ̄] |= Ψ with n and ρ̄ defined
as above.

Let z be the fresh variable introduced in SP (x := new,Φ), thenH[z :=
H(x)] |= Φ[z/x]. Now let n ∈ N \ RH(VP , FP), let f̄ be the sequence
of program fields FP and let ρ̄ be a sequence of the same size such that
for all i: ρi = H(fi)[n := H(nil)]. Let

H ′ = H[z := H(x)][x := n][f̄ := ρ̄]

We have H ′ |= Φ[z/x] since x does not occur in Φ[z/x]. By definition n
is unreachable from every v ∈ VP over fields from FP , which is simply
formalized as

H |=
∧

v∈V

v → [(f1 + . . .+ fk)
∗]¬x

where {f1, . . . , fk} = FP . Now since in H ′, z is assigned the value of
x and the fields FP are only changed at n, we have

H ′ |=
∧

v∈V [z/x]

v → [(f1 + . . .+ fk)
∗]¬x

Finally H ′ |=
∧

f∈FP
(@x.〈f〉nil) by definition of ρ̄. But now H ′ |=

SP (x := new,Φ) and so H ′ |= Ψ, and since z does not occur in VP or
Var(Φ), it does not occur in Ψ, so H[x := n][f̄ := ρ̄] |= Ψ.

31

This concludes the soundness proof.
Now assume |= {Φ}A{Ψ}. We must show that SP (A,Φ) |= Ψ holds. To

this end we take a heap H which models the strongest postcondition, and
apply some substitution to it to get a heap H ′ which models Φ. Then by
assumption applying the operation to H ′ either blocks or yields a heap H ′′

which models Ψ; we then get our result by showing that H ′′ is equal to to
H, and thus that H |= Ψ.

1. (A = x := y.f) Assume H |= Φ[z/x] ∧ (@y[z/x].〈f〉x). Then by the
substitution lemma H[x := H(z)] |= Φ, so by assumption

H[x := H(z)][x := H(f)(H(y))] |= Ψ

We distinguish two cases. If x = y, thenH |= @z.〈f〉x, soH(f)(H(z)) =
H(x), so

H[x := H(z)][x := H(f)(H(y))]

= H[x := H(z)][x := H(f)(H(x))]

= H[x := H(f)(H(z))]

= H

Otherwise if x 6= y, then H |= @y.〈f〉x, so H(f)(H(y)) = H(x), so

H[x := H(z)][x := H(f)(H(y))]

= H[x := H(f)(H(y))]

= H

Either way we get H = H[z := H(x)][x := H(f)(H(y))] and so H |=
Ψ.

2. (A = x.f := y) Assume

H |= Φ[((x?; g) + (¬x?; f))/f] ∧ (@x.¬nil ∧ 〈f〉y)

First note that ((x?; g) + (¬x?; f)) is a deterministic field expression,
i.e., is a function when evaluated on H:

H((x?; g) + (¬x?; f))

= {(n,m)|H(x) = o ∧H(g)(n) = m} ∪ {(n,m)|H(x) 6= n ∧H(f)(n) = m}

= H(f)[H(x) := H(g)(H(x))]

32

By the substitution lemma H[f := H((x?; g)+(¬x?; f))] |= Φ. By the
above equality we can rewrite the expression into a field update, let

H ′ = H[f := H(f)[H(x) := H(g)(H(x))]]

Then H ′ |= Φ. As H |= @x.¬nil , also H ′ |= @x.¬nil and so H ′(x) 6=
H ′(nil), which implies by definition

〈H ′, x.f := y〉 → 〈H ′[f := H ′(f)[H ′(x) := H ′(y)]], ǫ〉

and consequently, by assumption,

H ′[f := H ′(f)[H ′(x) := H ′(y)]] |= Ψ

Now let us examine the above substitution:

H ′(f)[H ′(x) := H ′(y)] = H(f)[H(x) := H(g)(H(x))][H ′(x) := H ′(y)]

= H(f)[H(x) := H(g)(H(x))][H(x) := H(y)]

= H(f)[H(x) := H(y)]

so
H ′[f := H(f)[H(x) := H(y)]] |= Ψ

and since the first substitution (of H ′) is cancelled by the above sub-
stitution we have

H[f := H(f)[H(x) := H(y)]] |= Ψ

Further H |= @x.〈f〉y, so we have H(f)(H(x)) = H(y), so

H[f := H(f)[H(x) := H(y)]] = H

from which we conclude H |= Ψ.

3. (A = x := new) Assume

H |= Φ[z/x] ∧
∧

f∈FP

(@x.〈f〉nil) ∧
∧

v∈VP [z/x]

(@v.[(f1 + . . .+ fk)
∗]¬x)

Then H[x := H(z)] |= Φ by the substitution lemma, so by assumption

H[x := H(z)][x := n][f̄ := ρ̄] |= Ψ

33

hold for any n ∈ N \ RH[x:=H(z)](VP , FP), and for any ρ̄ such that for
all i:

ρi = H[x := H(z)](fi)[n := (H[x := H(z)](nil))]

= H(fi)[n := H(nil)]

Now note that since H |=
∧

v∈VP [z/x]@v.[(f1 + . . .+ fk)
∗]¬x, we have

that H(x) 6∈ RH(VP [z/x], FP) = RH[x:=H(z)](VP , FP). Thus we can
take n = H(x):

H[x := H(z)][x := H(x)][f̄ := ρ̄] |= Ψ

The first substitution has no effect on the second substitution x :=
H(x), and so

H[x := H(z)][x := H(x)][f̄ := ρ̄] = H[f̄ := ρ̄]

But now H[f̄ := ρ̄] |= Ψ, and since H |=
∧

f∈FP
(@x.〈f〉nil), we have

for each f ∈ FP : H(f)(H(x)) = H(nil), and consequently H(f) =
H(f)[H(x) := H(nil)], so H[f̄ := ρ̄] = H. We conclude H |= Ψ.

34

Appendix B

Maude source code

tablo.maude

mod TABLO i s

inc NAT .

inc BOOL .

inc DL .

i n c l ud ing FUNCTIONS .

s o r t s Config DelimConfig .

subsor t Model < Config .

op i : −> Fie ld .

op empty : −> Config .

op (|) : NewWorlds Model −> Config [l e f t id : empty] .

op , : Config Config −> Config [a s soc id : empty] .

op { } : Config −> DelimConfig .

vars p q r s : Form .

var l i t : L i t e r a l .

var f g : F i e ld .

vars k l m n : Nat .

var N : Next .

var R : NewWorlds .

var M : Model .

var U T : Trans i t i on s .

var W : Worlds .

var x y z : Nominal .

var x l : Nominals .

var P Q : VarForms .

35

vars a b c : Prog .

var C : Config .

eq < f , n , m > , < f , n , m > = < f , n , m > .

∗∗∗ Input methods : i n i t (p) s ea r che s f o r a model o f p where p i s a formula in dynamic l og i c ,
∗∗∗ P |= Q checks enta i lment o f rooted formulas P and Q

op |= : VarForms VarForms −> DelimConfig .

op i (;) : VarForms VarForms −> Config .

op in i tmode l : VarForms −> NewWorlds .

op i n i t : Form −> DelimConfig .

eq P |= Q = { i (P ; Q)} .

eq i (P ; empty) = empty .

eq i (P ; (x . p) , Q) = (in i tmode l ((x . (− p)) , P) | (empty ; empty ; 0)) , i (P ; Q) .

eq in i tmode l (empty) = empty .

eq in i tmode l ((x . p) , Q) = [0 , i , x & p , true , none] , in i tmode l (Q) .

eq i n i t (p) = { [0 , i , p , t rue , none] | (empty ; empty ; 0)} .

∗∗∗ Tableaux cons t ruc t i on

r l [rm in i t l i n k] : < i , n , m > , T => T .

eq ([n , f , f a l s e & p , r , N] , R | M) = empty .
eq ([n , f , p , f a l s e & r , N] , R | M) = empty .
eq {(R | (((n . f a l s e & p) , W) ; T ; m)) , C } = { C } .

r l [diamond] : { ([n , f , (< g > p) & q , r , N] , R | M) , C} =>
{ ([n , f , q , r & < g > p , add (g , p , N)] , R | M) , C} .

r l [box] : { ([n , f , ([g] p) & q , r , N] , R | M) , C} =>
{ ([n , f , q , r & [g] p , add (g , p , N)] , R | M) , C} .

c r l [l i t e r a l] : { ([n , f , l i t & p , r , N] , R | M) , C} =>
{ ([n , f , p , r & l i t , N] , R | M) , C} i f l i t =/= true .

r l [newworld1] : { ([n , f , true , p , N] , R | (((k . p) , W) ; T ; m)) , C} =>
{(R | (((k . p) , W) ; (< f , n , k > , T) ; m)) , C} .

c r l [newworld2] : { ([n , f , true , p , N] , R | (W ; T ; m)) , C} =>
{(new(m, N) , R | (((m . p) , W) ; (< f , n , m > , T) ; m + 1)) , C}
i f in (p ,W) =/= true .

r l [nominal] : {(empty | (((n . x & p) , (k . x & q) , W) ; T ; m)) , C} =>
{(empty | (((min (n , k) . x & p & q) , W) ; subst (T , max(n , k) , min (n , k)) ; m)) , C} .

c r l [f i e l d i d] :
{(empty | (((k . p) , (l . q) , W) ; (< f , n , k >, < f , n , l >, T) ; m)) , C}
=>
{(empty | (((min (k , l) . p & q) , W) ; < f , n , min (k , l) > ,
subst (T , max(k , l) , min (k , l)) ; m)) , C } i f f =/= i .

r l [s p l i t 1] :
{ ([n , f , (p | q) & s , r , N] , R | M) , C} =>
{ ([n , f , p & s , r & (p | q) , N] , R | M) , ([n , f , q & s , r & (p | q) , N] , R | M) , C} .

∗∗∗ t h i s r u l e i s nece s sa ry f o r th ings l i k e < x ∗ > y .
c r l [a lready−done] :
{ ([n , f , p & q , p & s , N] , R | M) , C } =>
{ ([n , f , q , p & s , N] , R | M) , C} i f p =/= true .

r l [s p l i t 2] :
{ ([n , f , (< a ∗ > p) & s , r , N] , R | M) , C} =>
{ ([n , f , p & s , r & < a ∗ > p , N] , R | M) , ([n , f , (< a > < a ∗ > p) & s , r & < a ∗ > p ,
N] , R | M) , C} .

36

∗∗∗ in the f i r s t world we wr i t e r in s t ead o f < a ∗> p , which makes sure that in t h i s world
∗∗∗ the s t a r check i s skipped − which i s a smal l opt imizat i on

r l [boxstar] :
{ ([n , f , ([a ∗] p) & s , r , N] , R | M) , C} =>
{ ([n , f , p & s & [a] [a ∗] p , r & ([a ∗] p) , N] , R | M) , C} .

c r l [s tarcheck−diamond] :
{ (((n . q & < a ∗ > p) , W) ; T ; m) , C } => { C }
i f s t ab l e (W) and s t ab l e (T) and not Reach (m x a , (n . q & < a ∗ > p) , W , T , n , p) .

endm

verify.maude

mod VERIFY i s

i n c lud ing TABLO .

in c lud ing SUBST .

s o r t s Expr Stat Method Methods MethodName AConfig AConfigs PConfig F i e l d s VConditions .

subsor t F i e ld < F i e l d s .

subsor t DelimConfig < VConditions .

subsor t Nominal < Expr .

subsor t AConfig < AConfigs .

subsor t Method < Methods .

subsor t MethodName < Stat .

op . . : Nominal F i e ld −> Expr .

op = : Expr Expr −> Bool .

op new : −> Expr .

op E : −> Stat .

op empty : −> AConfig .

op none : −> Methods .

op none : −> F i e l d s .

op suc c e s s : −> PConfig .

op none : −> VConditions .

op , : AConfigs AConfigs −> AConfigs [a s soc r i gh t id : empty] .

op , : VConditions VConditions −> VConditions [a s soc id : none] .

op , : Methods Methods −> Methods [a s soc comm r i gh t id : none] .

op progvars : Stat −> Nominals .

op : : F i e l d s F i e l d s −> F i e l d s [a s soc comm id : none] .

op [|] : Stat F i e l d s Nominals −> Stat .

op f i e l d s −n i l : F i e l d s −> Form .

op unreachable : Nominal Nominals F i e l d s −> VarForms .

op := : Expr Expr −> Stat .

op ; : Stat Stat −> Stat [a s soc r i gh t id : E] .

37

op wh i l e do od : VarForms VarForms Stat −> Stat .

op i f t h e n e l s e f i : VarForms Stat Stat −> Stat .

op (. . .) : MethodName VarForms Stat VarForms −> Method .

op < > : MethodName VarForms Stat VarForms Bool −> Method .

op < , , > : VarForms Stat VarForms −> AConfig .

op < , , > : AConfigs Methods VConditions −> PConfig .

op done : Methods −> Bool .

op ’ : Nominal −> Nominal .

op ’ : F i e ld −> Fie ld .

op ver : Methods −> PConfig .

op p lus : F i e l d s −> Prog .

vars S S1 S2 : Stat .

var e , e2 : Expr .

vars p q r s : Form .

vars P Q R O : VarForms .

var V : Nominals .

var VC : VConditions .

vars x y z head tmp : Nominal .

var f g next : F i e ld .

var F : F i e l d s .

var C : AConfigs .

var m : Method .

var b : Bool .

var M : Methods .

var mn m1 m2 : MethodName .

eq done (none) = true .
eq done (< mn . P . S . Q . f a l s e > , M) = f a l s e .
eq done (< mn . P . S . Q . t rue > , M) = done (M) .

eq ver (M) = < empty , M , none > .

eq f i e l d s −n i l (none) = true .
eq f i e l d s −n i l (f) = < f > n i l .
eq f i e l d s −n i l (f : F) = f i e l d s −n i l (F) & < f > n i l .

eq p lus (empty) = true .
eq p lus (f) = f .
eq p lus (f : F) = f + plus (F) .

eq unreachable (x , empty , F) = empty .
eq unreachable (x , x V , F) = unreachable (x , V , F) .
ceq unreachable (x , z V , F) = unreachable (x , V , F) , (z . [(p lus (F)) ∗](− x)) i f x =/= z .

eq (mn . P . S . Q) = < mn . P . S . Q . f a l s e > .

r l [s t a r t] : < C , (< mn . P . S . Q . f a l s e > , M) , VC > =>
< (< P , S , Q > , C) , (< mn . P . S . Q . t rue > , M) , VC > .

r l [method−te rminat ion] : < (< P , E , Q > , C) , M , VC > =>
< C , M , (P |= Q) , VC > .

38

r l [i f t h e n e l s e] : < P , (i f Q then S1 e l s e S2 f i) ; S , R > =>
< P , Q , S1 ; S , R > , < P , (− Q) , S2 ; S , R > .

∗∗∗ check : P |= Q ,
r l [whi l e] : < (< P , (Q whi le R do S1 od) ; S , O > , C) , M , VC > =>
< (< Q , R , S1 , Q > , < Q , (− R) , S , O > , C) , M , (P |= Q) , VC > .

∗∗∗ check : P |= R
r l [proc] : < (< P , mn ; S , Q > , C) , (< mn . R . S1 . O . b > , M) , VC > =>
< (< O , S , Q > , C) , < mn . R . S1 . O . b > , M , (P |= R) , VC > .

r l [a s s s0] : < P , (x := x) ; S , Q > =>
< P , S , Q > .

c r l [as s1] : < P , (x := y) ; S , Q > =>
< (P [x := x ’]) , (x . y) , S , Q > i f x =/= y .

r l [as s2] : < P , (x := (y . . f)) ; S , Q > =>
< (P [x := x ’]) , (y [x := x ’] . (< f > x)) , S , Q > .

r l [a s s3] : < P , ((x . . f) := y) ; S , Q > =>
< (P [f := ((x ; (f ’)) + ((− x) ; f))]) , (x . (− n i l) & (< f > y)) , S , Q > .

r l [obj−c r ea t e] : < P , (x := new [F | V]) ; S , Q > =>
< (P [x := x ’]) , (x . f i e l d s −n i l (F)) , unreachable (x , V , F) , S , Q > .

r l [cond−done] : < C , M , { empty } , VC > =>
< C , M , VC > .

c r l [t e rminat ion] : < empty , M , none > => su c c e s s i f done (M) .

endm

dl.maude

∗∗∗ This module conta in s the s yn t a c t i c d e f i n i t i o n dynamic l o g i c
∗∗∗ with f i e l d s as ba s i c programs , toge the r with some reduct ion axioms .

mod DL i s

s o r t s F i e ld Nominal L i t e r a l Prog Form VarForms .

subsor t Nominal < L i t e r a l .

subsor t F i e ld < Prog .

subsor t L i t e r a l < Prog .

subsor t L i t e r a l < Form .

op true : −> L i t e r a l .

op f a l s e : −> L i t e r a l .

op n i l : −> Nominal .

op empty : −> VarForms .

op . : Nominal Form −> VarForms .
op , : VarForms VarForms −> VarForms [as soc id : empty] .

∗∗∗ Syntax
op − : L i t e r a l −> L i t e r a l .

op − : Form −> Form .

op − : VarForms −> VarForms .

op + : Prog Prog −> Prog .

op ; : Prog Prog −> Prog .

op ∗ : Prog −> Prog .

39

op : L i t e r a l −> Prog .

op & : Form Form −> Form [as soc comm id : t rue] .

op | : Form Form −> Form [as soc comm] .

op < > : Prog Form −> Form .

op [] : Prog Form −> Form .

op ’ : Nominal −> Nominal .

op ’ : F i e ld −> Fie ld .

vars p q r s : Form .

var l i t : L i t e r a l .

var x y : Nominal .

var f g : F i e ld .

var a b : Prog .

var P : VarForms .

eq (x . p) , (x . q) = x . (p & q) .

∗∗∗ Equations f o r reduct ion o f formulas
eq − (− p) = p .
eq p & (− p) = f a l s e .
eq p | (− p) = true .

∗∗∗ ceq f a l s e & p = f a l s e i f (p =/= true) .

eq (p & p) = p .

∗∗∗ t e s t :
eq < l i t > p = l i t & p .
eq [l i t] p = − l i t | p .

∗∗∗ negat ion :
eq − empty = empty .
eq − ((x . p) , P) = (x . (− p)) , (− P) .
eq − t rue = f a l s e .
eq − f a l s e = true .
ceq − (p & q) = (− p) | (− q) i f (p =/= true) and (q =/= true) .
eq − (p | q) = (− p) & (− q) .
eq − (< a > p) = [a] − p .
eq − ([a] p) = < a > − p .

∗∗∗ box and diamond
eq [a + b] p = ([a] p) & ([b] p) .
eq < a + b > p = (< a > p) | (< b > p) .
eq [a ; b] p = [a] [b] p .
eq < a ; b > p = < a > < b > p .

endm

functions.maude

mod FUNCTIONS i s

inc NAT .

inc DL .

s o r t s Nominals World Worlds Trans i t i on s
Next Model NewWorlds .

subsor t Nominal < Nominals .

40

subsor t World < Worlds .

op none : −> Next .

op empty : −> Nominals .

op empty : −> NewWorlds .

op empty : −> Worlds .

op empty : −> Trans i t i on s .

op . : Nat Form −> World .

op , : Worlds Worlds −> Worlds [a s soc comm id : empty] .

op : Nominals Nominals −> Nominals [idem assoc comm id : empty] .

op < , , > : F i e ld Nat Nat −> Trans i t i on s .

op < , > : Nat Nat −> Trans i t i on s .

op , : Trans i t i on s Trans i t i on s −> Trans i t i on s [a s soc idem comm id : empty] .

op (; ;) : Worlds Trans i t i on s Nat −> Model .

op (,) : F i e ld Form −> Next .

op , : Next Next −> Next [a s soc comm id : none] .

∗∗∗ New worlds : worlds which are being proces sed ; i f [n , f , p , q , N] i s a newworld then there a l ready
∗∗∗ i s a world with id n , from which there −wi l l− be an f−l i n k to t h i s new world , when i t s c reated . p
∗∗∗ i s the formula that s t i l l needs to be made true , and q i s a l ready ’ done ’ . N i s a s e t o f worlds
∗∗∗ which w i l l be newworlds as soon as t h i s world i s r e a l l y const ructed ; these are the outgoing f i e l d s
∗∗∗ o f the new world .
op [, , , ,] : Nat F i e ld Form Form Next −> NewWorlds .

op , : NewWorlds NewWorlds −> NewWorlds [a s soc id : empty] .

op new : Nat Next −> NewWorlds .

op add : F i e ld Form Next −> Next .

op in : Form Worlds −> Bool .

op vars : Form −> Nominals .

op vars : VarForms −> Nominals .

op subst : Nat Nat Nat −> Nat .

op subst : Trans i t i on s Nat Nat −> Trans i t i on s .

op subst−nw : NewWorlds Nat Nat −> NewWorlds .

op Sem : Prog Worlds Trans i t i on s −> Trans i t i on s .

op ; : Trans i t i on s Trans i t i on s −> Trans i t i on s .

op x : Nat Prog −> Prog .

op Reach : Prog Worlds Trans i t i on s Nat Form −> Bool .

op Reach : Trans i t i on s Nat Worlds Form −> Bool .

op f i nd : Worlds Form −> Worlds .

op s t ab l e : Worlds −> Bool .

op s t ab l e : Trans i t i on s −> Bool .

vars p q r s : Form .

var l i t : L i t e r a l .

41

var f g : F i e ld .

vars k l m n : Nat .

var N : Next .

var R : NewWorlds .

var M : Model .

var U T : Trans i t i on s .

var W : Worlds .

var x y z : Nominal .

vars a b c : Prog .

var P : VarForms .

∗∗∗ De f i n i t i o n o f vars

eq vars ((empty) . VarForms) = empty .
eq vars ((x . p) , P) = x vars (p) vars (P) .

eq vars (x) = x .
eq vars (p | q) = vars (p) vars (q) .
ceq vars (p & q) = (vars (p) vars (q)) i f (p =/= true) and (q =/= true) .
eq vars (− p) = vars (p) .
eq vars (< a ∗ > p) = vars (< a > p) .
eq vars ([a ∗] p) = vars ([a] p) .
eq vars (< f > p) = vars (p) .
eq vars ([f] p) = vars (p) .
eq vars (t rue) = empty .
eq vars (f a l s e) = empty .
eq x x = x . ∗∗∗ somehow the idem keyword i s not enough

∗∗∗ Helper f unc t i on s

eq < k , l > , < k , l > , T = < k , l > , T .

eq Sem(f , W , < f , n , k >, T) = < n , k > , Sem(f , W , T) .

eq Sem(f , W , T) = empty [owise] .

eq Sem(l i t , (n . l i t & p) , W , T) = < n , n > , Sem(l i t , W , T) .

eq Sem(l i t , W , T) = empty [owise] .

eq Sem(a + b , W , T) = Sem(a , W , T) , Sem(b , W , T) .

eq Sem(a ; b , W , T) = Sem(a , W , T) ; Sem(b , W , T) .

eq (empty ; U) = empty .

ceq (< k , l > , T) ; U = (< k , l > ; U) , (T ; U) i f T =/= empty .

eq < k , l > ; (< l , m > , U) = < k , m > , (< k , l > ; U) .

eq < k , l > ; U = empty [owise] .

eq Sem(0 x a , W , T) = Sem(a , W , T) .

ceq Sem(k x a , W , T) =
Sem(sd (k , 1) x a , W , T) , (Sem(a , W , T) ; Sem(sd (k , 1) x a , W , T)) i f k > 0 .

eq Reach (a , W , T , n , p) = Reach (Sem(a , W , T) , n , W , p) .

eq Reach (T , n , (n . p & q) , W , p) = true .
eq Reach((< n , m > , T) , n , (m . p & q) , W , p) = true .

eq Reach((< n , m > , T) , n , W , p) = f a l s e [owise] .

eq new(n , none) = empty .

eq new(n , (f , p) , N) = [n , f , p , t rue , none] , new(n , N) .

42

eq add (f , p , (f , q) , N) = (f , p & q) , N .

eq add (f , p , N) = (f , p) , N [owise] .

eq in (p , empty) = f a l s e .

eq in (p , (n . p) , W) = true .

ceq in (p , (n . q) , W) = in (p , W) i f p =/= q .

ceq subst (k , l , m) = m i f k = l .

ceq subst (k , l , m) = k i f k =/= l .

eq subst (empty , n , m) = empty .

eq subst (< f , k , l > , T , n , m) =
< f , subst (k , n , m) , subst (l , n , m) > , subst (T , n , m) .

eq subst−nw(empty , n , m) = empty .

eq subst−nw([n , f , p , q , N] , R , k , l) =
[subst (n , k , l) , f , p , q , N] , subst−nw(R , k , l) .

eq s t ab l e ((n . x & p) , (m . x & q) , W) = f a l s e .

eq s t ab l e (W) = true [owise] .

ceq s t ab l e (< f , n , m > , < f , n , l > , T) = f a l s e i f m =/= l .

eq s t ab l e (T) = true [owise] .

endm

subst.maude

∗∗∗ This module s upp l i e s a s ub s t i t u t i o n o f nominals f o r nominals ,
∗∗∗ and sub s t i t u t i o n o f f i e l d s f o r gene ra l nav igat ion exp r e s s i on s .
mod SUBST i s

i n c lud ing DL .

s o r t s Lhs Rhs .

subsor t Nominal < Lhs .
subsor t F i e ld < Lhs .

subsor t Nominal < Rhs .
subsor t Prog < Rhs .

vars p q : Form .

vars x y z s e l f : Nominal .

var l : Lhs .

var r : Rhs .

var f g : F i e ld .

vars a b : Prog .

var P : VarForms .

∗∗∗ the s ub s t i t u t i o n ope ra to r s
op [:=] : Form Nominal Nominal −> Form .
op [:=] : Prog F ie ld Prog −> Prog .

op [:=] : VarForms Lhs Rhs −> VarForms .

eq empty [l := r] = empty .
eq ((x . p) , P) [l := r] = ((x [l := r] . (p [l := r])) , (P [l := r])) .

∗∗∗ the prime operator needs support , too (i s in DL)

43

∗∗∗ op ’ : Nominal −> Nominal .
∗∗∗ op ’ : F i e ld −> Fie ld .

∗∗∗ s ub s t i t u t i o n o f nominals − base ca s e s
eq x [x := y] = y .
eq z [x := y] = z [owise] .
eq f [x := y] = f .

∗∗∗ s ub s t i t u t i o n o f f i e l d s − base ca s e s
eq x [f := a] = x .
eq f [f := a] = a .
eq g [f := a] = g [owise] .

∗∗∗ i nduc t i v e d e f i n i t i o n o f the other cases , which are the same f o r both
∗∗∗ s ub s t i t u t i o n o f nominals and o f f i e l d s
eq true [l := r] = true .

eq f a l s e [l := r] = f a l s e .

eq (z ’) [l := r] = (z [l := r]) ’ .

eq (− p) [l := r] = − (p [l := r]) .

ceq (p & q) [l := r] = (p [l := r]) & (q [l := r])
i f (p =/= true and q =/= true) .

eq (p | q) [l := r] = (p [l := r]) | (q [l := r]) .

eq (< a > p) [l := r] = < (a [l := r]) > (p [l := r]) .

eq ([a] p) [l := r] = [(a [l := r])] (p [l := r]) .

eq (a ; b) [l := r] = ((a [l := r]) ; (b [l := r])) .

eq (a ∗) [l := r] = ((a [l := r]) ∗) .

eq (a + b) [l := r] = ((a [l := r]) + (b [l := r])) .

endm

44

