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Abstract—This thesis investigates the panoramic image stitching problem in computer vision area. The panoramic image 

stitching algorithms are divided into image alignment and image stitching approaches. The former can find the correspondence 

relationships among images with certain degrees of overlap, while the latter takes the correspondence relationships estimated 

by the registration algorithm and uses blending method to blend images in a seamless manner. Furthermore, image stitching 

algorithm is able to solve blurring or ghosting effects resulted from scene movements and exposure differences. This paper 

adopts the feature-based alignment algorithms and blending algorithms to produce high-quality image mosaics. 

Index Terms—image mosaics, feature correspondence, registration, pixel labeling.  

——————————      —————————— 

1 INTRODUCTION

anoramic Image Stitching commonly refers to com-
bining a set of pictures with overlaps to a larger high-
resolution panoramic image. It has been well studied 

with extensive research literature in the field of computer 
vision. Currently both commercal and free softwares (eg. 
ptGUI, AutoStitch, Autopano) exist to servie this purpose 
with varying degrees of effectiveness and success. 

Image stitching can be applied in various areas, includ-
ing medical image analysis, video stabilization [2], video 
compression [3], panorama creation, etc. Among these 
applications, panorama creation is a facinating topic 
which attracts lots of attention. The panorama’s field-of-
view (FOV) is 360*180, while the FOV of a common com-
pact camera is only 50*35.  Therefore, we need connect a 
number of images that indicate different parts of a scene 
in the original spatial sequence in order to get a full view. 
There are many applications which provide people living 
convinience and brand new experiences. For instance, 
Google Street View, providing panoramic views of streets, 
gives the users the exprience of walking along the street 
while browsing the map indoor. Gigapixel image, sup-
ported by panoramic image stitching algorithms, is one-
billion-pixels digital image created by making mosaics of 
a huge number of high-resolution digital images. Gi-
gapixel image is quite high-resolution panoramic, allow-
ing us to zoom in/out in very large extent and capture 
the very details of images.  

Generally, panoramic image stitching problem can be 
divided into two main research areas - image alignment 
and image stitching problems, depending on the algo-
rithems used. The former is able to discover the geometric 
relationships among images with certain amount of over-
lap. The latter concatenate all the aligned images and em-
ploy blending algorithms to generate the final result,  and 
in the meantime deal with mutiple problems, such as 
blurring or ghosting caused by scene and parallax move-

ment, different image exposures as well as distortions 
caused by camara lens so that seamless high-quality pan-
oramas can be achieved[4].  

Image alignment (Image registration) algorithms can 
be classified into two types: pixel-based (direct) [5], [6], 
[7], [10] and feature based [1], [8]. Pixel-based methods 
use estimated transforms to map the images relative to 
each other and compare the intensity distance in the over-
lap part by minimizing suitable error metric. Since the 
contribution of every pixel in the images is measured 
when employing an appropriate metric and image feature, 
it is possible to obtain very accurate alignment results. 
However, the computational load becomes heavier if the 
size of the overlap part increases. Feature-based methods, 
on the other hand, match the feature points extracted 
from each image to find point correspondences of a pair 
of images, and then use these point correspondences to 
estimate the geometric transformation between the two 
images. Nowadays, since the features tend to carry the 
properties of scale-invaiant, orientation-invairant, besides, 
the feature detection, extraction and matching schemes 
are more robust, the feature-based approaches have been 
widly investigated and used in the panoramic image 
stitching area. The most important advantage of feature-
based methods lies in its capability of ―recognising pano-
rama‖ [1][8], the process of generating the final panorama 
from an unordered set of images, even with the presence 
of noise images that do not belong to the final panorama. 
Image stitching algorithm involves employing blending 
algorithm to blend the final panorama onto some chosen 
surface (planar, cylindrical, spherical, etc.). Meanwhile, it 
bears the power to eliminate blurring or ghosting effect, 
balance exposure difference, and hide the seam between 
the stitched images. The purpose of a stitching algorithm 
is to produce high-quality mosaic with two properties: 
the final mosaic should be seamless [9], and should pre-
serve as many original details as possible of the input 
images. 

In this paper feature-based alignment approach is used 
to register the images. Scale Invariant Feature Transform 
(SIFT) [11] is adopeted as the descriptor. After computing 
the SIFT features, we are able to establish the point corre-
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spondeces between every two images,correspondences 
making the estimation of the motions (transformations) 
possible. However, since mismatches are inavoidable and 
will certainly result in incorrect or imprecise motion as-
sessemtn, we use RANdom SAmple Consensus (RAN-
SAC) [12] algorithm to filter out ―outliers‖ and calculate 
the transformation or homography between images. In 
the image stitching section, we choose to project panora-
ma on cylindrical and planar coordinate. Radial distor-
tions are corrected to preserve the straight lines. Moreo-
ver, we exploit two methods to adjust the exposure dif-
ference – gain compensation and linear color correction. 
Sometimes, due to the scene or parallax movement, the 
images in the overlap part are likely to have ghost effects. 
In this case, graph cut optimization [13] is used to deter-
mine the seam between the pair images. Finally, feather-
ing and multiresolution blending methods are imple-
mented in order to generate the high-quality, seamless 
panoramic image. 

The rest of the paper is organized as follows: Section 2 
describes feature-based image algnment approaches. Im-
age calibration including radial distortion correction and 
exposure differences correction is introduced in Section 3. 
In Section 4, the author presents algorithms to choose the 
projection surface, identify seams between each pair im-
ages, and blend the final image. Section 5 builds a frame-
work of applying image stitching algorithm to achieve 
image browsing when zooming in and out of the image to 
a very large extent. The final section concludes this paper 
and briefly talks about the prospect of future research. 

2 IMAGE ALIGNMENT 

Feature-based image alignment approach proceeds as 
follows. First, local features are extracted from each pair 
of images and the globle correspondences are established 
by matching their local image descriptors. Then, since 
there must exist mismatches after preliminary matching, 
these outliers should be weeded out and use the set of 
inliers to estimate a geometric transformation between 
images. 

2.1 Local Feature 

For image feature extraction, we use Lowe’s Difference-
of-Gaussian (DoF) [11] to detect the key points in scale-
space. The image is resized to half size to generate the 
octives. For each octave, the initial image is processively 
convolved with Gaussian operator. By doing this, a set of 
scale space images is created. Then, calculate the differ-
ence between 2 consecutive blurred levels in one octave. 
Applying this operation for all the octaves generates DoG 
images of multiple sizes, after which the keypoints are 
detected by finding local extremas in DoG images. Low 
contrast keypoints and edges should be removed for sta-
bility. By assigning a dominant orientation to each key-
point so to achieve rotation-invariance. 

The SIFT descriptor is created over 16*16 windows 
around the keypoint then broken into 16 4*4 windows. 
Within each 4*4 unit, the gradient magnitudes and orien-
tations are calculated, and the orientations are put into 8 
bins. Therefore, the result SIFT descriptor is of 128 dimen-
sions.  

2.2 Keypoint Matching 

After the features are extracted from images, they must be 
matched to build point correspondences. The geometric 
transformations can be estimated once the point corre-
spondecs are established. The best candidate match for 
each keypoint in one image is found by identifying the 
keypoint, which is with minimal Euclidean distance for 
the invariant descriptor vector, in another image. Howev-
er, some keypoints do not have any correct match in other 
image, in order to discard these features; Lowe’s ratio of 
distances [11] is introduced. A match is accepted when 
the ratio of distance from the closest neighbor to the dis-
tance of the second closest neighbor below a certain velue, 
while in Lowe’s paper [11] this vlue is set to be 0.8. In our 
implementation, Best-Bin-First (BBF) [14] search algo-
rithm is used to identify the approximate nearest neigh-
bor of each keypoint. 

2.2.1 Best-Bin-First 

BBF is a new form of k-d tree [15] search algorithm, while 
still makes use of the standard k-d tree structure, which is 
built as follows. With a set of N keypoints, choose a di-
mension i in which the data is of greatest variance, then 
split the rest of the points into two parts according to the 
median value m of the chosed dimension so that each side 
has the equal number of points. The value of i and m are 
stored. This operation iterates on both side of the points 
to create a binary tree. 

Each leaf of a k-d tree is a keypoint in the dataspace. 
The standard k-d tree uses backtracking, branch-and-
bound scheme to search the NN of a query point p. It 
works as follows. Starting with the root node and moving 
down the tree recursively until it reaches a leaf note. It 
goes either part of the tree depending on wether the value 
of p in the split dimension is greater than or less than the 
value of current note. The leaf note that the algorithm 
reaches is marked as the candidate. Then the algorithm 
backtracks to check for the note that has smaller distance 
from the p than the candidate. The searching process ter-
minates when the whole tree structure is traversed. 

The BBF algorithm uses priority search [14] for the k-d 
tree algorithm. This allows searching the bins in feature 
space in the order of their closest distance from the query 
location. This search order is achieved by using a heap-
based priority queue to store the distance information at 
the node not taken. Besides, BBF algorithm searches a fix 
number of nearest neighbor then stops, so to provide an 
approximate NN with low costs. 
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2.3 Geometric Transformation Estimation 

Geometric transformations between every pair of 

overlapping images need to be calculated to align 

images. We need to find a set of feature correspond-

ences that will result in a high-accuracy alignment 

and to use these correspondeces to estimate the mo-

tions between each input image and the final result 

image. To serve this purpose, RANSAC is employed 

to select a set of inliers that are consistent with some 

particular transformations. In this thesis, final image 

is going to be represented both on cylindrical and 

planar surface. With regard to the planar compositing 

surface, the transformation is homography, while the 

transformation of cylindrical surface is only transla-

tion. The details of projecting images onto cylindrical 

and planar compositing surfaces are described in sec-

tion 4. 

2.3.1 Homography 

Considering two images taken from the same optical cen-
ter, the relation between two overlapping images can be 
described by a planar perspective transformation, which 
can also be called homography [10]. Besides, if taking two 
images of one same planar surface in 3D world, these two 
images can also be related by a homography. For homo-
geneous coordinates x  and x ,  

 x Hx ,  (1) 

where ~ denotes up to scale, and homography H is an 
arbitrary 3*3 invertible matrix. At least 4 feature corre-
spondences are needed to compute the homography. In 
the case of our implementation, homography is sufficient 
to describe the relationship between the images taken 
rotating about the same optical center.  

2.3.2 RANSAC Algorithm 

RANSAC (RANdom SAmple Consensus) first published 
by Fischler and Bolles [12] in 1981 is a robust estimation 
approach to estimate the parameters of a certain model 
using data with a large proportion of outliers. Inliers are 
the data consistent with the estimated model while outli-
ers are not. RANSAC algorithm is applied under the two 
steps hypothesize-and-test framework [16]. In the hy-
pothesize step, minimal samples sets (MSSs) are randow-
ly picked from the dataset, and the parameters of a model 
is calculated only from this minimal sample set. Then it 
comes to the test step. In the test step, RANSAC checks 
which point is consistent with the model instantiated with 
the parameters calculated in the first step. This set of 
points is inliers with this model, and it is called consensus 
set (CS). RANSAC algorithm should iterate these two 
steps k  times to ensure a good chance of finding a true 
set of inliers. Let p  be the probability that any given cor-
respondence is from the CS. Besides, the size of MSS is m , 
therefore the probability that all these m  samples come 
from CS is mp .  Let P  be the probability that in k -time 
iterations all the sets of the random samples contain at 

least one outlier.  

  1
k

mP p  . (2) 

The iteration is terminated when P  falls under a certain 
threshold   (usually set to be 0.01). 

  1
k

mP p    . (3) 

Since p  is unknown beforehand, it can start with a cer-
tain value then get updated with the new maximum frac-
tion of the inliers generated in the test step after each iter-
ation. Fig. 1 shows the inliers correspondences after 
RANSAC operation. 

In this paper, RANSAC is used to estimate parameters 
for homography and translation model, while homogra-
phy is used to describe the relationships between over-
lapping images in planar coordinates and translation for 
cylidrical coordinates. We use four feature correspond-
ences as MSS to calculate parameters for homography 
and one feature correspondence for translation relation-
ship. 

3 IMAGE CALIBRATION 

Image calibration aims to minimize the differences of the 
input images caused by thick camera lens, large exposure 
differences, etc. In our implementation, we calibrate radi-
al distortion and exposure difference. 

3.1 Radial Distortion Correction 

Due to the simplified lens construction and lens imperfec-
tion, many wide-angle lenses have noticeable radial dis-
tortion [18]. As a result of radial distortion, staight line in 
the real world is not straight in the image; instead, it ap-
pears to be curved. A highly accurate panorama would be 
created only if the radial distortion is removed [17]. For 
instance, radial distortion could cause feature mis-

 

Fig. 1 (a) shows the preliminary keypoint matches, and (b) shows 
the inliers after applying RANSAC, where the mis-matches are 
pruned out. 
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registration, which would lead to the blurring effect. 
 The radial distortion can usually be classified into two 

types: barrel distortion and pincushion distortion (Fig. 2 
shows the example of these two types of radial distortion). 
In our implementation, the simplest radial distortion 
model is used. 

 

 

 

2 4

1 2

2 4

1 2

2 2 2

1 ,

1 ,

,

x x k r k r

y y k r k r

r x y

   

   

 

 (4) 

where  ,x y  is the pixel in distorted image while  ,x y   
is in distortion corrected image, and 

1k and 
2k  are called 

radial distortion parameters [19]. 
Ratial distortion parameters can be estimated as the re-

sult of the extern camera calibration operation. However, 
Plumb line method [19] is a simplest way to do the work 
in practice. Using the camera take an image of a scene 
with a lot of straight lines, then the radial distortion pa-
rameter can be adjusted until all the lines appear straight. 
In our case, because there are two distortion coeffience, 
for a very simple solution, we can set 

2k to zero, and then 
slightly adjust 1k until the lines in the images are straight. 

3.2 Color Correction 

Panoramic images are usally constructed from a sequence 
of images taken by rotating around the same optical cen-
ter. When capturing these images, the automatic gain con-
trol in cameras often lead to different exposure levels [20], 
which makes it possible to have one image in dark and 
the next one being exposed bright. Images taken from 
different cameras could also have this problem. Fig. 3 
shows an example, where the source images have large 
color and luminance difference. In the panorama con-
struction process, color, as a very important factor to hu-
man perception, should be adjusted consistent to create a 
better result. In this situation, color correction should be 
taken to eliminate the visible contrast or color discontinu-
ities. The essence of all the color correction algorithms is 

transferring color or luminance information from a source 

image to a target image [21]. In this paper, two approaches 
aims to correct color are implemented. 

3.2.1 Diagonal Model 

The color transformation between two overlapping imag-

es can be modeled by a linear mapping [22], 

      , , , ,c k c jC p C p c R G B  , (5) 

where  ,c kC p  and  ,c jC p denote the color value at pixel 
p  in overlapped image j  and k .   is the mapping coef-

ficient. 
     Finlayson et al [23] suggested that a diagonal model 
can be employed to model a color transformation if a 
transformation is linear. With the diagonal model, we can 
represent the linear correction for color as 

 k jS S M  , (6) 

where 
kS  and jS are the overlapped area of image j  and 

k , and M is a transform matrix crossing these two imag-
es’ overlapping parts. 

 
R

G

B

M







 
 


 
  

 (7) 

 
 
 

,

,

c k

c

c j

mean C

mean C
   (8) 

where R , G  and B are the coefficients of the channel 
R, G, B respectively, and can be calculated by the mean 
value of each channel in the overlapped parts of image j  
and k . 
Then the color correction for the overlapped image can be 
completed for R, G and B channels respectively by 

      , , , ,c k c c jC p C p c R G B   (9) 

     The diagonal model is a simple and fast color correc-
tion approach. Accurate image registration is not needed 
in this case. Fig. 4b shows the result of applying diagonal 
model color correction to two overlapped images that of 
color difference. 

 

Fig. 2 Examples of radial distiortion: (a) barrel and (b) pincushion. 

 

Fig. 3 Two panorama source images with exposure difference by 
the same camera 
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3.2.2 Gain Compensation 

Gain compensation is initially used to solve the color bal-
ancing problem in panorama stitching using sequences of 
partial images [21]. The intensity gain level of input im-
ages is adjusted to balance the color difference. In our 
implement, we adopted Brown and Lowe’s solution [1]. 

In their solution, instead of seperately calculating the 
pairwise color correlation coeffience, they calculate the 
overall gain parameters for all the images by minimizing 
a globle error function. The error function calculates the 
sum of intensity differences of the all overlapping pixels 

     
,

2

1 1

1

2
j k

n n

LS j j k k

j k p S

E I p I p 
  

      (10) 

where j , 
k are the correction coefficients, and ,j kS is 

the overlap region between image j  and k . The pixel jp  
and 

kp  are correspondent points transformed by the es-
timated homography 

 j jk kp H p . (11) 

In practice, the intensity used is the mean value of the 
the intensities of all the pixels in the overlap region ,j kI . 
By doing this, the computation would be simplified and 
the small misregistrations are tolerable. As we can see, in 
equation (10), if the   is set to 0, the error equals zero, 
which is definitely an optimal solution. Therefore, the 
error function is modified as 

     2 2
2 2

,

1 1

1
/ 1 /

2

n n

j k j j k k I j

j k

E n I I     
 

     (12) 

where ,j kn  is the number of pixels in the image j  over-
lapping with image k , I  is the standard deviation of 
the intensity while   is that of color coefficient. In 
Brown and Lowe’s paper, they set I  to 10.0, while   to 
0.1. They choose these values to balance the two parts in 
equation (12), since  0..255I  and the values of   are 
around 1. Fig. 4c shows the performance of gain compen-
sation method. 

4 IMAGE STITCHING 

After registering the input images, we can get the geo-
metric transforms between each pair of overlapped imag-
es; therefore, the images can be warpped with respect to 
transformations. Besids, the color differences between 
each pair of overlapped images are balanced due to the 
color correction operation. In the image stitching stage, 
the final image should be projected onto a certain surface 
after it is stitched. In addition, to achieve a satisfying re-
sult without blurring, visible seams and ghosting, several 
techniques should be taken, for example, a suitable com-
positing surface to represent final image without dis-
torting severely, better blending method to cover the dif-
ferences between images and pixel labeling method to 
hide the seams. In this section, these techniques will be 
introduced respectively. 

4.1 Image Warping 

In our implementation, we choose to project final result to 
planar and cylindrical coordinates. In planar coordinate, 
one image is set as the reference and to warp all the other 
images into the reference coordinate using homographies, 
while in cylindrical coordinate, each image should be 
warpped first into cylindrical coordinate, then stitched 
together by some geometric model. In this situation, im-
age warping is used to do this job. 

Image warping is defined as a operation that maps a 
source image to a destination image according to a trans-
formation between the source image space  ,u v  and des-
tination image space  ,x y . Image warping operation 
consists of image mapping and resampling method. 

There are two ways to map one image to another, 
namely forward mapping and inverse mapping. Forward 
mapping is mapping each pixel in the source image  ,u v  
to the target image  ,x y  according to some relationship 

xf  and yf . 

 

 

 

   

, ,

, ,

, ,

x

y

x f u v

y f u v

dest x y src u v







, (13) 

 Since, in forward mapping, many source pixels may 
map to same destination pixel and hence some destina-
tion pixels might not be coverd, some ―holes‖ may appear 
in the result image. In this case, inverse mapping could be 
used to solve this problem, as inverse mapping maps the 
pixels in the destination image back to source image to 
make sure every pixel in destination image is coverd. 

 

 

 

   

1

1

, ,

, ,

, ,

x

y

u f x y

v f x y

dest x y src u v











 (14) 

The pixel coordinates calculated from the mapping op-
eration may not always be integers, which means it might 
fall between the pixels. As a result, resampling method 
should be employed to interpolate the pixel value. In our 
implementation, we use nearest neighbor and bilinear 

 

            (a)                              (b)                               (c) 

 
Fig. 4 The results of applying color correction: (a) is the original 
image, (b) shows the result of diagonal model, and (c) is gain 
compensation. Both (b) and (c) show the results of adjusting 
color of the right image according to the left image in Fig. 3. 
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interpolation method to do the pixel interpolation. 
Nearest neighbor sets the intensity at position  ,x y  to 

the intensity at     ,round x round y . This method is very 
fast, however, it will provide aliasing effects along edges. 
     Bilinear interpolation method calculates the intensity 
at position  ,x y  using four pixels intensity values 
around the position  ,x y . It defines as (Fig. 5) 

 
     

   
1 1 2 1

1 2 2 2

, 1 1 , 2 1

, 1 2 , 2 2

, , ,

, , ,

x y x y

x y x y

I x y w I x y w I x y

w I x y w I x y

 

 
, (15) 

where  

 

  

  

  

  

1 1

2 1

1 2

2 2

, 2 2

, 1 2

, 2 1

, 1 1

,

,

,

x y

x y

x y

x y

w x x y y

w x x y y

w x x y y

w x x y y

  

  

  

  

. (16) 

We can resample images using bilinear interpolation 
without obvious aliasing; besides, the processing time is 
relatively slow comparing to other more complicated in-
terpolations. 

4.2 Compositing Coordinate 

In our implementation, we choose planar and cylindrical 
coordinates as the compositing surface to represent the 
final images. For larger field of views, cylindrical repre-
sentation is a better choice since the final image will get 
distorted severely when projected as a flat panorama. 

4.2.1 Planar Image Mosaics 

The very common set of images to stitch is the view of 
planar scene, for instance, a sequence of images of a 
whiteboard to mosaic into a larger field of view [25], or 
one larger-scene image as background image on which 
several detailed images are stitched to make these parts 
clearer while the rest parts of the background image get 
blurred, which as a framework proposed in our imple-
mentation, will be descrined in section 5. In the case of 
planar image mosaics, any two overlapped images are 
related to each other by a homography. Fig. 6 is a result of 

warping image using the homography related with its 
overlapping image. 

4.2.2 Cylindrical Image Mosaics 

Cylindrical panoramas are usually used due to their ease 
of construction. Cylindrical image stitching algorithms 
can only work under the condition of taking all the imag-
es by a camera mounted to a tripod to make sure that the 
camera is level and only rotating around its vertical axis 
[24]. Under these conditions, the relations between each 
pair of overlapped images are purely translations [5]. In 
addition, focal length should be known beforehand, and 
hence the approach of estimating focal length will be de-
scribed later in this section. 

As using cylindrical image mosiacing algorithms, each 
image should be projected into cylindrical coordinate first. 
The points on the cylindrical surface are parameterized 
by an angle   and a height h , and the points in the 3D 
world can be represented by  , ,x y f , where f is focal 
length. We now have the relations between a point in 3D 
world and it in cylindrical coordinates, 

    sin , ,cos , ,h x y f    (17) 

as shown in figure 3. With this relation, we can map 
world coordinates into 2D cylindrical coordinates  ,h  
using 

 

1

2 2
tan , ,

, ,c c

x y
h

f x y

x s x y sh y





 


    

 (18) 

where s  is an scaling factor that can be set to f so to 
minimize the distortion near the center of the image[4], 

 ,c cx y is image center and  ,x y   is the result pixel in the 
cylindrical coordinate. Because we need to use inverse 
mapping as we discussed above, the formulas are, 

 

   
, ,

ˆ ˆ ˆsin , , cos ,

ˆ ˆ
,

ˆ ˆ

c c

c c

x x y y
h

f f

x y h z

x y
x f x y f y

z z



 

  
 

  

   

. (19) 

After we get these mapping formula, we can warp 
each input image to cylindrical coordinate. Fig. 7 shows 
the original image and the warped image (radial distor-
tion corrected). Both image warping and radial distortion 
need to use interpolation to calculate color value at each 
pixel, however, interpolation is not only computational 
expensive, it also smoothes the features making images 
aliasing or blurring. Therefore, in our implementation, we 
only interpolate the image once after both of these two 
operations done. 

4.2.3 Estimating the Focal Length 

In order to build cylindrical image mosaics, we need to 
know the focal length. We can get focal length from prior 

 

Fig. 5 Illustration of Bilinear Interpolation 



 7 

 

camera calibration, but the extern camera calibration will 
be needed. The simplest way is estimating focal length 
information from EXIF tags. However, CCD width is still 
needed because it differs from camera to camera. There is 
a convient way to obtain the estimation from the homog-
raphy [10]. 

The relationship between a 3D point  , ,w X Y Z and 
its image coordinate  , ,1i x y can be stated as, 

 i TKRw  (20) 

where T  is the translation of image plane matrix, K  is 
the simplified form of camera calibration matrix and R  is 
the rotation matrix. They are in the form of 

 
0 1 2

3 4 5

6 7 8

1 0 0 0

0 1 , 0 0 ,

0 0 1 0 0 1

x

y

c f r r r

T c K f R r r r

r r r

     
     

  
     
          

. (21) 

We set the xc  and yc  to zero by assuming that the origin 
is at the image center. 

If a camera rotates around its projection center, the 
homography H  between two images j  and k  is given 
by, 

 1 1 1

j j k k j jk kH K R R K K R K    (22) 

where each image is represented by its focal length and 
rotation, i.e., 

j jK R . Now, we can re-write this formula as 

 1

ij j kR K HK . (23) 

Because we use RANSAC to estimate the homographies 
between each pair of overlapped images, homographies 
are known by now. Hereby, we have 

 
0 1 2 0 1 2

3 4 5 3 4 5

6 7 8 6 7 8

j

j

k k j k

m m m r r r f

H m m m r r r f

m m m r f r f r f f

  
  

   
     

. (24) 

According to equation (23), equation (24) can be re-writed 
as, 

 
0 1 2

3 4 5

6 7 8

k

jk k

j j j k

m m m f

R m m m f

f m f m f m f

 
 
 
 
 

. (25) 

Since R  has property of being orthogonal and the first 
two rows and columns of the same norm, the focal length 

jf  and kf  can be calculated as, 

 
2 2 2 2 2 2 2 2

0 1 2 3 4 5

2

0 3 1 4 2 5

,

0,

k k

k

m m m f m m m f

m m m m m m f

    

  
, (26) 

and  

 

2 2 2 2 2 2 2 2

0 3 6 1 4 7

2 2 2

0 1 3 4 6 7

,

0

j j

j

m m m f m m m f

m m m m m m f

    

  
. (27) 

From the formulas above, we can get the focal lengths jf  
and kf , and we let the estimated focal length k jf f f  - 
the geometric mean of jf  and kf . If there are multiple 
input images, we can have the estimate of the median 
value of the focal lengthes. 

(a)

(b)  

Fig. 6 (a) are the warped version of the two images, the image on 
the left is warped using geometric transformation according to the 
right image. (b) shows the two warped images stitched together. 

 

Fig. 7 Warp image (a) into cylindrical coordinate, and (b) shows the 
warped image. 
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4.3 Feathering 

In this paper, we implemented a feathering blending 
method to blend images. The pixel values in the overlap-
ping region between two images are weighted average 
from each image. Considering the fact that images are less 
likely to be distorted near the center [26], every pixel in 
each image contributes differently to the blending region 
according to the distance from center to edge. The pixels 
near the center of image weight higher than that near the 
edge. The value of the result pixel  ,rC x y  in the over-
lapping part is the weighted sum of pixel values of image 
i  (on the left) and j  (on the right) at correspondent posi-
tion related by the transformation. 

        ˆ ˆ, 1 , ,r i jC x y w C x y wC x y   , (28) 

where  

    start end startw x x x x   . (29) 

In the above equation, x  denotes the column in the over-
lapping region, and startx  denotes the column where the 
image on the right begins while endx  as the column where 
the image on the left ends. 

Feathering processes very fast and is capable of hid-
ing the seams and blending over exposure differences to 
certain extend. However, when the exposure differences 
are too large, color correction need to be applied via using 
the operation that we dicussed in the previous section. In 
addition, ghost and blurring effects can still be problemat-
ic, when there are moving objects in the image, especially 
in the overlapping part with another image. In Fig. 8 the 
blurring and ghost effect can be noticed in the result 
blended by feathering method, because that people in the 
input images is moving and the trees moves as well. 

4.4 Graph Cut Finding Seams 

The option to solve the aforementioned problem is to lo-

cate a seam in the overlapping region, which can be stat-
ed as the problem of pixel labeling. It is the process of 
selecting the image to be used at each pixel. As a result, 
we can get a series of masks of the input images, and then 
use these masks for Laplacian pyramid blending, which 
will be discussed later in this section. 

This pixel labeling problems can be formulated in 
terms of energy minimization problems. First, we create a 
cost function, and then we use max-flow/min-cut to min-
imize this cost function to determine the seams. The out-
put of this process will tell us, at every pixel in the com-
positing image, from which image the pixel should be 
selected. In our implementation, we use Boykov and 
kolmogorov’s approach and implementation of max-
flow/min-cut algorithm [30]. 

Represent the overlapping part of each pair of images 
by graph, which could be done by constructing a planar 
graph, with a node corresponding to each pixel and 
weighted edge connecting a pair of pixels. The edge 
weights shows how important to assign two neighboring 
pixels the same label, which means they will appear on 
the same side of the seam. For example, if the edge 
weight between two neighboring pixel is small, we can 
say the min-cut can break this edge and pay little penalty. 
If the weight is large, the min-cut is more likely to choose 
other path to cut.  

In out implementation, we define the cost function ac-
cording to the color difference between the pairs of pixels 
[27], [28], [29]. Let s  and t  be two neighboring pixels in 
the overlap region, and I  and J  be the two images that 
overlapped. Therefore,  I s  and  J s  are the colors of 
pixel s in image I  and J  respectively. This color-based 
cost function E can be defined as, 

  
4

,

,

,I J

s t N

E M s t


  , (30) 

            
2 2

, ,I JM s t I s J s I t J t     (31) 

where  , ,I JM s t  is the weight in terms of color differ-
entces between pairs of adjacent pixels, and 4N  denotes 
the set of 4 neighboring pixels. By minimizing this cost 
function using min-cut algorithm to find where to cut, we 
can get seams in the overlap region where the color dif-
ferecce between each pair of images are minimal, and a 
series of mask of each input image. The masks calculated 
using this graph cut algorithm are shown in Fig. 9. 

4.5 Laplacian Pyramid Blending 

Once we determine the seams, we still need to blend im-
ages together and compensating for color difference that 
has not been corrected completely in color correction 
phase, and other mis-alignments. The multiresolution 
blending algorithm introduced in [31] can be a good solu-
tion to the aforementioned problem.  

The multiresolution blending algorithm consists of 3 
steps: 

Step1. Build Laplacian pyramids for images A and B 
respectively, namely LA  and LB , and build 
Guassian pyramids for masks of image A and B, 

 

Fig. 8 This is a cylindrical image stitching combining 3 images with 
feathering blending method. The ghost or blurring in this image is 
caused by moving objects, as shown in the red rectangle the man, 
the trees as well as the bluring on grass. These effects exist in over-
lap region. 
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namely MA  and MB . 
Step2. Merge LA  and LB to create one pyramid LC , 

using the value of MA  and MB  as weights. 
That is, for each pyramid level l , pixel i : 

          l l l l lLC i MA i LA i MB i LB i   (32) 

Step3. The final image C  is constructed by expanding 
and summing all the pyramid levels of LC . 

The Laplacian pyramid in step 1 is builded as follows: 
First, construct a Gaussian pyramid of the original image 
by smoothing the image with a  1 1,4,6,4,1

16
binomial ker-

nel and then subsampling the smoothed image by reject-
ing even rows and columns. By now, the image is re-
duced to half size. Once the Gaussian has been built, sub-
stracting the image in one level from the image in the 
previous level, which can be formulated as 

 1l l lLC G G   , (33) 

where lG  represents the l  level of Gaussian pyramid. 
Given the fact that, the images of different Gaussian pyr-
amid are not of the same size, interpolation should be 
used to double the size of the image in 1l   level to make 
the substraction operation work. Also, in step 3, the final 
image is construced by summing all the levels of LC , 
which is the operation as 

 
0

N

l

l

C LC


 . (34) 

In this operation, interpolation is also employed to make 
the summing work. The result of applying muiltiresolu-

tion blending is shown in Fig. 10 where compares with 
simply compose images with their masks. Fig. 11 shows 
more panorama examples using Laplacian pyramid 
blending. 

5 DEEP ZOOM 

In this section, we apply the image stitching algorithm to 
an application, which enables zoom in or out of certain 
parts of image to a very large extend. This means, when 
zooming in the image, some parts get increasingly clear 
while the rest get blurrd. To realize this function, an im-
age pyramid is built to store the stitched images of differ-
ent sizes, which aims to provide the ability of smoothly 
zooming in and out.  

Due to the fact that the image just has a certain resolu-
tion, it will get blurred when we zooming in or out of the 
image. Assuming we have one background image and 
several images that present the detail of parts of the back-
ground image of a high resolution. Fig. 12 shows the 
work flow of our framework. It works as follows. We op-
erate on the original images first. In the phase of image 
alignment, we detect keypoints in all these images and 
match. Once we get the tentative matches, run RANSAC 
to filter the outliers and estimate a homograpies between 
each detail image and the background image. Since all the 
images are the scene of a plane surface, homograpy is 
proper to describe the relations, as what we discussed in 
section 2. Second, the colors of the detail images are 
slightly adjusted to minimize the differences with the 
background image. After doing this, all the detail images 
are stitched on the background image using the simple 
feathering blending, which can do very good job in this 
case. Save the stitched image into our image pyramid as 
the first layer. Then we resize the background image to 
larger size with certain stepwise factor (in our implemen-
tation, we choose 0.2, which means the size of the image 
is 1.2 times larger than the original image). In order to 
save time, we don’t have to do ketpoints detecting, 
matching and running RANSAC to estimate the homog-

 

Fig. 9 The 2 images in the upper row are the 2 cylindrical warped 
images and the other 2 images are the masks, in which white part 
denotes the valid pixels and invalid pixels in black part. 

 

Fig. 12 The overall structure of the framework 
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raphy. As there are homographies of each image with the 
original background image, we can get new homogra-
phies to the current background just by multiplying ma-
trixs. Stitch them together and then store the final image 
into the pyramid. In our implementation, the process is 
accelerated by just resizing the image of the highest level 
of pyramid. By doing this, the process of zooming in and 
out appears to be more smoothly. 

This framework provides a new experience browsing 
images. Figure 11 shows examples of the application of 
Laplacian pyramid blending. 

4 CONCLUSION 

The current project explores the algorithms of panoramic 

image stitching problem. This problem is categorized into 

three parts in this paper: image alignment, image calibra-

tion and image stitching. The image alignment section 

estimates the geometric transforms between pairs of im-

ages using feature-based method. The keypoints are 

matched employing BBF method with taking SIFT as the 

keypoint detector and descriptor. This process is followed 

by applying RANSAC to filter out the outliers and predict 

geometric transformations. Geometric transformations, in 

our case, are translations describing the relations in cylin-

drical panorama and homographies in planar panorama. 

In the image calibration phase, radial distortion and ex-

posure differences are corrected in order to provide pre-

cise registration and less color discontinuity in the final 

results. The final image is about to be produced once we 

have registerd all of the input image and when the differ-

ences between images are minimized with respect to each 

other. This paper creates planar and cylindrical panora-

mas. Since the planar panoramas start to distort severly 

when representing large fields of view, cylindrical com-

positing surface is more preferable in this case. Focal 

length as a prerequisite of the cylindrical panorama can 

be estimated from the transformations produced in the 

image alignment phase. From the experiments, this meth-

od performs well in giving precise estimations of focal 

length. When blending the final result, Laplacian pyramid 

blending is applied by using the masks produced by 

graph cut algorithm. Laplacian pyramid blending is 

found to be an attractive solution to remove the seams 

and balance the exposure differences. 

Future research should focus on improving the blend-

ing methods to generate high-quality panoramas, and 

applying image stitching method in the creation of 3D 

world. 
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Fig. 11 (a) and (b) are all composed by 20 images, while (c) is by 17 images. All of the images are blended using Laplacian pyramid blend-
ing using masks producing by graph cut algorithm, while using gain compensation to correct color differences. 
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