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Abstract. This study is focused on an evolutionary algorithm for automated de novo drug design.
It discusses how to improve the mutation operator of such an algorithm. By introducing a weighted
mutation scheme it tries to improve the performance of the algorithm as well as facilitating for the
use of self-adaptation. The two questions which this study tries to answer are: Does introduction of
di�erent weights for each type of mutation make a di�erence in the performance of the algorithm?
Can self-adaptation help choosing good parameters for the algorithm and maybe improve the
performance?

The proposed methodology is evaluated in a case-study on automated drug design where we
aim to �nd molecular structures that could serve as inhibitors of Lipoxygenase, which is involved
in the metabolism of fatty acids (and thus simply the fats we are eating).
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CHAPTER 1

Introduction

Automated de novo discovery of molecules that can serve as drug candidates is a challenging
�eld of science. Problems in molecular drug design are typically multi-objective (e.g. maximization
of e�ects and minimization of undesirable side e�ects). Also, they usually consist of many soft
and/or fuzzy constraints (predicting the feasibility and usability as drugs) which make it problem-
atic to de�ne a sharp boundary between feasible and infeasible solutions. Both interactive ([12])
and automated ([10], [11], [17], [21], [9]) approaches have been proposed.

A major bottleneck of automated molecular design is that it is di�cult for experts to provide
accurate objective- and constraint-functions which can be used for the automated search. On the
one hand it is very di�cult to determine the activity of candidate molecular structures on certain
targeted cells which leads to the use of inaccurate approximation models for activity prediction. On
the other hand, methods are missing to accurately determine the feasibility of candidate molecules
as drugs (e.g. solubility in water/ blood). For both, the 'chemists eye' and real-world experiments
are still necessary. Nonetheless it is important to keep improving the automated techniques in
their ability to �nd a good solution with the given objective- and constraint-functions.

In this study an evolutionary algorithm that automates the design of molecules, as proposed
by Kruisselbrink et al. ([10], [11]), will be considered. In particular, this study will focus on the
e�ects of the mutation operator.

The mutation operator is a tool to explore the search space in this algorithm. The mutation
operator does not make a di�erence between large and small mutations. A way to include this
di�erence between large and small mutations would be to introduce di�erent weights for each type
of mutation. An interesting question that this study tries to answer is if introducing these di�erent
weights for each type of mutation makes a di�erence in the performance of the algorithm.

When using heuristic search methods such as an evolutionary algorithm, a major problem is
to �nd good settings for the parameters of the algorithm. In particular, when the user is a non
expert in algorithm design. Self-adaptation provides a way to learn good parameter settings au-
tomatically during the algorithm run. Self-adaptation has been successfully applied in some cases
(e.g. [20]), but it is not clear beforehand that this will also have positive e�ects on an arbitrary
evolutionary algorithm in a non-standard search space such as chemical space. Implementation
of self-adaptation is relatively di�cult in our case, because the mutation operator is graph based
and there is no obvious notion of distance or neighbourhoods. In this study we will try to answer
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1. INTRODUCTION 6

the question if self-adaptation can help choosing good parameters for the algorithm and maybe
improve the performance.

This report is structured as follows: In Chapter 2 the general framework of evolutionary algo-
rithms and self-adaptation will be presented in a problem independent way. In Chapter 3 the
problem of molecular design will be discussed, such as representation, mutation and evaluation.
In Chapter 4 an approach will be proposed to incorporate self-adaptation in the scope of molecule
evolution. In Chapter 5 the approach will be validated by means of an experimental study on
a test-case in molecular design. Chapter 6 �nalizes this report by summarizing the results and
suggesting future work.



CHAPTER 2

Evolutionary Algorithms

Evolutionary algorithms are algorithms in the �eld of arti�cial intelligence, that have been used
in the past to tackle a variety of optimization problems. They use an iterative process, learned from
evolution in nature, in their search to keep optimizing an existing population. This population
is being changed and improved until certain requirements, such as constraints or maximum time
spent, are met. Such processes are inspired by biological mechanisms of evolution, such as muta-
tion, recombination and survival of the �ttest. Candidate solutions to the optimization problem
play the role of individuals in a population, and the �tness function, which determines how well
a solution (individual) performs, is an analogy of biological �tness in the sense that it determines
the chance to survive and reproduce. In contrast to evolutionary biology, where �tness is measured
by the reproduction rate of an individual, in evolutionary algorithms the �tness is determined by
the quality of the individuals with respect to the objective function(s).

Evolution of the population takes place by iteratively applying the mentioned mechanisms of
evolution. In this process, there are two main forces that form the basis of evolutionary systems:
Recombination and mutation create the necessary diversity and thereby facilitate novelty, while
survival and reproduction act as forces which increase quality. Many aspects of such an evolutio-
nary process are stochastic, i.e. changed pieces of information due to recombination and mutation
are randomly chosen. While selection operators can be either stochastic, individuals with a higher
�tness value have a higher chance to survive and reproduce than individuals with a lower �tness,
or deterministic, only the individuals with the highest �tness values will survive and reproduce.

In a typical evolutionary algorithm the objective is to �nd an object x ∈ S that optimizes
f : S → R, where S is the search space of all possible candidate solutions. A population of
candidate solutions (individuals) is then slowly evolved to try and reach this optimal solution.
Individuals consist of three parts: the object x that needs to be optimized, the so-called decision

parameters or object variables, the �tness of the individual f(x), re�ecting the quality with re-
spect to the objective function(s), and (optionally) the endogenous strategy parameters, such as
mutation strength, which is of particular importance in this study in the context of self-adaptation
(see Chapter 2.1). Parameters that describe population size and number of o�spring are called
exogenous strategy parameters, as they are kept constant and are not dependent on an individual.

In this research we will adopt the generational loop of two general evolutionary schemes: the
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(µ, λ)-strategy (Algorithm 1) and the (µ + λ)-strategy (Algorithm 2), both with a deterministic
selection operator. Here µ de�nes the size of the parent population and λ de�nes the number
of o�spring that is generated via recombination and/or mutation at each iteration of the algo-
rithm. The di�erence between the two algorithms can be found in the selection operator, in the
(µ, λ)-strategy the parent population is not considered in the selection, so only the o�spring have
a chance to survive and become the new parent population. While in the (µ + λ)-strategy the
parents have as much chance to survive and reproduce again as the o�spring. The advantage of
the (µ+ λ)-strategy is that good individuals aren't replaced by worse ones. But the disadvantage
is that when there is no individual within the range of one mutation with a higher �tness score
the (µ + λ)-strategy gets stuck in this region of the search space, while there could be regions in
the search space with higher �tness values. So the (µ + λ)-strategy is prone to getting stuck in a
local optimum. The (µ, λ)-strategy is able to leave such local optima and search for a better local
or even global optimum, at the risk of losing good solutions.

Algorithm 1 General (µ, λ)-evolution

1: t = 0
2: Initialize parent population Pt
3: Evaluate Pt
4: while not terminate do
5: Generate λ o�spring Qt = {q1, . . . , qλ} from Pt
6: Evaluate Qt

7: Pt+1 = The µ best individuals in Qt

8: t = t+ 1
9: end while

Algorithm 2 General (µ+ λ)-evolution

1: t = 0
2: Initialize parent population Pt
3: Evaluate Pt
4: while not terminate do
5: Generate λ o�spring Qt = {q1, . . . , qλ} from Pt
6: Evaluate Qt

7: Pt+1 = The µ best individuals in Qt ∪ Pt
8: t = t+ 1
9: end while
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2.1. Self-Adaptation

The basic idea of self-adaptation is to impose the evolutionary process not only to the decision
parameters, but also to the endogenous strategy parameters, in particular the strength/impact of
the mutations. The idea of self-adaptation originates from nature, where self-repair mechanisms
exist, such as repair enzymes and mutator genes. In this way an individual can adapt the endoge-
nous strategy parameters to the changing landscape, while the evolution progresses. Hence, there
is no deterministic control of the mutation strategy for the user. With the use of self-adaptation,
the link between the strategy and decision parameters can be exploited. Moreover, self-adaptation
can help to improve the results of an evolutionary algorithm [20]. Self-adaptation is also a tool
that can reduce the number of parameters that has to be set by the user of the algorithm.



CHAPTER 3

Molecule Evolution

Having described the basic technique used in this research, this chapter will describe how these
are applied in the context of automated de novo drug design. Automated de novo drug design
deals with the problem of �nding new molecules that possess a number of wanted molecule prop-
erties which make them promising candidates to be used as drugs for a certain targeted disease. It
consists of two parts: In the �rst place, the molecular structures should exhibit the desired behav-
ior on the targeted cells. Secondly, the molecular structures should possess other pharmacological
and biological properties which make them usable as drug (i.e. they should be drug-like [13]).

It is di�cult to apply mathematical programming techniques in molecular design as the search
space is discrete and has a irregular neighborhood structure that makes it infeasible to map it
on a integer programming problem. Moreover, evaluation is partly done by software components
of which the details are hidden to the user and thus also to the algorithm. On the other hand,
evolutionary algorithms have often been used to heuristically solve problems of graph structure
optimization with black box evaluation software. However, a major problem is that it is very
di�cult to compute the quality of candidate molecules. For both the activity on the targeted
cells (objectives) as the determination of the drug-likeness (constraints) of candidate molecular
structures it is only possible to estimate/approximate the performance.

The basis for this study will be the algorithm (Algorithm 3) as used in the automated version
of the Molecule Evoluator ([10], [11]). The population of µ molecules is initialized (see Chapter
3.2) and then the main loop starts. Each generation o�spring is created by randomly selecting a
parent λ times and applying mutations (see Chapter 3.2) to these parents. The o�spring popu-
lation is then evaluated using the �tness function (see Chapter 3.3, 3.3.1 and 3.3.2). Depending
on the chosen scheme, the µ best ranked molecules, according to their �tness score, are selected
from the o�spring population Qt (in case of (µ, λ)-selection) or the o�spring and parent population
Qt∪Pt (in case of (µ+λ)-selection). These selected molecules then form the new parent population
Pt.

3.1. Representation

The choice of representation of individuals in an Evolutionary Algorithm is of great importance,
since it de�nes the neighborhood landscape. Moreover, the complexity of the �tness function as
well as the mutation operators depend on the chosen representation. In this study the graph-like
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Algorithm 3 (µ+, λ) molecule evolution

1: t = 0
2: Initialize parent population Pt of size µ
3: Evaluate Pt
4: while not terminate do
5: for i = 1 to λ do
6: Randomly select a molecule p from Pt
7: Randomly select n mutation(s) and apply this to p
8: Add this new molecule to the o�spring population Qt

9: end for
10: Evaluate Qt

11: Pt+1 = The µ best individuals in Qt(∪Pt)
12: t = t+ 1
13: end while

representation of the Molecule Evoluator is adopted. Due to the structure of molecules (see Figure
3.1.1), molecules consist of atoms which are 'connected' by bonds, graphs seem like good candidates
to represent them.

A graph G is an ordered pair G = (V,E), where V is the collection of vertices and E the

Figure 3.1.1. Graph representation of a molecule

collection of edges (the connection between two vertices). An example of such a graph is shown
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Figure 3.1.2. A conversion of Figure 3.1.1 to an edge-weighted labeled graph

in Figure 3.1.2. To apply this concept to molecules each vertex can represent an atom, while each
edge could represent a bond. Since molecules are a special kind of graph with certain constraints
an expansion of the graph concept is needed. First of all some atoms have multiple bonds between
two atoms, therefore the edges are given di�erent weights depending on the number of bonds, a
so-called edge-weighted graph. Secondly atoms in molecules have many di�erent types ( carbon,
hydrogen, etc. ), therefore we need a label for every vertex, a so-called labeled graph. Combining
these two types we get the edge-weighted labeled graph as representation of molecules. Important to
note is that only when certain constraints are satis�ed an edge-weighted labeled graph represents
a molecule.

3.2. Mutation/Recombination

The design of evolutionary algorithms for the evolution of molecular structures requires the
design of sets of mutation operators which are complete (i.e. with which it should be possible
to reach any part of the search space) and with which neighborhoods of molecular structures
can be described. The mutation operators that are used in this research are adopted from [12]
and [10] which are shown in Table 1, although with some slight modi�cations: For the under-
lying representation of the molecular structures a graph-based representation is used instead of
the TreeSmiles-notation used in [10] and [11]. For the AddGroup mutation di�erent fragments
were used. The set of fragments was constructed using some large molecular databases (DrugBank
[24], HMDB [25], and ZINC [8]) from which the most frequent ring-systems and linkers were
extracted. The top 150 organic ring-systems and linkers were used as fragments for the AddGroup

mutation operator. These fragments are also used to initialize the �rst population (i.e. molecular
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Mutation Example

Add atom

Remove atom

Insert atom

Uninsert atom

Mutate atom

Add group

Remove group

Increase bond order

Decrease bond order

Make ring

Break ring

Table 1. Mutation operators of the Molecule Evoluator

structures are generated from scratch by combining and mutating fragments from the linker- and
ring-system-set e.g. Figure 3.1.1). The currently implemented mutation operator, as seen in Al-
gorithm 3, works by applying a �xed number of mutations n (e.g. 1 or 2). These mutations are
chosen randomly, with uniformly distributed probability, from this list of possible mutations, as
shown in Table 1.

For the sake of completeness we will also introduce the recombination operator. The imple-
mentation of the recombination operator is inspired by the subtree crossover as used in genetic
programming. However, as molecules are represented as graphs and not trees, the recombination
operator is restricted to be only applied to subtrees which are connected at exactly one point to the
base molecule. The recombination operator will not be used in this study to focus on mutation.

3.3. Fitness Evaluation

In this study, the problem of optimizing a molecule towards desired drug properties is trans-
formed into a single-objective optimization problem with constraints. The biological activity serves
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as an objective function, while the constraints provide a way to distinguish molecules in their abil-
ity to be used as drugs.

Support vector machine models (SVMs) are used for the prediction of the biological activity based
on molecular similarity [1] to a set of steroidal as well as non-steroidal reference compounds. A
support vector machine is a type of classi�er that works in a transformed feature space de�ned by
nonlinear transformations of the original variables [23]. They map these features as vectors in a
high-dimensional feature space. In this space a 'best' separating hyperplane (the maximal margin

hyperplane) is constructed (e.g. Figure 3.3.1).

In the case of molecule design this hyperplane is used to predict the biological activity of the

Figure 3.3.1. Maximal margin hyperplane for a trained SVM separating samples
from two classes in the x1-x2-feature space

molecule, by re�ecting the desirable properties regarding activity. As SVMs cannot work with
the molecule structures directly, features are extracted from the molecules which are used for the
training and prediction. For each test-case three support vector machines are used which predict
the activity of the molecules based on di�erent types of features (ECFP6 �ngerprints, MDL keys
and AlogP counts [7]). Similar to [11], the activity scores of the three are (if needed) mapped to a
value in the interval [0,1] and aggregated into one function. This is the �rst part of the objective
function which needs to be maximized:

(3.3.1) fobjectives = fECFP6 · fMDL · fAlogP .
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3.3.1. Constraints. For the constraints, Lipinski's rule-of-�ve [15] is used to predict the
drug-likeness of the molecules. This rule consists of simple boundary values for �ve easy calculable
molecular properties which can be used to estimate the drug-likeness of molecules. Besides this, a
maximal bound is set for the estimated minimal energy conformation which estimates the stability
of the molecular structures. As the boundary values of both Lipinski's rule-of-�ve and the minimal
energy conformation are vague, these fuzzy constraints are modeled by desirability functions (DFs)
[11].

Desirability functions were �rst introduced by Harrington [6] to model a number of quality crite-
ria. In order to allow for a better comparison between the di�erently scaled quality criteria with
respect to their desired levels Harrington proposed to map the quality criteria to the open unit
interval (0, 1), where a value close to zero stands for 'poor quality', whereas a value close to 1
stands for 'high quality'. Derringer [4] then extended this work by incorporating the value 0, when
a constraint is strictly violated and thus the desirability should be minimal, and the value 1, when
a value completely satis�es a constraint. Given a set of objective variables X = x1, . . . , xn and a
set of quality criteria Y = y1, . . . , ym, where yi = fi(X), Derringer desirability functions have a
signature:

di(yi) : R→ [0, 1], i = 1, . . . ,m

We will use these desirability functions to model the fuzzy constraints, as done by Kruisselbrink
et al. [11]. To do this we de�ne the relation A . B, which means A is essentially smaller than B.
There are three types of fuzzy constraints that we will describe using this relation:

LBj < Aj . gj(x)

gj(x) . Bj < UBj

LBj < Aj . gj(x) . Bj < UBj

(3.3.2)

Here, LBj and UBj denote the absolute lower and higher cuto� bounds beyond which the con-
straints are absolutely not satis�ed, the regions (LBj, Aj) and (Bj, UBj) denote the gray areas. At
the �rst type of constraints the region [Aj,∞), at the second type the region (−∞, Bj] and at the
third type the region [Aj, Bj] denote the area where the constraints are absolutely satis�ed. The
�rst two constraints are so-called one-sided constraints and the third one is a so-called two-sided

constraint.

For each constraint j a desirability function ĝj is constructed which maps the original value of
the molecule property gj to the interval [0, 1]. The �rst type of (3.3.2) can be modeled by means
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of a desirability function in the following way:

(3.3.3) ĝj(x) =


0 , gj(x) ≤ LBj(

gj(x)− LBj

Aj − LBj

)lj
, LBj < gj(x) < Aj

1 , gj(x) ≥ Aj

Here, lj describes the shape of the function in the gray area. In the case of lj = 1 the shape will
be linear, in the case of lj < 1 the function is relatively mild (easier to get close to 1) for values in
the gray area, while in the case of lj > 1 the function is more strict. An example of this function
can be seen in Figure 3.3.2(a). The second type of (3.3.2) can be modeled similar to (3.3.3):

(3.3.4) ĝj(x) =


1 , gj(x) ≤ Bj(

gj(x)− UBj

Bj − UBj

)uj

, Bj < gj(x) < UBj

0 , gj(x) ≥ UBj

Here, uj describes the shape of the function in the gray area in the same way as lj. This function
would look like a mirrored (in the y-axis) version of Figure 3.3.2(a). The third type of (3.3.2) is

(a) One sided desirability function (b) Two sided desirability function

Figure 3.3.2. Derringer desirability functions
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the modeled by combining (3.3.3) and (3.3.4):

(3.3.5) ĝj(x) =



0 , gj(x) ≤ LBj(
gj(x)− LBj

Aj − LBj

)lj
, LBj < gj(x) < Aj

1 , Aj ≤ gj(x) ≤ Bj(
gj(x)− UBj

Bj − UBj

)uj

, Bj < gj(x) < UBj

0 , gj(x) ≥ UBj

A simpli�ed example of this can be seen in Figure 3.3.2(b), where Aj = Bj and lj = uj.

3.3.2. Aggregation. The objective function (3.3.1) and the constraints can now be combined
by means of aggregation. All m desirability functions are aggregated into one (our second) part of
the objective function similar to (3.3.1) which also needs to be maximized:

(3.3.6) fconstraints =
m∏
i=1

ĝi

Now (3.3.1) and (3.3.6) can be aggregated into one function:

(3.3.7) fcombined = fobjectives · fconstraints = fECFP6 · fMDL · fAlogP ·
m∏
i=1

ĝi.

This type of aggregation has a particular interesting quality: When one of the constraints is strictly
violated the value of fconstraints will be 0 and thus the value of fcombined will be 0. While in the
case that one of the constraints is in the gray area fcombined will only be penalized, but not totally
rejected. The goal of the algorithm will from now on be to maximize fcombined.



CHAPTER 4

Scalable Mutation in Chemical Space

In this study we wish to apply self-adaptation to our algorithm (see Chapter 2.1). Self-
adaptation could be helpful in our case, because it is not quite clear beforehand what the mutation
strength of the evolution should be. On the one hand it is important to get a high progress rate,
the rate at which the algorithm approaches the optimum. On the other hand it is important to
keep the harmful e�ects of mutation within reasonable bounds. Self-adaptation can be applied to
try and tackle these issues.

The problem when trying to apply this to the chemical space arises when trying to think of a
reasonable way to scale the mutation. Some of the mutations have a rather big structural e�ect
on the molecule, while other mutations only change it slightly. The mutation operators are graph
based and therefor di�cult to scale by some real valued factor. If we would simply change the
number of mutations that are applied to a molecule we could have the case that one mutation is
giving more changes to the molecule then two mutations if in the second case two relatively minor
changes are made, while in the �rst case one massive change was made. To tackle this issue we
introduce the concepts of mutation impact and mutation budget, as derived from [5].

4.1. Mutation Impact

In applied genetics it is common to speak of mutations as either harmful or bene�cial. A
harmful mutation is a mutation that decreases the �tness of the organism. A bene�cial mutation
is a mutation that increases �tness of the organism, or which promotes traits that are desirable.
Analysis of the e�ect on the �tness score that mutations have, could give us insight into the im-
pact a speci�c mutation has in the evolution. This e�ect we will call mutation impact. Since it
is impossible to predict the mutation impact of a speci�c mutation with a given, support vector
machine based �tness score, we will try to estimate this by means of random walks through the
molecule space as shown in Algorithm 4.

A random walk in the molecule space is a path of molecules that consists of taking successive
random steps (mutations). Given a starting point in the molecule space, a randomly created mo-
lecule, we can randomly, with evenly distributed probability, choose one of the available mutations
and apply this to the current molecule. If we keep applying random mutations to the last created
molecule and evaluate the �tness of the molecule at each step, we can estimate the e�ect of a
given mutation by calculating the di�erence between the �tness score before and after applying

18
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Algorithm 4 Random walk in molecule space

1: t = 0
2: Initialize molecule path P = ∅
3: Initialize starting molecule rw0

4: P = P ∪ {rw0}
5: while t < Tmax do
6: rwt+1 = Mutate(rwt)
7: P = P ∪ {rwt+1}
8: t = t+ 1
9: end while

this mutation. If we do multiple random walks, we can get an estimate for the mutation impact
by averaging these e�ects for each mutation respectively.

For a given �tness function on the molecule space M ,

f : M → R

the mutation impact MIj, for a given mutation j, can now be estimated with

(4.1.1) MIj =
1

#Aj

∑
i∈Aj

|f(rwi)− f(rwi−1)|,

where

rwi = the obtained molecule after i steps in the random walk

Aj = {i ∈ N|rwi was formed after applying mutation j on rwi−1}.

In cases where there is not enough time to learn the mutation impact by performing random walks
they could also be learned during the evolution loop by using a cumulative approach. Given a �xed
starting mutation impact for mutation j, the mutation impact could be updated each generation
by applying:

(4.1.2) MInewj = c ·MIoldj + (1− c) ·MIcurrentj ,

with c ∈ (0, 1). MIoldj represents the mutation impact from the previous generation, MIcurrentj

represents the average impact mutation j had in this generation and MInewj will be the new
value for the mutation impact of mutation j. In case mutation j wasn't applied this generation
the impact should not be updated. Also β should be much larger then δ to prevent too much
�uctuation. A disadvantage of this method is that it is necessary to store information about the
applied mutation and �tness of the parent, also in case multiple mutations were performed it is
di�cult to decide which mutation had what impact. Furthermore �nding a good starting value for
the mutation impacts can be hard without an in-depth knowledge of the �tness landscape. Due
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to these disadvantages in this study the approach of random walks is chosen for determining the
mutation impacts.

4.2. Mutation Budget

Now that we have introduced the concept of mutation impact, we can apply this to introduce
scalable mutation to the molecule evoluator. To incorporate this with the molecule evolution ap-
proach of [10] we introduce the idea of a mutation budget. The mutation budget can be compared
to an amount of money that is available to be spent. In the case of the molecule evoluator this
is the amount of "money" that can be spent, by the algorithm, on mutations. For each molecule
there is a separate budget, each mutation has a di�erent price (mutation impact) and the total
spendings on a molecule should not exceed the budget. The only mutations that are considered are
the mutations that are, according to their respective mutation impacts, within the budget. With
equal probability one of the considered mutations will be applied. Subsequently the cost of this
mutation, the mutation impact, will be subtracted from the remaining budget and this process
continues until there are no more mutations that have a lower cost than the remaining budget.
The total budget can in this way be used to vary the mutation strength, by either increasing or
decreasing this budget.

To do this we de�ne an individual of the population of molecules as an ordered pair I = (X, σ),
where X is a molecule (decision parameter) and σ its mutation budget (strategy parameter). To
apply self-adaptation we must not only use mutation on the decision parameter, in our case the
molecule X, but also on the strategy parameter σ. Moreover, the strategy parameter should be
adapted before the molecule to be able to learn, by selection of individuals based on objective func-
tion, from this change in the strategy parameter. The mutation step size a two point operator, as
described in [18], with a learning rate α = 1.1 has been chosen:

(4.2.1) σadapted = αξ · σ,

where α is the mutation strength of the strategy parameter and ξ a uniformly distributed random
variable on {−1, 1}. This means that σ is either multiplied or divided by a factor α, depending
on the random variate of the random variable ξ. According to Beyer [2] the value for α can stay
�xed for the starting phase (�rst 1000 generations) of the algorithm, although in contrast to Beyer
the value is not set equal to 1.3. This is due to the fact that the mutation impacts (see Figure
5.2.1 and Chapter 5.2) are relatively close together and therefore a large α would ignore many
intermediate values of the budget.

One of the main advantages of this adaptation scheme is that it is unbiased. Therefore a
tendency to increase or decrease the budget is exclusively caused by the algorithm itself and not
by the adaptation scheme. To make sure that the mutation doesn't stop altogether σ has a lower
bound of σmin, which should be a big enough budget to allow for at least one smaller mutation. A
rough outline of this scheme is shown in Algorithm 5, where MIj is the impact of a mutation j as
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seen in equation (4.1.1). Depending on whether we want to use a (µ+ λ)- or a (µ, λ)-strategy, the
parent population Pt is considered in the selection.

Algorithm 5 (µ+, λ)-evolution with mutation budget

1: t = 0
2: Initialize parent population P0

3: while t < Tmax do
4: for i = 1 to λ do
5: Select a random parent individual p = (Xp, σp) ∈ Pt
6: ξ = random ∈ {−1, 1}
7: σi = max(αξ · σp, σmin)
8: budget B = σi
9: Xi = Xp

10: while {k|MIk ≤ B} 6= ∅ do
11: Randomly select a mutation j ∈ {k|MIk ≤ B}
12: Xi = Xi ◦ j
13: B = B −MIj
14: end while
15: Add individual qi = (Xi, σi) to the o�spring population Qt

16: end for
17: Evaluate Qt and Pt
18: Pt+1 = The µ best individuals in Qt(∪Pt)
19: t = t+ 1
20: end while



CHAPTER 5

Experiments/Results

To validate the proposed method we use the following test-case: The target will be to �nd
inhibitors of the so-called LOX, or Lipoxygenase, which is involved in the metabolism of fatty
acids (and thus simply the fats we are eating). It catalyzes the following reaction:

fatty acid +O2 = fatty acid hydro-peroxide

Lipoxygenases are found in plants, animals and fungi. Products of lipoxygenases are involved in
diverse cell functions [16].

The goal of the algorithm is to maximize fcombined (see equation (3.3.7)), which will maximize
the predicted biological activity, while making sure the candidate molecules satisfy certain fuzzy
constraints. For the boundaries of the fuzzy constraints (as described in Chapter 3.3.1), the settings
of Table 1 are used.

Descriptor LB A B UB

Num H-acceptors 0 1 6 10
Num H-donors 0 1 3 5
Molecular solubility -6 -4 ∞ ∞
Molecular weight 150 250 450 600
ALogP 0 1 4 5
Minimized energy 0 0 80 150

Table 1. The settings of the boundary values for the properties that are used as
fuzzy constraints in the automated molecular search.

5.1. Experimental Setup

The �rst step is to estimate the mutation impacts, as described in Chapter 4.1, 500 random
walks (Algorithm 4) with Tmax = 100 steps were conducted. For each mutation this gives approxi-
mately 5000 (the mutations in the random walk were chosen with equal probability) estimations.

22
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After the mutation impacts are estimated we can incorporate this in the mutation budget al-
gorithm (Algorithm 5). To test the self-adaptation mechanism it is compared with the same
algorithm but with a �xed budget. These �xed budgets vary, depending on the mutation impacts,
from the budget needed for one smaller mutation up until three big mutations. Both the (µ+ λ)-
and the (µ, λ)-strategies are considered and compared. Each test case is run three times with
Tmax = 200. The size of the parent population will be µ = 15 and the number of o�spring will be
λ = 100.

5.2. Results

The �rst step in testing the mutation impact/budget concept was to estimate the mutation
impact of the di�erent mutations. This was done by conducting the random walks as described
in Chapter 4.1. This yielded, for the mean mutation impacts, the results as shown in Figure 5.2.1.

Figure 5.2.1. Estimated means of the mutation impacts

Since the mean says very little about the distributions of the mutation impacts themselves, fur-
ther analysis is conducted. To analyze the distributions of the mutation impacts we introduce the
concept of the empirical cumulative distribution function [19] (empirical CDF):

(5.2.1) F̂n(x) =
number of elements in the sample ≤ x

n
=

1

n

n∑
i=1

I(Xi ≤ x),
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where n is the total number of estimations (approximately 5000), X1, . . . , Xn i.i.d. real random
variables and I(A) is the indicator of an event A:

(5.2.2) I(A) =

{
1 if A is true

0 if A is false

The empirical CDF is known to converge to the true CDF by the strong law of large numbers [19],
therefore the empirical CDF is a good tool to analyze the distributions. For each mutation the
empirical CDF is shown in Figure 5.2.2. In this �gure we can see that the gradient of all the empir-

Figure 5.2.2. Estimated cumulative distributions for each mutation

ical CDFs is relatively high in the beginning and low at the end. A high gradient in a region of the
graph implies that there is a high probability to be in that region. Likewise a low gradient implies
a low probability. Many mutations share almost the same mutation impact, but a few stand out.
The empirical CDFs of the AddGroup and RemoveGroup mutations have relatively low gradients
at the start and higher towards the midsection and end of the diagram compared to the other
mutations, which means that these two mutations have a higher probability to have bigger impact
and lower probability to have small impact than the other mutations. The BreakRing mutation is
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somewhere in between AddGroup and RemoveGroup and the rest of the mutations. This gives rise
to three groups of mutations, the high impact mutations (AddGroup, RemoveGroup), the medium
impact mutations (BreakRing) and the low impact mutations (the remaining mutations). To get
a better impression of what the distributions of these groups an estimation of the probability den-
sity function (pdf) for a representative of each group is shown in Figure 5.2.3. Notice that with

Figure 5.2.3. Estimated probability density function for a representative of each
group of mutations

the logarithmic scale on the x-axis they resemble a normal distribution, so the mutation impacts
appear to be lognormally distributed. Higher impact mutations have a similar distibution, but are
shifted more to the right then lower impact mutations. Considering the shape of the distributions
is similar for all mutations, the mean impact gives a good representation of the di�erent impacts
the mutations have.

To test whether the concept of mutation impact/budget can be e�ective even without incorporat-
ing self-adaptation, the original mutation (see Chapter 3.2) scheme is transformed to the mutation
impact/budget system. Every mutation will get the same impact equal to the average of the im-
pacts as shown in Figure 5.2.1. This average is approximately equal to ∼ 0.0015. The mutation
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budget is set to 0.0015 and 0.0030, which corresponds to 1 respectively 2 mutations. This is then
compared to a setup with same budgets, but with the mutation dependent impacts (see Chapter
4.1) from Figure 5.2.1.

The result is shown in Figure 5.2.4(a) and 5.2.5(a). Especially in the case of the (µ, λ)-strategy

(a) Average �tness of the top µ = 15 individuals over 3 runs of the algorithm

(b) Boxplot of the last 10 iterations for vari-
able and uniform impact of 0.0015

(c) Boxplot of the last 10 iterations for vari-
able and uniform impact of 0.0030

Figure 5.2.4. Comparison of �tness performance of uniform mutation impacts ver-
sus mutation type dependent (variable) impacts in the (µ, λ)-strategy
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(a) Average �tness of the top µ = 15 individuals over 3 runs of the algorithm

(b) Boxplot of the last 10 iterations for vari-
able and uniform impact of 0.0015

(c) Boxplot of the last 10 iterations for vari-
able and uniform impact of 0.0030

Figure 5.2.5. Comparison of �tness performance of uniform mutation impacts ver-
sus mutation type dependent (variable) impacts in the (µ+ λ)-strategy

a signi�cant performance gain for the newly proposed method is apparent, for both budgets. In
the case of the (µ + λ)-strategy the new method only slightly outperforms the old strategy. The
clear advantage of the new method in the (µ, λ)-strategy is likely caused by assigning a high impact
to the RemoveGroup and AddGroup mutations. These mutations will be applied less in the new
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method which appears to have a positive e�ect. This is likely caused by the need of the (µ, λ)-
strategy to maintain decent solutions, without destroying them by applying a big mutation.

We can now use these mean impacts to create a set of �xed mutation budgets for the validation
of the self-adaptation mechanism. These will range from one smaller mutation, around 0.0015,
up until three bigger mutations, around 0.0060. These results also give rise to a value for σmin
(Chapter 4.2) of 0.0015. The values for σ will be initialized as a random value for each individual
between 0.0015 and 0.0060. Plots of the average �tness values during the course of the evolution
loop are shown in Figure 5.2.6 and 5.2.7. From these plots it can be seen that the self-adaptive
approach is performing very well and reaches top spot for both the (µ, λ)- and (µ + λ)-strategy,
although the di�erence with the best �xed budget strategy is small is both cases.

Figure 5.2.6. A plot of average �tness values during the course of evolution using
the (µ, λ)-strategy

In order to better compare all of these �xed mutation budgets and the self-adaptive approach,
we must try to �nd a way to quantify the performance of these approaches. Li et al. [14] proposed
to quantify this by means of comparing the progress rate at di�erent stages of the evolution. The
progress rate at a point x was de�ned by Beyer [2] as the expectation of the distance covered to-
wards the optimum in one mutation step starting from position x. However due to the discrete and
rugged landscape of the �tness function this measure was lacking stability. Therefore we introduce
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Figure 5.2.7. A plot of average �tness values during the course of evolution using
the (µ+ λ)-strategy

a variation on this progress rate:

(5.2.3) φ(X) =
1

ψ(X)
,

where X is a partition of �tness function values and ψ(X) the iterations spent by the algorithm
in the range of X. The �tness function values at each iteration as used for X are determined
by averaging the µ best individuals of each iteration and averaging this number for all the three
di�erent runs of the algorithm.

In Table 2 and Table 3 the progress rates are shown for respectively the (µ + λ)- and the
(µ, λ)-strategy. In Table 4 the progress rates are shown for the self-adaptive approach. A '0' in
these tables means that the algorithm entered this partition, but did not reach the next partition
within the given time-frame and therefore the progress rate is set to 0. In case a partition isn't
reached at all by the algorithm within the given time-frame, the value 'NA' is added in the table, in
practice this value is lower then the previous ones and is thus likely to be near 0. One of the �rst
things that stand out in these tables is the fact that the progress rates of the (µ, λ)-strategy are
lower than those of the (µ+λ)-strategy. This is at least expected for the �rst few ranges, but with
the higher risk of the (µ+ λ)-strategy to get stuck in local optima, one perhaps could expect the
(µ, λ)-strategy to perform better at later stages. This is not the case in this experimental setup.
Another thing of interest is the existence of multiple peaks in the case of the (µ + λ)-strategy.
When looking at the progress rates of the self-adaptive approach it seems to be performing good
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0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060

X ≤ 0.2 0.25 0.17 0.33 0.17 0.25 0.17 0.17 0.20 0.13 0.13
0.2 < X ≤ 0.3 0.17 0.10 0.08 0.09 0.17 0.03 0.07 0.08 0.07 0.03
0.3 < X ≤ 0.4 0.05 0.07 0.01 0.03 0.05 0 0.04 0.02 0.01 0.01
0.4 < X ≤ 0.5 0.03 0 0 0 0.01 NA 0.02 0 0 0

Table 2. Progress rates φ(X) for ten di�erent �xed mutation budgets and four
partitions using the (µ+ λ)-strategy

0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060

X ≤ 0.2 0.25 0.17 0.20 0.17 0.07 0.01 0.01 0.01 0.01 0.01
0.2 < X ≤ 0.3 0.14 0.09 0.14 0.01 0 0 0 0 0 0
0.3 < X ≤ 0.4 0.02 0.03 0.03 0 NA NA NA NA NA NA
0.4 < X ≤ 0.5 0 0 0 NA NA NA NA NA NA NA

Table 3. Progress rates φ(X) for ten di�erent �xed mutation budgets and four
partitions using the (µ, λ)-strategy

hhhhhhhhhhhhhhhh�tness partition
strategy

µ+ λ µ, λ

X ≤ 0.2 0.33* 0.25*
0.2 < X ≤ 0.3 0.14 0.09
0.3 < X ≤ 0.4 0.06* 0.03*
0.4 < X ≤ 0.5 0.02* 0*

Table 4. Progress rates φ(X) for the self-adaptive approach, * denotes values which
di�er no more then 0.01 from the optimal value of σ from Table 2 and 3

for both strategies.

In Figure 5.2.8 and 5.2.9 the progress rates for the �xed budgets are graphically shown for all
four regions of X. It is apparent in the case of the (µ, λ)-strategy (Figure 5.2.9) that the lower
�xed mutation budgets progress much faster than the higher ones. This implies that the advan-
tage of low budget mutations, low budget mutations are less destructive compared to high budget
mutations with respect to the parent population, is a highly needed quality in the (µ, λ)-strategy
that outweighs the advantage of high budget mutations. High budget mutations explore the space
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of molecules faster. In the case of the (µ+λ)-strategy (Figure 5.2.8) there is not a clear advantage
for one type of budget, there seem to be more the one peak in this diagram and thus more then
one budget that performs well.

Figure 5.2.8. Progress rate for the (µ+ λ)-strategy

Figure 5.2.9. Progress rate for the (µ, λ)-strategy
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In order to analyze how the self-adaptive algorithm adapted its mutation budget σ over time,
two cases for each strategy were considered. In contrast to our previous random initialization of
σ in the self-adaptation approach two �xed settings are considered, a high setting (0.0060) and a
low setting (0.0015). The evolution of σ can be seen in Figure 5.2.10 for the (µ, λ)-strategy and
Figure 5.2.11 for the (µ+ λ)-strategy.

(a) (b)

Figure 5.2.10. Average of σ during the course of the evolution, given a start-
ing point of 0.0060 (Figure 5.2.10(a)) and 0.0015 (Figure 5.2.10(b)) using the self-
adaptive (µ, λ)-strategy

From these �gures we can see that in the case of the (µ, λ)-strategy the algorithm chooses a
conservative approach (for both the high and low initialization of σ) and is highly similar to a
strategy with a �xed low budget. The low budget strategies are the best performing strategies
with respect to their �tness and progress rate (see Figure 5.2.6, 5.2.9 and Table 3). So the self-
adaptive approach is able to �nd the best performing value of σ regardless of initialization for
the (µ, λ)-strategy. In practice this means that the AddGroup and RemoveGroup mutations were
excluded by the algorithm. In the case of the (µ + λ)-strategy the algorithm evolves σ to two
di�erent values (multistability), depending on the initialization of σ. When σ is initialized at
0.0015 the algorithm doesn't evolve σ much and is highly similar to a strategy with a �xed low
budget just as in the case of the (µ, λ)-strategy. As visible in Figure 5.2.7 and 5.2.8 and Table 2
again this is one of the best performing �xed budget strategies and thus the algorithm seems to
be able to reach a good value for σ in this case. While in the case of a higher initialization of σ
the evolution seems to stabilize at a value between 0.0030 and 0.0040, which again seems to be
a region of high performance (notice the peak at 0.0035 in Figure 5.2.8). From this we can see
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Figure 5.2.11. Average of σ during the course of the evolution, given a starting
point of 0.0015 and 0.0060 using the self-adaptive (µ+ λ)-strategy

that the self-adaptive approach is able to �nd the values of σ which optimize the progress rate,
although they do depend on the initialization here. A possible downside of this dependence can
be that when even more local optima exists in the progress rate landscape the algorithm could
pick one of these instead of the global maximum. This problem can be partly avoided by random
initialization.



CHAPTER 6

Conclusions and Outlook

This report has presented a method to incorporate weighted mutation and self-adaptation to
graph-based mutation operators in the context of automated de novo design of drugs. The con-
cepts of mutation impact and mutation budget have been introduced to incorporate this weighted
mutation scheme, while at the same time providing the algorithm with a parameter that can be
used for self-adaptation. The use of this new mutation scheme improves the performance of the
algorithm, especially in the case of (µ, λ)-selection. Thereby making (µ, λ)-selection a good alter-
native to (µ + λ)-selection. Overall small mutation budgets performed good, even at the start of
the algorithm.

The performance of the self-adaptation approach was able compete with the best handpicked
choices for the mutation parameter and it was able to e�ectively optimize the progress rate. There-
fore self-adaptation can be successfully applied to help choosing good parameters for the algorithm.
However, the self-adaptation did not help to signi�cantly increase the performance of the algorithm
further.

A lot can still be improved to the current technique described here in the context of automated
de novo design of drugs. For the concept of self-adaptation future work could focus on a suitable
way of incorporating the process of learning the mutation impact in the algorithm itself by cumu-
lative stepsize adaptation. This would be preferable especially when the behavior of the �tness
function changes during the course of evolution. Moreover, the e�ect of the initial stepsize for the
self-adaptation could be studied in more detail. Especially in the case of (µ+λ)-selection di�erent
budgets were found by self-adaptation, depending on the initialization of the budget.

Other possible work could be focused on reaching solutions with desirable levels of quality (in
terms of �tness and constraints), while spending the remaining time not on improving the quality
even more but providing alternative solutions (an extension of [9]). It could also be interesting to
apply these methods to more accurate, but computationally demanding, �tness models.
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APPENDIX A

Other data

Table 1. Best scoring �nal population in the (µ, λ)-strategy with an average �tness
of 0.50
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Table 2. Best scoring �nal population in the (µ + λ)-strategy with an average
�tness of 0.55

Mutation Mean Standard deviation

AddAtom 0.00134 0.00425
RemoveAtom 0.00112 0.00340
AddGroup 0.00212 0.00686
RemoveGroup 0.00233 0.00700
MakeRing 0.00121 0.00345
BreakRing 0.00163 0.00510
IncreaseBondOrder 0.00143 0.00442
DecreaseBondOrder 0.00137 0.00438
InsertAtom 0.00133 0.00425
UninsertAtom 0.00120 0.00330
MutateAtom 0.00133 0.00396

Table 3. Mean and standard deviation of the mutation impacts
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Figure A.0.1. Standard deviation for the mutation impacts
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