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Abstract:  

BACKGROUD: Prostate cancer is the most common form of cancer in men with an incidence 

about 670,000 new cases annually world-wide (CDC, American and Canadian Cancer Societies; 

Boyle, 2004, ERSPC). It is the leading non-skin cancer in men above 65, and one out of six men 

will be affected by prostate cancer during his life. Screen for prostate-specific antigen (PSA) has 

led to the earlier detection of disease, but increased serum PSA can be present in non-malignant 

conditions such as benign prostatic hyperplasia as well. So the supplementary biomarkers are 

strongly needed to improve the diagnosis and prognosis accuracy. There are various biomarker 

techniques from genomics, proteomics, pharmacogenetics to integrative approaches. Immune 

response protein microarray as one of the proteomics techniques with the advantage of taking 

post-translational modification of protein into account is quickly emerging as a follow-up 

technology.  

METHOD: This work is based on a data set with 120 blood samples from five groups from control 

to advanced metastasis. Considering the difference between DNA microarrays and protein 

microarrays, the first step is to compare different well-established normalization methods such 

as global normalization, quantile normalization, VSN as well as robust linear model normalization 

on this protein microarray data. After the proper normalization, one-side Wilcoxon test is 

performed on biomarker selection. In order to overcome the problem of simultaneously 

multiple-test as well the sensitivity of the hit gene list highly depending on the training samples, 

the re-sampling tests instead of just selecting the most significant genes by one test is used. 

Besides, gene selection strategy in the process of classification such as random forest, shrunken 

centroid as well as recursive feature elimination are also used to derive different hit gene lists, 

which can be used to verify the biomarker selected in statistical test. All the hit genes from 

different methods are further checked by online annotation database. Except from biomarker 

discovery, the obtained gene lists from different methods are also used to clarify the underlying 

prostate cancer progression by enrichment pathway analysis, and the classification performance 

of these gene signatures will be evaluated by principle component analysis (PCA), and 

leave-one-out cross-validation error rate of different classifiers, including K-nearest neighbour 

(KNN) as well as support vector machine (SVM).  

CONCLUSION: Here we show that the quantile followed with robust linear model normalization 

strategy works better than other counterparts. At the same time, we developed a combinatorial 

strategy on gene selection, although the variation on hit gene list shows significant different, 

there are always a few overlapping genes with strong diagnosis potential. Meanwhile, 

enrichment pathway analysis on different hit gene lists also shed light on prostate cancer 

progression. Altogether, this study provides insight into immune response protein microarray 

analysis from normalization, gene selection aspects.    

Keywords: prostate cancer, prostate biopsy, prostate, benign prostate hyperplasia, machine 

learning 
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1. Introduction 

Prostate cancer is the most common form of cancer in men with an incidence about 670,000 new 

cases annually world-wide (CDC, American and Canadian Cancer Societies; Boyle, 2004, ERSPC). It is 

the leading non-skin cancer in men above 65, and one out of six men will be affected by prostate 

cancer during his life. There are three main types of prostate disorder: 

 Prostatitis: an inflammation of the prostate gland in men, which may cause some similar 

symptoms as cancer, but is not cancer.  

 Benign prostatic hyperplasia (BPH): also known as benign enlargement of the prostate refers to 

the increase in size of the prostate in middle-aged and elderly men. It leads to symptoms of 

urinary hesitancy, frequent urination, dysuria (painful urination), increased risk of urinary tract 

infections, and urinary retention. Although BPH causes many same symptoms as cancer, it is not 

considered to be a premalignant lesion as well.  

 Prostate cancer: a form of cancer that develops in the prostate. The mortality danger of cancer is 

obvious much serious than the other two types of prostate diseases. High cure rates are generally 

achieved with early stage prostate cancer.  

Two screening tests commonly used to detect prostate cancer in the absence of symptoms:  

 digital rectal exam (DRE), a doctor feels the prostate through the rectum to find hard or lumpy 

areas 

 a blood test that detects a substance made by the prostate called prostate-specific antigen (PSA) 

Together, these tests can detect many “silent” prostate cancers that have not caused symptoms. If 

prostate cancer is found during screening with the PSA test or DRE, the cancer will likely be at an 

early, more treatable stage than if no screening were done. Due to the widespread use of PSA testing 

in the United States, approximately 90 percent of all prostate cancers are currently diagnosed at an 

early stage, and, consequently, men are surviving longer after diagnosis. 

There is no question that the PSA test can help spot many prostate cancers early, but neither the PSA 

test nor the DRE is 100% accurate. These tests can have abnormal results even when cancer is not 

present (known as false positive results). In addition, normal results can occur even when cancer is 

present (known as false negative results). False positive results can lead some men to undergo a 

prostate biopsy cancer is not present, with the cost of unnecessary pains, infection, and bleeding. 

False negative results more dangerous delay treatment, and higher mortality. So the additional genes 

are needed to improve the accuracy of prognosis as well as diagnosis.  

Till now the accurate diagnosis of prostate cancer can be confirmed only by biopsy, a surgery on 

removing tissue samples, usually with a needle. Out of question, this kind of invasive diagnosis will 

take up more medical resources as well as making patients suffer from pains.  So identifying 

additional novel prognosis and diagnosis biomarker is so important.  

DNA microarrays enable us inspect thousands of genes simultaneously at the level of mRNA, which 

http://en.wikipedia.org/wiki/Inflammation
http://en.wikipedia.org/wiki/Prostate
http://en.wikipedia.org/wiki/Prostate
http://en.wikipedia.org/wiki/Premalignant_lesion
http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Prostate
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have found particular value in analyzing clustered gene expression, revealing co-regulated gene 

networks 
[4]

 in the past decades. However, as we know, the human genome contains over 20,000 

genes, which is further confirmed by “The International Human Genome Sequencing Consortium” 

researchers in October 2004 that besides the existence of 19,599 protein-coding genes, another 

2,188 DNA segments predicted to be protein-coding genes, but these genes code for more than 

200,000 proteins, not to mention post-translational modifications 
[2]

. From this point of view, RNA 

levels don’t correlate exactly with proteins’. What’s more, it’s protein not DNA that exerts all cellular 

functions in human bodies. So, high-throughput proteomics technologies are urgently demanded for 

advanced cancer research. Demand driving inventions, there are quite a few proteomics tools used 

to diagnose biomarkers for the early detection of cancer.  

 2D-PAGE 

One traditional way called two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is to 

detect biomarkers through changes in serum protein concentration. Unfortunately, this method is 

labour intensive and requires large amounts of samples, which remain a low-throughput proteomic 

analysis approach 
[2].

 

 SELDI-ToF-MS 

A newly developed MS-based tool named “SELDI-ToF-MS” implemented in the ProteinChip system 

from Ciphergen Biosystems Inc. is designed to detect the masses of proteins that are differentially 

expressed in serum on chromatographic array surfaces, but the protein can’t be identified, and 

further experiments are needed to know that protein. Since the identification of the peak masses in 

the classifier is not necessary for making a diagnosis, in the original paper there is no report about 

the identification of these biomarkers. However, such information could lead to better therapeutic 

interventions as well as understanding oncogenesis of prostate cancer. In Table 1-1 two early 

studies by this technique are listed, from which we can find even with the same technology, 

different peaks are recognized as biomarkers to distinguish serum from health and diseased 

individuals, so one drawback is revealed that this technology is very sensitive to experimental 

details.  

In a further study 
[8]

 of these two researches 
[6] [7]

, an iso-form of ApoA-II giving rise to a common 

peak that is specifically over-expressed in prostate cancer. ApoA-II is a protein that is encoded by 

APOA2 gene in human body, which is the second most abundant protein of the high density 

lipoprotein particles. From this point of view, another drawback is exposed that is it’s a labour 

intensive work to identify biomarkers. There are quite many mass peaks but not all of them can be 

identified after tedious and complicated experiments.    

 

Table 1-1 

T w o  p r o s t a t e  c a n c e r  b i o m a r k e r  d e t e c t i o n  s t u d i e s  b y  S E L D I - T o F - M S  

Data set Methods Biomarkers Reference 

167 PCA Decision tree Protein fingerprint pattern of 9 masses, and efforts are [6] 
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77 BPH 

77 HM 

classification under way to purify, identify and characterize these 

protein/peptide biomarkers 

197 PCA 

92 BPH 

96 HM 

Boosting tree 

algorithm 

124 peaks identified in the training set were used to 

construct the classifier, and the protein identification is in 

progress. 

[7] 

PCA: prostate cancer; BPH: benign prostate hyperplasia; HM: healthy men 

 

 Protein microarray 

Protein arrays are composed of hundreds or even thousands of proteins immobilized on a solid 

surface, and there are generally two kinds of protein arrays, named abundance based protein 

microarray and function based protein microarray, which is compared in table 1-2 below.  

 

Table 1-2  

Two types of protein microarray 
[4]

 

Name Feature   Application in prostate cancer research  Example 

Abundance-b

ased protein 

microarray 

Rely heavily on the 

availability of well 

defined and highly 

specific ASRs, and 

currently the most 

available ASRs are 

antibodies 

Miller et al. 
[9]

used capture microarray containing 

184 antibodies identified five proteins (von 

Willebrand Factor, immunoglobulinM, 

Alpha1-antichymotrypsin, Villin and 

immunoglobulinG) that had significantly different 

levels between the prostate cancer samples and 

the controls  

1). Capture 

microarray 

2). 

Reverse-phase 

protein 

microarray 

Function-bas

ed protein 

microarray 

Microarrays with 

immobilized any 

type of functional 

proteins  

The data set of my work comes from Invitrogen’s 

ProtoArray Human Protein Microarrays v4.1 

containing over 8,000 purified human proteins 

immobilized on glass slides 

1). Autoantigen 

array 

2). 

Self-assembling 

protein 

microarrays 

ASRs: analyte-specific reagents, a class of biological molecules which can be used to identify and measure 

the amount of an individual chemical substance in biological specimens 

 

 Difficulties on finding serum biomarkers 

1) Protein concentrations span in a huge range so it’s hard to observe many valuable low-level 

expression biomarkers; 

2) Protein concentrations are changed markedly with stress, disease and treatment. So ideally, 

algorithms employed for serum proteomic profiling should filter out temporal fluctuations in 

the serum proteome which are unrelated to the disease being considered; 

3) Proteins can be modified by cleavage or addition of new function group’s changes that may 

affect detection.   
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1.1. Objective 

When facing gene selection problem, there are two main objectives: 

1) To identify a small set of genes for clinical prognosis purpose; in this circumstance, the smallest 

promising set of genes are selected that can still achieve good predictive performance.  

2) To identify a relative large set of genes that are related to outcomes, and these genes may be 

correlated to each other, but they can shed light on new molecular pathways involved in cancer 

progression.  

In this work, the main goal lies in the first aspect above, i.e. target a few novel prostate 

cancer-associated genes that can be acted as supplementary biomarkers for PSA in the early-stage 

prognosis and screen, and in order to realize this goal, the comparison study between group2 and 

group3, group2 and group4 as well as group3 and group4 are conducted separately.  

 

At the same time, the study on cancer progression pathways is also considered, and besides the group 

comparisons motioned above, group1 is also compared with group5, i.e. control group vs. the most 

serious metastasis group, which may shed more light on the cancer progression.  

1.2. Problem description 

Patients with benign prostatic hyperplasia show same symptoms as malignant disease, and increased 

serum PSA can be present in non-malignant conditions as well. So one of the most challenging 

problems are target novel early-stage prognosis biomarkers between benign samples from low-grade 

ones. However, finding this kind of biomarkers is proving problematic, and over the past decade the 

Food and Drug Administration (FDA) have approved only a few new diagnostic biomarkers, only PSA 

has been discovered to be useful in testing for early cancer. The difficulties may lie in several aspects:  

1) Technique limitations: from genomics to proteomics techniques, there are always based on 

some kind of assumption and existed some drawbacks to overcome 

2) Sample selection limitation 

3) Unavoidable experimental mistakes 

4) Unthinkable complexity of diseases  

Downstream analysis as the last procedure of biomarker discovery takes the responsibility to 

minimize the bad effects derived from the above problems.  

 

As we know, many cancer-associated genes remain to be indentified to clarify the underlying 

molecular mechanisms of cancer progression, especially in the context of complex cellular networks. 

Cancer cells often bear mutations in the genes responsible for various signal-transduction pathways 

leading to proliferation in response to external signals. Many growth factors, their receptors, 

cytoplasmic and nuclear downstream effectors of singling and apoptotic pathways have been 
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identified as oncogenes or tumor-suppressor genes, which are just revealed the tip of the iceberg 

from current knowledge. According to study different stages of tumor profiling, we can get some idea 

on the involved pathways for cancer progression, and at the same time, discover the disease-tailored 

classification methods.  

1.3. Solution approach 

 Normalization 

Protein microarrays are measured with either systematic or random variability, potentially controlled 

by different set of control proteins spread intra- and inter-arrays, which will affect the statistical 

power in the following analysis. The normalization methods for DNA microarrays have been well 

established and described, however, “the assumptions for the analysis of DNA microarray do not 

always translate to protein arrays 
[1]

”. So, some related study on comparing different well-known 

normalization methods from DNA microarray to protein arrays has been done in paper by Andrea 

Sboner et.al 
[1]

,  and in that paper, the authors got the conclusion that RLM (robust linear model) 

normalization performs better than quantile as well as global normalization methods. At the same 

time, the performance didn’t show much difference on distinctive control proteins by RLM.  

In paper [1], the comparisons between different normalization methods are based on the assumption 

that “an effective normalization procedure should reduce the variability in the signal caused by 

systematic artifacts without losing useful biological information”. So, they defined inter- and 

intra-array variation coefficient (CV) to measure the variation between control proteins, and definitely 

both of them should be the smaller the better. Then how to describe the biological difference 

between two groups? The authors adopted the Fisher’s signal-to-noise ratio as the measurement, 

which is inherent in other common methods such as linear discriminate analysis.  

 Intra-array variation coefficient (CV) 

 

Where σ is the standard deviation of control protein spot intensities at the same position across 

different sub-arrays on each array 

 μ is the mean of the protein spot intensities at the same position across different sub-arrays on 

each array 

 Inter-array variation coefficient (CV) 

 

Where σ is the standard deviation of control protein spot intensities at the same position across 

different arrays 
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μ is the mean of the protein spot intensities at the same position across different arrays 

 Fisher’s signal-to-noise ratio 

 

Where ,  are the mean intensities of a normal protein spot in each group 

,  are the corresponding standard deviations for each normal protein spot 

The principle of Fisher’s signal-to-noise ratio can be explained in the following graph 1-1, for 

each normal protein spot in the two groups, the signal intensities will form a distribution as D1 

and D2. A good separation between two groups should maintain the distance between mean 

values of groups as large as possible, i.e. maximize (m1-m2), and at the same time, the 

difference within each group should be as small as possible. In all, this Fisher’s ratio will be the 

larger the better.   

 

Figure 1-1 principle of Fisher’s signal-to-noise ratio 

In my work, I also employ the above three measurements as criteria to determine which 

normalization method is better. Besides the methods used in paper [1], i.e. global, quantile and 

robust linear model, I also apply VSN (variance stabilization normalization) as well as different 

combinations of single method such as VSN with RLM and quantile with RLM.   

Most of normalization methods are based on the assumption that there are just a few biomarkers and 

the array distributions are similar or can be considered as identical.  

 Global normalization 

This strategy is scaled each array with a factor such that the signal medians of all the considered 

arrays are the same as the overall median. So in my work I chose this factor as median (all 

arrays)/median (each array). 

 Quantile normalization 

This method assumes that the distribution of actual signals is the same in all samples and adjusts 
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the observed data accordingly. In one word, the largest signal for each array is replaced by a 

median valued of the largest signals; the second largest signal is replaced by a median value of 

the second largest signals, and so forth. I use the implementation provide by Bioconductor 

package “limma” to do this normalization.  

 Variance stabilization normalization (VSN) 

The vsn method builds upon the fact that the variance of microarray data depends on the signal 

intensity and that a transformation can be found after which the variance is approximately 

constant.  

It is like the logarithm at the upper end of the intensity scale, approximately linear at the lower 

end, and smoothly interpolates in between. The position of the cross-over point and the slope of 

the linear part depend on the error distribution of the data. It also incorporates the estimation 

of "normalization" parameters (shift and scale).  

vsn assumes that less than half of the genes on the arrays is differentially transcribed across the 

experiment. An advantage of vsn-transformation over log-transformation is that vsn works also 

on values that are negative after background subtraction. 

 Robust linear model (RLM) 

Taking into account the intra- and inter-array effects simultaneously, I adopt the RLM introduced 

in paper [1]:  

=  

   Where  is the slide effect of slide i, and for different normalization targets I changes from 1  

 to the maximum slide number;  

 : stands for the sub-array effects, and in this experiments the j varied from 1 to 48; 

 : The effect of protein k, in this work the k is in the range of 1 to different number of control 

 proteins; 

 : The random error part is the residue part of parameter estimation of linear model.  

 

 Gene selection and group classification 

In the gene selection procedure there are two main problems:  

1) The hit gene list is sensitivity to the change of training samples, and in other word, the hit gene 

list is heavily depending on the selected training samples. One way to overcome this problem 

lies in random re-sampling validation on the selected hit gene list. In my work, instead of using 

statistical test once, I use random re-sampling on all samples to get a training set to derive 
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different hit gene lists, and the final reliable hit gene list is the highly overlapping genes of 

iterations.  

2) Using statistical method to obtain hit gene list is the most classical, straightforward as well as 

well-established one, however, ranking genes by univariate statistic is always criticized as 

ignoring the relationships between genes, and the selecting an optimal number of genes is 

another drawbacks of statistical method for gene selection. Recently, more and more research 

are focus on selecting genes in the process of classification, and the same classification method 

is repeatedly applied over a training set, and each time some genes will be eliminated from the 

whole gene set by different criteria which reveals the effect of elimination certain genes. Among 

these kind of methods, the study on gene selection strategy by random forest is very active, as 

well as the gene selection by shrunken centroid and recursive feature elimination. In my work, I 

tried all these three promising methods and using obtained different gene signatures to find the 

enriched pathway in the process of disease progression.  

I work on group pair comparisons between group 2 (benign group), group 3 (low-grade cancer), 

group4 (locally advanced cancer), intending to explore the potential prognostic biomarkers for 

early-stage detection. The first and the most important goal are to target a small set of genes 

performing well on group separation. Then, the comparison between group1 and group5 is conducted 

by the same workflow. The methods I used in two aspects:  

1) The most popular and well-formed methods to derive hit gene list is by statistical method. Either 

by statistical test or correlation analysis, a list of genes with significantly differential intensity will 

be selected. In this work, I use Wilcoxon test as well as calculating correlation coefficients to 

group labels. Considering the reality that on protein microarray the decreasing intensity provides 

useless information, I adopted one-side Wilcoxon test with 0.05 significant level based on the 

assumption that the promising prognosis biomarker will show increasing intensity with the 

disease progression. However, when a large number of tests are made on the same data, 

suppose the significant level is 0.05, a p-value of 0.05 means a 5% probability that the protein’s 

signal in one group is higher than the other by chance alone. In this experiment there are 8302 

proteins are tested, 5% or 415 proteins might be selected as significant ones by chance alone. At 

the same time, most of the normalization methods are based on the assumption that there are 

just a few significant changed genes from array to array, so it means that maybe all of the 

significant proteins derived from the tests are selected by chance only. In order to avoid the 

problem of multiple-test, I designed a four-step statistical method to acquire a reliable hit gene 

list.  

 Step1: carry out one-side (H1: group2<group3) Wilcoxon test on each normal spot protein 

with total number of 8302 on all the 44 samples from group2 and group3; 

 Step2: plot the histogram of p-values from the tests to evaluate many tests simultaneously. If 

the null hypothesis is true, the p-values tend to uniformly distributed on the interval [0, 1]. If 

the null hypothesis is false, i.e. the alternative hypothesis is true, and then the distribution of 

p-values will tend to have smaller values, which looks like graph in figure1-2. 
[17]
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Figure 1-2 a good example of p-values plot 

 Step3: Considering the hit gene list heavily depending on the training samples, I use random 

re-sampling on all the samples, and perform the same one-side Wilcoxon test on the 

randomly selected 90% of samples with 50 times;   

 Step4: Study the genes emerge at least 40 times over 50 iterations as significant one to 

distinct the two groups, which is also selected on all the samples.  

2) Currently more and more research focus on gene selection in the process of classification, such as 

random forest, shrunken centroid, as well as recursive feature elimination. All of these methods 

will return a hit gene list with small or large quantities of genes by minimizing cross-validation 

error rate in the classification process. The application of the derived gene list from these 

methods lies in two ways:  

 Try to find overlaps with the gene list selected by statistical methods. The ultimate prognosis 

gene should show significantly increasing intensity with the disease progression, but the gene 

list selected by classification may contain either intensity-increasing or intensity-decreasing 

genes. So, on the premises of intensity-increasing, we can further confirm the gene selected 

by statistical method.  

 Try to shed light on the disease progression pathways. The gene list selected by the 

classification process is also considered as making the largest contribution to discriminating 

between groups, so it may own huge values for cancer progression pathway analysis. I used a 

four-step strategy to judge the performance of the obtained  gene-signature:  

 Observe the separation of samples on the first two components by PCA 

  As a kind of unsupervised methods, i.e. classify samples without information about    

  group labels, the separation of sample just from the data distribution point of view;  

 Minimum leave-one-out cross-validation error rate by k nearest neighbour classifier (KNN) 

 Minimum leave-one-out cross-validation error rate by linear discriminate analysis (LDA) 

 Minimum leave-one-out cross-validation error rate by support vector machine (SVM) 

After these procedures, verify the selected genes by online annotation database, including swiss-prot, 

GO, KEGG etc.   

 

 Gene selection by random forest 

    How to construct a single classification tree? 

The workflow in figure 1-3 explain how the classification tree constructed clearly, and the 
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last step of “tree pruning” is quite important because each subsequent split has a smaller 

and less representative population with which to work.  Towards the end, unique of 

training records at a particular node display patterns that are peculiar only to those records. 

These patterns can become meaningless and sometimes harmful for prediction if try to 

extend rules based on them to larger populations.  

 

Figure1-3 workflow of classification tree 

 

 How to construct random forests? 

Assuming we know how to construct a single classification tree, the random forest is just a 

collection of trees construct on a subset of features, and the size of subset feature is held 

constant during the forest growing. Each tree is grown to the largest extent possible, and 

pruning is not taken into account.  

At the same time, there is no need for cross-validation or a separate test set because each 

tree is constructed using a different bootstrap sample from the original sample pool with 

replacement.  

To classify a new object from an input, this object put down each of the trees in the forest, 

and each tree will gives a classification decision. The final result is given by voting among 

different classifiers.  

So, random forest is a kind of combined classifier getting final decision by majority voting.  

“Random” here refers to the process to select subset features by random selection, which 

will affect the correlation between two trees and the forest error rate. Study shows that 

increasing the correlation between trees will increase the misclassification error rate.  

 

 How to use random forest selecting genes?  

Random forest returns several measures of variable importance. The most reliable measure 
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is based on the decrease of classification accuracy when values of variable in a node of a 

tree are permuted randomly.  

Before explaining how to select the gene set, the “out-of-bag (OOB) error estimation” 

should be clear first. Since about 1/3 of the samples are left out of the bootstrap sample 

and not used in the construction of the tree, so after the K
th

 tree is set up, just put the 1/3 

left out samples down the K
th

 tree, and in this way, a test set classification is obtained for 

each case in about 1/3 of the trees. At the end of the tun, take j to be the class that got 

most of the votes every time case n was out of bag (oob). The proportion of times that j is 

not equal to the true class of n averaged over all cases is the oob error estimate.  

To select the gene list, we just iteratively fit random forests, and each time built a new 

forest with reduced variable set discarding 20% of the least important variables. After fitting 

all forests, the OOB error rates are examined from all the fitted random forests. The 

solution with the smallest number of genes whose error rate is within u standard errors of 

the minimum error rate of all forests is selected. In this process the variable importance is 

no recalculated.  

 

 Discussion on multiplicity of gene selection by random forest 

Variable selection with microarray data can lead to many solutions that are equally good 

from the prediction rate point of view, but they share few common genes. This problem 

has been emphasized by a lot of research 
[18]

, although this is not serious when the 

objective is prediction, it brings doubt on the biological interpretation and clinical practice.  

 

In paper [15] the study about stability of variable selection by random forest is conducted 

on 10 independent microarray dataset, and the result shows that the stability is quite poor 

and from time to time a lot of different set of gene combination are selected, and the 

overlapping is limited. Does this mean the feature selection by random forest is useless? 

 

Also in paper [15], some metrics of this method is introduced: 

1) By using random forest, the hit gene list is always very small comparing to other 

alternative selection methods in the process of classification, while maintaining good 

prediction performance.  

2) The returned set of genes is not highly correlated as other selection methods. 

 

Based on the above advantages of variable selection by random forest, some applications 

are recommended in paper [15]: 

1) When design of diagnostic tools, and just a small set of features is desirable; 

2)  Surrogate for other gene selection methods returned many correlated gene involving 

in complex processes.  
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Taking into account these cons and pros, I will use this gene selection by random forest as 

the supplementary way for analyzing hit gene list from statistical methods, verifying the one 

or two promising diagnostic bio-markers derived from statistical analysis above.  

 

 Gene selection by shrunken centroid 

The main idea of nearest shrunken centroid is to identify a subset of genes that best 

characterize   each class, and a new observation is classified to the nearest centroid.  

 How to get these “de-noised” centroid? 

In one word, these centroids are achieved using soft-thresholding, so that for each gene, 

class centroids are shrunken towards the overall centroids.    

                  

 Where i ---gene index, for each gene of 8302 

 k --- class index, for each class of group2 or group3 

 --- the mean intensity in class k for gene i 

 --- the mean intensity for each i across all class 

 --- within-class standard deviation for gene i plus a positive constant with the 

same value for genes 

: Δ is the soft-thresholding we are looking for to restrict the 

gene list.  

By changing the value of Δ from small to large, many of the genes are eliminated. What kind 

of gene will be dropped? For a gene i,  is shrunken to zero for all classes, 

then , i.e. gene i shows the same intensity for all classes, which means it 

contributes nothing to the nearest-centroid computation, so this gene will be eliminated as 

useless gene for classification. The Δ is chosen by cross-validation always.  

 How to use shrunken centroid method to get interesting gene list? 

The optimal amount of shrinkage centroid can be determined by cross-validation, and in this 

work I choose the number of genes with the minimum cross-validation error rate.  

 

The experiment design is give in section 2. In section 3, the results of different gene selection 

and classification methods are described. Then, some findings derived from results in section 

3 are discussed in section 4. After the discussion, in section 5 some conclusions are given.  
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1.4. Intended audience 

This report is addressed to several groups of related audiences:  

 Cancer research experimenters devoted to biomarker discovery in laboratory. In this report, 

some potential prognosis genes are selected by statistical and computational methods, which are 

urgently waiting for experiment verification.  

 Beginner of microarray data analysts. In this report, from the technique background, experiment 

design to current popular normalization, machine learning and statistical methods on microarray 

data analysis are explicitly explained step by step, which provides abundance review on 

microarray downstream analysis.  

 Bioinformaticians working on biomarker discovery. The selected potential biomarkers and 

highlight pathways discovered in this report can supply a result comparison resource for their 

own findings.  

 Protein microarray users. Protein microarray as a kind of fresh techniques is quickly emerging as 

a follow-up technology but is still lack of methodology. In this report, from upstream 

experimental design to downstream data analysis main steps are introduced.  

The intended audience are supposed to be familiar with basic idea of molecular biology of cancer as 

well as some knowledge on pattern recognition and statistics. The reference book for the background 

of molecular biology of cancer is recommended as “Molecular biology of cancer --- mechanism, 

targets, and therapeutics” written by Lauren Pecorino, published by Oxford University Press. To know 

more about the background of pattern recognition and statistics, “The elements of statistical learning 

--- data mining, inference, and prediction” authored by Trevor Hastie et.al and published by Springer 

is recommend here.  
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2. Experimental Setting 

Immune Response Biomarker Profiling was performed with one hundred and twenty (120) serum 

samples, all of which were divided into five groups, with 24 each. The reactivity of IgG antibodies in 

the serum against proteins on ProtoArray Human Protein Microarrays containing 8,302 proteins was 

investigated. Figure 2-1 explicitly explains how the serum profiling assay conducted and anti-human 

IgG as one of control protein feature presented on each array was used to identify proper scanning 

parameters and normalization targets. Since arrays profiled with samples 46, 60, 61, 62, 84, 108, 109 

had mean signal intensities that were greater than two standard deviations below the mean for all 

arrays, these samples were excluded from the analysis. So, there are 113 samples left to find 

candidate auto-antigens.  

 Where are the proteins from? 

Human proteins were obtained from Invitrogen’s Ultimate ORF (open reading frame: a portion of an 

organism's genome which contains a sequence of bases that could potentially encode a protein) 

collection or from a Gateway collection of kinase clones developed by Protometrix, and the 

nucleotide sequence of each human protein clone were verified by full length sequencing. By using a 

proprietary high-throughput insect cell expression system, thousands of recombinant human proteins 

were produced in parallel. Along with different sets of control proteins, thousands of purified normal 

proteins are printed on the arrays.   

 How to design replicate experiments? 

A technical replicate involves the multiple labeling or reciprocal labeling of the same sample. The 

purpose of a technical replicate is to control for technical variability within an experiment. The 

technical replicates include replicated elements within a single array. And in this experiment, the 

duplicate spot for each protein on the array belongs to technical replicate.  

A biological replicate involves isolating samples independently from replicate sources (multiple cell 

lines, multiple biopsies, multiple patients, etc). The purpose of a biological replicate is to control for 

biological diversity. In this experiment, 24 biological replicates for each group can be considered as 

biological replicates.  

The set of specific replicate experiments will be used to assess intra- and inter-array variability, 

comparing different normalization strategies as well as eliminate low-quality or questionable array 

elements under the assumptions that:  

1) The reactivity of spotted proteins should ideally remain the same across replicates, so an 

effective normalization procedure should lower the variability.  

2)  The separation of groups of samples should be enhanced by normalization.  



 18 / 38 

 

 

       

                 



 19 / 38 

 

 

 

Figure2-1 Overview of the serum profiling assay  
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 How to define “groups” among samples? 

1) TNM stage:  

Stage Tumor Nodes Metastasis 

Stage I T1a N0 M0 

 

 

Stage II 

T1a N0 M0 

T1b N0 M0 

T1c N0 M0 

T1 N0 M0 

T2 N0 M0 

Stage III T3 N0 M0 

 

Stage IV 

T4 N0 M0 

Any T N1 M0 

Any T Any N M1 

 

Evaluation of tumor: (“T”)  

 

T1 

T1a tumor was incidentally found in less than 5% of prostate tissue resected 

T1b tumor was incidentally found in greater than 5% of prostate tissue resected 

T1c tumor was found in a needle biopsy performed due to an elevated serum PSA 

 

T2 

T2a the tumor is in half or less than half of one of the prostate glands’ two lobes 

T2b the tumor is in more than half of one lobe, but not both 

T2c the tumor is in both lobes 

 

T3 

T3a the tumor has spread through the capsule on one or both sides 

T3b the tumor has invaded one or both seminal vesicles 

T4 T4 the tumor has invaded other nearby structures 

 

Evaluation of regional lymph nodes: (“N”) 

N0 there has been no spread to the regional lymph nodes 

N1 there has been spread to the regional lymph nodes 

 

Evaluation of distance metastasis: (“M”) 

M0 M0 there is no distant metastasis 

 

M1 

M1a the cancer has spread to lymph nodes beyond the regional ones 

M1b the cancer has spread to bone 

M1c the cancer has spread to other sites (regardless of bone involvement) 

 

2) Evaluation of Gleason score: measure how the tissue is different from normal 

tissue by its microscopic appearance 

G1 Gleason2-4 the tumor closely resembles normal tissue 

G2 Gleason5-6 the tumor somewhat resembles normal tissue 

http://en.wikipedia.org/wiki/Needle_biopsy
http://en.wikipedia.org/wiki/Prostate-specific_antigen
http://en.wikipedia.org/wiki/Lobe
http://en.wikipedia.org/wiki/Seminal_vesicle
http://en.wikipedia.org/wiki/Bone
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G3 Gleason7-10 the tumor resembles normal tissue barely or not at all 

 

3) Evaluation of PSA: measure the volume of “prostate specific antigen” by 

blood test.  

PSA is a protein produced by the cells of the prostate gland, which is present in small 

quantities in the serum of normal men, but is often elevated in the presence of prostate 

cancer and in other prostate disorders. 

 

4)  Evaluation of PCaV: measure the “prostate cancer volume” 

In this experiment, the five groups are divided by TNM stage, PSA as well as Gleason score. 

 

Group Name TNM stage Gleason score PSA PCaV 

Group1 healthy   <0.5ng/ml  

Group2 benign  negative prostate biopsy (3,10) 

ng/ml 

 

Group3 local PCa <=T2 <=6 >3 ng/ml <0.5ml 

Group4 local PCa >=T2 >6 >3 ng/ml >0.5ml 

Group5 advanced 

PCa 

>T2    

http://en.wikipedia.org/wiki/Prostate
http://en.wikipedia.org/wiki/Blood_plasma
http://en.wikipedia.org/wiki/Prostate_cancer
http://en.wikipedia.org/wiki/Prostate_cancer
http://en.wikipedia.org/wiki/Prostate_cancer
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3. Results 

Group2 is composed of benign samples and group3 contains the samples with low-grade prostate 

cancer, and the study on group2 and group3 may help to find novel early-stage prognosis biomarker 

as well as shedding light on the pathways involved in early-stage prostate cancer progression. So, I 

use the study strategy introduced in part on group2 vs. group3.  

 

 Normalization comparison and array quality assessment 

Figure 3-1 is the result of normalization methods comparison between group2 and group3, and we 

can easily get four conclusions:  

1) Comparing to the raw data, the other data sets after different kinds of normalization show 

improvement in some degree; 

2) Just as paper [1] explained, RLM (robust linear model) normalization reveals especially excellent 

performance on minimizing variation between intra- and inter-arrays control proteins; at the 

same time, the difference among three  sets of control proteins from IgA , IgG to V5 is not very 

obvious for RLM; 

3) VSN, which is ignored in the paper [1], seems to separate two groups the most apparently with 

the cost of enlarging control spot variation, especially combined with RLM method; 

4) Taking into account all conditions, the method integrate quantile with RLM is the most satisfying, 

i.e. try to minimize the variation between intra- and inter-arrays on all the control proteins 

without losing group separations.  

 

Based on the assumptions on microarray, there are ways to evaluate the quality of normalization 

from intra- to inter- aspects. For the intra-array quality assessment, the most common way is using 

MAplots, M and A are defined as:  

 

 

Where is the intensity of the study array,  is the median value of all the arrays. Typically, we 

expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there 

should be no trend in the mean of M as a function of A.  

For inter-array quality assessment, one way is using array intensity distribution in either boxplot or 

density plot form. Typically, one expects the boxes to have similar size and y position (median). If the 

distribution of an individual array is very different from the others, this may indicate an experimental 

problem. After normalisation, the distributions should be similar. At the same time, the distributions 

of the arrays should have similar shapes and ranges in distribution plots. Arrays whose distributions 

are very different from the others should be considered for possible problems. 
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After the normalization by quantile following RLM, the distribution of signal intensities in each array is 

quite similar, this is verified by boxplot and intensity distribution in figure 3-2. By using the array 

quality control package ”arrayQualityMetrics” in R, we also get the MA plots for each array, and the 

bottom of figure 3-2 gives the first several ones, from which we can find the mass of distribution 

almost concentrated along the M=0 axis. So we can say confidently that the quantile combined with 

RLM normalizaiton is quite effective on this data set.  

     

       

 

Figure 3-1 Normalization methods comparison on group2 vs group3 

(In the left top is the boxplot of intra-array variation coefficient of all the control 
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proteins, the right top is the boxplot of inter-array variation coefficient of all the 

control proteins, the bottom large one is the Fisher’s signal to noise ratio on all the 

normal proteins between group2 vs group3. The labels of the methods through 

three graphs are the same: from raw data to data after [quantile + rlm_IgG] 

normalizaion) 

   

 

 

Figure 3-2 inter- and intra-array quality controls  
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(Top two: intensity distribution of arrays in group2 and group3 after quantile and RLM normalization; 

bottom: MA plot of the first eight arrays in group2, the remaining one also didn’t show abnormal) 

 

 Gene selection by statistical method 

 One-side Wilcoxon test on all 44 samples from group 2 and group 3 

By using one-side Wilcoxon test with 0.05 significant level on the 44 samples, 75 genes show     

significantly different signal intensities between group2 and group3. The gene with the lowest 

p-value obtains the highest AUC (area under curve) of 0.77 in the ROC curve, which means the 

single-gene classifier with the classification error rate of 0.23 in this dataset. Instead of using 

multiple-test, the p-value plot is drawn as figure 3-3. Without uniform distribution, the 

p-values follow normal-like distribution, so we may say the tests are not very satisfying but 

acceptable.  

 
Figure 3-3 plot of p-values from 8302 tests 

 Random re-sampling tests 

In order to overcome the problem of strong sensitivity of hit gene list to the training samples, I 

did one-side Wilcoxon tests on randomly selected 90% of all the samples for 50 times, the result 

is explained in the following three aspects: 

1) There are 44 samples in total, and 50 times iteration is not very large, is it possible that the 

random sampling prefers to certain samples? 

---- I check the selection frequency distribution for each sample. All the samples are 

selected in the range of 39 to 48 out of 50 times, and most of them are chosen at least 40 

times. So the sampling is uniform across the samples. 

 

2)   Does the hit gene list really heavily rely on the training samples selections? 

---- I find there are 825 genes with p-value below 0.05 at least once in 50 times iteration, 

most of which emerge less than 10 times out of 50. The hit gene list size fluctuates from 

time to time, mostly containing less than 100 genes, but sometimes with more than 400 
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genes. So, the hit gene list is quite sensitive to the samples selected as training set.   

 

Since the hit gene lists changed so much, is there any relationship between the gene list from 

re-sampling sets and all the 44 samples? In order to deal with this problem, I draw the plot of 

emerge frequency over 50 times against the p-value derived from the test on all 44 sample, and 

I find these two components shows inverse proportion, i.e. the feature with smaller p-value 

derived from the whole information will also hit most. This is easy to explain, because p-value 

just describe the probability of getting the hypothesis by chance, and a lower p-value means 

more confident to say the hypothesis is true. The additional sampling tests just confirm this 

point, so it also can act as a supplementary method or less stringent t multiple tests when group 

separation is not so clear.  

In order to restrict the set of reliable significant genes, I select the genes emerge at least 40 

times over 50 iterations, which is also the gene set with the lowest p-values on all samples. 

Table 3-1 lists all these 11 genes.  

Table3-1 11 hit genes by statistical method 

Gene.symbol Significant 

times 

p-value ranking on 

44 samples 

p-value on 44 

samples 

Gene1 50 1 0.001 

Gene2 48 2 0.01 

Gene3 47 3 0.013 

Gene4 45 4 0.01392 

Gene5 45 5 0.0158 

Gene6 45 6 0.0158 

Gene7 45 8 0.0178 

Gene8 44 7 0.0158 

Gene9 42 9 0.0189 

Gene10 42 10 0.0212 

Gene11 41 11 0.0238 

 

 Potential diagnostic signature evaluation 

In order to evaluate the classification performance of the above 11-gene prognostic 

signature I used a strategy combined unsupervised method principle component analysis 

(PCA) with different supervised classification methods including linear discriminate 

analysis (LDA), K-nearest neighbour (KNN) as well as support vector machine (SVM), the 

most popular and well-performed ones in microarray data classification, to evaluate the 

effectiveness of these combined genes on classification of samples from gruop2 to group3.  
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 Step1: PCA on all the 8302 features VS. 11 features from statistical test above  

Figure3-4 shows the result of PCA on all features and 11 the most significant features co ming 

from the above four-step statistical test. In the graph, green dots standing for samples from 

group2 and red ones for group3, we can obviously find that the samples are hard to be 

separated based on all features, which is much improved on the selected 11 features. From th e 

bottom graph we can find, samples in group3 are quite well collected but the samples in group2 

spread out in the first two components. As we know, the benign disease shares a lot of same 

symptoms as malignant disease, and at the same time, the benign sta ge can also be divided into 

distinctive sub-stages according to the histological and clinical criteria. As a result, the similarity 

between the group2 and group3 may be quite large, and the selected 11 most significant 

features can successfully describe the group3 gene profile from group2.  

 
Figure3-4 the first two components of PCA on all features VS. 11 significant features  

 Step2: cross-validation error rate evaluation by KNN on all features VS. 11 significant fe atures  

Considering that the sample size in this work is not large enough, and in order to avoid 

information leak taken by random selection of training set, I decided to use cross -validation 

error rate as the evaluation criteria for the significant gene set profile working on group 

separation. The minimum cross-validation error rate by KNN on all features is about 21/44, 

which is no better than random classification and much higher than the error rate on the 

significant 11 features selected by statistical test above with 14/44 misclassifications. The error 

rate of nearly 0.31 for this 11-gene signature however is worse than the single gene classifier 

with gene1 of 0.23 misclassification error rate.  

 Step3: cross-validation error rate evaluation by SVM on all features VS. 11 significant fe atures 

By using the “svm” function in the R e1071 package with linear kernel and C -classification 

SVM-Type, I get the cross-validation error of 12/44 with 6 misclassification error rate each type.  
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 Gene selection by random forest 

I choose the solution with the smallest number of genes whose error rate is within one standard 

errors of the minimum error rate of the forests, i.e. 21 in this circumstance. There are 21 

variables selected as important nodes to do the classification, gene gene1 and gene7 are 

overlapped with the above statistical analysis.  

Then I check the selected genes by correlation coefficient and the p-value of one-side Wilcoxon 

test. The correlation is an alternative common way to select the most disease-related genes, and 

the idea is to calculate each variable vector to the group label. The result shows that:  

1) Instead of using only intensity-ascending features, the algorithm also selected features with 

decreasing intensity; 

2) Correlation coefficient is consistent with p-value, i.e. negative correlation means 

significantly decreasing intensity from group2 to group3, while positive correlation 

coefficient equals to significantly ascending intensity;   

3) All of these 21 genes are high correlated to the group labels, either positive or negative; in 

other words, all of them show either significantly decreasing or increasing intensities from 

group2 to group3. So from this point of view, it makes sense to select these genes from the 

classification procedure.  

Now, I use the four step gene-signature evaluation method to verify the performance of this 

21-gene profile returned from random forest.    

 Step1: PCA on all the 8302 features VS. 21 features from random forest  

From figure3-12 it seems that the samples can be separated on the second components 

in some degree, but it’s hard to find a clear boundary.  

 

Figure 3-5 the first two components of PCA on all 8302 feature VS 21 features from random forest 

 Step2: KNN leave-one-out cross validation error rate evaluation  
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The error rate on the 21 genes selected by random forest is 9/44 with 0.2 

misclassification error rate; this 9/44 error rate is also lower than the single gene1 

classifier. 

 Step3: SVM leave-one-out cross validation evaluation  

By using the “svm” function in the R e1071 package with linear kernel and 

C-classification SVM-Type, I get the cross-validation error of 1/44 with 1 

misclassification only, which is again the best one of all the three classification 

methods. 

The 21-gene profile selected by random forest works better than the 11-gene signature 

derived from the one-side statistical test, which verified the gene selection strategy by random 

forest is an effective and promising way.  

 Gene selection by shrunken centroid 

The number of genes around 11 is corresponding to the minimum cross-validation error rate, and the 

error rate keeps stable as the gene number continuing to decreasing. In order to identify relevant 

genes for subsequent study, as well as verification of the above discovered genes, I chose the larger 

gene size with 11 genes, i.e. less stringent threshold. Among the selected 11 genes, gene1 is hit again, 

and it’s the only one overlapped with hit gene list by statistical method above.  

Now let’s have a look at these selected genes by correlation coefficient and the p-value of one-side 

Wilcoxon test. From a series of graph we can get the following three conclusions:  

1) Instead of using only intensity-ascending features, the algorithm also selected features with 

decreasing intensity; but the intensity-ascending ones are predominant.  

2) Correlation coefficient is consistent with p-value, i.e. negative correlation means significantly 

decreasing intensity from group2 to group3, while positive correlation coefficient equals to 

significantly ascending intensity;  

3) All of these 11 genes are high correlated to the group labels, either positive or negative; in other 

words, all of them show either significantly decreasing or increasing intensities from group2 to 

group3. So from this point of view, it makes sense to select these genes from the classification 

procedure.  

 Step1: PCA on all the 8302 features VS. 11 features from shrunken centroid  

From figure 3-6, it seems that a boundary across the second component can be found to 

separate these samples, and comparing to well-mixed scenario, the 11-gene profile derived 

from shrunken centroid seems catch some common characteristics between group2 and 

group3.  

 Step2: KNN leave-one-out cross validation error rate evaluation 
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The minimum cross-validation error rate by KNN on all features is about 21/44, which is the 

same as above parts and much higher than the error rate on the 11 features with 14/44.  

 Step3: SVM leave-one-out cross validation error rate evaluation 

By using the “svm” function in the R e1071 package with linear kernel and C -classification 

SVM-Type, I get the cross-validation error of 5/44 with 4 misclassifications from group2 to 

group3, and 1 misclassification from group3 to gruop2.  

 

Figure 3-6 the first two components of PCA on all 8302 feature VS 11 features from shrunken centroid 

 Enrichment pathway analysis 

Now there are three hit gene list derived from different gene selection strategies, i.e. 

statistical test, random forest as well as shrunken centroid separately. Intuitively just gene1 

emerges in all these three lists. In order to shed light on the pathways related to the prostate 

cancer progression, I have a deeper look at these three hit gene list in the online annotation 

database swiss-prot, to check the main biological functions and involved pathways.  

The result shows that different hit gene lists cover same pathways related the cell cycle 

regulator, and signal transduction pathway exerting important function to transfer signal from 

out cellular to nucleus, although there are so few gene overlapped by these gene list.  
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4. Discussion 

Microarray data analysis as a kind of popular and challenging downstream analysis is always 

demanding and attracting great efforts for bioinformatians. Now the well-accepted workflow for 

microarray data analysis follows several steps:  

1) Normalization; 

2) Differential gene selection, and the most common way is by statistical methods, like by using   

 p-value as well as the correlation coefficients. But nowadays criticism points to this classical 

 method because more and more studies found that the hit gene list is always heavily  

 depending on the training samples, especially microarray always limited by not too many 

 training samples. At the same time, the statistical methods always consider the effects of 

 single gene contributed to the result, which obviously disobey the fact of strong relationships 

 among genes. Besides, the randomly selected “optimal” gene set is another critical problem 

 can’t be ignored. Recently, the gene selection strategy related to classification is quite striking 

 because it may overcome the problems coming from statistical methods, and the random 

 forest, shrunken centroid as well as the recursive feature elimination by SVM are three 

 activated methods among a lot of counterparts. In my study, I adopted both the statistical 

 methods as well the classification strategy to obtain different hit gene list.      

3) After we get the hit gene list, the following step is always related to pathway analysis as well as 

 result verification. In my work, I combined the three different hit gene lists derived from 

 distinctive methods to analyze the enriched pathways, which may shed light on the prostate 

 cancer progression.  

In this work, the 120 samples are divided into five groups according to different disease stages, and 

one of the main purposes of this study is to detect well-performed prognosis biomarkers just as the 

well-established PSA for prostate cancer detection in the early stage. So, I use the analysis strategy on 

group2 (benign sample) vs. group3 (low-grade disease) and try to get idea on early-stage progression. 

Since on protein microarray, the decreasing signal is always considered as noise providing little 

information, from this point of view, we just focus on the genes with increasing intensity with the 

development of disease. The other aim of this study may concentrate on clarifying the underlying 

molecular mechanisms of cancer progression, especially in the context of complex cellular networks, 

in other words, we want to find disease related pathways in different stages, so I also utilized the 

same strategy from normalization to enrichment pathway analyzing between group2 vs. group3, 

group3 vs. group4, as well as gropu1 vs. group5, and from these four group comparison I found that:  

i. Quantile followed by RLM is a stable and good-performed combination for protein 

microarray normalization 

From all of these four group comparisons, the quantile + RLM always show low variability on 

control proteins without losing the sample separation on the normal proteins. RLM is a kind of 
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normalization taking both intra- and inter-array normalization at the same time, so maybe this is 

the reason why this combination obtain the best performance.  

 

ii. Gene1 is a very promising biomarker for discrimination of benign from low-grade disease.  

From the group comparison between group2 vs. group3 we can find gene1 is hit by three 

different methods. From the literature, we my easily find that gene1 is also quite active as 

the biomarker in different studies. 

 

iii. Gene1-related K pathway is important in the prostate cancer development 

From the enrichment pathway analysis in four group comparisons I find gene1-related K 

pathway is important in the prostate cancer development.  

As we know, unregulated growth is a quintessential characteristic of cancer, and often an 

extracellular growth factor stimulates cell growth by transmitting a signal into the cell, and 

then to the nucleus. Figure 4-1 illustrated one example of epidermal growth factor 

signalling pathway about epidermal growth factor signalling (EGF), by which a signal from a 

growth factor outside the cell entering the nucleus where gene expression is regulated. The 

whole process can be divided into several steps:  

1) Binding of the growth factor to the receptor 

2) Receptor dimerization 

3) Autophosphorylation 

4) Activation of intracellular transducers, from RAS (GTP binding proteins) to a cascade of 

serine/threonine kinases 

5) Regulation of transcription factors for gene expression.  

 

In this well-established growth factor signaling pathway we can easily find RAS proteins as 

well as MAPK signaling pathway together, which can be supported by different hit gene list 

derived from this study. 

From the annotation for gene1 we can find it involved in positive regulation of MAP kinase 

activity and MAPKKK cascade. From the literature, a previous study showed that gene1 

expression is negatively associated with p-MAPK in cholangiocarcinoma, suggesting that K 

pathways may be involved in gene1-induced tumorigenesis at the first time. 
[26]    

Recently, 

another showed that gene1-dependent ERK1/2 and p38 MAPK activation is required for 

colorectal cancer cell proliferation in vitro, and in vivo, which further shed light on the 

linkage of gene1 and K pathways in the regulation of cancer proliferation. 
[21]

  

 

From the K pathway recorded in KEGG database, we can find a geneT-dependent K 

pathways, considering that geneT has the similar function as gene1, there may be another 

proof for the verification of this pathway.  

 

http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0043406
http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0043406
http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0043406
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Figure 4-1 the signal transduction pathway of epidermal growth factor (EGF) 
[27] 

 

iv. Angiogenesis 

As one of the hallmarks of cancer 
[27]

, cancer cells intend to induce the formation of new 

blood vessels to supply more oxygen and nutrients for unlimited cell proliferation. So me 

genes derived from comparison between group2 and group3, group3 and group4 related to 

angiogenesis are also hit.  
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5. Conclusions 

1. The protein microarray analyzing strategy introduced in this study combining different 

 well-established methods works well on normalization, obtaining hit gene list as well as the 

 enrichment pathway analysis procedures.  

2. In this work, different normalization methods are compared, which may provide insight for 

 further protein microarray study.  

3. Gene1-related K pathway may play a very important role in the prostate cancer  progression, 

 which is valuable for further experiment verification.  

4. The hit genes are mostly related to signal transduction, cell cycle, or metabolic process, 

 which is consistent with the known mechanism of cancer disease.   

5. We recommend a workflow for immune response protein microarray analysis follows such a 

 strategy:  

 

 

 

 

 

 

 

 

 

Normalization:  

Quantile normalization 

+ 

Robust linear model 

normalization 

Random re-sampling 

statistical test on 90% 

of all samples 

Random Forest 

 

Shrunken centroid 

Hit gene list2 Hit gene list1 Hit gene list3 

Overlapping gene: 

potential biomarker, 

requiring further upstream 

analysis 

Overlapping 

pathways: highly 

relevant to disease 

progression 
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