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1 Preface

This report comes with a number of supplementary files:

1. Java program
This is the program used for the numerical simulations.

2. Java program user manual
This is the manual for the program

3. Simulation save-files
All save-files have the extension .params. These save-files can be loaded into the program.
Some of the more interesting settings were stored in a file for the interested reader to
explore.

4. Mathematica notebooks
Some of the calculations were performed using Mathematica. The notebooks containing
these calculations are provided. Hard copies of the notebooks can also be found in appendix
B.

To keep this document readable, derivations of most results are not included in the main doc-
ument. The derivations of selected equations and results can be found in appendix A. Those
results which have derivations in this appendix are indicated by an asterisk behind the equation
number.
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2 Introduction

As the human population grows, the impact it has on the natural environment increases. Animal
habitats become fragmented and species may become endangered. But we as humans are in
the unique position of being able to influence our own environmental impact. For example we
can build wildlife-bridges across highways, or use radar signals to steer birds away from wind
turbines. We can plan the expansion of our own habitat, cities and infrastructure, in such a way
as to minimize the negative effect on the surrounding wildlife habitats. In order to make the right
planning decisions, it is important to know how and to what extent various factors influence the
population dynamics of ecosystems and what the interaction between these factors is. Besides
descriptive, statistical studies, the development of mechanistic models is of great importance
for the understanding of these effects. However, existing mechanistic models are often rather
simplistic and/or do not take spatial effects into account. Advanced modelling techniques as well
as the availability of computer simulation and computer algebra systems make it possible to
analyze more realistic, and complex, dynamical systems in ecology.

We construct an ordinary differential equations model of a one-predator-two-prey dynamical
system, and derive equilibrium points and their stability analytically. We then extend the model,
to one in which multiple such predator prey systems are connected to each other, that is, predator
and/or prey are able to migrate between a small number of habitat patches. Based on numerical
simulations we study the various effects the spatial aspect has on the overall dynamics of the
system with a focus on phenomena that cannot occur in single patch dynamics, e.g. the effect of
the creation of safe havens for an endangered prey species on the stability of its population.
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3 Background

One of the earliest, and perhaps the most well-known examples of a predator-prey system is
the Lotka-Volterra model. This model was independently developed by Alfred Lotka [3] and
Vito Volterra [5][4] in 1925 and 1926 respectively. The model consists of two coupled non-linear
differential equations which describe the dynamics of two interacting species, where one is the
prey and one the predator:

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx).

Here x denotes the prey, and y the predator. The prey is assumed to have an unlimited food
supply and will grow exponentially unless they are subject to predation. This exponential growth
is represented by the term αx in the equation for the prey. The term −βyx represents the
predation. This predation is assumed to be proportional to the rate at which predator and prey
meet.

In the equation for the predator, the term δxy represents the growth in the predator population.
Note that this term is similar to the predation term of the prey, apart from a constant factor.
The term γy represent the decrease in predator population due to natural death or emigration.
This leads to an exponential decay in the predator population in the absence of prey.

When we analyze this system, we find that it has two equilibrium points, one in which both
predator and prey populations are zero, and one in which both are nonzero, and predator and prey
coexist in equilibrium. The Lotka-Volterra system also yields the periodic cycles often observed
in nature, where the populations of predator and prey oscillate with a certain regularity, and the
peaks of the predator population lag behind the peaks in prey population (figure 3.1).

Figure 3.1: Predator-prey cycles occurring in the Lotka-Volterra model
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While this simple model is able to capture some key properties of real predator-prey systems, it
has a number of shortcomings. For instance, imagine a system in which there are a number of prey,
but no predators. The population of the prey would now increase exponentially without limit.
This would obviously not occur in nature; there is a limit on the maximum prey population an
environment can support. Furthermore, the assumption that the predation rate is proportional
to the encounter rate of predator and prey is also not a very realistic one. Predators have a
maximum number of prey they can consume in a given time.

The Lotka-Volterra models were later extended in a great number of ways by many different
researches. Most notably by C.S. Holling, who introduced the concept of a functional response
[1] [2]. A functional response describes how the consumption rate of the predator varies with the
abundance of the prey. Holling described three different types of functional response, which are
depicted in figure 3.2.

Figure 3.2: Three types of functional responses described by C.S. Holling

A type I functional response is characterized by a linear increase in consumption with increased
prey density, with possibly a maximum, after which the intake rate of the predator remains
constant despite increased prey populations. A type II functional response exhibits a decelerating
intake rate as the prey population increases, until a saturation level is reached, then a further
increase in prey population does not lead to a higher consumption rate by the predator. This
is motivated by the idea that predators are limited in their capacity to process food; they need
time to capture and digest the prey for instance. A type III functional response is similar to a
type II, in that saturation occurs, but at low prey levels a accelerating intake rate is displayed.

The use of a functional response makes the predator prey system a bit more realistic. To address
the problem of unlimited prey growth in absence of predators, we can use a logistic growth
model instead of the exponential growth employed in the Lotka-Volterra model. A logistic growth
function is of the form:
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dx

dt
= rx(1− x

k
) (3.1)

In absence of predators, the prey population will increase up to a maximum, referred to as the
carrying capacity, k. This carrying capacity is an indication of the resources available in the
environment to sustain the prey population.

A great number of additional changes may be made to the system. For instance we could extend
the system to include several prey or predator species. Then we could also introduce interactions,
for example competition, between two predators species or between two prey species. Or we could
explicitly model the available resources of the prey (e.g. plant life). The exact model we employ
also depends on the system we are attempting to model, different predator or prey species may
exhibit different characteristics.

In the next section we construct our own predator-prey system, involving a single predator and
two prey species. We then analyze this system, both analytically and numerically, and then
introduce a spatial component to the model, by creating a network of predator-prey systems,
between which the predator and/or prey are able to travel.
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4 Predator-Prey System

The predator-prey system we developed consists of one predator species, denoted by y, and two
prey species, denoted by x and z. Each of the prey species have a certain energy content, E,
which the predator can use to sustain itself and produce offspring. The prey also have associated
with them a certain handling time, h, which denotes the time the predator needs for capturing,
killing, eating and digesting the prey. The profitability of the prey item is now defined as the
ratio E/h; the energy intake from consuming the prey divided by the amount of time needed to
obtain that energy from the prey.

We define prey x as being the more profitable prey. In other words, we require that

Ex
hx

>
Ez
hz
. (4.1)

Furthermore, prey is encountered at a rate of λ.

4.1 Optimal Foraging

Optimal foraging theory states that organisms forage (or hunt) in such a way as to maximize
their energy intake rate. Since x is the more profitable prey, the predator will prefer x over z
wherever possible.
If our predator consumes only prey x, and not z, the energy intake per unit time is given by:

T · λx · Ex
T + T · λx · hx

=
Energy gained

Time spent hunting + time spent handling the prey
,

where T is the time spent foraging (hunting). Since T appears in every factor of the equation, it
can be simplified as:

λxEx
1 + λxhx

(4.2)

Now we compare this to the situation where prey z is included in the predator’s diet. The energy
intake per unit time then becomes:

TλxEx + TλzEz
T + Tλxhx + Tλzhz

=
λxEx + λzEz

1 + λxhx + λzhz
(4.3)

According to the optimal foraging theory, the predator will only include prey z in its diet if this
leads to an increase in the energy intake rate. For example it may be that prey z has such a
high handling time, that it is more efficient to ignore prey z when it is encountered, and continue
hunting for prey x. Only when prey x is very scarce (and thus would take a long time to find),
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would it be beneficial to consume z.

In order for the predator to include prey z in its diet, the following inequality must hold:

Energy intake rate without z < Energy intake rate when z is included

⇒ λxEx
1 + λxhx

<
λxEx + λzEz

1 + λxhx + λzhz
(4.4)

which leads to the requirement:

λxEx
1 + λxhx

<
Ez
hz
. (4.5*)

If this requirement holds, prey z is included in the diet, and otherwise it is not. Notice that
whether or not z is consumed depends only on the encounter rate of the primary prey x, not
on the encounter rate of prey z itself. Thus there is a threshold value of the encounter rate λx,
under which the predator will include prey z in their diet, and above which they will not.

We can incorporate this threshold into our description of the energy intake rate of the predator:

λxEx + δλzEz
1 + λxhx + δλzhz

, (4.6)

where

δ =


1 if

λxEx
1 + λxhx

<
Ez
hz

0 otherwise

4.2 Predator Dynamics

Predators consume the prey, and use the energy to create offspring. The predators are modelled
to have a type II functional response. A functional response describes how the consumption rate
of an individual predator changes with respect to prey density. A type II functional response
is characterized by a decelerating consumption rate with increased prey density, until finally it
becomes constant at a saturation point (see figure 4.1). This follows from the assumption that
the consumer is limited by its capacity to process food.
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Figure 4.1: A type II functional response

This type of functional response can be described by the following (Holling’s disk) equation:

f(x) =
ax

1 + ahxx
. (4.7)

Here hx is the handling time, and a is the attack rate. The attack rate, also referred to as the
searching efficiency, is the number of prey encountered by the predator per unit of prey density.

In our system, the predator also has alternative prey options, so we alter equation 4.7 to include
prey z:

f(x) =
ax+ δaz

1 + ahxx+ δahzz
. (4.8)

Here we have assumed the attack rate, a, is equal for both prey types. That is, we take the
attack rate to be a characteristic of the landscape; a measure of the ability to take cover in the
landscape and escape the predators.

The change in predator population size per unit time can be described with the following differ-
ential equation.

dy

dt
= −µy + γx

ax

1 + ahxx+ δahzz
y + γz

δaz

1 + ahxx+ δahzz
y.

Here µ is the mortality rate. γx and γz are constants describing the rate at which prey (energy)
are converted into offspring. The first term describes predator death, proportional only to its
own population size. The second term describes the increase in predator population due to the
consumption of prey x, and the last term describes the increase in population size due to the
consumption of prey z.

This can be rewritten more compactly as:

dy

dt
= y

[
−µ+

a(γxx+ δγzz)

1 + a(hxx+ δhzz)

]
. (4.9)
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If we assume that the prey-into-offspring conversion rates γx and γz depend only of the amount
of energy gained from the prey, we can say that

γx =γEx (4.10)

γz =γEz. (4.11)

We can also relate the encounter rates λx and λz with the attack rate a through

λx =ax (4.12)

λz =az. (4.13)

Using these relations, we can rewrite our definition of δ in terms of a instead of λx and λz, and
in terms of γx and γz instead of Ex and Ez, as:

δ =


1 if

aγxx

1 + ahxx
<
γz
hz

0 otherwise

(4.14)

We can also use relations 4.10 and 4.11 to rewrite the requirement that x be the primary prey
(requirement 4.1), in terms of γx and γz instead of the energy values of the two prey:

γx
hx

>
γz
hz

(4.15)

4.3 Prey Dynamics

In the absence of predators, the prey will exhibit a logistic growth:

dx

dt
= rxx(1− x

kx
). (4.16)

Here kx is the carrying capacity, and rx is the growth (birth) rate of prey x. But in the presence
of predators, prey numbers will decrease proportional to the number of predators, and according
to the functional response of the predators, yielding the following full equation for the prey:

dx

dt
= rxx(1− x

kx
)− ax

1 + ahxx+ δahzz
y. (4.17)

The expression for z is completely analogous to that of x, except for the fact that prey z is not
always predated on by y:

dz

dt
= rzz(1−

z

kz
)− δaz

1 + ahxx+ δahzz
y. (4.18)

We assume that there is a virtually unlimited supply of alternative resource z, which we model
by setting kz � kx.
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4.4 Change in Diet

When will the predator include the alternative prey, z, in its diet? In other words, when does δ
change from 0 to 1? From the definition of δ,

δ =


1 if

aγxx

1 + ahxx
<
γz
hz

0 otherwise

, (4.19)

we can see that this only depends on the abundance of prey x, not on the abundance of prey z.

If the density of prey x falls below a certain threshold, the predator will include prey z in its
diet. We now determine this threshold by determining when δ will have a value of 1:

aγxx

1 + ahxx
<
γz
hz

⇔ x <
1

a(hz
γx
γz
− hx)

, (4.20*)

and zero otherwise. This means that we can define δ in terms of the density of prey x:

δ =


1 if x ≤ 1

a

(
hz
γx
γz
− hx

)
0 otherwise

(4.21)

4.5 Full System

Putting everything together gives us the following full description of our predator-prey system:
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dy

dt
= y

[
−µ+

a(γxx+ δγzz)

1 + a(hxx+ δhzz)

]

dx

dt
= x

[
rx(1− x

kx
)− ay

1 + a(hxx+ δhzz)

]

dz

dt
= z

[
rz(1−

z

kz
)− δay

1 + a(hxx+ δhzz)

]

δ =


1 if x ≤ 1

a

(
hz
γx
γz
− hx

)
0 otherwise

γx
hx

>
γz
hz

kz � kx

a = attack rate

h = handling time

r = growth rate

k = carrying capacity

µ = mortality rate

γ = prey-to-offspring conversion rate

a, h, r, k, µ, γ ≥ 0

(4.22)
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5 Analysis

To analyze this system, we will first look at the situation where the preferred prey x is extinct
(section 5.1), and then study the dynamics when we add prey x to the system (section 5.2).

5.1 System Without Prey x

If the primary prey is extinct (x = 0), δ will be 1. This leads to the following description of the
system in absence of prey x:

dy

dt
= y

[
−µ+

aγzz

1 + ahzz

]
(5.1)

dz

dt
= z

[
rz(1−

z

kz
)− ay

1 + ahzz

]
In order to determine the equilibria of this system, we determine the zero-isoclines (regions of

zero growth) for predator and prey. The prey zero-isocline is obtained by setting
dz

dt
= 0 and the

predator zero-isocline is found by setting
dy

dt
= 0. This leads to the following zero-isoclines:

Prey zero-isoclines:

dz

dt
= 0⇒ y =

rz
a

(
1− z

kz

)
(1 + ahzz) (a)

z = 0 (b)

Predator zero-isoclines:

dy

dt
= 0⇒ z =

µ

a (γz − µhz)
(c)

y = 0 (d)

(5.2*)

Note that the predator isocline 5.2*c, is a constant, and independent of predator numbers. The
prey zero-isocline 5.2*a describes a truncated parabola. Figure 5.1 shows these isoclines in y− z
phase space.
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Figure 5.1: Zero-isoclines plotted in phase space. Prey isoclines are given in red (a and b(, and
predator isoclines in blue (c and d).

Equilibria

Wherever a predator isocline and a prey isocline intersect we have an equilibrium point, as both
predator and prey population densities remain stable over time.

The intersection of isoclines b and d gives us the trivial fixed point (y, z) = (0, 0), which is the
situation where both species have become extinct. The intersection of isoclines a and d give us
two fixed points. The first is

(y, z) = (0,− 1

ahz
), (5.3*)

which is infeasible since it requires a negative prey population z. The second fixed point is

(y, z) = (0, kz), (5.4*)

which describes the situation where the predator has become extinct and prey z is able to grow
to its carrying capacity kz. Isoclines b and c never intersect, so the only remaining fixed point is
the one given by the intersection of isoclines a and c.

This intersection between the nontrivial zero-isoclines of predator and prey (c and a respectively),
only produces a feasible fixed point when the predator zero-isocline is located between 0 and kz
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(see Figure 5.1). If this is not the case, the intersection occurs in an area where either the predator
or prey densities (or both) are negative, which obviously cannot occur in nature. From 5.2*c we
can determine that the predator isocline is only positive if it holds that:

µ <
γz
hz

(5.5)

The expression on the right-hand side of this inequality denotes the profitability of the prey.
This requirement thus states that the death rate should be smaller than the rate at which new
offspring are produced from the consumption of prey. If the predators would die at a higher rate
than that they reproduce, their numbers would always decline.

The prey isocline falls to the left of kz iff:

kz >
µ

a (γz − µhz)
. (5.6)

Whenever both 5.5 and 5.6 are satisfied, then there is an additional, non-trivial, fixed point,
namely the one where isoclines 5.2*a and 5.2*c intersect. Since the predators isocline is a vertical
line, we know that the value of z at the equilibrium point, ẑ, is:

ẑ =
µ

a(γz − µhz)

Plugging this into the equation for the prey’s isocline gives us the value of y at the equilibrium
point (ŷ):

ŷ =
rz
a

(
1− µ

akz(γz − µhz)

)(
1 +

µhz
γz − µhz

)
(5.7)

In summary, the equilibria of our system are given by:

trivial:

(ŷ, ẑ) = (0, 0)

(ŷ, ẑ) = (0, kz)

nontrivial:

(ŷ, ẑ) with

ŷ =
rz
a

(
1− µ

akz(γz − µhz)

)(
1 +

µhz
γz − µhz

)
ẑ =

µ

a(γz − µhz)
which exists iff

µ <
γz
hz

and kz >
µ

a (γz − µhz)

(5.8)
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5.1.1 Stability of Fixed Points

We now want to find out if these fixed points are stable or unstable. If a fixed point is unstable,
small perturbations from the fixed point can cause the system to move away from the fixed point.
If a fixed point is stable, the system will return to it after it has undergone small perturbations.
First we will give a graphical argument for the stability of the fixed points, which we will later
prove analytically.

Graphical Approach

We know that at the fixed points, the predator and prey numbers remain the same over time,
but what happens if we are not at a fixed point? If dz

dt < 0, the prey population will decline, and

if dz
dt > 0 it will grow. We can determine that there is a positive growth if

y <
rz
a

(
1− z

kz

)
(1 + ahzz), (5.9)

which corresponds to the area under the parabola. In figure 5.2, the shaded area indicates the
region of growth for the prey, and the unshaded area indicates the area of decline.

Figure 5.2: Regions of growth and decline of the prey.

The arrows indicate this growth and decline in prey numbers. From the arrows we can see that for
points near the right half of the parabola, the system always moves toward the isocline, whereas
for points near the left half of the parabola, the system always moves away from the isocline.
This leads us to believe that if the nontrivial equilibrium falls to the right of the peak of the prey
zero-isocline, it will be stable, and that if the fixed point falls to the left of the peak, it will be
unstable. We can determine the peak of the prey zero-isocline to be located at:

z =
1

2

(
kz −

1

ahz

)
(5.10*)

18



But for the full dynamics, we also need to consider the area of growth or decline of the predator.
We can determine that there is positive predator growth, dy

dt > 0, if

z >
µ

a (γz − µhz)
. (5.11)

(Assuming that the predator isocline is positive, i.e. µ < γz
hz

.) In figure 5.3 this region of growth
is indicated by a red shading.

Figure 5.3

The arrows again indicate the direction in which the system moves in the different regions. Near
the point where the two isoclines meet, the system spirals around the fixed point. If the fixed
point falls on the right half of the parabola, we suspect the system is attracted to the (stable)
fixed point, and if the fixed point is located on the left half of the parabola, we suspect it is
repelled by the (unstable) fixed point. To see if this is indeed what happens, we plot trajectories
for both cases:
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(a) Isoclines intersect in the right half of the parabola (b) Isoclines intersect in the left half of the
parabola

Figure 5.4: Examples of trajectories

From figure 5.4, we see that for these example trajectories, it is indeed the case that the fixed
point located on the right half of the parabola is attractive (stable), and the fixed point located
on the left half is repellent (unstable). In the next section, we will prove analytically that this is
also true in general.

Let us have a look at what happens if the predator isocline is negative, or falls to the right of kz.
In this case there is no (realistic) nontrivial fixed point, since at the intersection either the prey
or the predator or both have negative population numbers. If the predator isocline is negative,
there is positive predator growth only if:

z <
µ

a(γz − µhz)
(5.12)

Since the right side of this inequality is a negative number, this means that for realistic situations,
the predator population is always declining. This means the predator will become extinct, and
the prey will grow towards carrying capacity. The fixed point (0, kz) is now stable, and the fixed
point (0, 0) is a saddle point (unstable). Small increase in y will cause the system to go back to
the fixed point, but a small increase in z will cause the system to move away from the origin, to
eventually end up in the point (0, kz).

If the predator isocline falls to the right of the carrying capacity kz, i.e.

kz <
µ

a (γz − µhz)
(5.13)

we again have a situation for which in all feasible situations (z and y nonnegative and z < kz ),
the predator numbers will decline, implying that again the predator will always become extinct
eventually, and that the fixed point (0, 0) is unstable, while the fixed point (0, kz) is stable.
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Analytical Approach

We would now like to give analytical proof for the conditions for stability of the fixed points. To
this end we perform an eigenvalue analysis. Recall that our system is given by:

dy

dt
= y

[
−µ+

aγzz

1 + ahzz

]
(5.14)

dz

dt
= z

[
rz(1−

z

kz
)− ay

1 + ahzz

]
,

which we can write in a more general form as:

dy

dt
= ygy(y, z) (5.15)

dz

dt
= zgz(y, z). (5.16)

Here gy(y, z) and gz(y, z) correspond to the expressions in the square brackets of 5.14.

In order to investigate the stability of the equilibria, we look at the Jacobian of this system. The
Jacobian is given by:

J =

y
dgy
dy

+ gy y
dgy
dz

z
dgz
dy

z
dgz
dz

+ gz

 , (5.17)

Stability of the nontrivial fixed point
We can use equations 5.15 and 5.16 to simplify the Jacobian given in 5.17. Equation 5.15 implies
y = 0 ∨ gy(y, z) = 0, and since we are looking at the nontrivial equilibria, we say y is nonzero,
which means that gy(y, z) must be zero. In the same manner we get that gz(y, z) = 0. Plugging
this into the expression for the Jacobian gives us:

J =

y
dgy
dy

y
dgy
dz

z
dgz
dy

z
dgz
dz

 .
Computing the remaining partial derivatives leads to:

J =


0 y

(
aγz

1 + ahzz
− γza

2hzz

(1 + ahzz)2

)

− az

1 + ahzz
z

(
− rz
kz

+
a2hzy

(1 + ahzz)2

)
 , (5.18*)

Using the equation
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y =
rz
a

(1− z

kz
)(1 + ahzz) (5.19)

for equilibrium points, we can further simplify the Jacobian as follows:

J =


0 γzrz(1− z

kz
)− γzahzrzz(1− z

kz
)

1+ahzz

− az
1+ahzz

z
(
− rz
kz

+
ahzrz(1− z

kz
)

1+ahzz

)
 . (5.20*)

Finding the eigenvalues of a 2× 2 Jacobian, involves solving the characteristic equation,

λ2 − Tr(J)λ+ det(J) = 0, (5.21)

for λ. The solutions to this equation give us the eigenvalues. The stability of a fixed point can
be determined in general from the signs of the eigenvalues as follows:

• All eigenvalues negative → fixed point is stable (attractor)

• All eigenvalues positive → fixed point is unstable (repeller)

• There are both positive and negative eigenvalues → fixed point is a saddle point.

The trace is simply the sum of the eigenvalues, while the determinant is the product of the
eigenvalues. For a 2 × 2 Jacobian, we can also use the signs of the trace and determinant to
classify the stability of fixed points:

• Trace negative, determinant positive → fixed point is stable (attractor)

• Trace positive, determinant positive → fixed point is unstable (repeller)

• Determinant negative → fixed point is a saddle point.

We would now like to determine the conditions for the stability of the nontrivial equilibrium
point (ŷ, ẑ) in our system.

Requiring that the determinant be positive leads to the requirement that

0 < ẑ < kz, (5.22*)

which exactly describes the situation for which the nontrivial fixed point is biologically realistic
(both predator and prey numbers nonnegative). This requirement is met if it holds that:

µ <
γz
hz

∧ kz >
µ

a(γz − µhz)
. (5.23*)
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This describes the situation for which the nontrivial fixed point exists (see equations 5.5 and
5.6). Thus, whenever the fixed point exists, the determinant is positive. This means we only need
to worry about the trace when determining the stability of the fixed point.

If we require that the trace be negative gives us the additional requirement that:

ẑ >
1

2

(
kz −

1

ahz

)
. (5.24*)

Recall that the right side of expression 5.24*, is exactly the location of the peak of the prey zero-
isocline, zp, in the phase portrait. This means that, as we suspected from the graphical approach,
the equilibrium is stable if the fixed point falls to the right of the peak (i.e. zp < ẑ < kz). If the
the fixed point falls to the left of the peak, that is if 0 < ẑ < zp, the trace is positive, which
means the fixed point is unstable. We can show that requirement 5.24* is met if it holds that:

kz <
γz + µhz

ahz(γz − µhz)
(5.25*)

Stability of the trivial fixed points
What of the stability of the trivial fixed points? We again start with the Jacobian,

J =

y
dgy
dy

+ gy y
dgy
dz

z
dgz
dy

z
dgz
dz

+ gz

 . (5.26)

At the trivial fixed point (ŷ, ẑ) = (0, 0), the Jacobian becomes:

J =

[
gy 0
0 gz

]
, (5.27)

where

gy = − µ+
aγzz

1 + ahzz

gz = rz(1−
z

kz
)− ay

1 + ahzz
.

Filling in the fixed point (ŷ, ẑ) = (0, 0) leads to the Jacobian

J =

[
−µ 0
0 rz

]
, (5.28)

which has eigenvalues −µ and rz. Thus we see that the system has one positive and one negative
eigenvalue, which means that (0, 0) is a saddle point, and thus unstable. Intuitively we can see
this as well; suppose both predator and prey are extinct (we are at fixed point (0, 0)), then a
small perturbation from this point, may cause the system to move away from this equilibrium.
For example the appearance of a few prey z, will cause z to grow logistically towards kz because
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there are no predators. Thus the system moves away from the fixed point (0,0), which means
this is an unstable fixed point.

Next we determine the stability of the other trivial fixed point, (ŷ, ẑ) = (0, kz) in a similar
manner. The Jacobian now becomes:

J =

[
−µ+ aγzkz

1+ahzkz
0

− akz
1+ahzkz

−rz

]
. (5.29)

The eigenvalues of this matrix are

−rz and − µ+
aγkz

1 + ahzkz
(5.30)

The first of these is always negative. The second is negative only if it holds that

µ >
γz
hz

(5.31*)

or,

µ <
γz
hz

and kz <
µ

a(γz − µhz)
. (5.32*)

The first of these cases corresponds to a negative value of the predator isocline, and the second
corresponds to a predator isocline located to the right of the carrying capacity kz. This means
that, for the situations we are interested in, namely those in which a nontrivial equilibrium
exists, there is one negative and one positive eigenvalue, which means (0, kz) is a saddle point,
and unstable. As soon as the predator is introduced in the system, it will start to reduce the
prey population until another equilibrium is reached.

In summary, the stability of the fixed points are given by:
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trivial:

(ŷ, ẑ) = (0, 0) unstable

(ŷ, ẑ) = (0, kz) unstable if a nontrivial equilibrium exists.

stable otherwise

nontrivial:

(ŷ, ẑ) with

ŷ =
rz
a

(1− µ

akz(γz − µhz)
)(1 +

µhz
γz − µhz

)

ẑ =
µ

a(γz − µhz)

which exists iff

µ <
γz
hz

∧ kz >
µ

a (γz − µhz)

and is stable if kz <
γz + µhz

ahz(γz − µhz)
and unstable otherwise.

(5.33)
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5.2 System Including Prey x

We now introduce the primary prey, which we denote by the variable x, into the system. Recall
from box 4.22, that the system can be described by the following set of differential equations:

dy

dt
= y

[
−µ+

a(γxx+ δγzz)

1 + a(hxx+ δhzz)

]
(5.34)

dx

dt
= x

[
rx(1− x

kx
)− ay

1 + a(hxx+ δhzz)

]
(5.35)

dz

dt
= z

[
rz(1−

z

kz
)− δay

1 + a(hxx+ δhzz)

]
(5.36)

with

δ =


1 if x ≤ 1

a

(
hz
γx
γz
− hx

)
0 otherwise

(5.37)

5.2.1 Equilibria

In order to determine the equilibria of this system, we again look at the isoclines, which are given
by:

dy

dt
= 0⇒ x =

µ− δaz(γz − µhz)
a(γx − µhx)

(a)

y = 0 (b)

dx

dt
= 0⇒ y =

rx
a

(1− x

kx
)(1 + ahxx+ δahzz) (c)

x = 0 (d)

dz

dt
= 0⇒ y =

rz
δa

(1− z

kz
)(1 + ahxx+ δahzz) ∧ δ = 1 (e)

z = 0 (f)

z = kz ∧ δ = 0 (g)

(5.38*)

The isoclines are now surfaces in 3D phase space, and therefore harder to visualize. Anywhere
that isoclines from all three species intersect, we have a fixed point. We will now discuss the
equilibria that arise for all 12 possible combinations of the isoclines of the three species.

1. Isoclines (b),(d) and (f) intersect at the point (x̂, ŷ, ẑ) = (0, 0, 0), which describes the
situation where all three species are extinct.
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2. Isoclines (b),(d), and (e) meet at the point

(x̂, ŷ, ẑ) = (0, 0, kz), (5.39*)

which describes the situations where the predator and its preferred prey, x, are extinct,
and z can grow to its carrying capacity.

3. Isoclines (b),(c) and (f) intersect at the point

(x̂, ŷ, ẑ) = (kx, 0, 0), (5.40*)

which describes the situation where the predator and the alternative prey are extinct, and
prey x can grow to capacity.

4. The intersection of isoclines (b),(c), and (e) gives us the equilibrium

(x̂, ŷ, ẑ) = (kx, 0, kz), (5.41*)

which is the situation in which the predator is extinct, and both prey species can grow to
their carrying capacity.

5. The intersection of isoclines (a), (d) and (e) describes the situation in which prey x is
extinct, and yields the fixed point

(0, ŷ, ẑ) with

ŷ =
rz
a

(1− µ

akz(γz − µhz)
)(1 +

µhz
γz − µhz

) (5.42*)

ẑ =
µ

a(γz − µhz)
(5.43*)

provided that

δ = 1 , µ <
γz
hz

, kz >
µ

a (γz − µhz)
. (5.44*)

the requirement that δ be 1 translates to the requirement that

x̂ <
1

a(hz
γx
γz
− hx)

0 <
1

a(hz
γx
γz
− hx)

γx
hx

>
γz
hz

(5.45*)
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This is the requirement that x is the preferred (more profitable) prey (see 4.15 ), which is
always the case in our system. Thus we see that whenever x = 0, δ will always be 1. This
is what we would expect, since it simply means that if prey x is extinct, the predator will
consume prey z.

6. The intersection of isoclines (a), (c) and (f) describes the situation in which prey z is
extinct, and yields the fixed point

(x̂, ŷ, ẑ) = (x̂, ŷ, 0) with

x̂ =
µ

a(γx − µhx)
(5.46*)

ŷ =
rx
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

), (5.47*)

provided that

µ <
γx
hx

, and kx >
µ

a (γx − µhx)
. (5.48*)

7. The intersection of isoclines (a), (c) and (g) describes the situation in which y and x are in
equilibrium at a point where z is not included in the diet (δ = 0). This means z can grow
to its carrying capacity. The location of this fixed point is given by:

(x̂, ŷ, ẑ) = (x̂, ŷ, kz) with

x̂ =
µ

a(γx − µhx)
(5.49*)

ŷ =
rx
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

) (5.50*)

which only exists if

δ = 0 , µ <
γx
hx

and kx >
µ

a (γx − µhx)
(5.51*)

the requirement that δ be zero at this point translates to the requirement that

γz
hz

< µ <
γx
hx

(5.52*)

Thus we can say that this fixed point exists if it holds that:

γz
hz

< µ <
γx
hx

and kx >
µ

a (γx − µhx)
(5.53)

28



8. The point where isoclines (a), (c) and (e) intersect describes the situation where all three
species coexist in equilibrium and z is included in the predators diet. We can show this
fixed point to occur at

x =
kx
a

[
αz(rx − rz) + µrz

β

]
(5.54*)

y =
rxrz
a2

[
[µ− αx − αz][γxkx(−rz + ahzkz(rx − rz))− γzkz(rx + ahxkx(rx − rz))]

β2

]
(5.55*)

z = − kz
a

[
αx(rx − rz)− µrx

β

]
(5.56*)

where

αx = akx(γx − µhx) (5.57)

αz = akz(γz − µhz) (5.58)

β = rzkx(γx − µhx) + rxkz(γz − µhz) (5.59)

We would now like to know when this fixed point exists. In order for this fixed point to
exist, x, y and z must all be positive numbers, and δ at this point must be 1 (z must be
included in the diet). Let

I =
µrx

a(γx − µhx)(rx − rz)
(5.60)

II =
−µrz

a(γz − µhz)(rx − rz)
(5.61)

III =
µ− akx(γx − µhx)

a(γz − µhz)
(5.62)

IV =
µ− akz(γz − µhz)

a(γx − µhx)
(5.63)

V =
µ

a(γx − µhx)
(5.64)

V I =
µ

a(γz − µhz)
(5.65)

The following table shows the parameter ranges for which this fixed point exists:

9*. All other combinations of isoclines either never intersect, or yield duplicates of fixed points
already mentioned above.

In summary, the fixed points of the 3-species system are given by:
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µ <
γz
hz

rx < rz

kx < V III < kz < II

kx ≥ V kz < II

rx = rz

kx ≤ V kz > III

kx > V

rx > rz

kz < V I IV < kx < I

kz ≥ V I kx < I

Table 5.1*: The parametric ranges for which fixed point (x̂, ŷ, ẑ) exists.

trivial:

1). (x̂, ŷ, ẑ) = (0, 0, 0)

2). (x̂, ŷ, ẑ) = (kx, 0, 0)

3). (x̂, ŷ, ẑ) = (0, 0, kz)

4). (x̂, ŷ, ẑ) = (kx, 0, kz)

nontrivial:

5). (x̂, ŷ, ẑ) = (0, ŷ, ẑ) with

ŷ =
rz
a

(1− µ

akz(γz − µhz)
)(1 +

µhz
γz − µhz

)

ẑ =
µ

a(γz − µhz)
exists if

µ <
γz
hz
, and kz >

µ

a (γz − µhz)

6). (x̂, ŷ, ẑ) = (x̂, ŷ, 0) with

x̂ =
µ

a(γx − µhx)

ŷ =
rx
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

)

exists if

µ <
γx
hx

and kx >
µ

a (γx − µhx)

7). (x̂, ŷ, ẑ) = (x̂, ŷ, kz) with

x̂ =
µ

a(γx − µhx)

ŷ =
rx
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

)

exists if
γz
hz

< µ <
γx
hx

and kx >
µ

a (γx − µhx)
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8). (x̂, ŷ, ẑ) with:

x̂ =
kx
a

[
αz(rx − rz) + µrz

β

]
ŷ =

rxrz
a2

[
[µ− αx − αz][γxkx(−rz + ahzkz(rx − rz))− γzkz(rx + ahxkx(rx − rz))]

β2

]

ẑ = −kz
a

[
αx(rx − rz)− µrx

β

]
where

αx = akx(γx − µhx)

αz = akz(γz − µhz)
β = rzkx(γx − µhx) + rxkz(γz − µhz)

which exists for:

µ <
γz
hz

rx < rz

kx < V III < kz < II

kx ≥ V kz < II

rx = rz

kx ≤ V kz > III

kx > V

rx > rz

kz < V I IV < kx < I

kz ≥ V I kx < I

where

I =
µrx

a(γx − µhx)(rx − rz)

II =
−µrz

a(γz − µhz)(rx − rz)

III =
µ− akx(γx − µhx)

a(γz − µhz)

IV =
µ− akz(γz − µhz)

a(γx − µhx)

V =
µ

a(γx − µhx)

V I =
µ

a(γz − µhz)
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5.2.2 Stability Analysis

In the 3-species system, we now have a 3 × 3 Jacobian which we use to determine the stability
of the fixed points. We rewrite equations 5.34-5.36 as:

dy

dt
= ygy(x, y, z) (5.66)

dx

dt
= xgx(x, y, z) (5.67)

dz

dt
= zgz(x, y, z), (5.68)

where

gy =− µ+
a(γxx+ δγzz)

1 + a(hxx+ δhzz)
(5.69)

gx =rx(1− x

kx
)− ay

1 + a(hxx+ δhzz)
(5.70)

gz =rz(1−
z

kz
)− δay

1 + a(hxx+ δhzz)
(5.71)

We can now express the Jacobian as:

J =

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz

 , (5.72)

We determine the partial derivatives to be:

dgy
dy

= 0 (5.73*)

dgy
dx

=
aγx

1 + a(hxx+ δhzz)
− a2hx(γxx+ δγzz)

(1 + a(hxx+ δhzz)2
(5.74*)

dgy
dz

=
δaγz

1 + a(hxx+ δhzz)
− δa2hz(γxx+ δγzz)

(1 + a(hxx+ δhzz)2
(5.75*)

dgx
dy

= − a

1 + a(hxx+ δhzz)
(5.76*)

dgx
dx

= − rx
kx

+
a2hxy

(1 + a(hxx+ δhzz))2
(5.77*)

dgx
dz

=
δa2hzy

(1 + a(hxx+ δhzz))2
(5.78*)

(5.79*)
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dgz
dy

= − δa

1 + a(hxx+ δhzz)
(5.80*)

dgz
dx

=
δa2hxy

(1 + a(hxx+ δhzz))2
(5.81*)

dgz
dz

= − rz
kz

+
δ2a2hzy

(1 + a(hxx+ δhzz))2
(5.82*)

Trivial Fixed Points

There are four trivial fixed points in this system, which describe situations in which the predator
is extinct. Since the two prey species do not interact, they will be either extinct or at carrying
capacity. We will now discuss them and determine their stability:

1). (x̂, ŷ, ẑ) = (0,0,0)
At this fixed point, all species are extinct. Intuitively, we can see that this equilibrium is a saddle
point; if there were a small increase in the population of x, the absence of a predator will allow
them to grow at a rate of rx until they reach their carrying capacity kx. Thus we say that this
fixed point is unstable against invasion by x. The same argument holds for invasion by z. If there
is a small increase in the population of the predator y however, then they would not be able to
survive due to lack of prey, and the system would return to the fixed point (0, 0, 0). We say that
the fixed point is stable against invasion by y. Since this equilibrium is stable in one direction,
but unstable in others, we are dealing with a saddle point.

We can also show analytically that this fixed point is unstable, using the Jacobian. If we evaluate
the Jacobian at the point (0, 0, 0), we get:

J =

gy 0 0
0 gx 0
0 0 gz


(0,0,0)

=

−µ 0 0
0 rx 0
0 0 rz

 . (5.83*)

The eigenvalues are −µ, rx and rz, two of which are positive, and one of which is negative. Thus
this fixed point is a saddle point. Moreover, since this is a diagonal matrix, the eigenvectors are
the standard basis vectors. This means that the eigenvalue in the y-direction is −µ, and since
this is always a negative number, we know that the fixed point is stable in the y-direction. In
the same manner we conclude that the fixed point is unstable in the x- and z-directions, which
confirms exactly what we deduced intuitively.

2). (x̂, ŷ, ẑ) = (kx,0,0)
At this fixed point, both the predator and prey z have become extinct, which has allowed prey
x to grow to its carrying capacity. We will again start by giving an intuitive argument for its
stability. Say there is now a small increase in the population of z, since the two prey species do
not interact, and there is no predator, the population of z can continue to grow until its carrying
capacity is reached, which means the system will end up in the point (kx, 0, kz). Thus we see that
this fixed point is unstable against invastion by z. If there is a small change in the population of
x, the system will return to the original fixed point, meaning that it is stable against changes in
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x. If there is an increase in y however, they will start consuming the prey x, and if the mortality
rate isn’t higher than the rate at which they can produce offspring due to the consumption of
x (i.e. if µ < γx

hx
), then the predators are able to survive, and the system moves away from the

fixed point.

We will now analytically show that our intuition is correct. The Jacobian at this point is given
by:

J =

 gy 0 0

kx
dgx
dy kx

dgx
dx + gx kx

dgx
dz

0 0 gz


(kx,0,0)

=

−µ+ aγxkx
1+ahxkx

0 0

− akx
1+ahxkx

−rx 0

0 0 rz

 . (5.84*)

Since this matrix is triangular, the entries on the main diagonal are exactly the eigenvalues. From
this we see that we have both positive eigenvalues (λ = rz) and negative eigenvalues (λ = −rx),
which means that this fixed point is a saddle point, and therefore unstable. More specifically, we
can see that this fixed point is unstable in the z-direction (the corresponding eigenvalue is rz
and always positive). In the x-direction, the eigenvalue is −rx, and thus stable. The remaining
eigenvalue is:

−µ+
aγxkx

1 + ahxkx
(5.85)

The corresponding eigenvector is not a standard basis vector, it is nonzero in both the x and y
directions, which tells us that an increase in y also induces a change in the population of x. This
is what we would expect since the predator will start to consume prey x.

We can determine that this eigenvalue is positive (unstable) if

µ <
γx
hx

and kx >
µ

a(γx − µhx)
(5.86*)

This means that if the above conditions hold, then predator y is able to invade, and if the
conditions do not hold, then the predators cannot survive, and the system will return to the
equilibrium point.

3). (x̂, ŷ, ẑ) = (0,0,kz)
This equilibrium describes the situation where both y and x have become extinct, and z has
grown to carrying capacity. Note that since x is extinct, δ will be 1 around this point. Intuitively,
we say that this point will be unstable against invasion by x, whose numbers would increase to
kx due to the absence of a predator. We also see that the fixed point is stable against changes in
z. The predator is able to invade, only if the profitability of prey z is greater than the mortality
rate, and if kz is not too low.

The Jacobian at this point is:

J =

 gy 0 0
0 gx 0

kz
dgz
dy kz

dgz
dx kz

dgz
dz + gz


(0,0,kz)

=

−µ+ aγzkz
1+ahzkz

0 0

0 rx 0

kz
dgz
dy 0 −rz

 . (5.87*)
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The eigenvalues are again the entries on the main diagonal, and as in the previous situation, we
have both a positive eigenvalue, (λ = rx), and a negative one (λ = −rz), which means this fixed
point is a saddle point. More specifically, in the x-direction, the corresponding eigenvalue is rx,
and always positive, and thus unstable. In the z-direction, with corresponding eigenvalue rz, the
equilibrium is stable. The last eigenvalue, analogously to the previous fixed point, is:

−µ+
aγzkz

1 + ahzkz
(5.88)

and is unstable if it holds that:

µ <
γz
hz

and kz >
µ

a(γz − µhz)
(5.89*)

So if the above conditions hold, then predator y is able to invade, and if the conditions do not
hold, then the predators cannot survive, and the system will return to the equilibrium point.

4). (x̂, ŷ, ẑ) = (kx,0,kz)
This describes the situation in which the predator has become extinct, and both prey species
were able to grow to their carrying capacities. Intuitively we find that any changes in the popu-
lation of x or z will cause the system to return to the equilibrium, and predator y may be able
to invade under certain conditions.

The Jacobian is given by:

J =


gy 0 0

kx
dgx
dy

kx
dgx
dx

+ gx kx
dgx
dz

kz
dgz
dy

kz
dgz
dx

kz
dgz
dz

+ gz


(kx,0,kz)

=


−µ+

a(γxkx + δγzkz)

1 + a(hxkx + δhzkz)
0 0

kx
dgx
dy

−rx 0

kz
dgz
dy

0 −rz

 .
(5.90*)

The eigenvalues are again the entries on the diagonal. We see that this point is stable in both
the x- and z-directions (eigenvalues −rx and −rz respectively). The remaining eigenvalue is

−µ+
a(γxkx + δγzkz)

1 + a(hxkx + δhzkz)
. (5.91)

If this is negative, then the fixed point is a stable attractor, otherwise it is a saddle point. The
eigevalue is negative, and thus the fixed point stable, if the following holds:
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µ ≥ γx
hx

(5.92*)

or

µ <
γz
hz

and kx <
µ

a(γx − µhx)
and kz <

µ− akx(γx − µhx)

a(γz − µhz)
(5.93*)

or
γz
hz
≤ µ < γx

hx
and kx <

µ

a(γx − µhx)
(5.94*)

If the above conditions do not hold, then the fixed point is a saddle point, and unstable against
invasion by y.

Nontrivial Fixed Points

5). (x̂, ŷ, ẑ) = (0, ŷ, ẑ)
This describes the situation where the primary prey has become extinct, and the predator and
secondary prey are at equilibrium. This means δ = 1 near this fixed point. This fixed point is
located at

(0, ŷ, ẑ) with (5.95)

ŷ =
rz
a

(
1− µ

akz(γz − µhz)

)(
1 +

µhz
γz − µhz

)
(5.96)

ẑ =
µ

a(γz − µhz)
(5.97)

and is only feasible if it holds that

µ <
γz
hz

and kz >
µ

a (γz − µhz)
. (5.98)

In order to determine the stability of this fixed point, we look at the Jacobian at this point. We
can say that gy = gz = 0 and we know that x = 0 at this point. This leads to the following
Jacobian

J =

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz


(0,ŷ,ẑ)

=

 0 y
dgy
dx y

dgy
dz

0 gx 0

z dgzdy z dgzdx z dgzdz


(0,ŷ,ẑ)

(5.99)

We can show that this fixed point is an attractor (stable) if it holds that:
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µ <
γz
hz

, V I < kz < V III rz ≥ X , rx < XII, (5.100*)

and a repeller (unstable) if:

µ <
γz
hz

, kz > V III , rz ≥ X , rx > XII, (5.101*)

And a saddle point otherwise. Here we have

V I =
µ

a(γz − µhz)
(5.102)

V II =
γx + µhx

ahx(γx − µhx)
(5.103)

V III =
γz + µhz

ahz(γz − µhz)
(5.104)

IX =
4aγxkx(γx − µhx)2(−µ+ akx(γx − µhx))

µ(γx − aγxhxkx + µhx(1 + ahxkx))2
(5.105)

X =
4aγzkz(γz − µhz)2(−µ+ akz(γz − µhz))
µ(γz − aγzhzkz + µhz(1 + ahzkz))2

(5.106)

XI = rx
−µ+ akx(γx − µhx)

akx(γx − µhx)
(5.107)

XII = rz
−µ+ akz(γz − µhz)
akz(γz − µhz)

(5.108)

6). (x̂, ŷ, ẑ) = (x̂, ŷ,0)
This fixed point describes the situation in which the alternative prey is extinct, and predator y
and prey x are in equilibrium. The values for y and x at this point are given by:

x̂ =
µ

a(γx − µhx)
(5.109)

ŷ =
rx
a

(
1− µ

akx(γx − µhx)

)(
1 +

µhx
γx − µhx

)
(5.110)

and is only feasible if it holds that

µ <
γx
hx

and kx >
µ

a (γx − µhx)
. (5.111)

Recall from 5.72 that the Jacobian for the 3-species system is given by:

J =

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz

 , (5.112)
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Since y and x are nonzero, we know gy and gx are zero. (Since equations 5.66 and 5.67 must be
satisfied). Furthermore, we know that z = 0 at this fixed point.

We can show that this fixed point is an attractor if

µ <
γz
hz

, V < kx < V II , rx ≥ IX , rz < XI, (5.113*)

and a repeller if

µ <
γx
hx

, kx > V II , rx ≥ IX , and

[
µ >

γz
hz

or rz > XI

]
. (5.114*)

In all other cases, this fixed point is a saddle point.

7). (x̂, ŷ, ẑ) = (x̂, ŷ,kz)
We have seen that this is a fixed point, only if

γz
hz

< µ <
γx
hx

(5.115)

which also implies δ = 0. Filling in the Jacobian gives us:

J =

y
dgy
dy + gy y

dgy
dx 0

xdgxdy xdgxdx + gx 0

0 0 −rz


δ=0

(5.116)

Since δ = 0, the upper-left portion of this Jacobian corresponds exactly to the system without
z. The eigenvalues are −rz and the eigenvalues of the upper-left portion. Since −rz is always
negative, this fixed point is stable if the system without z is stable, and a saddle point otherwise.
This means that this fixed point, which is given by:

(x̂, ŷ, kz) with (5.117)

x̂ =
µ

a(γx − µhx)
(5.118)

ŷ =
rx
a

(
1− µ

akx(γx − µhx)

)(
1 +

µhx
γx − µhx

)
, (5.119)

is only feasible if it holds that

γz
hz

< µ <
γx
hx

and kx >
µ

a (γx − µhx)
, (5.120)

and only is stable iff

kx <
γx + µhx

ahx(γx − µhx)
. (5.121)
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In summary, the stability of the fixed points 1-7 is given by:

trivial:

1). (x̂, ŷ, ẑ) = (0, 0, 0) saddle point

2). (x̂, ŷ, ẑ) = (kx, 0, 0) saddle point

3). (x̂, ŷ, ẑ) = (0, 0, kz) saddle point

4). (x̂, ŷ, ẑ) = (kx, 0, kz) attractor iff

µ ≥ γx
hx

or

µ <
γz
hz

and kx < V and kz < III

or
γz
hz
≤ µ < γx

hx
and kx < V

saddle point otherwise

nontrivial:

5). (x̂, ŷ, ẑ) = (0, ŷ, ẑ)

attractor iff µ <
γz
hz

, V I < kz < V III , rz ≥ X , rx < XII

repellor iff µ <
γz
hz

, kz > V III , rz ≥ X , rx > XII

saddle point otherwise

6). (x̂, ŷ, ẑ) = (x̂, ŷ, 0)

attractor iff µ <
γz
hz

, V < kx < V II , rx ≥ IX , rz < XI

repellor iff µ <
γx
hx

, kx > V II , rx ≥ IX ,

[
µ >

γz
hz

or rz > XI

]
saddle point otherwise

7). (x̂, ŷ, ẑ) = (x̂, ŷ, kz)

attractor iff
γz
hz

< µ <
γx
hx

, V < kx < V II

saddle point otherwise
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The following table shows which of the fixed points 1-7 exist for different parameter ranges,
and what their stability is. Fixed points 1-3 always exist, and are always saddle points. Any of
the other fixed points not mentioned do not exits for that parameter range.

µ ≥
γx

hx
a: 4

γz

hz
≤ µ <

γx

hx

kx < V a: 4

V < kx < V II a: 7 , s: 4, 6

kx > V II
rx < IX s: 4,6,7

rx > IX r: 6 , s: 4,7

µ <
γz

hz

kx < V

kz < III a: 4

III < kz < V I s: 4

V I < kz < V III
rz ≥ X and rx < XII a: 5, s: 4

rz < X or rx ≥ XII s: 4,5

kz > V III
rz ≥ X and rx < XII r: 5, s: 4

rz < X or rx ≥ XII s: 4,5

V < kx < V II

kz < V I
rx ≥ IX and rz < XI a: 6, s: 4

rx < IX or rz ≥ XI s: 4,6

kz > V I

rx ≥ IX and rz < XI a: 6 s: 4

rx < IX or rz ≥ XI
rz ≥ X and rx < XII a: 5 s: 4,6

rz < X or rx ≥ XII s: 4,5,6

kx > V II

kz < V I
rx < IX or rz ≤ XI s: 4,6

rx ≥ IX and rz > XI r: 6 s: 4

V I < kz < V III

rx < IX or rz ≤ XI
rz ≥ X and rx < XII a: 5 s: 4,6

rz < X or rx ≥ XII s: 4,5,6

rx ≥ IX and rz > XI
rz ≥ X and rx < XII r: 6 a: 5, s:4

rz < X or rx ≥ XII r: 6, s: 4,5

kz > V III

rx < IX or rz ≤ XI
rz ≥ X and rx > XII r: 5 s: 4,6

rz < X or rx ≤ XII s: 4,5,6

rx ≥ IX and rz > XI
rz ≥ X and rx > XII r: 5,6, s:4

rz < X or rx ≤ XII r: 6, s: 4,5

Table 5.2: Existence and stability of fixed points 4-7 for various parameter ranges. Fixed points
1-3 always exist and are always saddle points. a = attractor, r = repeller, s=saddle.
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Here we have that:

I =
µrx

a(γx − µhx)(rx − rz)
V II =

γx + µhx
ahx(γx − µhx)

II =
−µrz

a(γz − µhz)(rx − rz)
V III =

γz + µhz
ahz(γz − µhz)

III =
µ− akx(γx − µhx)

a(γz − µhz)
IX =

4aγxkx(γx − µhx)2(−µ+ akx(γx − µhx))

µ(γx − aγxhxkx + µhx(1 + ahxkx))2

IV =
µ− akz(γz − µhz)

a(γx − µhx)
X =

4aγzkz(γz − µhz)2(−µ+ akz(γz − µhz))
µ(γz − aγzhzkz + µhz(1 + ahzkz))2

V =
µ

a(γx − µhx)
XI = rx

−µ+ akx(γx − µhx)

akx(γx − µhx)

V I =
µ

a(γz − µhz)
XII = rz

−µ+ akz(γz − µhz)
akz(γz − µhz)
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6 Methods for Numerical Analysis

Often it is not possible to find exact solutions to (sets of) differential equations. When this is the
case, we will have to settle for an approximation to the solution. In this section we will discuss
a few of the most commonly used numerical approaches.

Suppose we want to approximate the solution to the following differential equation and a given
initial point:

dy

dt
= f(y, t), y(t0) = y0 (6.1)

Euler Method
One of the simplest approximation methods is the Euler method. It is computationally cheap,
but since it is only a first order approximation, the error term is second order in the time step
and thus not accurate enough for most purposes. Given a value at time t, we approximate the
solution at time t+ h by taking a step of size h along the tangent at point t:

yt+h = yt + hf(y, t) (6.2)

A graphical representation of this approach is given in figure 6.1

Figure 6.1: The Euler method

As mentioned earlier, the error in this approach is O(h2).

Midpoint Method
The midpoint method is computationally more expensive than the Euler method, but its error
is O(h3). The name of this method comes from the fact that it employs a Euler trial step to the
midpoint of the interval, t + 1

2h, and evaluates the function f at that that halfway point, and
uses that value to jump from t to t+ h:

yt+h = yt + hf(y +
h

2
f(y, t), t+

h

2
) (6.3)
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A graphical representation of this method is given in the figure 6.2.

Figure 6.2: The midpoint method. Given the value at point t, the midpoint method approximates
the value at t + h by taking a Euler step towards the midpoint of the interval and
evaluating f(y,t) at that point.

4th order Runge-Kutta Method
The fourth-order Runge-Kutta method is the most widely used integration method. It more com-
putationally intensive than the method discussed previously, but also more accurate, the error
term being O(h5). This method is similar to the midpoint method, but instead of taking a single
trial step, it takes four, and uses their weighted average to approximate the value at time t+ h:

k1 = hf(y, t)

k2 = hf(y +
h

2
k1, t+

h

2
)

k2 = hf(y +
h

2
k2, t+

h

2
)

k4 = hf(y + hk3, t+ h)

yt+h = yt +
1

6
(k1 + 2k2 + 2k3 + k4)

The graphical representation is given in figure 6.3.
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Figure 6.3: The fourth order Runge-Kutta method (RK4). Given the value at time t, a weighted
average of four trial steps is used to approximate the value at time t+ h

6.1 Finding Cycles

We can also look for orbits (cycles) in the system using numerical methods. An orbit must always
have a fixed point in its interior. This fixed point may be attracting or repelling. Figure 6.4 shows
phase portraits for three different kinds of orbits in a 2-dimensional system.

Figure 6.4: Orbits can be stable, unstable or half-stable.

A stable orbit attracts nearby points both in its interior and it exterior. Unstable orbits repel
all nearby points, and half-stable orbits attract nearby points from one side, and repel nearby
points from the other.

We can now look for orbits by starting from a point nearby a fixed point and iterating the
system until we reach a cycle. If the fixed point is repelling, we start at a nearby point, and
iterate forward in time. This will cause the system to end up in the orbit, if it exists. If the fixed
point is attracting however, starting from a point nearby the fixed point will cause the system
to end up in the fixed point. In order to find an orbit surrounding a stable fixed point, we start
from a nearby point and iterate the system backward in time.
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7 Single Patch Numerical Analysis

In this section we will look more closely at the dynamics of the predator prey system. We have
already determined the various fixed points and their stability. We will now analyze the system
further through numerical simulations.

Even though we have not analytically shown the conditions for stability of fixed point 8, we can
still determine a number of other things about this fixed point. For example we determine that
the following statement holds:

If fixed point 8 exists, no other fixed point is stable. (7.1*)

Furthermore, we can see from table 5.2, that if there is a stable fixed point, it is the only fixed
point which is stable.

Determining the conditions for stability for fixed point 8 analytically proved too involved, but
we can determine some properties of this fixed point numerically. For instance, we find that this
fixed point can be stable (see save file fp8attractor.params). A small perturbation from the
equilibrium will cause the system to eventually end up back in the fixed point. This return can be
swift (fp8swiftreturn.params), or may be preceded by damped oscillations, which may persist
for many iterations before the system returns to the equilibrium. (fp8oscillations.params).

Fixed point 8 can also be repelling (fp8repeller.params). The repelling fixed point may also
be surrounded by a stable orbit (fp8orbit.params, fp8orbit2.params). These orbits are also
shown in figure 7.1.

(a) (b)

Figure 7.1: Fixed point 8 can be surrounded by a stable orbit.

From this figure, you can see that the shape of the orbits may differ significantly. In figure 1(a) we
see that prey z undergoes enormous fluctuations during the cycle, reaching levels of almost zero
and then shooting up again. In the second example (1(b)), we see that the cycle has a shorter
period, and that the species’ densities do not fluctuate as heavily.

We would like to find cycles in this system. A limit cycle must always surround a fixed point.
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This fixed point must either be an attractor or a repeller. To find an orbit (cycle) around a
repelling fixed point, we start from a point nearby the fixed point, and iterate forward in time
until we reach the orbit. To find an orbit around an attractive fixed point, we also start from a
point nearby the fixed point, but now we go backward in time from this point, to see if we end
up in an orbit.

Since we have a discontinuity in our system due to the variable δ, it is also possible in our system
that an orbit surrounds a saddle point. For instance consider fixed point 6, (x̂, ŷ, 0). If this occurs
at a point where δ = 0, then z is able to invade, making the fixed point unstable. But since z is
not included in the diet, it is not really part of the system, and the increase in z will not influence
the dynamics of the predator and the primary prey at all. So if the saddle point is stable in both
the x and y directions, it may still be surrounded by an orbit. prey z will just not be part of this
cycle. An example of this is stored in the save file 2speciesorbit.params. A screen shot can be
seen in figure 7.2. Starting from either fixed point 6 or fixed point 7, a small perturbation will
lead to a cycle involving x and y, while z is either extinct or at carrying capacity. But since z is
not involved in the dynamics, this is really just a 2-species system.

Figure 7.2: Predator and primary prey are locked in a cycle, while alternative prey z does not
influence the dynamics

Because of this discontinuity in our system, we can also get unusual cycles. An example of such
a cycle is stored in save file interestingcycle.params. This cycle was found by starting either
in fixed point 6 ((x̂, ŷ, 0)), or fixed point 7 ((x̂, ŷ, kz)) and perturbing the system (by hitting the
perturb button). The resulting cycle is one in which the alternative prey z is at first not included
in the predators’ diet, but after a while the density of prey x decreases so much that prey z is
included, which allows the density of prey x to increase again, up to a point where prey z is no
longer hunted by the predator. This causes the density of prey x to decrease again, and so on.
Screen shots of this cycle can be found in figure 7.3.
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Figure 7.3: A cycle in which alternative prey z is alternately included and not included in the
predators diet.
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8 Landscape Model

To model a landscape, we construct a network of habitat patches, each with its own predator-prey
system, which are connected through migration. The parameters of the predator-prey system can
differ from one patch to another. For example, the attack rate a may be high in one patch, but
low in another, as some patches may provide better hiding places for prey, which makes them
harder to find for the predator. Mortality rate µ of the predator may also differ between patches
indicating some habitats may constitute a more hospitable environment for the predator than
other patches. The carrying capacity k can also vary between patches, indicating different sizes
of the habitat patches. In this way we introduce spatial heterogeneity into our model.

Patches are connected to each other by migration channels, which are modelled as intermediate
patches. In these intermediate patches, no interaction occurs between predator and prey. Using
these intermediate patches enables us to simulate the delay involved in migration.

Figure 8.1 below shows the general form of such a system for three patches:

Figure 8.1: The general form of the landscape model

Predator y and/or prey x migrate according to a migration rate m and proportional to some
migration function Ei(x, y, z). For now we will assume this migration function is simply a propor-
tion of the population. In other words, at any given time, a certain proportion of the population
spontaneously decides to migrate, Ex(x, y, z) = mx. Note that prey z does not migrate in this
model.

In each intermediate patch, there is a mortality rate which models the probability of dying during
migration. This can also be used to indicate the danger of the landscape between patches. For
instance, if there were a highway between two patches, the mortality rate may be very high.
Species residing in the intermediate patch leave it at a rate of r, either back to where they came
from, or on to the other patch.

We now distinguish three different cases, namely the one in which only the predator migrates,
the case in which only prey x migrates, and the case where they both migrate. We will now give
the full set of differential equations describing the system for each of these cases.
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Let

Sx(x, y, z) =
dy

dt
= y

[
−µ+

a(γxx+ δγzz)

1 + a(hxx+ δhzz)

]
(8.1)

Sy(x, y, z) =
dx

dt
= x

[
rx(1− x

kx
)− ay

1 + a(hxx+ δhzz)

]
(8.2)

Sz(x, y, z) =
dz

dt
= z

[
rz(1−

z

kz
)− δay

1 + a(hxx+ δhzz)

]
(8.3)

δ =


1 if x ≤ 1

a

(
hz
γx
γz
− hx

)
0 otherwise

(8.4)

denote the single-patch dynamics.

8.1 Only Predator Migrates

Figure 8.2: The landscape model when only the predator migrates.

patch 1:

dx1
dt

= Sx1(x1, y1, z1)

dy1
dt

= Sy1(x1, y1, z1)− y1(my12 +my13) + ryA1
yA + ryC1

yC

dz1
dt

= Sz1(x1, y1, z1)
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patch 2:

dx2
dt

= Sx2(x2, y2, z2)

dy2
dt

= Sy2(x2, y2, z2)− y2(my21 +my23) + ryA2
yA + ryB2

yB

dz2
dt

= Sz2(x2, y2, z2)

patch 3:

dx3
dt

= Sx3(x3, y3, z3)

dy3
dt

= Sy3(x3, y3, z3)− y3(my31 +my32) + ryB3
yB + ryC3

yC

dz3
dt

= Sz3(x3, y3, z3)

intermediate patches:

dyA
dt

= −µyAyA +my12y1 +my21y2 − yA(ryA1
+ ryA2

)

dyB
dt

= −µyByB +my23y2 +my32y3 − yB(ryB2
+ ryB3

)

dyC
dt

= −µyCyC +my13y1 +my31y3 − yC(ryC1
+ ryC3

)
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8.2 Only Prey Migrates

Figure 8.3: The landscape model when only the prey migrates.

patch 1:

dx1
dt

= Sx1(x1, y1, z1)− x1(mx12 +mx13) + rxA1
xA + rxC1

xC

dy1
dt

= Sy1(x1, y1, z1)

dz1
dt

= Sz1(x1, y1, z1)

patch 2:

dx2
dt

= Sx2(x2, y2, z2)− x2(mx21 +mx23) + rxA2
xA + rxB2

xB

dy2
dt

= Sy2(x2, y2, z2)

dz2
dt

= Sz2(x2, y2, z2)

patch 3:

dx3
dt

= Sx3(x3, y3, z3)− x3(mx31 +mx32) + rxB3
xB + rxC3

xC

dy3
dt

= Sy3(x3, y3, z3)

dz3
dt

= Sz3(x3, y3, z3)
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intermediate patches:

dxA
dt

= −µxAxA +mx12x1 +mx21x2 − xA(rxA1
+ rxA2

)

dxB
dt

= −µxBxB +mx23x2 +mx32x3 − xB(rxB2
+ rxB3

)

dxC
dt

= −µxCxC +mx13x1 +mx31x3 − xC(rxC1
+ rxC3

)

(8.5)

8.3 Predator and Prey Both Migrate

Figure 8.4: The landscape model when both predator and prey migrate.

The 3-patch system in which both the predator and the prey migrate can be described by the
following set of differential equations:

patch 1:

dx1
dt

= Sx1(x1, y1, z1)− x1(mx12 +mx13) + rxA1
xA + rxC1

xC

dy1
dt

= Sy1(x1, y1, z1)− y1(my12 +my13) + ryA1
yA + ryC1

yC

dz1
dt

= Sz1(x1, y1, z1)

patch 2:

dx2
dt

= Sx2(x2, y2, z2)− x2(mx21 +mx23) + rxA2
xA + rxB2

xB

dy2
dt

= Sy2(x2, y2, z2)− y2(my21 +my23) + ryA2
yA + ryB2

yB

dz2
dt

= Sz2(x2, y2, z2)
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patch 3:

dx3
dt

= Sx3(x3, y3, z3)− x3(mx31 +mx32) + rxB3
xB + rxC3

xC

dy3
dt

= Sy3(x3, y3, z3)− y3(my31 +my32) + ryB3
yB + ryC3

yC

dz3
dt

= Sz3(x3, y3, z3)

intermediate patches:

dxA
dt

= −µxAxA +mx12x1 +mx21x2 − xA(rxA1
+ rxA2

)

dyA
dt

= −µyAyA +my12y1 +my21y2 − yA(ryA1
+ ryA2

)

dxB
dt

= −µxBxB +mx23x2 +mx32x3 − xB(rxB2
+ rxB3

)

dyB
dt

= −µyByB +my23y2 +my32y3 − yB(ryB2
+ ryB3

)

dxC
dt

= −µxCxC +mx13x1 +mx31x3 − xC(rxC1
+ rxC3

)

dyC
dt

= −µyCyC +my13y1 +my31y3 − yC(ryC1
+ ryC3

)
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9 Multi-Patch Numerical Analysis

In order to study the effect migration has on this system, we conducted a series of numerical
simulations. We started by looking at networks of identical patches, and investigated the effect
of the migration parameters (m, r and µ), on the system. We did this for the two-patch system
and the 3-patch system. The results are described in section 9.1. We then constructed a number
of situations with some biological relevance. We looked at situations in which the predator or the
prey is unable to survive in a single-patch system, and looked whether the creation of a sanctuary
patch could be beneficial to the survival of the species. The results are described in section 9.2.

9.1 Identical Patches

We divided the predator prey system into a number of classes based on the parameter values.
Which class a certain set of parameters falls into is determined by which fixed points exist and
what their stabilities are. From table 5.2 we can determine that we can distinguish 17 different
classes in this manner. These classes are listed below:

attracting repelling saddle
1 4
2 5 4
3 5 4,6
4 5 6 4
5 6 4
6 7 4,6
7 6 4
8 6 4,5
9 6 4,7
10 5 4
11 5 4,6
12 5,6 4
13 4
14 4,5
15 4,6
16 4,5,6
17 4,6,7

Note that we have no information about the stability of fixed point 8, but we do know something
about when fixed point 8 exists. Each of the above can be split into two, one where fixed point 8
exists, and one where it does not, yielding a maximum of 34 cases. However, fixed point 8 may
never exist for some of the above cases, or may always exist, so this number may turn out lower.
For example, we know that we never have have that both fixed point 7 and fixed point 8 exist.

We then started each of the patches in one of the fixed points, and ran simulations for different
values of the migration and return rates, and the mortality rate in the intermediate patches. We
did this for the situation where only the prey migrates, only the predator, and both. We repeated
this for each of the fixed points which exist as the starting point. When starting from a fixed
point in which one of the species is extinct, we perturbed the starting point slightly, to ensure
all three species are present initially.
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This approach yields a great number of situations, in order reduce the number of simulations, we
used a single migration rate per species, and set the return rate equal to this. In other words, for
the 3-patch system we havemx1A,mx2A,mx1C ,mx3C ,mx1B ,mx2B , rxA1, rxA2, rxB2, rxB3, rxC1, rxC3

all equal. The migration and return rates of predator y are also all equal to each other, though
possibly different to the rates of prey x. Furthermore, we decided only to consider situations
in which fixed point 8 exists, because all other fixed points are essentially 2-species systems.
We let the simulations run until an equilibrium was reached, either a stable state or a cycle.
Because we have identical patches and symmetric migration, each of the patches will have the
same population levels in this equilibrium.

Below are the results of these simulations. We first looked at the situations in which a 3-species
equilibrium exists in which the alternative prey z participates in the dynamics. In other words,
we looked at cases in which fixed point 8, (x̂, ŷ, ẑ), exists. Next we looked at situations in which
we know that a stable cycle exists in the single patch case. Then we give an example of cycles
induced by migration. In these situations no cycles exist in the single patch system, but when
migration is present, cycles can appear. And finally we looked at situations in which the prey is
unable to survive, and investigated the idea of having a sanctuary patch, a patch where predators
are kept out.

9.1.1 Fixed Point 8 Exists

We found that whenever fixed point 8 is attracting, qualitatively the same dynamics always
occur. Here we describe these dynamics for one example situation.

In the example we examine the situation in which fixed points 1-4 are saddle points, and fixed
point 8 is the only other fixed point which exists. Starting both patches in fixed point 8, we
examine the effect migration has on the system. The parameters of this situation are stored in
the file efp4s8_IFP8.params. Without migration, both patches would remain in this fixed point,
which is located at (14.98, 11.87, 64.52).

Only the prey migrates
We ran the simulation for different migration rates and for each of these migration rates, we looked
at different values for the mortality rate during migration. The results of these simulations are
plotted in figure 9.0.
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(a) Primary Prey X (b) Predator Y

(c) Secondary Prey Z

Figure 9.0: Effect of migration on population levels when only the primary prey migrates.

From these results we can tell that, as we would expect, the higher the migration rate is, the
greater the effect the mortality rate during migration has. The higher the mortality rate, the
lower the population density of x and y. The population density of z, however, increases with
higher mortality of prey x. This may seem counterintuitive since one may expect that the less
of prey x is available to the predator, the more it would hunt prey z. But it turns out that, for
the situations in which fixed point 8 is attracting, it holds that if there is less of prey x, fewer
predators are able to survive, which results in a lower predation pressure on alternative prey z,
which means the population of z becomes higher.

For mx = 5 we see that if the mortality rate is higher than 100, the predator goes extinct, but
both the prey species survive. Only if the migration rate is even higher, mx = 15, we get a
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situation in which the primary prey may also go extinct if the mortality is higher than some
value.

In summary, we can end up in a situation in which all three species coexist, or a situation in
which only the two prey species survive, or a situation in which only the secondary prey survives.

Only the predator migrates
Next we looked at the situation in which only the predator migrates. The mortality rate of the
predator within the patches is 1.826.

(a) Primary Prey X (b) Predator Y

(c) Secondary Prey Z

Figure 9.0: Effect of migration on population levels when only the predator migrates.

Here we see that the predator can go extinct even if the mortality rate during migration is
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lower than that within the patches. This is due to the fact that the predators do not produce
offspring during migration like they do in the patches. We see that populations of both the prey
species increase with more and more dangerous migration of the predator. The population of the
predator decreases in those cases.

Both predator and prey migrate
And lastly we look at the situation in which both the predator and the prey migrate. Here we
looked at two different situations, one for which the predator has a higher migration rate than
than the predator, and the reverse situation. We then looked at the different combinations of
mortality rates for prey and predator. The results are shown in the 3D plots below.

(a) Primary Prey X (b) Predator Y

(c) Secondary Prey Z

Figure 9.0: Effect of migration on population levels when both the predator and the prey migrate.
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First consider prey x, figure 9.0a. We see that the higher the migration rate of x i, the more
sensitive the population levels of x are to the mortality rate during migration. We see that the
prey can go extinct when the migration and mortality rates are both high, but will not die out
of either of these rates are low.

Now we look at the predator, figure 9.0b. Here we again observe that the population of y is more
sensitive to the mortality of y during migration than that of prey x. Furthermore we again have
that the higher the migration rate of y, the more sensitive the population is to changes in the
mortality rate of y. Here we see that in both cases, it is possible for y to go extinct. Though for
even lower migration rates of y, not depicted in the figures, we can get situations in which y does
not go extinct, regardless of the mortality rate.

And last we consider the secondary prey z (figure 9.0c). Here we see that the population of z is
most sensitive to changes in mortality rate of y. This is not surprising since z only interacts with
the predator, not with the prey x. We see that if the mortality rate of y is high, the population
of z will reach its carrying capacity.

It appears that whenever fixed point 8 is attracting, and we start each patch from this point, we
get behaviour qualitatively similar to this example. This holds for both the 2-patch system and
the 3-patch system. If fixed point 8 is repelling, then one of two things will happen:

1. One or more of the species will go extinct. The effect of the migration parameters on the
populations of the remaining species is qualitatively similar to the previous example. The
only exception is when the predator has died out. Varying the migration parameters of prey
x no longer affects the population of the alternative prey z. And obviously, the migration
parameters of an extinct species no longer influence the system at all.

2. Cycles may appear. These cycles may have been present in the single patch case. The effect
migration has on these cycles is discussed in the following section. But it is also possible
for cycles to be induced when none existed in the individual patches. These induced cycles
are discussed further in section 9.1.3.
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9.1.2 Effect of Migration on Cycles

After completing the systematic simulations above, we also looked at two special cases, in which
we know stable cycles exist in the system, to see if this yields different behaviour. The two cases
we considered were two of the 3-species cycles discussed in the single patch analysis (section 7).
First we consider the system from figure 1(a).

In the 2-patch system we start both patches in fixed point 8. This fixed point occurs at (31.7, 57.7, 8.4).
Without migration, a small perturbation from this stable state results in a cycle where the pop-
ulation densities of the three species vary between the following values:

24.54 <X < 39.63

51.60 <Y < 66.17

0.20 <Z < 43.30

When the prey migrates at a rate of mx = 20 we see that changing the mortality rate µx in
the intermediate patch causes the cycles to changes in both amplitude and average value, or can
cause them to disappear completely, with the system ending up in a stable state. It is also possible
that the prey goes extinct and the system ends up in a stable state with only the predator and
the alternative prey. The following figures depict the behaviour for these different values of µx.

(a) No Migration.
24.54 < X < 39.63
51.60.94 < Y < 66.17
0.20 < Z < 43.30

(b) µx = 1.
23.07 < X < 39.66
49.94 < Y < 65.59
0.31 < Z < 52.19
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(c) µx = 5.
19.94 < X < 35.82
46.96 < Y < 61.50
2.22 < Z < 63.11

(d) µx = 10.
18.69 < X < 28.67
48.65 < Y < 57.33
12.59 < Z < 56.82

(e) µx = 12.
19.31 < X < 24.77
50.99 < Y < 55.54
22.44 < Z < 63.11

(f) µx = 50.
X = 10.38
Y = 43.33
Z = 65.63

(g) µx = 100.
X = 5.63
Y = 36.65
Z = 80.06

(h) µx = 150.X = 0 Y = 26.53 Z = 98.17

Figure 9.0
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From the images we can see that the higher the mortality rate for the prey during migration, the
less extreme the fluctuations in population levels of the three species become. If the mortality
rate is higher than a certain value, the prey can even go extinct. For a migration rate of mx = 10,
we saw a qualitatively similar effect, though the prey never went extinct, even if no prey survived
migration. If we lower the migration rate to mx = 1, we see that the cycles do not disappear,
no matter how high the mortality rate. Note that there are no parameter values for which the
predator goes extinct. This is because in this situation fixed point 5, (0, ŷ, ẑ), also exist, which
means the predator can also survive on a diet of strictly alternative prey z.

We do the same thing for the situation where the predator migrates. We get qualitatively similar
behaviour, though at different parameter values. In the following we have again used a migration
rate of my = 20.

(a) µy = 0.05.
27.4 < X < 42.70
51.6 < Y < 63.70
1.07 < Z < 58.00

(b) µy = 0.1.
33.23 < X < 38.88
57.78 < Y < 61.63
16.35 < Z < 41.23

(c) µy = 0.3.
X = 53.39
Y = 26.11
Z = 108.99

(d) µy = 0.5.X = 59 Y = 0 Z = 135

Figure 9.1
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Notice that in this situation the predator can go extinct, but not the prey. We again have that if
we use a low migration rate (my < 0.1), the predator will never go extinct, no matter how high
the mortality rate during migration. And if we lower the migration even lower (my < 0.05), then
the cycles will always remain.

We ran the same simulations for the 3-patch case, and found qualitatively similar responses to
changes in the migration parameters. The population levels were slightly lower in the 3-patch case,
but this is also due to the fact that prey and/or predator migrate to two different intermediate
patches from a habitat patch, and toward both at a rate of m, which means a larger proportion
of the population will leave the patch than was the case in the 2-patch system for the same
migration rate.
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Interesting Cycle

We now look at the situation leading to the dynamics depicted in figure 7.3. This is a 3-species
cycle in which δ periodically switches value. We will now investigate how this system is affected
by migration in the same way we did for the cycle in the previous section. The following figures
show the dynamics for different values of µx and a migration rate of mx = 5 for the prey. The
predator does not migrate here.

(a) No Migration.
0.01 < X < 75.55
20.06 < Y < 52.02
60.04 < Z < 93.10(kz)

(b) µx = 0.1.
0.10 < X < 78.33
17.70 < Y < 51.88
61.66 < Z < 93.10

(c) µx = 1.
0.16 < X < 66.42
13.07 < Y < 39.47
71.85 < Z < 93.10

(d) µx = 5.X = 18.11 Y = 11.99 Z = 93.10
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(e) µx = 10.X = 16.62 Y = 0 Z = 93.10 (f) µx = 20.X = 0 Y = 0 Z = 93.10

Figure 9.1

From these figures we see that increasing the mortality rate of the prey during migration again
causes the fluctuations in population levels of all species to become less. What we also observe, is
that the period of the cycle becomes longer. If the mortality rate becomes larger than a certain
value, the cycles disappear, and give rise to a fixed point involving all three species. When we
increase µx even further, the predator dies out, and only the two prey species remain in a stable
state. If we increase the mortality rate further yet, prey x also dies out and only the alternative
prey is left. Note that, unlike with the previous cycle, the predator can go extinct due to the
migration of the prey. Note that in this situation fixed point 5 (0, ŷ, ẑ), does exist.

Now we look at the same cycle, but now let only the predator migrate.

(a) µy = 0.01.
0.01 < X < 74.81
20.00 < Y < 49.97
62.60 < Z < 93.10

(b) µy = 0.05.
0.02 < X < 77.09
16.84 < Y < 47.48
68.11 < Z < 93.10
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(c) µy = 0.1.
X = 73.73
Y = 24.51
Z = 93.10

(d) µy ≥ 0.5.X = 89.02 Y = 0 Z = 93.10

Figure 9.1

For µy = 0.05 we clearly see the period of the cycle getting longer. We again see that the cycle
disappears and is replaced with an equilibrium (figure c), and if the mortality rate is very high,
the predator dies out (figure d).
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9.1.3 Cycles Induced By Migration

In this section we give an example of a situation in which no cycles exist in the single patch
system, but when we connect 2 identical patches, the migration causes cycles to appear. The
parameters of this example are stored in the file migcyclefp7_2.params.

The system we are examining in this cycle is one in which, if the patches were isolated, fixed
points 6 and 7 exist and are both saddle points. We start each patch in fixed point 6 or 7 (both
lead to the same results). For certain migration parameters, we get cyclic behaviour between
predator and primary prey (z does not participate in the cycles).

Figures 9.2 and 9.3 show the resulting cycle for different values of the migration parameters.
These result occur when we start the system either in fixed point 6 or fixed point 7. If we start
in fixed point 7, the alternative prey z quickly goes extinct, leaving only predator and primary
prey. In the following figures we used fixed point 6 as the initial point.

Without migration, both species remain in equilibrium, but a small equilibrium will cause them
to go extinct:

(a) No migration (b) No migration after perturbation

Figure 9.2

Next we allow the prey to migrate. In this case it is possible that cycles are induced that do not
occur in the single-patch situation. Figure 9.3 shows an example for the cycles that occur when
we set the migration and return rates to 1.0 and several different values for the mortality rate of
prey x during migration.
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(a) mx = 1, µx = 0.01 (b) mx = 1, µx = 0.1

(c) mx = 1, µx = 1 (d) mx = 1, µx = 10

(e) mx = 1, µx = 20

Figure 9.3

We see that for low mortality rates, the system undergoes some damped oscillations and settles
into a stable state. When we raise the mortality rate, the cycles appear, and when the mortality
rate becomes too high, the prey dies out, and as a consequence so does the predator (and the
alternative prey z if they were still present). In figure 9.3d, we see that these cycles can take the
form of a cycle within a cycle, that is, the population levels continually cycle between a minimum
or maximum value, but these minimum and maximum values also vary periodically.
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If we let only the predator migrate, these cycles do not appear, regardless of the parameter values
used, and all species eventually go extinct:

Figure 9.4: my = 0.1µy = 0.1. All values of migration parameters yield this behaviour

If we let both the predator and the prey migrate, the cycles show up again, and the progression
of behaviour for different mortality rates is similar to the case where only the prey migrates. The
migration of the predator does not affect the behaviour greatly.

9.2 Sanctuary Patch

In this section we will investigate the idea of having one patch in a network which acts as a
sanctuary for either the predator or the prey species. The hope is that this will allow the species
to survive where it could not otherwise. In our simulations we looked at situations in which the
predator or prey are unable to survive in any of the patches. We then transformed one of the
patches into a sanctuary patch, and ran the simulation to see if the presence of the safe patch
could increase the chances of survival for the predator or prey.

We looked at two different situations:

1. Prey migrates
In this situation the prey is unable to survive anywhere in the network. For this case we
create a safe patch by removing all predators from this patch.

2. Predator migrates
In this situation the predator is unable to survive anywhere in the network. We create a
sanctuary patch for the predator by increasing the carrying capacity of the primary prey,
kx. If there are more prey, then the predators may also be able to survive more easily.

For each of these situations, we also considered three different configurations of the (3-patch)
network:
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In the cyclic configuration, every patch is connected to every other patch in the network. This
means that every patch is directly connected to the sanctuary patch. In the endpoint configura-
tion, one of the patches is not directly connected to the safe patch, but only indirectly, through
another patch. In the midpoint configuration, two patches are directly connected to the safe
patch, but not to each other.

We will now discuss the results of these simulations for the three different situations.

Prey migrates

In this situation, we started with a network in which the prey cannot survive. We used pa-
rameters such that in every individual patch the only non-trivial fixed point which exists is fixed
point 5, (0, ŷ, ẑ), and this fixed point is attracting. This means that there are no initial conditions
for which the prey does not eventually go extinct (except when no predators are present). We
connected three such patches in the three different configurations mentioned above. We con-
verted patch 1 into a sanctuary patch by removing all the predators from the system. In the
single patch case, introducing a small number of prey would now cause the system to reach fixed
point 4, (kx, 0, kz). The other two patches remain unchanged. We allow the prey to migrate and
determine whether the presence of the sanctuary has an effect on the overall survival of the prey.
Below the results are listed for each of the three configurations. The parameter settings used in
this example can be found in the file sanctuary1.params

• No migration
x1 = 200 x2 = x3 = 0
y1 = 0 y2 = y3 = 20.94
z1 = 900 z2 = z3 = 300.04
xmigrating = 0

xtotal = 200

• Configuration 1 (Cyclic)
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x1 = 191.28 x2 = x3 = 4.24
y1 = 0 y2 = y3 = 26.21
z1 = 900 z2 = z3 = 101.92
xmigrating = 133.17

xtotal = 332.93

• Configuration 2 (Endpoint)
x1 = 195.54 x2 = 4.24 x3 = 0.45
y1 = 0 y2 = 26.21 y3 = 21.62
z1 = 900 z2 = 101.92 z3 = 275.91
xmigrating = 68.16

xtotal = 268.39

• Configuration 3 (Midpoint)
x1 = 191.28 x2 = x3 = 4.32
y1 = 0 y2 = y3 = 26.29
z1 = 900 z2 = z3 = 98.60
xmigrating = 131

xtotal = 330.92

The first thing we observe is that the prey is now indeed able to survive, even in patches other
than the sanctuary patch. We can conclude that the presence of a sanctuary patch in a network
may be beneficial to the survival of the prey in all patches in the network. When we determine
the total population in the network, we see that there is a real increase in population levels, not
simply a redistribution of prey over the various patches. When we look at configuration 2, we see
that the patch which is connected to the sanctuary patch benefits from it more than the patch
indirectly connected. Furthermore, when we compare configuration 1 to configuration 3, we see
that the in configuration 3, in which the two unsafe patches are not connected to each other, the
population density of the prey is slightly higher. This would indicate that a connection to a bad
patch may be detrimental. Thus increased connectivity may not always be a positive thing. Also
note that in our attempts to protect the prey species, we have also increased the population of
the predator (at least in the non-sanctuary patches).

Predator migrates

Here we look at the situation in which the predator cannot survive. This happens if the pa-
rameters are such that in each patch only the non-trivial fixed points exist (these are the fixed
points in which there are no predators). The parameters used in this example can be found in the
file sanctuary2.params. We start patches from fixed point 4, (kx, 0, kz), which is attracting in
this example. This means if we introduce predators into the system, they will always go extinct.
We again turn patch 1 into a sanctuary patch. We do this by increasing the carrying capacity of
the primary prey x. In natural systems this could be accomplished by increasing the resources
or the number of nesting places for the prey. Note that this may lead to additional fixed points
appearing in the single-patch system of the sanctuary patch.

We start the patches in fixed point 4, and then introduce a small number of predators to the
system. We found that it does not matter in which patch the predators are released, the following
results were obtained. Though in practice it would make sense to release the predators into the
sanctuary patch and letting them migrate to the other patches from there. We have take the
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mortality rate of the predators during migration to be equal to the mortality rate within the
patches, to avoid any effects from the migration itself acting as a sanctuary.

• No migration
x1 = 200 x2 = x3 = 50
y1 = 0 y2 = y3 = 0
z1 = 900 z2 = z3 = 900
ymigrating = 0

ytotal = 0

• Configuration 1 (Cyclic)
x1 = 191.22 x2 = x3 = 49.61
y1 = 30.21 y2 = y3 = 5.52
z1 = 516.08 z2 = z3 = 831.10
ymigrating = 21.91

ytotal = 63.16

• Configuration 2 (Endpoint)
x1 = 179.67 x2 = 49.23 x3 = 49.79
y1 = 70.31 y2 = 10.88 y3 = 3.05
z1 = 5.76 z2 = 764.17 z3 = 861.99
ymigrating = 25.26

ytotal = 109.5

• Configuration 3 (Midpoint)
x1 = 190.51 x2 = x3 = 49.40
y1 = 32.67 y2 = y3 = 8.50
z1 = 484.80 z2 = z3 = 793.90
ymigrating = 21.86

ytotal = 71.53

From these result we again see that the predator is now able to survive in every patch of the
system. The result are similar to those of the situation in which the prey migrates. When we
look at configuration 2, we see that the patch directly connected to the sanctuary patch has
higher population levels than the patch indirectly connected to the sanctuary patch. And when
we compare configuration 1 to configuration 3 we see that the added connection between unsafe
patches which is present in configuration 1, leads to lower predator populations. Note that the
total population is highest for the endpoint configuration in this example. This is not true in
general, but interesting nevertheless. This shows that the predator population may suffer from
added connections between patches. Another interesting observation is that the population of
the alternative prey z in the sanctuary patch drops significantly for configuration 2 as compared
to the other patches. If we lower the mortality rate of the predators during migration, it can
happen that the alternative prey will go extinct altogether. What we learn from this is that our
attempts to rescue the predator, may be at the expense of losing another species.

Both predator and prey migrate

When both the predator and the prey migrate, and we wish to protect the prey, we cannot
create a safe patch by removing all predators from one of the patches, they would be able to
simply migrate back to the sanctuary patch from the other patches. What we could do in this
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case, is restrict the ease of migration of the predator to the sanctuary patch. In real systems this
could be accomplished by placing fences or water barriers around a patch for example. We will
show that this approach can lead to the survival of the prey in all patches of the system.

We again consider a network of identical patches, in which, if isolated, the prey is unable to
survive. We then connect the patches and set the migration parameter setting such that one of
the patches is largely (but not necessarily completely) shielded from predators.

The situation we studied in this example is stored in the file sanctuary.params. In this situation
fixed point 5, (0, ŷ, ẑ) is an attractor, which means that if we introduce a small population of
prey x into this system, it will go extinct. This can be seen in figure 9.5.

Figure 9.5: The primary prey cannot survive in an isolated patch

Now we connect 3 of these (identical) patches. We set all migration rates, return rates, and
mortality rates to a value of 1.0. We observe that the prey is still unable to survive (figure 9.6)

Figure 9.6: The primary prey cannot survive in a connected system with symmetric migration
parameters
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Now we change two parameters, namely the return rates of the predator to patch one. We set
those to 0.1. Thus we have shielded patch one from predators. What we observe is that it is now
possible for the primary prey x to survive, not only in the safe patch, but in all three patches
(figure 9.7)

Figure 9.7: If we shield one of the patches from predators, prey x is able to survive in all patches.

Even if we release a small population of prey x into one of the unshielded patches, the presence
of the sanctuary patch is enough to ensure the survival of the prey in the system. This example
again illustrates that it does not always hold that greater connectivity is always better. In this
case it was beneficial for the prey to restrict the connectivity between patches for the predator.
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10 Appendix A: Full Derivations

Here we give full derivations and calculations per section:

4.1 Optimal Foraging

Equation 4.5*

The predator will only include prey z in its diet if this leads to an increase in the energy in-
take rate. This means that, in order for the predator to include prey z in its diet, the following
inequality must hold:

Energy intake rate without z < Energy intake rate when z is included

⇒ λxEx
1 + λxhx

<
λxEx + λzEz

1 + λxhx + λzhz
⇒ λxEx(1 + λxhx + λzhz) < (1 + λxhx)(λxEx + λzEz) (cross-multiplication)

⇒ λxEx + λ2xhxEx + λxλzExhz < λxEx + λzEz + λ2xhxEx + λxλzEzhx

⇒ λxλzExhz < λzEz + λxλzEzzhx (eliminating the common terms)

⇒ λxExhz < Ez + λxEzhx (eliminating the factor λz)

⇒ λxExhz < Ez(1 + λxhx).

Gathering all the terms pertaining to prey x on one side, and prey z on the other, this results in
the requirement that:

λxEx
1 + λxhx

<
Ez
hz
. (10.1)

If this requirement holds, prey z is included in the diet, and otherwise it is not. Notice that
whether or not z is included depends only on the encounter rate of the primary prey x, not on
the encounter rate of prey z itself.

4.4 Change in diet

Equation 4.20*

Given the definition of δ:

δ =


1 if

aγxx

1 + ahxx
<
γz
hz

0 otherwise

,

we can see that it depends only on the abundance of prey x, not on the abundance of prey z.
We can then calculate the threshold for the abundance of prey x for which δ becomes 1:
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aγxx

1 + ahxx
<
γz
hz

ahzγxx < γz + ahxγzx

(ahzγx − ahxγz)x < γz

x <
γz

a(hzγx − hxγz)

x <
1

a(hz
γx
γz
− hx)

.

If the density of x is greater than this threshold, δ will be zero.

5 Analysis

5.1 System without x
The derivation of the zero isoclines of predator and prey goes as follows:

Equation 5.2*a and 5.2*b

The prey zero-isocline is obtained by setting
dz

dt
= 0:

dz

dt
= 0

z

[
rz

(
1− z

kz

)
− ay

1 + ahzz

]
= 0

rz

(
1− z

kz

)
− ay

1 + ahzz
= 0 ∨ z = 0

ay

1 + ahzz
= rz

(
1− z

kz

)
∨ z = 0

y =
rz
a

(
1− z

kz

)
(1 + ahzz) ∨ z = 0

Equation 5.2*c and 5.2*d

The predator zero-isoclines are found by setting
dy

dt
= 0:

dy

dt
= 0

y

[
−µ+

aγzz

1 + ahzz

]
= 0

(10.2)
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−µ+
aγzz

1 + ahzz
= 0 ∨ y = 0

aγzz

1 + ahzz
= µ ∨ y = 0

aγzz = µ+ µahzz ∨ y = 0

z(aγz − µahz) = µ ∨ y = 0

z =
µ

a (γz − hz)
∨ y = 0

5.1 Equilibria

Equations 5.3* and 5.4*

These equilibrium point are found by determining the intersections isoclines a and d:

y =
rz
a

(1− z

kz
)(1 + ahzz)

0 =
rz
a

(1− z

kz
)(1 + ahzz)

1− z

kz
= 0 ∨ 1 + ahzz = 0

z

kz
= 1 ∨ z =

−1

ahz
z = kz

Stability of fixed points

5.1.1 Graphical Approach

Equation 5.9

Here we determine the are of positive growth for the prey species z. There is positive growth if:

dz

dt
> 0

z

[
rz(1−

z

kz
)− ay

1 + ahzz

]
> 0

rz(1−
z

kz
)− ay

1 + ahzz
> 0
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rz(1−
z

kz
) >

ay

1 + ahzz

y < rz(1−
z

kz
)(

1 + ahzz

a
)

y <
rz
a

(1− z

kz
)(1 + ahzz).

Here we have used the fact that z and all the parameters are nonnegative numbers in our system.

Equation 5.10*

The peak of the isocline can be found by setting its derivative (with respect to z) to zero:

d

dz

[
rz
a

(1− z

kz
)(1 + ahzz)

]
= 0

d

dz

[
(
rz
a
− rz
akz

z)(1 + ahzz)

]
= 0

d

dz

[
rz
a
− rz
akz

z +
rzahz
a

z − rzahz
akz

z2)

]
= 0

d

dz

[
rz
a

+ (rzhz −
rz
akz

)z − rzhz
kz

z2)

]
= 0

rzhz −
rz
akz
− 2

rzhz
kz

z = 0

2
rzhz
kz

z = rzhz −
rz
akz

z =
rzhzkz
2rzhz

− rzkz
2akzrzhz

z =
kz
2
− 1

2ahz

z =
1

2
(kz −

1

ahz
)

Equation 5.11

The predators undergo a positive growth if it holds that:

dy

dt
> 0

y

[
−µ+

aγzz

1 + ahzz

]
> 0

−µ+
aγzz

1 + ahzz
> 0

aγzz

1 + ahzz
> µ
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aγzz > µ(1 + ahzz)

aγzz > µ+ µahzz)

z(aγz − µahz) > µ

z >
µ

a(γz − µhz)
(since µ < γz

hz
)

5.1.1 Analytical Approach

Equation 5.18*

We have

dy

dt
= ygy

dy

dt
= zgz

where

gy = −µ+
aγzz

1 + ahzz

gz = rz(1−
z

kz
)− ay

1 + ahzz
.

We will now derive the four entries of the Jacobian:

y
dgy
dy

=

y
d

dy
(−µ+

aγzz

1 + ahzz
) =

0.

y
dgy
dz

=

y

[
d

dz
(−µ+

aγzz

1 + ahzz
)

]
=

y

[
z
d

dz
(

aγz
1 + ahzz

) +
aγz

1 + ahzz

d

dz
(z)

]
= (product rule)

y

[
z
d

du
(
aγz
u

)
du

dz
+

aγz
1 + ahzz

d

dz
(z)

]
= (substitute u = 1 + ahzz)
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y

[
z(
−aγz
u2

)ahz +
aγz

1 + ahzz

]
=

y

[
aγz

1 + ahzz
− a2γzhzz

(1 + ahzz)2

]

z
dgz
dy

=

z
d

dy
(rz(1−

z

kz
)− ay

1 + ahzz
) =

− az

1 + ahzz

z
dgz
dz

=

z
d

dz
(rz(1−

z

kz
)− ay

1 + ahzz
) =

z

[
d

dz
(rz(1−

z

kz
))− d

dz
(

ay

1 + ahzz
)

]
=

z

[
− rz
kz
− d

du
(
ay

u
)
du

dz

]
= (substitute u = 1 + ahzz)

z

[
− rz
kz
− d

du
(
ay

u
)
d

dz
(1 + ahzz)

]
=

z

[
− rz
kz

+
ay

u2
ahz

]
=

z

[
− rz
kz

+
a2hzy

(1 + ahzz)2

]

Equation 5.20*

We know that at the equilibrium point

y =
rz
a

(
1− z

kz

)
(1 + ahzz) .

We can use this to simplify two of the entries of the Jacobian:

y

[
aγz

1 + ahzz
− a2γzhzz

(1 + ahzz)2

]
=

rz
a

(
1− z

kz

)
(1 + ahzz)

[
aγz

1 + ahzz
− a2γzhzz

(1 + ahzz)2

]
=

80



aγzrz(1− z
kz

)(1 + ahzz)

a(1 + ahzz)
−
a2γzhzrzz(1− z

kz
)(1 + ahzz)

a(1 + ahzz)2
=

γzrz(1−
z

kz
)−

aγzhzrzz(1− z
kz

)

1 + ahzz

z

[
− rz
kz

+
a2hzy

(1 + ahzz)2

]
=

z

[
− rz
kz

+
a2hzrz(1− z

kz
)(1 + ahzz)

a(1 + ahzz)2

]
=

z

[
− rz
kz

+
ahzrz(1− z

kz
)

1 + ahzz

]

Stability of the nontrivial fixed point
Below is the Jacobian at the nontrivial fixed point:

J =


0 γzrz(1− ẑ

kz
)− γzahzrz ẑ(1− ẑ

kz
)

1+ahz ẑ

− aẑ
1+ahz ẑ

ẑ

(
− rz
kz

+
ahzrz(1− ẑ

kz
)

1+ahz ẑ

)
 .

Equation 5.22*

In order to determine the stability of the nontrivial fixed point, we require that the determinant
be positive:

det(J) > 0[
−γzrz(1−

ẑ

kz
) + γzrz

ahz ẑ(1− ẑ
kz

)

1 + ahz ẑ

] [
− aẑ

1 + ahz ẑ

]
> 0

aγzrz ẑ

[
(1− ẑ

kz
)− ahz ẑ(1− ẑ

kz
)

1+ahz ẑ

]
1 + ahz ẑ

> 0

aγzrz ẑ

[
(1− ẑ

kz
)−

ahz ẑ(1− ẑ
kz

)

1 + ahz ẑ

]
> 0 (denominator is always positive)

ẑ(1− ẑ

kz
)−

ahz ẑ
2(1− ẑ

kz
)

1 + ahz ẑ
> 0

ẑ(1− ẑ

kz
)(1 + ahz ẑ)− ahz ẑ2(1− ẑ

kz
) > 0 (next we will divide by (1− ẑ

kz
))

(1− ẑ

kz
) > 0 ∧ ẑ + ahz ẑ

2 − ahz ẑ2 > 0 ∨ (1− z

kz
) < 0 ∧ z + ahzz

2 − ahz ẑ2 < 0

ẑ < kz ∧ ẑ > 0 ∨ ẑ > kz ∧ ẑ < 0
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Since kz is nonnegative, the second option is not possible, leaving us with 0 < ẑ < kz.

Equation 5.23*

We know that the determinant is positive if it holds that

0 < ẑ < kz.

Where ẑ is the value of z at the equilibrium point. We know that

ẑ =
µ

a(γz − µhz)
This means that the requirements for the determinant being positive are met if:

ẑ > 0 and ẑ < kz
µ

a(γz − µhz)
> 0 and

µ

a(γz − µhz)
< kz

a(γz − µhz) > 0 and kz >
µ

a(γz − µhz)
γz > µhz

µ <
γz
hz

Equation 5.24*

Requiring that the trace be negative gives us:

Tr(J) < 0

ẑ

[
− rz
kz

+
ahzrz(1− ẑ

kz
)

1 + ahz ẑ

]
< 0

− rz
kz

+
ahzrz(1− ẑ

kz
)

1 + ahz ẑ
< 0 ( z is positive)

rz
kz

>
ahzrz(1− ẑ

kz
)

1 + ahz ẑ

rz(1 + ahz ẑ) > ahzkzrz(1−
ẑ

kz
)

1 + ahz ẑ > ahzkz −
ahzkz ẑ

kz
2ahz ẑ > ahzkz − 1

ẑ >
1

2

(
kz −

1

ahz

)

Equation 5.25*

We know that in order for the trace to be negative, it must hold that:
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ẑ >
1

2

(
kz −

1

ahz

)
We also have an expression for ẑ, the value of z at the equilibrium point:

ẑ =
µ

a(γz − µhz)
.

Combining these two expressions gives us the conditions for which the trace will be negative:

ẑ >
1

2

(
kz −

1

ahz

)
µ

a(γz − µhz)
>

1

2

(
kz −

1

ahz

)
2µ

a(γz − µhz)
> kz −

1

ahz

kz <
2µ

a(γz − µhz)
+

1

ahz

kz <
2aµhz

a2hz(γz − µhz)
+

a(γz − µhz)
a2hz(γz − µhz)

kz <
2aµhz + a(γz − µhz)
a2hz(γz − µhz)

kz <
2µhz + γz − µhz
ahz(γz − µhz)

kz <
γz + µhz

ahz(γz − µhz)

Stability of the trivial fixed points

Equations 5.31* and 5.32*

The trivial fixed point (y, z) = (0, kz) is a stable attractor iff:

−µ+
aγzkz

1 + ahzkz
< 0

µ >
aγzkz

1 + ahzkz
µ(1 + ahzkz) > aγzkz

µ+ µahzkz > aγzkz

aγzkz − µahzkz < µ

kza(γz − µhz) < µ

γz − µhz < 0 ∨
[
kz <

µ

a(γz − µkz)
and γz − µhz > 0

]
µ >

γz
hz

∨
[
kz <

µ

a(γz − µkz)
and µ <

γz
hz

]
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5.2 System including primary prey

5.2.1 Equilibria

Equation 5.38*a,b

The predator zero-isoclines are found by setting
dy

dt
= 0:

y

[
−µ+

a(γxx+ δγzz)

1 + a(hxx+ δhzz)

]
= 0

−µ+
a(γxx+ δγzz)

1 + a(hxx+ δhzz)
= 0 ∨ y = 0

a(γxx+ δγzz)

1 + a(hxx+ δhzz)
= µ

aγxx+ δaγzz = µ+ aµhxx+ δaµhzz

x(aγx − aµhx) = µ+ δaµhzz − δaγzz

x =
µ+ δaµhzz − δaγzz

(aγx − aµhx)

x =
µ+ δaz(µhz − γz)

a(γx − µhx)

x =
µ− δaz(γz − µhz)

a(γx − µhx)
(10.3)

Equation 5.38*c,d

The zero-isoclines of prey x are found by setting
dx

dt
= 0:

x

[
rx(1− x

kx
)− ay

1 + a(hxx+ δhzz)

]
= 0

x = 0 ∨ rx(1− x

kx
)− ay

1 + a(hxx+ δhzz)
= 0

ay

1 + a(hxx+ δhzz)
= rx(1− x

kx
)

y =
rx
a

(1− x

kx
)(1 + ahxx+ δahzz) (10.4)

Equation 5.38*e,f,g

The zero-isoclines of prey z are found by setting
dz

dt
= 0:
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z

[
rz(1−

z

kz
)− δay

1 + a(hxx+ δhzz)

]
= 0

z = 0 ∨ rz(1−
z

kz
)− δay

1 + a(hxx+ δhzz)
= 0

z = 0 ∨ (δ = 0 ∧ z = kz) ∨ δay

1 + a(hxx+ δhzz)
= rz(1−

z

kz
)

y =
rz
δa

(1− z

kz
)(1 + ahxx+ δahzz)

(10.5)

Equation 5.39*

Intersection of isoclines (b),(d) and (e):
Here x = y = 0. Filling this in in (e) gives:

y =
rz
δa

(1− z

kz
)(1 + ahxx+ δahzz)

0 =
rz
δa

(1− z

kz
)(1 + δahzz)

0 = (1− z

kz
) ∨ 1 + δahzz = 0

z

kz
= 1 ∨ z = − 1

δahz
z = kz ∨ → always negative, infeasible

This means this intersection gives us the fixed point (x, y, z) = (0, 0, kz)

Equation 5.40*

Intersection of isoclines (b),(c) and (f):
Here y = z = 0. Filling this in in (c) gives:

y =
rx
a

(1− x

kx
)(1 + ahxx+ δahzz)

0 =
rx
a

(1− x

kx
)(1 + ahxx)

0 = (1− x

kx
) ∨ 1 + ahxx = 0

x

kx
= 1 ∨ x = − 1

ahx
x = kx ∨ → always negative, infeasible

Thus this leads to the fixed point (x, y, z) = (kx, 0, 0)

Equation 5.41*
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The intersection of isoclines (b),(c), and (e): Here y = 0. Filling this in in (c) gives:

y =
rx
a

(1− x

kx
)(1 + ahxx+ δahzz)

0 =
rx
a

(1− x

kx
)(1 + ahxx+ δahzz)

0 = (1− x

kx
)

x

kx
= 1

x = kx

And filling y = 0 in in (e) gives:

y =
rz
δa

(1− z

kz
)(1 + ahxx+ δahzz)

0 =
rz
δa

(1− z

kz
)(1 + ahxx+ δahzz)

0 = (1− z

kz
)

z

kz
= 1

z = kz

Thus we see that these isoclines intersect at the point (x, y, z) = (kx, 0, kz)

Equations 5.42* and 5.43*

The intersection of isoclines (a), (d) and (e): Here x = 0. This means δ = 1. Filling this
in in (a) gives:

x =
µ− δaz(γz − µhz)

a(γx − µhx)

x =
µ− az(γz − µhz)
a(γx − µhx)

µ− az(γz − µhz) = 0 (andγx 6= µhx)

az(γz − µhz) = µ

z =
µ

a(γz − µhz)

Using this result in equation (e) we determine y to be:

y =
rz
δa

(1− z

kz
)(1 + ahxx+ δahzz)

y =
rz
a

(1− z

kz
)(1 + ahzz)
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y =
rz
a

(1− 1

akz(
γx
µ − hx)

)(1 +
ahz

a(γzµ − hz)
)

y =
rz
a

(1− µ

akz(γx − µhx)
)(1 +

µhz
(γz − µhz)

)

Equation 5.44*

We can see that y is only positive (feasible) if

hz <
γz
µ
,

which ensures the last term is positive, and if

kz >
µ

a (γz − µhz)
,

which ensures the second term is positive.

Equation 5.45*

δ = 1 at this point if:

1

a(hz
γx
γz
− hx)

> 0

a(hz
γx
γz
− hx) > 0

hz
γx
γz

> hx

γx
hx

>
γz
hz
,

which is always true in our system.

Equations 5.46* and 5.47*

The intersection of isoclines (a), (c) and (f): At this point, z = 0. Plugging this into (a)
gives:

x =
µ− δaz(γz − µhz)

a(γx − µhx)

x =
µ

a(γx − µhx)
,

Entering the above into (c) we get the expression for y:
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y =
rz
a

(1− x

kx
)(1 + ahxx+ δahzz)

y =
rz
a

(1− µ

akx(γx − µhx)
)(1 +

aµhx
a(γx − µhx)

)

y =
rz
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

)

Equation 5.48*

In order for this fixed point to be biologically realistic, the values of x and y at this equillibrium
point must be positive. x is positive if:

x =
µ

a(γx − µhx)
> 0

a(γx − µhx) > 0

γx > µhx

µ <
γx
hx
.(∗)

y is positive if:

y =
rz
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

) > 0

Because of requirement (∗), we know that the third term in the above inequality is positive. This
means that y is only positive if the second term is also positive:

1− µ

akx(γx − µhx)
> 0

1 >
µ

akx(γx − µhx)

kx >
µ

a(γx − µhx)

Equations 5.49* and 5.50*

The intersection of isoclines (a), (c) and (g): Here z = kz and δ = 0 (from (g)). Filling
this in in (a) gives:

x =
µ− δaz(γz − µhz)

a(γx − µhx)

x =
µ

a(γx − µhx)

x =
µ

a(γx − µhx)
,
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Entering the above into (c) we get the expression for y:

y =
rz
a

(1− x

kx
)(1 + ahxx+ δahzz)

y =
rz
a

(1− 1

akx(γxµ − hx)
)(1 +

ahx
a(γxµ − hx)

)

y =
rz
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

)

Equation 5.49* and 5.50*

In order for this fixed point to be biologically realistic, the values of x and y at this equillibrium
point must be positive. x is positive if:

x =
µ

a(γx − µhx)
> 0

a(γx − µhx) > 0

γx > µhx

µ <
γx
hx
.(∗)

y is positive if:

y =
rz
a

(1− µ

akx(γx − µhx)
)(1 +

µhx
γx − µhx

) > 0

Because of requirement (∗), we know that the third term in the above inequality is positive. This
means that y is only positive if the second term is also positive:

1− µ

akx(γx − µhx)
> 0

1 >
µ

akx(γx − µhx)

kx >
µ

a(γx − µhx)

Equation 5.52*

The requirement that δ = 0 can be expressed as:

x̂ >
1

hz(
γx
γz
− hx)

µ

a(γx − µhx)
>

1

a(hz
γx
γz
− hx)
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1

a(γxµ − hx)
>

1

a(hz
γx
γz
− hx)

a(
γx
µ
− hx) < a(hz

γx
γz
− hx)

γx
µ
− hx < hz

γx
γz
− hx

γx
hx

>
γz
hz
∧ γz
hz

< µ <
γx
hx
.

The first part is always true in our system.

Equation 5.54*,5.55*, and 5.56*

Intersection of isoclines (a), (c) and (e): The nontrivial equilibrium is found by determining
the intersection between the following isoclines:

x =
1 + δaz(hz − γz

µ )

a(γxµ − hx)
=
µ− δaz(γz − µhz)

a(γx − µhx)
(10.6)

y =
rx

a
(1− x

kx
)(1 + ahxx+ δahzz) (10.7)

y =
rz

δa
(1− z

kz
)(1 + ahxx+ δahzz) (10.8)

Equating 10.7 and 10.8 gives us an expression for x:

rx
a

(1− x

kx
)(1 + ahxx+ δahzz) =

rz
δa

(1− z

kz
)(1 + ahxx+ δahzz)

rx
a

(1− x

kx
) =

rz
δa

(1− z

kz
) ∨ (1 + ahxx+ δahzz) = 0

rx
a
− rx
akx

x =
rz
δa
− rz
δakz

z ∨ x = −1 + δahzz

ahx
rx
akx

x =
rx
a
− rz
δa

+
rz
δakz

z ∨ → always negative, infeasible

x =
arxkx
arx

− arzkx
δarx

+
arzkx
δarxkz

z

x = kx −
rzkx
δrx

+
rzkx
δrxkz

z

x = kx(1− rz
δrx

+
rz

δrxkz
z)

x =
kx(δrxkz − rzkz + rzz)

δrxkz
(10.9)

Next we combine result 10.9 with the isocline 10.6 to obtain an expression for z:
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kx(δrxkz − rzkz + rzz)

δrxkz
=
µ− δaz(γz − µhz)

a(γx − µhx)

akx(δrxkz − rzkz + rzz)(γx − µhx) = δµrxkz − δ2arxkz(γz − µhz)z
arzkx(γx − µhx)z + akx(δrxkz − rzkz)(γx − µhx) = δµrxkz − δarxkz(γz − µhz)z (δ2 = δ)

z (arzkx(γx − µhx) + δarxkz(γz − µhz)) = δµrxkz − akx(δrxkz − rzkz)(γx − µhx)

z =
δµrxkz − akx(δrxkz − rzkz)(γx − µhx)

arzkx(γx − µhx) + δarxkz(γz − µhz)

z =
kz
a

[
δrx − akx(δrx − rz)(γx − µhx)

rzkx(γx − µhx) + δrxkz(γz − µhz)

]
z = −kz

a

[
akx(δrx − rz)(γx − µhx)− δµrx
rzkx(γx − µhx) + δrxkz(γz − µhz)

]
(10.10)

Equating 10.7 and 10.8 can also give us an expression for z:

rx
a

(1− x

kx
)(1 + ahxx+ δahzz) =

rz
δa

(1− z

kz
)(1 + ahxx+ δahzz)

rx
a

(1− x

kx
) =

rz
δa

(1− z

kz
) ∨ (1 + ahxx+ δahzz) = 0

rx
a
− rx
akx

x =
rz
δa
− rz
δakz

z ∨ x = −1 + δahzz

ahx
rz
δakz

z =
rz
δa
− rx

a
+

rx
akx

x ∨ → always negative, infeasible

z =
δarzkz
δarz

− δarxkz
arz

+
δarxkz
arzkx

x

z = kz −
δrxkz
rz

+
δrxkz
rzkx

x

z = kz(1−
δrx
rz

+
δrx
rzkx

x)

z =
kx(rzkx − δrxkx + δrxx)

rzkx
(10.11)

If we now fill in 10.11 into equation 10.6 and solve for x, we get:
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x =
µ− δaz(γz − µhz)

a(γx − µhx)

x =
µ− δakz(rzkx−δrxkx+δrxx)rzkx

(γz − µhz)
a(γx − µhx)

a(γx − µhx)x = µ− δakz(rzkx − δrxkx + δrxx)

rzkx
(γz − µhz)

arzkx(γx − µhx)x = µrzkx − δakz(rzkx − δrxkx + δrxx)(γz − µhz)
arzkx(γx − µhx)x = µrzkx − δakz(rzkx − δrxkx)(γz − µhz)− δ2arxkz(γz − µhz)x

arzkx(γx − µhx)x+ δarxkz(γz − µhz)x = µrzkx − δakz(rzkx − δrxkx)(γz − µhz)
x(arzkx(γx − µhx) + δarxkz(γz − µhz)) = µrzkx − δakz(rzkx − δrxkx)(γz − µhz)

x =
µrzkx − δakz(rzkx − δrxkx)(γz − µhz)
arzkx(γx − µhx) + δarxkz(γz − µhz)

x =
kx
a

[
µrz − δakz(rz − δrx)(γz − µhz)
rzkx(γx − µhx) + δrxkz(γz − µhz)

]
x =

kx
a

[
δakz(δrx − rz)(γz − µhz) + µrz
rzkx(γx − µhx) + δrxkz(γz − µhz)

]
(10.12)

Now that we have expressions for x and z, it remains to find an expression for y. We do this by
filling in our expressions for x and z into one of the expressions for y (10.7 or 10.8).

To see that the expression for y is correct, please refer to the Mathematica notebook entitled
Fixed point 8 in Appendix B. Below is an excerpt of this notebook.

92



Other isocline intersections

There are four other intersections of isoclines we have not yet discussed. We will show that
these intersections either yield either duplicate fixed points or biologically infeasible ones.

The intersection of isoclines (a), (d) and (f):

Here we have

x = 0

z = 0

x =
µ− δaz(γx − µhx)

a(γx − µhx)
,

which leads to:

0 =
µ

a(γx − µhx)

And since this requires that µ = 0, which is generally not the case in our system, this intersection
does not lead to an equilibrium point.

The intersection of isoclines (a), (d) and (g):
Here we have

x = 0

z = kz, δ = 0

x =
µ− δaz(γx − µhx)

a(γx − µhx)
,

which leads to:

0 =
µ

a(γx − µhx)

And since this requires that µ = 0, which is generally not the case in our system, this intersection
does not lead to an equilibrium point.

The intersection of isoclines (b), (c) and (g):
Here we have

y = 0

z = kz, δ = 0

y =
rx
a

(1− x

kx
)(1 + ahxx),

which leads to:
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0 =
rx
a

(1− x

kx
)(1 + ahxx)

1− x

kx
= 0 ∨ 1 + ahxx = 0

x = kx ∨ x = − 1

ahx

This second value for x is infeasible since it is negative, and the first would lead to fixed point
(kx, 0, kz), which we had already found.

The intersection of isoclines (b), (d) and (g):
Here we have

y = 0

x = 0

z = 0, delta = 0

which leads to the fixed point (0, 0, kz), which we had already found.

Table 5.1*

The derivation of the conditions for existence of fixed point 8 is rather involved, and was done
using Mathematica. See also the notebook entitled fp8.nb and Appendix B.

Let fixed point 8 be denoted by (x̂, ŷ, ẑ). For this fixed point to exist, all population densities
must be positive. Furthermore, we know that at this point δ must be 1, which means the density
of x must be lower than the threshold where δ flips values.

We let mathematica calculate under what conditions the following requirements are satisfied:

0 < x̂ < deltaThreshold

ŷ > 0

ẑ > 0,

Where

deltaThreshold =
1

a(hz
γx
γz
− hx)

When we enter this in Mathematica, we get the following output:
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Here we see that we must have that µ < γz
hz

. We also see that we can separate 3 subcases, namely
rx < rz, rx = rz, and rx > rz. We next ask Mathematica again, for each of these three subcases,
and ask Mathematica to give us the conditions in terms of kx and/or kz. First we look at the
case rx < rz:

This tells us that we must have:

kz <
−µrz

a(γz − µhz)(rx − rz)
, (kz < II)

and either

kx ≥
µ

a(γx − µhx)
, (kx ≥ V )

or

kx <
µ

a(γx − µhx)
, kz >

µ− akx(γx − µhx)

a(γz − µhz)
(kx < V and kz > III)

Next we look at the situation rx = rz:
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Here we see that we must have

kx >
µ

a(γx − µhx)
, (kx > V )

Or,

kx ≤
µ

a(γx − µhx)
, kz >

µ− akx(γx − µhx)

a(γz − µhz)
(kx ≤ V and kz > III).

And finally, we look at the situation rx > rz:

Here we see that we must have

kx <
µrx

a(γx − µhx)(rx − rz)
, (kx < I)

And either

kz ≥
µ

a(γz − µhz)
, (kz ≥ V I)

or

kz <
µ

a(γz − µhz)
, kx >

µ− akz(γz − µhz)
a(γx − µhx)

(kz < V I and kx > IV )

If we put this all into a table, we get:
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µ <
γz
hz

rx < rz

kx < V III < kz < II

kx ≥ V kz < II

rx = rz

kx ≤ V kz > III

kx > V

rx > rz

kz < V I IV < kx < I

kz ≥ V I kx < I

5.2.2 Stability Analysis

Equation 5.73*

dgy
dy

=

d

dy

[
−µ+

aγxx+ δaγzz

1 + ahxx+ δahzz

]
=

0

Equation 5.74*

dgy
dx

=

d

dx

[
−µ+

aγxx+ δaγzz

1 + ahxx+ δahzz

]
=

d

dx
[−µ] +

d

dx

[
aγxx

1 + ahxx+ δahzz

]
+

d

dx

[
δaγzz

1 + ahxx+ δahzz

]
=

x
d

dx

[
aγx

1 + ahxx+ δahzz

]
+

aγx
1 + ahxx+ δahzz

d

dx
[x] +

d

dx

[
δaγzz

1 + ahxx+ δahzz

]
= (product rule)

x
d

du

[aγx
u

] du
dx

+
aγx

1 + ahxx+ δahzz
+

d

du

[
δaγzz

u

]
du

dx
= (substitute u = 1 + ahx + δahzz)
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x
d

du

[aγx
u

] d

dx
[1 + ahxx+ δahzz] +

aγx
1 + ahxx+ δahzz

+
d

du

[
δaγzz

1 + ahxxδahzz

]
d

dx
[1 + ahxx+ δahzz] =

x
−aγx
u2

ahx +
aγx

1 + ahxx+ δahzz
− δaγzz

u2
ahxx =

−a2hxγxx
(1 + ahxx+ δahzz)2

+
aγx

1 + ahxx+ δahzz
− δa2hxγzz

(1 + ahxx+ δahzz)2
=

aγx
1 + ahxx+ δahzz

− a2hx(γxx+ δγzz)

(1 + ahxx+ δahzz)2
.

Equation 5.75*

dgy
dz

=

d

dz

[
−µ+

aγxx+ δaγzz

1 + ahxx+ δahzz

]
=

d

dz
[−µ] +

d

dz

[
aγxx

1 + ahxx+ δahzz

]
+

d

dz

[
δaγzz

1 + ahxx+ δahzz

]
=

d

dz

[
aγxx

1 + ahxx+ δahzz

]
+

δaγz
1 + ahxx+ δahzz

d

dz
[z] + z

d

dz

[
δaγz

1 + ahxx+ δahzz

]
= (product rule)

d

du

[aγxx
u

] du
dz

+
δaγz

1 + ahxx+ δahzz
+ z

d

du

[
δaγz
u

]
du

dz
= (substitute u = 1 + ahx + δahzz)

d

du

[aγxx
u

] d

dz
[1 + ahxx+ δahzz] +

δaγz
1 + ahxx+ δahzz

+ z
d

du

[
δaγz
u

]
d

dz
[1 + ahxx+ δahzz] =

−aγxx
u2

δahz +
δaγz

1 + ahxx+ δahzz
− z δaγz

u2
δahz =

−δa2hzγxx
(1 + ahxx+ δahzz)2

+
δaγz

1 + ahxx+ δahzz
− δ2a2hzγzz

(1 + ahxx+ δahzz)2
=

δaγz
1 + ahxx+ δahzz

− δa2hz(γxx+ γzz)

(1 + ahxx+ δahzz)2

Equation 5.76*

dgx
dy

=

d

dy

[
rx(1− x

kx
)− ay

1 + ahxx+ δahzz

]
=

− a

1 + ahxx+ δahzz
.

Equation 5.77*
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dgx
dx

=

d

dx

[
rx(1− x

kx
)− ay

1 + ahxx+ δahzz

]
=

d

dx

[
rx(1− x

kx
)

]
− d

dx

[
ay

1 + ahxx+ δahzz

]
=

− rx
kx
− d

du

[ay
u

] du
dx

=

− rx
kx
− d

du

[ay
u

] d

dx
[1 + ahxx+ δahzz] =

− rx
kx

+
ay

u2
ahx =

− rx
kx

+
a2hxy

(1 + ahxx+ δahzz)2
.

Equation 5.78*

dgx
dz

=

d

dz

[
rx(1− x

kx
)− ay

1 + ahxx+ δahzz

]
=

d

dz

[
rx(1− x

kx
)

]
− d

dz

[
ay

1 + ahxx+ δahzz

]
=

− d

du

[ay
u

] du
dx

=

− d

du

[ay
u

] d

dx
[1 + ahxx+ δahzz] =

ay

u2
δahz =

δa2hzy

(1 + ahxx+ δahzz)2
.

Equation 5.80*

dgz
dy

=

d

dy

[
rz(1−

z

kz
)− δay

1 + ahxx+ δahzz

]
=
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− δa

1 + ahxx+ δahzz

Equation 5.81*

dgz
dx

=

d

dx

[
rz(1−

z

kz
)− δay

1 + ahxx+ δahzz

]
=

d

dx

[
rz(1−

z

kz
)

]
− d

dx

[
δay

1 + ahxx+ δahzz

]
=

− d

du

[
δay

u

]
du

dx
=

− d

du

[
δay

u

]
d

dx
[1 + ahxx+ δahzz] =

δay

u2
ahx =

δa2hxy

(1 + ahxx+ δahzz)2
.

Equation 5.82*

dgz
dz

=

d

dz

[
rz(1−

z

kz
)− δay

1 + ahxx+ δahzz

]
=

d

dz

[
rz(1−

z

kz
)

]
− d

dz

[
δay

1 + ahxx+ δahzz

]
=

− rz
kz
− d

du

[
δay

u

]
du

dz
=

− rz
kz
− d

du

[
δay

u

]
d

dz
[1 + ahxx+ δahzz] =

− rz
kz

+
δay

u2
δahz =

− rz
kz

+
δ2a2hxy

(1 + ahxx+ δahzz)2
=

− rz
kz

+
δa2hxy

(1 + ahxx+ δahzz)2
. (since δ2 = δ)
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5.2.2 Stability Analysis

Trivial fixed points

Equation 5.83*

The Jacobian of the system is given by:

J =

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz

 ,
We now evaluate the Jacobian at the point (x, y, z) = (0, 0, 0):y

dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz


(0,0,0)

=

gy 0 0
0 gx 0
0 0 gz


(0,0,0)

=

−µ+ a(γxx+δγzz)
1+ahxx+δahzz

0 0

0 rx(1− x
kx

)− ay
1+ahxx+δahzz

0

0 0 rz(1− z
kz

)− δay
1+ahxx+δahzz


(0,0,0)

=

−µ 0 0
0 rx 0
0 0 rz

 .
Equation 5.84*

The Jacobian of the system is given by:

J =

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz

 ,
We now evaluate the Jacobian at the point (x, y, z) = (kx, 0, 0):

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz


(kx,0,0)

=

 gy 0 0

kx
dgx
dy kx

dgx
dx + gx kx

dgx
dz

0 0 gz


(kx,0,0)

=

−µ+ a(γxx+δγzz)
1+ahxx+δahzz

0 0
akx

1+ahxx+δahzz
−rx + a2hxkxy

1+ahxx+δahzz
+ rx(1− x

kx
)− ay

1+ahxx+δahzz
δa2hzkxy

1+ahxx+δahzz

0 0 rz(1− z
kz

)− δay
1+ahxx+δahzz


(kx,0,0)

=

−µ+ aγxkx
1+ahxkx

0 0

− akx
1+ahxkx

−rx 0

0 0 rz
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Equation 5.86*

The predator can invade if

−µ+
aγxkx

1 + ahxkx
> 0

aγxkx
1 + ahxkx

> µ

aγxkx > µ(1 + ahxkx)

aγxkx − aµhxkx > µ

akx(γx − µhx) > µ

kx >
µ

a(γx − µhx)
and γx − µhx > 0 ∨ kx <

µ

a(γx − µhx)
and γx − µhx < 0kx >

µ

a(γx − µhx)
and µ >

γx
hx

∨ kx <
µ

a(γx − µhx)
and µ <

γx
hx

Since this second case requires kz to be negative, we are left with just the first case:

kx >
µ

a(γx − µhx)
and µ >

γx
hx

Equation 5.87*

The Jacobian of the system is given by:

J =

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz

 ,
We now evaluate the Jacobian at the point (x, y, z) = (0, 0, kz):y

dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz


(0,0,kz)

=

 gy 0 0
0 gx 0

kz
dgz
dy kz

dgz
dx kz

dgz
dz + gz


(0,0,kz)

=

−µ+ a(γxx+δγzz)
1+ahxx+δahzz

0 0

0 rx(1− x
kx

)− ay
1+ahxx+δahzz

0

− δakz
1+ahxx+δahzz

δa2hxkxy
1+ahxx+δahzz

−rz + δa2hxkzy
(1+ahxx+δahzz)2

+ rz(1− z
kz

)− δay
1+ahxx+δahzz


(0,0,kz)

=

−µ+ δaγzkz
1+ahzkz

0 0

0 rx 0

− δakz
1+ahzkz

0 −rz


Equation 5.90*

The Jacobian of the system is given by:

J =

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz

 ,
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We now evaluate the Jacobian at the point (x, y, z) = (kx, 0, kz):

y
dgy
dy + gy y

dgy
dx y

dgy
dz

xdgxdy xdgxdx + gx xdgxdz
z dgzdy z dgzdx z dgzdz + gz


(kx,0,kz)

=

 gy 0 0

kx
dgx
dy kx

dgx
dx + gx kx

dgx
dz

kz
dgz
dy kz

dgz
dx kz

dgz
dz + gz


(kx,0,kz)

=

−µ+ a(γxx+δγzz)
1+ahxx+δahzz

0 0
−akx

1+ahxx+δahzz
−rx + a2hxkxy

1+ahxx+δahzz
+ gx

δa2hzkxy
1+ahxx+δahzz

− δakz
1+ahxx+δahzz

δa2hxkxy
1+ahxx+δahzz

−rz + δa2hxkzy
(1+ahxx+δahzz)2

+ gz


(kx,0,kz)

=

−µ+ δaγzkz
1+ahzkz

0 0
−akx

1+ahxx+δahzz
−rx + rx(1− x

kx
)− ay

1+ahxx+δahzz
0

− δakz
1+ahzkz

0 −rz + rz(1− z
kz

)− δay
1+ahxx+δahzz


(kx,0,kz)

=

−µ+ δaγzkz
1+ahzkz

0 0
−akx

1+ahxx+δahzz
rx 0

− δakz
1+ahzkz

0 −rz


Equations 5.92* - 5.94*

Here we determine when fixed point 4 is stable. This is the case iff:

µ >
aγxkx + δaγzkz

1 + ahxkx + δahzkz
.

First we look at the situation where δ = 0.

µ >
aγxkx

1 + ahxkx
µ(1 + ahxkx) > aγxkx

µ > akx(γx − µhx)

We see that this holds in the following cases:

case 1: µ <
γx
hx

and kx <
µ

a(γx − µhx)

case 2: µ >
γx
hx

and kx >
µ

a(γx − µhx)

case 3: µ =
γx
hx

Since we have said that δ = 0, we also know that:

kx >
1

a(hz
γx
γz
− hx)

.

Letting (A) = µ
a(γx−µhx) , and (B) = 1

a(hz
γx
γz

−hx) , we determine that
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(A) < (B) if µ <
γz
hz

∨ µ >
γx
hx

(B) < (A) if
γz
hz

< µ <
γx
hx

Which means that for case 1, where we require (B) < kx < (A), we also know that (B) < (A)
must hold, and so is only possible if γz

hz
< µ < γx

hx
.

For case 2 we have that both kx > (A) and kx > (B) must hold, and since µ > γx
hx

, we know that
(A) < (B), and therefore it suffices to require only kx > (B) since this implies kx > (A).

Thus we are left with the following two requirements:

case 1:
γx
hz

< µ <
γx
hx

and kx < (A)

case 2: µ >
γx
hx

and kx > (B).

Next we consider the case where δ = 1.

µ >
aγxkx + δaγzkz

1 + ahxkx + δahzkz

µ >
aγxkx + aγzkz

1 + ahxkx + ahzkz
µ+ aµhxkx + aµhzkz > aγxkx + aγzkz

µ+ akz(µhz − γz) > akx(γx − µhx)

We see that this holds in the following two cases:

case 1: µ <
γz
hz

and kz < (C)

case 2: µ >
γz
hz

and kz > (C)

case 3: µ =
γz
hz

and kx < (A)

Where (C) = µ−akx(γx−µhx)
a(γz−µhz)

For our further analysis, we need to know when (C) is positive and when it is negative. To
that end, we determine when the numerator and denominator are positive and when they are
negative. It is easily shown that

denominator negative: µ >
γz
hz

denominator positive: µ <
γz
hz

numerator negative: kx > (A)

numerator positive: kx < (A)
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First let us consider case 1. The denominator of (C) is positive since we have µ < γz
hz

. We have
determined that the numerator is negative (and thus (C) negative) if kx > (A). If this holds,
then kz < (C) is impossible. Note that since we require δ = 1, we also have kx < (B). But since
µ < γz

hz
we have (A) < (B), so this does not change the conditions.

Next we consider case 2. We will split this case into two subcases:

case 2a:
γz
hz

< µ <=
γx
hx

and kz > (C)

case 2b: µ >
γx
hx

and kz > (C).

Let us consider case 2a. Here we have that the denominator of (C) is negative. If we also have that
kx < (A), then the numerator is positive, and (C) negative, which means that the requirement
kz > (C) always holds. If, on the other hand kx > (A), then (C) is positive. But since we say
that δ = 1 here, which means kx < (B), and we have that (A) > (B) here, it cannot hold that
both kx > (A) and kx < (B). This means case 2a is reduced to γz

hz
< µ < γx

hx
and kx < (A)

Now let us look at case 2b. Here we have that the denominator is negative, and the numerator
positive, which means (C) is negative and the requirement kz > (C) always holds.

All this leads to the following cases:

case 1: µ <
γz
hz

and kx < (A) and kz < (C)

case 2a:
γz
hz

<= µ <
γx
hx

and kx < (A)

case 2b: µ >=
γx
hx

(and kx < (B) since δ = 1 here).

Now what remains to be done is to combine the cases for δ = 0 and δ = 1. We see that case 1
in the situation δ = 0 is identical to case 2b. And case 2 of the situation δ = 0 can be combined
with case 2b. This leads to the following final set of conditions:

µ <
γz
hz

and kx <
µ

a(γx − µhx)
and kz <

µ− akx(γx − µhx)

a(γz − µhz)
, or

γz
hz

<= µ <
γx
hx

and kx <
µ

a(γx − µhx)
, or

µ >=
γx
hx
.

Equations 5.100* and 5.101*

See also the Mathematica Notebook in Appendix B entitled Stability of fixed points 5 and 6.

First we determine when this fixed point is an attractor:
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This gives us

µ <
γz
hz

, V I < kz < V III rz ≥ X , rx < XII,

And second we determine when this fixed point is a repeller:

which gives us:

µ <
γz
hz

, kz > V III , rz ≥ X , rx > XII,

Equations 5.113* - 5.114*

See also the Mathematica Notebook in Appendix B entitled Stability of fixed points 5 and 6.
At this point, δ can be both zero or one. First we will consider the case where δ = 0, then the
case where δ = 1, and then we will combine the results. If this equilibrium occurs at a point
where z is not included in the diet (δ = 0), then this equilibrium is never an attractor:
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It can, however, be a repeller:

Here we see that it is a repeller if:

γz
hz

< µ <
γx
hx

, kx > V II , rx ≥ IX

If, however, this equilibrium occurs at a point where z is included in the diet, (δ = 1), then it is
possible for this fixed point to be an attractor:

Here we see that we have

µ <
γz
hz

, V < kx < V II , rx ≥ IX , rz < XI

For δ = 1, this fixed point can also be a repeller:
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This gives us:

µ <
γz
hz

, kx > V II , rx ≥ IX , rz > XI

We can combine the above conditions for stability. The fixed point is an attractor if

µ <
γz
hz

, V < kx < V II , rx ≥ IX , rz < XI,

and it is a repeller if

µ <
γx
hx

, kx > V II , rx ≥ IX , and

[
µ >

γz
hz

or rz > XI

]
In all other cases, this fixed point is a saddle point.

Table 5.2

Here we will derive the table for the existences and stabilities of fixed points 1-7.
First we list all the conditions for stability and existence of the different fixed points:

• Fixed points 1-3 always exist and are always saddle points.

• Fixed point 4 always exists and is stable if

µ ≥ γx
hx
,

γz
hz
≤ µ < γx

hx
, kx < V, or,

µ <
γz
hz

, kx < V, kz < III

• Fixed point 5 exists if µ < γz
hz

and kz > V I. It is stable if

µ <
γz
hz

V I < kz < V III , rz ≥ X , rx < XII.

It is a repeller if

µ <
γz
hz

kz > V III , rz ≥ X , rx > XII.

And a saddle point otherwise.

• Fixed point 6 exists if µ < γx
hx

and kx > V . It is stable if

µ <
γz
hz

V < kx < V II , rx ≥ IX , rz < XI.
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It is a repeller if

µ <
γx
hx

kx > V II , rx ≥ IX ,

[
µ >

γz
hz

or rz > XI

]
.

And a saddle point otherwise.

• Fixed point 7 exists if γz
hz
≤ µ < γx

hx
and kx > V . It is stable if also kx < V II.

We will first divide the parameter space into three situations, based on the value of µ:

1). µ ≥ γx
hx

2).
γz
hz
≤ µ < γx

hx

3). µ <
γz
hz

Let us consider the first situation. We see that for this parameter range, fixed points 5,6,7, and
8 do not exist, and fixed point 4 is always stable. This leads us to the sub-table:

µ ≥ γx
hx

attractor: 4

Next we look at situation 2, γz
hz
≤ µ < γx

hx
. We now look at each fixed point individually to

see when, if ever, they exist and what their stability is in this situation:

• fixed point 4 exists, and is stable if it also holds that kx < V . If kx ≥ V , then fixed point
4 is a saddle point.

• fixed point 5 does not exist for these values of µ

• fixed point 6 exists, and it is a repeller if it also holds that kx > V II and rx ≥ IX. If these
two conditions do not hold, then fixed point 6 is a saddle point.

• fixed point 7 exists if we also have that kx > V is stable if it also holds that kx < V II.

• fixed point 8 does not exist for this parameter range.

We see that we have conditions in terms of kx compared to both V and VII. We can determine
that V < V II iff µ < γx

hx
. Since this is always true for this parameter range, we can now subdivide

this situation into the following 3 cases, based on the value of kx:

kx < V,

V < kx < V II,

kx > V II.

And this last case can be further subdivided based on the value of rx. This leads to the following
sub-table:
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γz
hz
≤ µ < γx

hx

kx < V attractor: 4

V < kx < V II attractor: 7 , saddle: 4, 6

kx > V II
rx < IX saddle: 4,6,7

rx ≥ IX repeller: 6 , saddle: 4,7

Finally, we look at situation 3, µ < γz
hz

. We again look at each fixed point individually to
see what their conditions for existence and stability are in this situation:

• fixed point 4 exists, and is stable if it also holds that kx < V and kz < III.

• fixed point 5 exists if kz > V I.
It is an attractor if V I < kz < V III , rz ≥ X , and rx < XII
It is a repeller if kz > V III , rz ≥ X , and rx > XII

• fixed point 6 exists if kx > V .
It is an attractor if V < kx < V II , rx ≥ IX , and rz < XI
It is a repeller if kx > V II , rx ≥ IX , rz > XI

• fixed point 7 does not exist.

• fixed point 8 may exist in this parameter range.

We determine that in this range, the following holds:

V < V II

III < V I < V III.

We also see that rx < XII implies that rx < rz:

rx < XII

rx < rz

[
−µ+ akz(γz − µhz)
akz(γz − µhz)

]

And since the expression in the square brackets is always smaller than 1, this means that rx is
smaller than rz. In a similar fashion we determine that rz < XI implies that rx > rz. Thus we
see that we can never have both rx < XII and rz < XI, which also means we never have that
both fixed point 5 and fixed point 6 stable. Using these facts, we can now construct the last part
of the table:
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µ < γz
hz

kx < V

kz < III attractor: 4
III < kz < V I saddle: 4

V I < kz < V III
rz ≥ X and rx < XII attractor: 5, saddle: 4
rz < X or rx ≥ XII saddle: 4,5

kz > V III
rz ≥ X and rx < XII repeller: 5, saddle: 4
rz < X or rx ≥ XII saddle: 4,5

V < kx < V II

kz < V I
rx ≥ IX and rz < XI attr: 6, saddle: 4
rx < IX or rz ≥ XI saddle: 4,6

kz > V I
rx ≥ IX and rz < XI attr: 6 saddle: 4

rx < IX or rz ≤ XI
rz ≥ X and rx < XII attr: 5 saddle: 4,6
rz < X or rx ≥ XII saddle: 4,5,6

kx > V II

kz < V I
rx < IX or rz ≤ XI saddle: 4,6
rx ≥ IX and rz > XI repeller: 6 saddle: 4

V I < kz < V III
rx < IX or rz ≤ XI

rz ≥ X and rx < XII attr: 5 saddle: 4,6
rz < X or rx ≥ XII saddle: 4,5,6

rx ≥ IX and rz > XI
rz ≥ X and rx < XII repeller: 6 attr: 5, saddle:4
rz < X or rx ≥ XII repeller: 6, saddle: 4,5

kz > V III
rx < IX or rz ≤ XI

rz ≥ X and rx > XII repeller: 5 saddle: 4,6
rz < X or rx ≤ XII saddle: 4,5,6

rx ≥ IX and rz > XI
rz ≥ X and rx > XII repeller: 5,6, saddle:4
rz < X or rx ≤ XII repeller: 6, saddle: 4,5

If we put all these sub-tables together, we get table 5.2.
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7 Single Patch Analysis

Statement 7.1*

Here we will show that whenever fixed point 8 exists, none of the other fixed points are sta-
ble. See also Mathematia notebook entitled Conditions for some of the following derivations.
Below is the table for existence for fixed point 8:

µ <
γz
hz

rx < rz

kx < V III < kz < II

kx ≥ V kz < II

rx = rz

kx ≤ V kz > III

kx > V

rx > rz

kz < V I IV < kx < I

kz ≥ V I kx < I

We enter the various conditions into Mathematica:
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First we consider fixed point 4. This fixed point is stable if one of the three following conditions
hold:

1). µ ≥ γx
hx
,

2).
γz
hz
≤ µ < γx

hx
, kx < V, or,

3). µ <
γz
hz

, kx < V, kz < III

We immediately see that if we require that fixed point 8 exist, we are left with only situation 3.
Next we look at the situation rx < rz and kx < V in the conditions for existence of fixed point
8. We see that for existence, it is also required that kz > III, but the stability of fixed point 4
requires kz < III, so for rx < rz we see that we never have that both fixed point 8 exists and
fixed point 4 is stable.

Next look at the situation rx == rz and again the requirement kx < V . We see that the existence
of 8 again requires kz > III, while the stability of fixed point 4 requires kz < III.

Last we look at rx > rz. Here we have that kx > IV must hold for existence of fixed point 8,
and kz < III and µ < γz

hz
must hold for stability of fixed point 4. These conditions are never all

true:

Thus we can conclude that if fixed point 8 exists, fixed point 4 is not stable.

Next we look at fixed point 5. This fixed point is stable if

µ <
γz
hz

V I < kz < V III , rz ≥ X , rx < XII.

The condition rx < XII implies that rx < rz. From the table for existence of fixed point 8, we
see that we would then also need kz < II. We can see that we will never have both rx < XII
(required for stability of fixed point 5) and µ < γz

hz
, kz < II (requirement for existence fixed

point 8):
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Next we look at fixed point 6. This fixed point is stable if

µ <
γz
hz

V < kx < V II , rx ≥ IX , rz < XI.

The condition rz < XI implies that rz < rx. We can see that we will never have both rz < XI
(required for stability of fp5) and µ < γz

hz
and kz < II (requirements for existence fixed point

8):

Fixed point 7 does not exist for the parameter range µ < γz
hz

. So fixed point 7 and fixed point 8
never both exist.

Thus we can say that if fixed point 8 exists, there will not be another fixed point which is stable.
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11 Appendix B: Mathematica Notebooks

This appendix contains the code used in Mathematica to perform several of the more involved
calculations. The following notebooks can be found here:

11.1 Fixed point 8

In this notebook, the location of fixed point 8 is determined, as well as the conditions for its
existence. The notebook file is named fixedpoint8.nb.

11.2 Stability of fixed points 5 and 6

As the title indicates, this notebook contains calculations of the conditions for stability of fixed
points 5 and 6. The notebook file is named fp56.nb.

11.3 Conditions

This notebook contains the conditions I-XII and was used to show that if fixed point 8 ex-
ists, none of the other fixed points are ever stable. The file containing this notebook is named
conditions.nb.
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Fixed Point 8

First we determine the location of the fixed points: 

xd@x_, y_, z_D := x * Hrx * H1 - x � kxL - a * y � H1 + a * hx * x + a * hz * zLL

yd@x_, y_, z_D := y * H-m + a * Hgx * x + gz * zL � H1 + a * hx * x + a * hz * zLL

zd@x_, y_, z_D := z * Hrz * H1 - z � kzL - a * y � H1 + a * hx * x + a * hz * zLL

Simplify@Solve@8xd@x, y, zD � 0, yd@x, y, zD � 0, zd@x, y, zD � 0<, 8x, y, z<DD

:8x ® 0, y ® 0, z ® 0<, 8y ® 0, x ® 0, z ® kz<, 8y ® 0, x ® kx, z ® kz<,
8y ® 0, z ® 0, x ® kx<, :y ®

gx H-m + a kx Hgx - hx mLL rx

a2 kx Hgx - hx mL2
, z ® 0, x ®

m

a gx - a hx m
>,

:y ®

gz H-m + a kz Hgz - hz mLL rz

a2 kz Hgz - hz mL2
, x ® 0, z ®

m

a gz - a hz m
>,

:y ® HHm + a H-gx kx - gz kz + hx kx m + hz kz mLL rx rz H-gz kz Hrx + a hx kx rx - a hx kx rzL -

gx kx Hrz + a hz kz H-rx + rzLLLL � Ia2 Hgz kz rx - hz kz m rx + kx Hgx - hx mL rzL2M,
x ®

kx Ha kz Hgz - hz mL Hrx - rzL + m rzL
a Hgz kz rx - hz kz m rx + kx Hgx - hx mL rzL , z ®

kz Hm rx - a kx Hgx - hx mL Hrx - rzLL
a Hgz kz rx - hz kz m rx + kx Hgx - hx mL rzL >>

The last of these is the 3-species fixed point, fixed point 8, the one we are interested in. We now determine when this fixed point
exists, by requiring that x,y and z all be nonnegative numbers, and that delta be 1 at the intersection:

xfp8 :=

Hkx � aL * HHa * kz * Hgz - m * hzL * Hrx - rzL + m * rzL � Hrz * kx * Hgx - m * hxL + rx * kz * Hgz - m * hzLLL

zfp8 :=

-Hkz � aL * HHa * kx * Hgx - m * hxL * Hrx - rzL - m * rxL � Hrz * kx * Hgx - m * hxL + rx * kz * Hgz - m * hzLLL

yfp8 := Hrx * rz � a^2L * HHHm + a * H-gx * kx - gz * kz + hx * kx * m + hz * kz * mLL *

H-gz * kz * Hrx + a * hx * kx * rx - a * hx * kx * rzL - gx * kx * Hrz + a * hz * kz * H-rx + rzLLLL �
Hrz * kx * Hgx - m * hxL + rx * kz * Hgz - m * hzLL^2 L

deltaThreshold := 1 � Ha * Hhz * gx � gz - hxLL

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0,

gx > 0, gz > 0, rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0<DD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&& kz > 0 &&

kx > 0 && rz > 0 && a >

m

gx kx + gz kz - Hhx kx + hz kzL m
&& rx � rz ÈÈ

rx > 0 && rx < rz && a +

m rz

kz Hgz - hz mL Hrx - rzL < 0 ÈÈ a <

m rx

kx Hgx - hx mL Hrx - rzL && rx > rz

To simplify matters, we will look at three cases separately, namely rx < rz, rx == rz and rx > rz :

First the case rx < rz:



First the case rx < rz:

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0, gx > 0,

gz > 0, rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0, rx < rz<, kzDD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&&

kx > 0 && rz > 0 && 0 < rx && kz +

m rz

a Hgz - hz mL Hrx - rzL < 0 && rx < rz &&

0 < a && a <

m

gx kx - hx kx m
&&

-a gx kx + m + a hx kx m

a Hgz - hz mL < kz ÈÈ a ³

m

gx kx - hx kx m
&& 0 < kz

Now for the case rx == rz:

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0, gx > 0, gz > 0,

rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0, rx == rz<, 8kx, kz<DD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&& rz > 0 && a > 0 && rx � rz &&

0 < kx £

m

a gx - a hx m
&& kz >

-a gx kx + m + a hx kx m

a Hgz - hz mL ÈÈ kx >

m

a gx - a hx m
&& kz > 0

And finally the case rx > rz:

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0, gx > 0,

gz > 0, rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0, rx > rz<, kxDD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&&

kz > 0 && rx > rz && rz > 0 && kx <

m rx

a Hgx - hx mL Hrx - rzL &&

0 < a && a <

m

gz kz - hz kz m
&&

-a gz kz + m + a hz kz m

a Hgx - hx mL < kx ÈÈ a ³

m

gz kz - hz kz m
&& 0 < kx
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Stability of fixed points 5 and 6

� Here we show that fixed points 5 and 6 of our predator-prey system are always unstable. At these fixed points, one of the two prey 
species is extinct, while the other is in equilibrium with the predator.  Fixed point 5 is (0,y,z) and fixed point 6 is (x,y,0).

First we will consider fixed point 5. Since x=0 here, we know that delta=1. The value of y and z at equilibrium is:

yfp := Hrz � a L * H1 - 1 � Ha * kz * Hgz � m - hzLLL * H1 + hz � Hgz � m - hzLL

zfp := 1 � Ha * Hgz � m - hzLL

The Jacobian at this point is of the form 

0 b c

0 e 0

g h j

and it has the following eigenvalues :

Eigenvalues@880, b, c<, 80, e, 0<, 8g, h, j<<D

:e,
1

2
Kj - 4 c g + j2 O,

1

2
Kj + 4 c g + j2 O>

Here e,j, c and g are given by:

b@y_, z_D := y * Ha * gx � H1 + a * hz * zL - a * a * hx * gz * z � H1 + a * hz * zL^2L

c@y_, z_D := y * Ha * gz � H1 + a * hz * zL - a * a * hz * gz * z � H1 + a * hz * zL^2L

e@y_, z_D := rx - a * y � H1 + a * hz * zL

g@y_, z_D := -a * z � H1 + a * hz * zL

h@y_, z_D := z * Ha^2 * hx * y � H1 + a * hz * zLL

j@y_, z_D := z * H-Hrz � kzL + a^2 * hz * y � H1 + a * hz * zL^2L

Thus, the eigenvalues are given by:

EV1@y_, z_D := e@y, zD

EV2@y_, z_D := H1 � 2L * Hj@y, zD - Sqrt@4 * c@y, zD * g@y, zD + j@y, zD^2DL

EV3@y_, z_D := H1 � 2L * Hj@y, zD + Sqrt@4 * c@y, zD * g@y, zD + j@y, zD^2DL

Now we require all three eigenvalues to be negative, to find the conditions for which this fixed point is an attractor:



Simplify@Reduce@8EV1@yfp, zfpD < 0, EV2@yfp, zfpD < 0, EV3@yfp, zfpD < 0, a > 0,

m > 0, hx > 0, hz > 0, kx > 0, kz > 0, rx > 0, rz > 0, gx > 0, gz > 0, gx � hx > gz � hz<DD

m > 0 && gz > 0 && 0 < hz <

gz

m
&& kz > 0 &&

m

gz kz - hz kz m
< a <

gz + hz m

gz hz kz - hz2 kz m
&&

rz ³

4 a gz kz Hgz - hz mL2 H-m + a kz Hgz - hz mLL
m Hgz - a gz hz kz + hz H1 + a hz kzL mL2

&&

0 < rx <

a gz kz rz - m rz - a hz kz m rz

a gz kz - a hz kz m
&& hx > 0 && gx >

gz hx

hz
&& kx > 0

Or, to see when (if ever) it is a repeller, we require that all eigenvalues be positive:

Simplify@Reduce@8EV1@yfp, zfpD > 0, EV2@yfp, zfpD > 0, EV3@yfp, zfpD > 0, a > 0,

m > 0, hx > 0, hz > 0, kx > 0, kz > 0, rx > 0, rz > 0, gx > 0, gz > 0, gx � hx > gz � hz<DD

m > 0 && gz > 0 && 0 < hz <

gz

m
&& kz > 0 &&

a >

gz + hz m

gz hz kz - hz2 kz m
&& rz ³

4 a gz kz Hgz - hz mL2 H-m + a kz Hgz - hz mLL
m Hgz - a gz hz kz + hz H1 + a hz kzL mL2

&&

rx >

a gz kz rz - m rz - a hz kz m rz

a gz kz - a hz kz m
&& hx > 0 && gx >

gz hx

hz
&& kx > 0

In all other cases, this point is a saddle point.

Next we look at fixed point 6. The derivation is very similar to that of fixed point 5. First we set the values for x and y at
equilibrium:

yfp6 := Hrx � a L * H1 - 1 � Ha * kx * Hgx � m - hxLLL * H1 + hx � Hgx � m - hxLL

xfp := 1 � Ha * Hgx � m - hxLL

The Jacobian at this point is of the form 
       0  b  c
       d  e  f
       0  0  j
 Which has the following eigenvalues:      

Eigenvalues@880, b, c<, 8d, e, f<, 80, 0, j<<D

:
1

2
e - 4 b d + e2 ,

1

2
e + 4 b d + e2 , j>

The values of e, b, d and j are given by:

b6@x_, y_D := y * Ha * gx � H1 + a * hx * xL - a^2 * hx * gx * x � H1 + a * hx * xL^2L

d6@x_, y_D := -a * x � H1 + a * hx * xL

e6@x_, y_D := x * H-rx � kx + a^2 * hx * y � H1 + a * hx * xL^2L

j6@x_, y_D := rz - d * a * y � H1 + a * hx * xL

And the eigenvalues are:
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And the eigenvalues are:

EV61 @x_, y_D := j6@x, yD

EV62@x_, y_D := H1 � 2L * He6@x, yD - Sqrt@4 * b6@x, yD * d6@x, yD + e6@x, yD^2DL

EV63@x_, y_D := H1 � 2L * He6@x, yD + Sqrt@4 * b6@x, yD * d6@x, yD + e6@x, yD^2DL

We again require that all three eigenvalues are negative:

Simplify@Reduce@8EV61@xfp, yfp6D > 0, EV62@xfp, yfp6D > 0,

EV63@xfp, yfp6D < 0, a > 0, m > 0, hx > 0, hz > 0, kx > 0, kz > 0, rx > 0, rz > 0,

gx > 0, gz > 0, d � 1, gx � hx > gz � hz, xfp < 1 � Ha * Hhz * gx � gz - hxLL<DD
False

in these cases the fixed point is an attractor. To determine under which conditions it is a repeller, we require all eigenvalues to be
positive.

Simplify@Reduce@8EV61@xfp, yfp6D > 0, EV62@xfp, yfp6D > 0,

EV63@xfp, yfp6D > 0, a > 0, m > 0, hx > 0, hz > 0, kx > 0, kz > 0, rx > 0, rz > 0,

gx > 0, gz > 0, d � 1, gx � hx > gz � hz, xfp < 1 � Ha * Hhz * gx � gz - hxLL<DD

m > 0 && gx > 0 && 0 < hx <

gx

m
&& gz > 0 &&

gz hx

gx
< hz <

gz

m
&& kx > 0 &&

a >

gx + hx m

gx hx kx - hx2 kx m
&& rx ³

4 a gx kx Hgx - hx mL2 H-m + a kx Hgx - hx mLL
m Hgx - a gx hx kx + hx H1 + a hx kxL mL2

&&

rz >

a gx kx rx - m rx - a hx kx m rx

a gx kx - a hx kx m
&& kz > 0 && d � 1

In all other cases the fixed point is a saddle point.

Until now we have looked at the situation where delta=1. We will now consider the situation where delta=0:

Simplify@Reduce@8EV61@xfp, yfp6D < 0, EV62@xfp, yfp6D < 0,

EV63@xfp, yfp6D < 0, a > 0, m > 0, hx > 0, hz > 0, kx > 0, kz > 0, rx > 0, rz > 0,

gx > 0, gz > 0, d � 0, gx � hx > gz � hz, xfp > 1 � Ha * Hhz * gx � gz - hxLL<DD
False

Thus we see that it is never an attractor when delta is zero. It can, however, be a repeller: 

Simplify@Reduce@8EV61@xfp, yfp6D > 0, EV62@xfp, yfp6D > 0,

EV63@xfp, yfp6D > 0, a > 0, m > 0, hx > 0, hz > 0, kx > 0, kz > 0, rx > 0, rz > 0,

gx > 0, gz > 0, d � 0, gx � hx > gz � hz, xfp > 1 � Ha * Hhz * gx � gz - hxLL<DD

m > 0 && gx > 0 && 0 < hx <

gx

m
&& gz > 0 && hz >

gz

m
&& kx > 0 && a >

gx + hx m

gx hx kx - hx2 kx m
&&

rx ³

4 a gx kx Hgx - hx mL2 H-m + a kx Hgx - hx mLL
m Hgx - a gx hx kx + hx H1 + a hx kxL mL2

&& rz > 0 && kz > 0 && d � 0

In all other cases it is a saddle point.
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Fixed Point 8

First we determine the location of the fixed points: 

xd@x_, y_, z_D := x * Hrx * H1 - x � kxL - a * y � H1 + a * hx * x + a * hz * zLL

yd@x_, y_, z_D := y * H-m + a * Hgx * x + gz * zL � H1 + a * hx * x + a * hz * zLL

zd@x_, y_, z_D := z * Hrz * H1 - z � kzL - a * y � H1 + a * hx * x + a * hz * zLL

Simplify@Solve@8xd@x, y, zD � 0, yd@x, y, zD � 0, zd@x, y, zD � 0<, 8x, y, z<DD

:8x ® 0, y ® 0, z ® 0<, 8y ® 0, x ® 0, z ® kz<, 8y ® 0, x ® kx, z ® kz<,
8y ® 0, z ® 0, x ® kx<, :y ®

gx H-m + a kx Hgx - hx mLL rx

a2 kx Hgx - hx mL2
, z ® 0, x ®

m

a gx - a hx m
>,

:y ®

gz H-m + a kz Hgz - hz mLL rz

a2 kz Hgz - hz mL2
, x ® 0, z ®

m

a gz - a hz m
>,

:y ® HHm + a H-gx kx - gz kz + hx kx m + hz kz mLL rx rz H-gz kz Hrx + a hx kx rx - a hx kx rzL -

gx kx Hrz + a hz kz H-rx + rzLLLL � Ia2 Hgz kz rx - hz kz m rx + kx Hgx - hx mL rzL2M,
x ®

kx Ha kz Hgz - hz mL Hrx - rzL + m rzL
a Hgz kz rx - hz kz m rx + kx Hgx - hx mL rzL , z ®

kz Hm rx - a kx Hgx - hx mL Hrx - rzLL
a Hgz kz rx - hz kz m rx + kx Hgx - hx mL rzL >>

The last of these is the 3-species fixed point, fixed point 8, the one we are interested in. We now determine when this fixed point
exists, by requiring that x,y and z all be nonnegative numbers, and that delta be 1 at the intersection:

xfp8 :=

Hkx � aL * HHa * kz * Hgz - m * hzL * Hrx - rzL + m * rzL � Hrz * kx * Hgx - m * hxL + rx * kz * Hgz - m * hzLLL

zfp8 :=

-Hkz � aL * HHa * kx * Hgx - m * hxL * Hrx - rzL - m * rxL � Hrz * kx * Hgx - m * hxL + rx * kz * Hgz - m * hzLLL

yfp8 := Hrx * rz � a^2L * HHHm + a * H-gx * kx - gz * kz + hx * kx * m + hz * kz * mLL *

H-gz * kz * Hrx + a * hx * kx * rx - a * hx * kx * rzL - gx * kx * Hrz + a * hz * kz * H-rx + rzLLLL �
Hrz * kx * Hgx - m * hxL + rx * kz * Hgz - m * hzLL^2 L

deltaThreshold := 1 � Ha * Hhz * gx � gz - hxLL

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0,

gx > 0, gz > 0, rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0<DD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&& kz > 0 &&

kx > 0 && rz > 0 && a >

m

gx kx + gz kz - Hhx kx + hz kzL m
&& rx � rz ÈÈ

rx > 0 && rx < rz && a +

m rz

kz Hgz - hz mL Hrx - rzL < 0 ÈÈ a <

m rx

kx Hgx - hx mL Hrx - rzL && rx > rz

To simplify matters, we will look at three cases separately, namely rx < rz, rx == rz and rx > rz :

First the case rx < rz:



First the case rx < rz:

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0, gx > 0,

gz > 0, rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0, rx < rz<, kzDD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&&

kx > 0 && rz > 0 && 0 < rx && kz +

m rz

a Hgz - hz mL Hrx - rzL < 0 && rx < rz &&

0 < a && a <

m

gx kx - hx kx m
&&

-a gx kx + m + a hx kx m

a Hgz - hz mL < kz ÈÈ a ³

m

gx kx - hx kx m
&& 0 < kz

Now for the case rx == rz:

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0, gx > 0, gz > 0,

rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0, rx == rz<, 8kx, kz<DD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&& rz > 0 && a > 0 && rx � rz &&

0 < kx £

m

a gx - a hx m
&& kz >

-a gx kx + m + a hx kx m

a Hgz - hz mL ÈÈ kx >

m

a gx - a hx m
&& kz > 0

And finally the case rx > rz:

Simplify@Reduce@8xfp8 < deltaThreshold, a > 0, m > 0, kx > 0, kz > 0, hx > 0, hz > 0, gx > 0,

gz > 0, rx > 0, rz > 0, gx � hx > gz � hz, zfp8 > 0, yfp8 > 0, xfp8 > 0, rx > rz<, kxDD

hz > 0 && hx > 0 && gz > 0 && gx >

gz hx

hz
&& 0 < m <

gz

hz
&&

kz > 0 && rx > rz && rz > 0 && kx <

m rx

a Hgx - hx mL Hrx - rzL &&

0 < a && a <

m

gz kz - hz kz m
&&

-a gz kz + m + a hz kz m

a Hgx - hx mL < kx ÈÈ a ³

m

gz kz - hz kz m
&& 0 < kx
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