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Abstract

Within the context of Articulatory Speech Synthesis, humanspeech is representable through a set of time-varying
articulatory parameters (eg: constriction of oropharyngeal sections). The extraction of the configuration of artic-
ulatory parameters from speech sound is called Vocal Tract Area Function (VTAF) estimation. Vocal Tract Area
Function Inversion is a well known problem in the field of speech synthesis and recognition, and it is gener-
ally accepted that a stable method to perform acoustical-to-articulatory mapping does not exist yet. Pioneering
work by Atal showed that the problem is an inverse ill-posed problem. In this study we present a novel inver-
sion method based on Multi Objective Evolutionary Algorithms: Lacov-NSGA-II. The system is an adaptation of
NSGA-II for VTAF extraction. A number of modifications to theoriginal NSGA-II algorithm are proposed, such
as a problem-specific evolutionary operator design and a time-varying search space. Good results obtained from
a serial prototype encouraged the development of a parallelversion of the algorithm. Experimental tests showed
good performance with respect to the intelligibility of there-synthesised speech signal as well as the objective
error measurements.

1 Introduction

Human speech is representable through a set of time-
varying articulatory parameters (eg: tongue, lips, etc).
The extraction of the configuration of articulatory
parameters from speech sound is called Vocal Tract
Area Function (VTAF) Estimation. Vocal Tract Area
Function Estimation is a well known problem in the
field of speech synthesis and recognition, and it is
generally accepted that a stable method to perform
acoustical-to-articulatory mapping does not exist yet.
Moreover, it is often needed in many applications,
such as speech recognition, speech synthesis, speech
compression, language training for deaf people, etc.
Several techniques for VTAF estimation have been
suggested in the literature. Early approaches intro-
duced a number of constraints, which were mainly
combinations of temporal (dynamic) and morpholog-
ical (spatial) restrictions. Other approaches tried to re-
late acoustic information such as formant frequencies
and acoustic impedance at the lips to the VTAF. Few
studies suggested the use of codebook-based meth-
ods, where the estimation is started with a feature

lookup in a pre-built postural database. An impor-
tant drawback is that the codebook-based approaches
need the previous construction of extensive databases
of postures and thus can only focus on few particular
sound classes. It is also clear that this approach can
only be applied to a specific synthesis model under
study.

More recent approaches tend to be more general with
respect to the synthesis method and often make use of
optimisation techniques, such as Genetic Algorithms
and Particle Swarm Optimisation. These methods of-
ten use a single objective value to be minimised, com-
puted as the wighted sum over a feature vector de-
scribing the differences between the target and the
actual solution. This approach can lead to good re-
sults, however it is often hard to tune the weight
of each objective feature. Moreover, experimentation
with a single objective value within this study showed
a noticeable discontinuous behaviour in the parame-
ter space. For this reason we propose a general multi-
objective optimisation method that can be applied to
newer and more complex physical vocal tract emu-
lations. Our method consists of an adapted version
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of the evolutionary meta-heuristic NSGA-II, called
Lacov-NSGA-II. VTAF estimation is performed in an
evolutionary fashion, having to match a given speech
sample by iteratively evolving a population of partial
solutions.
The Vocal Tract Model used in our study is the Gnus-
peech Tube Resonance Model (TRM), a synthesiser
which emulates the resonant behaviour of the vocal
tract, physically simulating it as a chain of tubular
waveguides. The glottal source is modeled as a sine
wave inserted inside the first tube. The model fea-
tures a cascade of 8 tubes to emulate the oropharyn-
geal cavity and 5 to model the nasal cavity.

Figure 1: Section of human postures used to pronounce the
/a/(left) and /e/(right) phonemes, rendered with VocalTract-
Lab (courtesy of Peter Birkholz)[17]

1.1 Outline

This paper is organised in 8 sections. Section 2 is an
overview upon Articulatory Speech Synthesis and the
Tube Resonance Model. Some pioneering VFAT esti-
mation techniques from the literature are reported in
Section 3. Section 4 describes NSGA-II, while sec-
tions 5 and 6 report the needed algorithm adapta-
tion and its parallelisation. Experimental results are
reported and discussed in Section 7. Conclusions are
listed in Section 8.

2 Articulatory Speech Synthesis
Articulatory synthesis consists on a class of tech-
niques for synthesising speech based on physical
models of the human vocal tract and the articulation
processing occurring there. In the following sections
we will describe the Tube Resonance Model, which
is the vocal tract emulation software we used in our
study.. In order to have a computationally feasible
synthesis model, this model features several simplifi-
cations. These assumptions include: glottal source ap-
proximation to a sine wavetable oscillator, frequency-
independent energy loss and the bi-dimensional mod-
elling of the travelling waves system, decoupling of
glottal and pharyngeal dynamics. These approxima-
tions rule out the possibility to model few phenome-
nas happening in the vocal tract, such as the air vor-

texes, the non-linear coupling of the pressure at the
lips and the glottal pulse and the effects of the jaw
tilt.

2.1 The Tube Resonance Model

In this section we will describe the Tube Resonance
Model (TRM)[8], an articulatory speech synthesiser
distributed within the TTS system Gnuspeech. The
resonant behaviour of the oropharyngeal and nasal
tract is emulated using digital waveguides. The vo-
cal tract is divided into 8 regions (tubes) of unequal
length, where the particular regions correspond to the
human articulations of tongue, teeth and mouth, The
cross-sectional area of each region can be varied in-
dependently over time. The difference between the
cross-sectional areas of subsequent tubes gives raise
to differences in acoustic impedance of the medium.
This phenomena is modelled using two-way scatter-
ing junctions. The nasal cavity is formed by 5 equal-
length tubes, and it is connected to the vocal tract
through a particular tube (velum). This connection is
modeled using a single three-way scattering junction.
In the next few sections we will cover the basics of
acoustic tubes physic dynamics.

2.1.1 Simulating an Uniform Tube

Fluid motion in a rigid tube with uniform cross-
sectional area can be approximated as primarily par-
allel to the waveguide parallel axis. This means that
sound pressure waves are assumed to travel through
the medium as a one-dimensional longitudinal plane
waves (as the model in the previous section). A delay
line like the one in Figure 21 can be used to simulate
travelling waves in the digital domain, being a system
which samples both in time and space: each delay unit
stores the instantaneous pressure for the correspond-
ing section of the tube. At each sample increment, the
wave values are shifted to the right into the next delay
unit.

Figure 2:Simple Delay Line

Sound waves can travel through the tube in both di-
rections at the same time. The instantaneous pressure
at any delay unit is then the sum of the left-to-right
and the right-to-left traveling waves. This superpo-
sition of waves results in constructive and destruc-
tive interference through all the delay units, yielding
particular resonance in the spectra to be enhanced or
suppressed. Superposition can be simulated using a

1In the context of Digital Signal Processing,z
−

n denotes a Delay line with a delay of L samples. A unit delay (a delay of one sample) is
therefore expressed asz

−
1.
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bi-directional delay line (called alsowaveguide), as
shown in Figure 3. In this structure there are two lines
of delay units, one simulating the left-to-right and the
second the right-to-left traveling wave. The instanta-
neous sound pressure at each tube section can be eas-
ily derived as the sum of the bottom and the below
delay units.

Figure 3: Bi-directional Delay Line

When the left-to-right traveling wave reaches the end
of the tube, it is reflected back inverted into the right-
to-left delay line. In the digital domain, this is per-
formed simply multiplying the value in the rightmost
delay unit by−1 and feeding this value into the right-
to-left delay line. A traveling wave reaching a closed
end of a tube is reflected back into the tube in phase,
without invertion. This simulates the reflection of the
traveling wave at the glottis site, as shown in Figure
4.

Figure 4: Bi-Directional Delay Line with reflections occur-
ring at boundaries

In the real vocal tract energy loss takes place as vis-
cosity and thermal conduction of the air. Approximat-
ing this behaviour, ignoring any frequency-dependent
effect of the phenomenon, can be modeled multiply-
ing the pressure waves in each delay unit by a loss
factor before shifting it to the next unit. Normally this
factor is a value less then1. The addition of the energy
loss to the tube model is shown in Figure 5.

Figure 5: Bi-Directional Delay Line with reflections at
boundaries and energy loss on junctions

2.1.2 Modeling Non-Uniform Tubes

To approximate the behaviour of wave traveling
through a smooth-varying non-uniform tube, we can
simulate it as a series of equal-length cylindrical sec-
tions, each being the average cross-sectional area of
the area of the corresponding real vocal tract part.
Each tube in the non-uniform tube gives raise to a par-
ticular acoustic impedance. If two subsequent tubes
have different impedance, part of the pressure of the
traveling wave is reflected and part is transmitted at
the junction of the two sections. To model this be-
haviour, we we can make use of the two-wayscat-
tering junctions, as shown in Figure x. The scattering
coefficientkm is calculated with the formula:

km =
Zm+1 − Zm

Zm+1 + Zm

(1)

whereZm is the impedance of sectionm. Note that if
two subsequent tubes have the same impedanceZk,
then no reflection occurs in the scattering junction.
SinceZm = pv/Sm, whereSm is the cross-sectional
area of the tube sectionm, and since air densityP and
speed of soundV are the same in both directions, we
can recast the above formula as:

Figure 6: 2-way Scattering Junction

km =
Sm+1 − Sm

Sm+1 + Sm

(2)

Which can be further re-casted as a function of sec-
tion radii, sinceS = πr2

km =
r2
m+1 − r2

m

rm+1 + rm

(3)

Note that if sectionm + 1 is closed,km+1 = 1 which
means that the traveling wave is completely reflected
back.
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2.1.3 N-Way Junctions

The nasal and oropharyngeal tract are connected
through the velum. This nasal cavity is modeled with
a separate tube resonance model, which remains fixed
into a steady-state posture. The velum is modeled
through a three-wayscattering junction.

Figure 7: 3-way Scattering Junction

N-Way junctions are a generalisation of the two-way
scattering junction. As before, the relative impedance
of the connecting tubes determine the reflection char-
acteristics of the junction which are a function of the
relative cross-sectional areas of the selections of the
tubes adjacent to the junction. The scattering coeffi-
cientai for the tubei can be computed with the fol-
lowing formula:

ai = 2
Γi

ΣN
j=1

Γj

(4)

where we defineΓi = 1/Zi as the admittance of tube
i. We can express the formula as a function of the
cross-sectional areasSi as:

ai = 2
Si

ΣN
j=1

Sj

(5)

or in term of tube radiiri as:

ai = 2
r2
i

ΣN
j=1

r2
j

(6)

We can then derive the total pressurePj of the junc-
tion with

Pj = ΣN
j=1aiP

+

i (7)

whereP+

i is the incoming pressure for tubei, while
each outgoing pressure waveP−

i can be computed by
subtracting the incoming pressure from the junction
pressure:

P−

i = Pj − P+

i (8)

Equation 8 can be used to derive the air pressure at
the lips.

3 VTAF Estimation
In this section we will review existing approaches for
VTAF estimation and we will introduce our novel ap-
proach. We have partitioned all existing methods in
3 classes of algorithms: Codebook-based, Analytical
and Optimization-based.

3.1 Codebook - based approaches

Codebook-based approaches require the pre-
computation of acoustic features of a subset of the
postural space, as well as appropriate routines to uni-
formly spread and match the probes. These method
are usually bound to a particular subset of sounds,
and the voice synthesis model must be well defined
before the codebook generation. From the literature it
emerges that among all the approaches, these meth-
ods seem to be advantageous with respect to accu-
racy. However, it is clear that these methods lack in
flexibility, because the vocal tract shapes that can be
recovered are strictly related to the codebook. This
data is usually limited to few speakers or to a partic-
ular vocal tract model, thus adequate mapping exists
only for few classes of voice sounds, like vowels or
simple consonant-vowel transitions.

3.2 Analytical and Statistical approaches

Analytical methods usually make use of a mathemat-
ical inversion of the physical dynamics of the artic-
ulatory model. However, being the problem ill-posed
it is often very hard to derive a closed and computa-
tionally feasible form of these dynamics. Moreover,
these methods are clearly bound to a specific synthe-
sis model. Statistical methods have been suggested in
the literature as well. Dusan et al introduced a method
to derive the VTAF using the Maeda’s Statics Artic-
ulatory Model, built by statistical analysis of X-ray
films of a French female speaker. To estimate the dy-
namical model parameter, they used the Expectation-
Minimisation (EM) algorithm for Maximum Likeli-
hood estimation of model parameters. Mokhtari et al.
suggested a method to derive a good compression of
the parameter space using Principal Component Anal-
ysis on Japanese MRI and audio data. The first two
principal components explained covariation in vocal-
tract shape and length accounting for 96% of the to-
tal variance. Multiple linear regression models were
then evaluated for their accuracy in reconstructing the
area functions of the dynamic utterance, using either
carefully measured formants or cepstral coefficients
defined in various frequency bands.
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while Termination Conditiondo
Rt = Pt ∪ Qt ;
F =non-dominated-sort(Rt) ;
Pt+1 = ∅ andi = 1 ;
repeat

crowding-distance-assignment(Fi) ;
Pt+1 = Pt+1 ∪ Fi ;
i = i + 1 ;

until |Pt+1| + |Fi| ≤ N ;
Sort(Pi+1,≺n) ;
Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1)] ;
Qt+1 =make-new-pop(Pt+1) ;
t = t + 1 ;

end

Algorithm 1:NSGA-II main loop

3.3 Optimisation - based approaches

Sankaran et al. introduce a VT Inversion by Analisys-
by-Synthesis, which was an inversion model based on
convex optimisation. They mapped acoustic and geo-
metric continuity constraints to a cost function used
during the optimisation. To speed up the process, they
used a big database for acoustic-to-articulatory map-
ping, organised with a bin structure in the formant
space. A drawback of this approach is that the cost
function might be non-convex and could exhibit and
the landscape might show high discontinuity. In this
terms the method does not seem to be generalisable
with respect to the synthesis method. Other recent
approaches using evolutionary computing have been
proposed in [7]. Mahmoud suggests the estimation of
the VTAF using particle swarm optimisation (PSO)
techniques.

4 NSGA-II

We propose a method based on NSGA-II, which
is a multi-objective evolutionary optimisation algo-
rithm (MOEA). These class of algorithm showed bet-
ter results and more robustness compared to single-
objective evolutionary algorithms during our early ex-
perimentation. Within this approach, partial solutions
are evolved through an iterative use of mutation, eval-
uation and selection routines. A solution is a vector
describing the degree of opening of each tube of the
Tube Resonant Model, as well as its glottal source
frequency. The multi objective cost function is a vec-
tor that measures feature differences (eg: MFCC, zero
cross, displacement of the formant frequencies, etc.)
between the target speech sample and the actual eval-
uation. It should be noticed that the concept of MOEA
induces the existence of a set of solutions rather then a
single pseudo-optimal solution. The solution to a MO
problem can be indeed defined as a Pareto set. Pareto
optimality is a concept that formalises the trade-off
between a given set of mutually contradicting objec-

tives: a solution is Pareto optimal when it is not possi-
ble to improve one objective without deteriorating at
least one of the other. A set of Pareto optimal solu-
tions constitute the Pareto front.

NSGA-II iteratively approximates the extraction of
the first Pareto front using a fast non-domination sort-
ing function. The function has complexityO(MN2),
where M is the number of objectives while N is
the population cardinality. The non-dominance sort-
ing induces a partitioning of the population into sub-
sets calledfronts. Each solution in frontFi dominates
all the solutions in the subsequent frontsFi−1...Fi−n.
We say that if solutionx ∈ Fi, then it has ranki.
NSGA-II defines a Crowded Comparison operator≺n

which guides the selection process at various stages of
the algorithm towards a uniformly spread out Pareto-
optimal front. The operator uses the rank and a den-
sity estimate to define a partial order between the so-
lutions. Between two solutions with differing non-
domination ranks, it selects the solution with lower
rank. Otherwise, if both solutions belong to the same
front, it chooses the solution which is located in a re-
gion with lesser number of solutions. Initially, a ran-
dom parent populationP0 is generated. Binary tour-
nament, selection, recombination and mutation oper-
ators are used to generate a new populationQ0 of size
N . From the first generation onward, the procedure is
different. Algorithm 1 shows the NSGA-II main rou-
tine. Initially, the algorithm performs the union of par-
entPt and childQt populations into a mixed popula-
tion Rt of size2N . Then the populationRt is sorted
according to non-domination. A new parent popula-
tion Pt+1 is formed by adding the first front ofRt un-
til the size exceeds N. After that, the solutions from
the last accepted front are sorted according to≺n

and the first N points are picked. This results in the
new populationPt+1 of size N. Solutions inPt+1 are
then used to generate a new child populationQt+1

of sizeN , through selection, crossover and mutation.
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The Termination Condition can be set as needed, i.e.
a maximum number of iterations.

4.1 Mathematical Formulation

The problem of estimating the VTAF can mathemat-
ically defined as a multi-objective optimisation prob-
lem with linear constrains.

min
x

[µ1(x), µ2(x)..., µn(x)]T

subject to:

• g(x) <= 0,

• h(x) = 0

• xl < x < xu

whereui is theith objective cost function,g andh are
respectively the inequality and equality constraints,
andx is the vector of optimisation variables. This is
the vector describing the configuration of the vocal
tract, by means of 8 real values that regulate the de-
gree of opening of each tube.
The equality constraints consist of parameters that
are maintained fixed in our research. These include
fundamental frequency, frication parameters, parame-
ters modelling the nasal cavity, etc. Articulatory con-
straints (minimal and maximal degree of opening of a
single tube) are included by means of fixed inequal-
ity constraints. The extraction of the best VTAF from
the first Pareto front is performed finding the solution
which minimises the normalised sum of all the cost
functions.

5 Lacov-NSGA-II
A number of modifications to NSGA-II were needed
to obtain a robust and stable method. The result-
ing algorithm was called Lacov-NSGA-II. In Lacov-
NSGA-II, we introduced new features to the search
algorithm by using a dynamic search space strategy
and specialised Mutation Operators.

5.1 Dynamic Search Space

GA algorithms are usually used to optimise parame-
ters of a model which is static during the search pro-
cess, which means that the cardinality of the param-
eters that the heuristic can tune does not change in
time. We introduce a dynamic modelling of the prob-
lem space: the heuristic starts with almost all tubes
grouped together as they were a single one. A special
operator is designed to ’split’ the tubes, enabling inde-
pendent tuning. We define themodel topology, which
is a boolean vector V with lengthn, wherevi = 1 if
theith tube cross-sectional area is controllable andn
is the tube cardinality. Otherwise, vi = 0. This means
that only the tubes marked as1 can be adjusted by the
search algorithm. It is important to notice that each in-
dividual inherits its own topological information, let-
ting independent ’topological species’ being present

in the population. From this perspective, the evolu-
tionary process imposes a competition between indi-
viduals but also a competition between topologies.

Figure 8: Inversion System Scheme

5.2 Operators

The Mutation Operators had to be modified in order to
work with the parameter grouping topology feature.
Also, some problem-specific knowledge was inserted
into the algorithm, by means of new mutation opera-
tors. The following sections describe these Operators.

5.2.1 Mutation Operator

The mutation Operator performs a perturbation to the
actual solution. Magnitude and direction of the per-
turbation are extracted form a gaussian distribution.
Magnitude is then multiplied with the inverse genera-
tion number to achieve a ćooling down-́effect, similar
to the one used in Simulated Annealing techniques.
The mutation operator takes the model topology into
account. First, it generates a random positioni and
checks ifvi is tunable. Ifvi is tunable, it performs the
same mutation to all the parameters that are bound to
the ith tube, otherwise the routine is restarted until a
usable tube is found.

5.2.2 Splitting Operator

The Splitting Operator induces the growth of the
search space for each solution. The Splitting opera-
tor randomly selects a candidate, generates a random
position between tubes 1-8 and performs the splitting
marking as1 the corespondent array cell in the topol-
ogy information. With respect with the previous defi-
nitions, this simply means: (a) Choose a random tube
i and (b) Setvi = 1.

5.2.3 Horizontal/Vertical Shifts

We experimentally ascertained that similar acoustic
feature values could be obtained within vertically or
horizontally shifted isomorphic postures. The Verti-
cal Shift operator performs a random shifting of the
whole posture, by adding to each of the TRM tube
cross-sectional radius a value extracted from the Mu-
tation Operator. The Horizontal Shift operator is sim-
ilar to the Vertical Shift Operator, but the shift oper-
ation is performed horizonally rather than vertically.
The first and the last tube are swapped.
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Figure 9: Parallel version of Lacov instance with 8 workers and 1 master node (not shown). Arrows denote Deme migration.

5.2.4 Sensitivity Operator

Sensitivity operator is used to relate the movement of
the controllable tubes to the objective improvement
of each of the first four formant frequency displace-
ments. The operator calculates an approximation of
the partial derivative of the objective function, using
the following method. First, all the tubes are selected
and for each pivot tube, a new posture is generated.
Each posture is obtained adding to theith parameter
(and all the associated bound tubes) a constant value
δ (0.02 cm). All the new postures that do not violate
the postural constraints are evaluated. Finally, the ges-
ture maximising the improvement is maintained in the
population.

6 Parallel version

A serial version of Lacov-NSGA-II was implemented
using MATLAB, showing promising results. How-
ever, the average convergence time of the the proto-
type was too long to properly evaluate the method.
This was mainly caused by the high computational
cost of the articulatory synthesis and formant extrac-
tion routines. For this reason, we decided to develop a
parallel version of the algorithm. The whole code has
been ported to C and the Gnuspeech TRM source was
merged with the project. The implementation makes
use of blocking calls from Open MPI 1.2.1 to han-
dle message pass and synchronisation. The peculiar-
ity of this implementation is that it is designed to in-
vert gestures rather then postures. With gesture ap-
proximation we mean that the estimation is performed
on longer speech samples, comprising a number of
steady-state vocal tract configurations and thus de-
scribing an articulatory ’scene’. Instead of using a sin-

gle multi-objective vector, representing the average
formant frequencies for all the speech signal, here we
are using multiple vectors to estimate the target pos-
ture in consecutive windows of samples. Our paral-
lelisation method makes use of static subpopulations
with migration. This fashion requires the partition-
ing of the population into some number of demes
(subpopulations). Each deme is assigned to a single
node (geoghaphic isolation) and individuals compete
within it. All the nodes are partitioned inton disjoint
setsW1W2, ..., Wn, wheren is the window number.
Each subsetWi is assigned with a different multi-
dimensional objectiveOi, which represents the av-
erage formant frequencies of theith window of the
target speech sample. Figure 9 shows a possible al-
location of 8 nodes into 4 different target windows
as an example. Within this implementation, we intro-
duced a new operator calledmigrator. Everyn eons,
the bestm individuals are copied from one deme to
another. We have also adopted astepping stone model,
which implies that individual can only migrate within
neighbouring demes.[3]. Nodes inside the same sub-
set share the bestn solutions everyp generations,
replacing the worstn individuals. Since speech sig-
nals (and consequently articulatory informations) are
known to show locally stable spectral distributions,
subsequent subsets of nodes share the best individu-
als as well. The system uses a master node to keep
track of the result and synchronise the worker pool.
The system is scalable with respect to the node num-
ber as well as the tube number.

8



7 Experimental Results

Table 1:Average postural error (in cm.) against pool size.k

k tube 1 tube 2 tube 3 tube 4 tube 5 tube 6 tube 7 tube 8
2 0.29 0.31 0.37 0.43 0.58 0.52 0.37 0.56
4 0.40 0.43 0.33 0.29 0.49 0.39 0.38 0.48
8 0.32 0.32 0.34 0.29 0.45 0.42 0.37 0.44
16 0.19 0.14 0.13 0.13 0.26 0.24 0.25 0.30
24 0.14 0.09 0.13 0.12 0.20 0.17 0.17 0.22

Table 2:Average error standard deviation (in cm.) against pool size. k

k tube 1 tube 2 tube 3 tube 4 tube 5 tube 6 tube 7 tube 8
2 0.30 0.27 0.30 0.29 0.29 0.29 0.26 0.37
4 0.31 0.41 0.31 0.30 0.34 0.29 0.28 0.36
8 0.21 0.18 0.28 0.29 0.34 0.31 0.30 0.36
16 0.14 0.11 0.12 0.14 0.37 0.32 0.28 0.29
24 0.10 0.09 0.12 0.09 0.19 0.16 0.12 0.12

Table 3:Average spectral error(left) and average spectral standard deviation(right) of the spectral error against Pool Size in
Hertz

k F1 F2 F3 F4 F1 F2 F3 F4
2 68.3472 71.5417 30.0997 68.7128 - 76.5276 49.9690 25.2459 62.7324
4 36.7394 33.3690 22.7438 29.3055 - 33.6966 35.0231 20.9827 43.8573
8 23.4373 11.7881 15.0395 14.4680 - 24.2506 15.1946 14.4916 21.6443
16 12.9114 17.7670 12.1469 24.5036 - 15.7446 22.9038 13.6048 30.2544
24 6.2474 8.0370 5.7927 10.3057 - 11.3987 7.8609 8.2223 14.03

In this section we discuss the results obtained with the
experimental tests. We focused exclusively in vowel
sounds, cutting away the possibility to generate plo-
sives, fricatives and sibilants. Consonants are indeed
more difficult to model, being often articulated with
complete or partial closure of the vocal tract. Articu-
latory modelling of consonants generally require the
addition of a noise source somewhere inside the tube
model, and the subsequent need to control its position,
bandwidth and band pass frequency. We will address
the tuning of these parameters in further studies. The
evaluation of the method has been targeted within 2
testing setups. The first consisted in 100 executions
targeting randomly-generated target speech sounds.
The objective speech was synthesised with the Gnus-
peech TRM using an own steady-state-posture gener-
ator. The random posture generator randomly chooses
3 independent real values describing the constriction

of tubes 1 - 4 - 8 (corresponding to glottis, palatal
cavity and lips). The target VTAF is then built us-
ing spline interpolation applied to the above points.
With this experiment we measured the objective artic-
ulatory and formant-displacement error of each best
solution. Since in this test the posture to be inverted
was steady-state, we used a single invertion window.
Parallel runs of the algorithm were deployed with
five different pool sizes (2,4,8,16 and 24 nodes re-
spectively) at DAS-32. The multi-objective function
measured the squared absolute displacement of the
first 4 average formant frequencies between the tar-
get and the evaluated solution. In the second ex-
periment we analysed the behaviour of the method
with longer speech samples such as diphones and tri-
phones. The target samples were synthesised using
the AT&T TTS3, available online. The used speech
sounds are listed in Table 5. The difficulty of this

2http://www.cs.vu.nl/das3/
3http://www2.research.att.com/ ttsweb/tts/demo.php
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Table 4:Normalized Average formant displacement (in Hz) error and confusion matrix

F1 F2 F3 F4 aiT ei iT Taie uau uTi
aiT 9.44 4.80 8.63 1.43 100% 0.0% 0.0% 0.0% 0.0% 0.0%
ei 7.59 12.85 1.50 4.50 0.0% 83.3% 0.0% 0.0% 0.0% 16,7%
iT 7.22 8.20 1.59 1.93 0.0% 0.0% 83.3% 0.0% 0.0% 16.7%
Taie 4.20 5.75 6.75 2.85 0.0% 0.0% 0.0% 100% 0.0% 0.0%
uau 4.08 9.76 3.35 1.15 0.0% 0.0% 0.0% 0.0% 83.3% 16.7%
uTi 8.27 5.95 2.08 1.13 0.0% 0.0% 50.0% 0.0% 0.0% 50.0%

test consists in the fact that the target and the partial
solutions are generated using different speech syn-
thesis algorithms (cross-synthesis inversion). There-
fore, an exact solution is not likely to exist. In the
second experiment, each speech sound has been in-
verted 5 times and the best objective was picked up.
In this test we set the window number to 4 or 6 (de-
pending on the target length). The inversion was per-
formed on each of the 8 tubes of the Vocal Tract
model as well as the Glottal Source pitch. A mini-
mum of 2mm and a maximum of 2cm were set as ar-
ticulatory constraints. These values were set accord-
ing to the typical human cross-sectional radii of the
oropharyngeal cavity. Since in the second test we per-
formed cross-synthesis inversion, we set the glottal
pitch to have a wider range of feasible values (min:∼
120Hz,max:∼ 220Hz), while we used a narrowed one
for the second test (min:∼ 180Hz,max:∼ 200Hz). All
the other parameters of the model (such as configura-
tion of the nasal cavity, frication parameters, etc) have
been maintained fixed. The Mutation Operator gener-
ator has been set to match the statistical distribution
N = (0, 0.2). Tube ratios are internally represented
as floating point variables. A threshold of maximum
90 generations was set as well. Population size was set
to 40. The initial tube topologyV was set randomly
(havingvi = 1 with probability 0.3 andvi = vi−1

otherwise.v1 is always 1). Operators probabilities
have been set as follows. (a) P(Mutation)= 0.3 (b)
P(Vertical Shift)= 0.1 (c) P(Horizontal Shift)= 0.1
(d) P(Splitting)= 0.2 (e) P(Sensitivity)= 0.3. The
best objective results were mixed in an auditory test
file. As a side test, and in order to determine the in-
telligibility of the re-synthesised speech, we asked 6
people to listen to the test file and choose the order of
the perceived phonemes from a list.

7.1 Discussion

The next tables report the results of our tests. Table
1 and 2 respectively report the average postural error
for each tube and the relative standard deviation, both
grouped by pool sizek. Table 3 shows a measure of
the spectral error, reporting the average frequency dis-
placement of the first 4 formant, as well as the relative
standard deviation.
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Figure 10: Spectra of the original (above) and the recon-
structed speech for ’aio’

We can notice that the system average postural error
is around0.4 with pool size 2, while gets close to0.1
with higher pool sizes (16 / 24).. As reported in [6],
any speech formant configuration can be produced by
an infinite number of postures. From this perspective,
the little postural mean error is to be considered as
a promising result. The observation is reinforced by
the results in Table 4, displaying the first 4 formant
average displacements and their relative standard de-
viation. We can observe that the algorithm generally
produces VTAF that resembles the target sound from
the spectral distribution standpoint.
Figure 11 shows the average convergence time per
target smoothness and node number. The stop crite-
rion we set was a total formant error below 50 Hz.
If the the criterion was not reached, we assigned to
the experiment the maximum time allowed for each
run (900 seconds). The average relative speedup to
the 2-node run is always sublinear, being 1.3805 for 4
processors, 2.2850 for 8, 2.560 for 16 and 7.0011 for
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24. The low speedup values between 8 and 24 nodes
are mainly caused by the frequent communication be-
tween the worker pool and the master node. Indeed,
in order to keep track of all the data generated in the
experiments, we have set frequent updates (once for
each generation) between the worker pool and the
master node. Better speedup performance could be
obtained with rarer updates.
Table 4 (left) shows the formant error for the second
test normalised by the window number, as well as the
confusion matrix obtained with the subjective audi-
tory test (right). We can notice that the average for-
mant error spans circa from 1 to 9 Hz. From this ob-
servation we can conclude that the system was able
to give a good approximation of the target sound even
if it was synthesised using a different method. Also
the results of the intelligibility tests are shown in Ta-
ble 5 (right). Perfect matches are observable foraiT

andTaie, while almost a perfect match is observable
with eT, iT anduau. uTi is the sound that was most
commonly mis-classified (asiT). From this perspec-
tive, the system showed good intelligibility for the re-
synthesised speech.
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Figure 11:Average Convergence time against Pool Size.

8 Conclusions
We presented a novel approach based on multi-
objective evolutionary optimisation to the problem of
finding a close-to-natural area function of the vocal
tract from the speech signal. Objective and subjec-
tive tests showed good results. However, the experi-
ments are preliminary and further studies should be
conducted to enhance the performance of the system.
This could include: code optimisation and a method
for automatic glottal fundamental frequency estima-
tion. The generality of our inversion system was as-
sessed using an own steady-state posture generator
and inverting target sounds which were synthesised
using a commercial TTS system. Further develop-
ments of Lacov-NSGA-II could include: the replace-

ment of the Gnuspeech TRM with newer and more
complex articulatory speech synthesisers and the use
of a posture database to have better fitting initial pop-
ulations. The system should be also be extended in or-
der to be able to invert consonant sounds. Finally, fur-
ther studies should investigate the system behaviour
when used as speech signal compressor.
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