
Modeling Migration Projects
An ArchiMate and Paradigm case study in a university context

Nico de Groot (n.c.degroot@uvt.nl)
Supervisor: dr. Luuk Groenewegen (luuk@liacs.nl)

August 28, 2010

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University, The Netherlands

Abstract

This thesis presents the use of the modeling framework ArchiMate and the coordination language
Paradigm for real-life migration projects. An attempt is made to integrate the Paradigm language
in the framework, to express migration processes inside the architecture. This makes it possible to
specify future architectural changes and migration processes that implement these changes. This
technique is useful to design on-the-fly migrations, this is illustrated using a real-life migration
project, integrating two separate network infrastructures.

1

Acknowledgments

This work was done under supervision of dr. Luuk Groenewegen from LIACS, Leiden University. Many
thanks to Luuk for the support and interesting talks we had about Paradigm, why it seems to be
both simple and complex, and this project. The ArchiMate modeling tool BizzDesign Architect was
provided by Harm Bakker, BizzDesign.

I would also like to thank my wife Karina for all her love, patience and care which really helped
me to complete my study successfully. And my young kids, Willemijn and Nick who asked very often:
Hoelang ben je nu klaar met studeren? / How long are you ready studying?

2

Contents

1 Introduction 4

2 Layout 4

3 ArchiMate and Paradigm 4
3.1 ArchiMate . 4

3.1.1 The Language . 4
3.1.2 Modeling migration in ArchiMate . 5

3.2 Paradigm . 6
3.3 Integration of Paradigm in ArchiMate . 8

4 Analyzing the design of an actual migration plan 8
4.1 The case . 8
4.2 The workstation migration, technical background . 8
4.3 The requirements for the migration . 9
4.4 The as-is and the to-be situation . 9
4.5 First evaluation of ArchiMate, lessons learned . 14

5 Re-examining the migration using an ArchiMate and Paradigm methodology 17
5.1 Modeling migration processes . 17

5.1.1 The Standard support procedure . 17
5.2 Modeling the design of the migration . 22
5.3 The migration process: the infrastructural preparation 25
5.4 Designing the workstation migration . 31

5.4.1 Individual workstation migration (all actions at worker level) 31
5.4.2 Individual workstation migration (second, more parallel version) 32

5.5 Coordinated transforming fromWorker Support processes to Worker Migration processes
and back . 36

6 The complete picture 40

7 Observations 41

3

1 Introduction

This thesis presents and discusses the added value of using ArchiMate and Paradigm in combination in
an practical, university context. The concepts from both modeling tools are used to describe and model
infrastructural situations as well as a migration process. In general the value of using the ArchiMate
language for modeling the as is and to be situations has been established. Additional snapshots can
be made for the phases of a migration. And Paradigm can be used to model a dynamic migration. But
how can Paradigm modeling be used in a practical migration situation? And the main question will
be: Can we integrate the Paradigm/McPal modeling in the ArchiMate approach?

A typical migration process includes the evaluation of a limited number of migration paths. It is
not easily possible - or even necessary - to determine all possible migration paths. It is clear that
modeling can help to get a better view on the matter. How can we illustrate and model the migration
processes with Paradigm? Are these models of value in an actual migration process? For which audiences
(stakeholders) are the models usable?

An common migration scenario is the halting of the old situation and restarting in the new situation.
The new situation has been prepared and tested in advance, without compromising the current way
of working. The old situation is sometimes kept in a restorable state, to be able to switch back in
case of unforeseen problems. In this top-to-bottom way of migrating, the necessary coordination is
concentrated in a limited period. At the other end of the spectrum of migration strategies is an on-
the-fly migration, coordinated in a more loose but still controlled way.

The on-the-fly migration is more complex and needs careful planning of the coordination. Are
Paradigm and McPal useful tools in practice? What are the estimated costs and benefits? Can we
capture the decision-points and the migration steps in a rule based system in such a way that the
quality of the migration is improved?

2 Layout

The section 3 ArchiMate and Paradigm will introduce the concepts of the ArchiMate language and
Paradigm. In section 4 Analyzing the design of an actual migration process we will record and analyze
the migration paths that have been constructed and discussed in an informal(trial and error) way using
ArchiMate models. In section 5 we reconstruct the migration using ArchiMate and Paradigm models
not only for the migration but also for the migration design process. We develop a methodology for
migrations and show the benefits of the Paradigm approach.

3 ArchiMate and Paradigm

Introduction of the concepts, the relation between ArchiMate, Paradigm and the use of the UML
language and notation. The ArchiMate chapter is based on [1, 2]. ArchiMate is an Open Group approved
standard (1.0) [3]

3.1 ArchiMate

3.1.1 The Language

The central idea behind the ArchiMate approach is to provide a well defined vocabulary to describe
the design of enterprise architectures, to communicate it using different levels of detail and focus and
to realize the design. An architecture is always a composition of parts and connections, and should
provide views on the components and relations from different levels of detail and from the perspectives
of different stakeholders. The quality of the architecture depends on managing this complexity and
keeping all views consistent. ArchiMate uses visual elements from the well-known UML language,
version 2.0, as notation for its concepts, but focuses on the meaning of each concept by specifying the
formal semantics. Architectural migrations are specified by building separate as is and to be models,
and possibly intermediate snapshots.

4

Figure 3.1: The three layers of ArchiMate

The Three Layers Figure 3.1 shows the layers of a complete architecture. The architecture is a
model of a real enterprise or organization and describes the technical (IT) infrastructure, the applica-
tions in use and the business processes, all in the context of the environment of the enterprise. This
environment include the suppliers, the customers and all other stakeholders.

The business layer provides products and services to the customers. They are realized by business
processes that are performed by the actors working in the organization in certain roles. These processes
are - in most cases, not always -dependent on software applications used in the enterprise. Put in
ArchiMate terms, this layer is supported by the application layer which provides application services.
And this layer rests on the infrastructural services provided by the technology layer. For an overview
of all language elements see [2]. In this layer we model the network architecture using nodes, devices,
networks and communication paths and relations like composition, flow, realize, use and association.
In section 3 we show complete examples situated in the technological layer.

Modeling an organization’s network infrastructure or the components of the applications in use,
in ArchiMate is relatively straightforward, we use familiar names and relations. They are examples of
modeling a static structure, but we ArchiMate can also model the individual and collective behaviour
using concepts like interaction and collaboration. We have already stated that we can model different
perspectives (views) ranging from internal to external and we can focus on individual actors or on
more higher level entities. Figure 3.2 shows the three dimensions and expresses the relation between
the elements. Services are realized by elements that perform behaviour like actors and devices. At the
same time these element have a structural aspect. Services can depend on individual elements in an
interaction or on a collective behaviour in a collaboration. Services are formally specified and accessible
through interfaces.

Figure 3.2: ArchiMate concepts

At first sight the ArchiMate ap-
proach appears to be usable mainly
for industrial and technical enterprises,
but as our study will show it is very
suited for more service-oriented orga-
nizations like universities. The central
concept of providing services in this
chapter already points in this direction.

3.1.2 Modeling migration in Archi-
Mate

Usually for migration projects multiple
models are made. At least an as is and
a to be version and possibly intermediate snapshots. The models can be placed on a time line. When
taken to the extreme a migration process can be modeled by creating a new snapshot for each group of
related changes or even each individual addition or removal. The models can be very helpful to analyze
the impact of each change.

Using ArchiMate tools like BizzDesign Architect help to build models and views by providing
drawing tools that are aware of the language constraints and by storing the elements in a central
repository. As elements are often reused in other diagrams, this make it easier to keep the diagrams

5

Bartender process

Monitor

take1
take2

take3

Ord1

prep1

Ord2
prep2

Ord3

prep3

Brew1
deliver1

Brew2
deliver2

Brew3

deliver3

Idle

start

Signaling
order

Waiting

get

Drinkingfinish

start

Figure 3.3: Detailed behaviour Customeri and Bartender component

consistent.

3.2 Paradigm

Paradigm is a coordination language to specify the behaviour of components and the coordination
between components. The basic level of behaviour of a component is modeled using a state-transition
diagram STD. It contains a set of states S, a set of actions or transition labels A and the set of
transitions T such that T ⊆ S×A×S. A transition (sfrom, a, sto) can also be denoted as sfrom a−→stoThe
current state st ∈ S and s0 is the starting state of the STDt =0. Taking a detailed step or action or
firing the transition sfrom a−→stois an atomic operation which can only be performed if the current state
is st = sfrom. Afterwards the state is st = sto. The actions taken model the detailed behaviour of a
component.

The Paradigm language uses a special view on this behaviour to specify the coordination. This view
uses a partition of the states (and transitions) to model subprocesses. To give a minimal example: we
have two types of components, three costumers and a bartender with his coffee brewer. The customers
can be modeled using the states Idle, Attention, Waiting and Drinking. See figure 3.3The states of
the bartender are Monitoring, Ord1,2,3 and Brewing1,2,3. The Ordi states corresponds with an order
given by consumer i and the states Brewi can be left only when the coffee is ready and delivered.

Our bartender - a manager type component in Paradigm terms - has a short attention span, and he
can only handle one order at a time. From his standpoint each client has one of two - more global
- states: CanOrder (customer can decide to ask for service) and Waiting (customer is waiting for
his order). The states correspond with two subprocesses in figure 3.4 and each subprocess contains a
subset of the detailed states and transitions. The set of subprocesses form a partition which we call
OM, order management. The bartender doesn’t need to know the actual detailed state the consumer is
in, but some information about the behaviour is necessary. And the costumer - at least if she decides to
want a drink - needs two interactions with the bartender otherwise the workflow halts. In subprocess
CanOrder the customer cannot go further than the state Attention and she can not leave the trap until
she has ordered, then she is again stuck in the state Waiting. To model this we can assign traps inside
each subprocess. A trap is a non-empty set of states, all of its states belong to the detailed states and

6

CanOrder

Idle

start

Signaling

attended

Waiting

order

Drinkingfinish

start Waiting

Signaling pickup

Waiting

delivered

CanOrder

delivered

Waiting

pickup

Figure 3.4: Subprocesses of the partition OM of the consumer process and the global process

the trap has a name. A trap is connecting when the states of the trap are part of another subprocess’
state space. A connecting trap models a change of the global state, and thus can be seen as a global
transition, with the name of the trap reused as the name of this transition. From the detailed STD we
have now created a compatible global STD which models a global behaviour. These transitions are the
building blocks to model the interaction and coordination between the components. The subprocesses
and the traps show the constraints on the detailed behaviour and to specify the coordination details
Paradigm uses consistency rules. These rules describe the detailed steps in textual form and specify
the coordination. The detailed steps of the consumer can be formulated as follows:

• Consumer(i): Idle start−−→ Signaling

• Consumer(i): Signaling order−−−→ Waiting

• Consumer(i): Waiting pickup
−−−−→

Drinking

• Consumer(i): Drinking start−−→ Signaling

• Consumer(i): Drinking end−−→ Idle

The second form of consistency rules couples a detailed step of the manager-component with one or
more global transitions. We give two examples, note that the rule set of the Bartender is not complete.

• Bartender: monitoring prepare
−−−−→

Ordi * Consumeri(OM) CanOrderattended−−−−−−→ Waiting

• Bartender: Brewi deliver−−−−→ monitoring * Consumeri(OM) Waitingdeliver−−−−→ CanOrder

At starting time the Bartender is in state Monitoring and all customer in the detailed state Idle and
global state CanOrder. This coordination is minimal. One coupled action is the Bartender’s starting to
prepare a drink for costumeriwhile at the same time the constraints of this customer changes, switching
to the subprocess Waiting. The trap can now be left and to Waiting entered. The other costumers can’t
enter other subprocesses, but within the restrictions of their current subprocess they remain free to
change their state. This is the case because the Bartender can eventually only go from state Brewi

back to monitoring releasing the waiting customer to the subprocess CanOrder.
Or in other words, we just specify that one of customers get serviced at a time. The detailed steps

of the Bartender guaranty that during the brewing process no other costumer can change its global
state to Waiting. We can’t state that the selecting process is fair. Any other customer may have to wait
very long. Refining this checking process is possible, implementing a round robin method of selecting
is possible and we can even use automated verification of Paradigm models by translating them to
process algebra to prove properties of a model.(author?) [4]. For a full introduction to the Paradigm
approach see (author?) [5].

Note that the enforced (or committed to) constraints of the subprocess and traps do not directly
change the state of the managed process. The autonomy of the managed process is respected (not

7

Figure 4.1: The global infrastructural phases

unnecessarily restricted) while at the same time old policies are removed and new policies enforced.
This modeling approach elegantly supports the separation of responsibilities at the different levels of
managing multiple concurrent work processes.

More complex examples of Paradigm model are used in the next chapters, including models that
have the ability to change themselves .

3.3 Integration of Paradigm in ArchiMate

The Paradigm approach gives us interesting possibilities to specify collaboration and coordination pro-
tocols and, as we will see later models in migration. The ArchiMate language can express collaboration
and interaction on a global level, but it is not designed as a coordination language. We will investigate
how the two approaches can be used together.

4 Analyzing the design of an actual migration plan

4.1 The case

Our case study is the migration and integration of the IT infrastructure, applications and work processes
of a formerly independent University (Catholic Theological University, the KTU, located in Utrecht
on the campus of the Utrecht University in the Netherlands) to and in the infrastructure, applications
and work processes of the University of Tilburg (UvT). The new name of the institution is Faculty of
Catholic Theology (FKT). The merge has taken already place administratively, but the workstation
migration is the first major step in the IT migration. The users and workstations will remain at the
location Utrecht, but must be able to communicate with the Tilburg infrastructure in the same way
as the users and the workstations physically on the campus in Tilburg. The use of local servers is to
be minimized.

The technical solution chosen is to use a Lichtpad connection, a glass-fiber connection provided
by SURFNET which enables a fast and shielded connection to the Tilburg network. On the Utrecht
location this connection is distributed to the servers and workstations by using the existing virtual
network infrastructure(VLAN) of the University of Utrecht.

The phases of the integration are shown in figure 4.1.
The first phase is the original situation: all services (workstation and server) are local1. In the last

phase, the infrastructure has full UvT services and minimized local services. Phase two and three - the
arbitrary intermediate phases- will be designed and explained later. It is clear that we will be changing
the infrastructure and the workstation configuration to enable access to the Tilburg file, print and
application services. The exact steps will have to be designed and evaluated in advance. First we will
describe what has to be done and later how we can do it, designing comparing different migration
paths.

4.2 The workstation migration, technical background

There are a few complicating factors. We will not elaborate on all of the solutions, most fall outside
the scope of this document.

1The salary administration is outsourced. This service shall be taken over by the Tilburg University. This migration will
not be considered here. Another migration project not modeled here is the partial transfer of the student administration
to the Tilburg location.

8

Network connection

The physical network connection will not change. By changing the original VLAN of a node (worksta-
tion) in the Utrecht network to the Lichtpad VLAN the node can be switched to the Tilburg network.

Log-in and, file and print-services

The KTU uses a Microsoft Active Directory infrastructure (Windows Server 2003) and the Tilburg
University uses a Novell and Unix infrastructure. So not only is the location of the authentication-
service different, but the client-services need to be fully replaced.

Difference in roaming facilities

The KTU uses roaming profiles, the user environment, the desktop and settings, is independent of
the choice of workstation, the Tilburg workstations do not support roaming. Only the email client
configuration gets adapted at log-in.

Access to local library facilities

The KTU is partner of the Utrecht University library and its researchers use the electronic facilities
which use identification by IP-range. As changing the VLAN also changes the IP-range, this will block
the access.

Limited access to the Tilburg VLAN structure

Because of local infrastructural limitations only one Tilburg VLAN can be mapped to the Utrecht
VLAN. Access to other VLANs (IP-telephony, server VLAN) is not possible.

Summary of the workstation changes

On each workstation the VLAN and the network client and application software on each workstation
must be changed from the FKT to the UvT configuration. Local data on the workstation has to be
retained.

4.3 The requirements for the migration

Performing the migration should only have a minimal impact on the FKT employees. The management
has formulated the following requirements.

• Minimal or no disruption of the work processes.

• All applications should be available in the new situation.

• No loss of local and group data. ’Everything’ has to be transferred.

• No versioning problems during the transition.

• Adequate local support for the users during the migration.

It will become clear whether all the requirements can be fully honored.

4.4 The as-is and the to-be situation

At the beginning of the migration design process, two configurations are clear, the as-is situation (figure
4.2) and the situation to-be (figure 4.3). The snapshots have been made using the ArchiMate modeling
language using the tool BizzDesign Architect.

In the as-is situation there are three locations, shown by the grouping image, the FKT(U) location
at Utrecht, the UvT location at Tilburg and the location elsewhere to indicate access to the different
services from locations like the home address of the FKT(U) employees, or other Internet connected

9

locations. At the top level we find the services available for the applications and the work processes. At
the Utrecht location this includes web services, authorization (the Active Directory), database service,
CMS management functions, mail services and Internet services. The services are provided by three
servers, running the processes External (DMZ) web server, Name server (DNS) on the first server
Dienaar01, CMS web services (Zope), Database-, File- and authorization server on Dienaar04 and the
mail- and anti virus server on Dienaar05. Only one of the workstations is depicted. The router connects
the local network to the UU network. There are two servers on this network that provide services to
the FKT(U) namely the Blackboard server, providing the Electronic Learning environment and the
server at the Utrecht Library providing applications and digital sources. This network (and indirectly
the FKT(U) network) is connected to the national SURFNET Internet backbone.

At the Tilburg location some of the services like the digital sources of the Tilburg Library, manage-
ment services and database services are already available without any infrastructural change. They can
be accessed using a VPN connection, depicted here with ’UvT VPN’. The nodes at the Library UvT,
the central UvT servers and the nodes of the Administrative center run servers like the Repository
server, web application server, the UvT web server and the database for scientific publications Metis.
The nodes at the Administrative center (DEA/DSZ) provide database servers for the student adminis-
tration (SIS), the employee database (SAP/HRM) and the relations management system. These three
(groups of) servers connect to the Tilburg network. This network is - just like the Utrecht University
network - connected to the SURFNET backbone.

The to-be situation is the situation where the Tilburg file-, print- and application services are
available and local services are minimized.

In the to-be situation we see that most of the services are transferred to the Tilburg location. The
applications and the Blackboard, database and the file, print and authorization services now originate
there. The essential change is possible because the Lichtpad connection provides direct access to the
UvT infrastructure using a dedicated Internet tunnel connection. The access to the Internet is also
provided using the Lichtpad, ultimately using the UvT router connection to SURFNET. The router
connection to the Utrecht University network is now obsolete. New reachable servers at the Tilburg
location include the data cluster Lyra and the UvT Blackboard server. The VPN connection is no
longer needed at the Utrecht location, only at external (home) workstations. A few services remain
located at the Utrecht location.

Comparing the two situations from the user perspective, we identified the basic migration steps.

1. Change the VLAN

2. Duplicate the user and group accounts in the Novell administration

3. Duplicate the user network data in the Tilburg file system

4. Duplicate the shared data in the Tilburg file system

5. Back up the data and settings on the local workstation

6. Install the new software configuration on the workstation (imaging)

7. Check and adjust the new configuration (user log in)

After testing and discussions a few constraints have been established.

• The availability and speed of the Lichtpad connection is essential.

• Changing the VLAN has to be performed by an external party, and scheduling this change for
each connection separately is not feasible.

• Copying (and synchronizing) the user and shared data can be realized using an new service on a
new double-connected server. Synchronizing at an earlier stage will reduce the turn around time
of the individual workstation migration.

10

F
ig
ur
e
4.
2:

A
s-
Is
,l
oc
al

se
rv
ic
es

11

F
ig
ur
e
4.
3:

T
o-
B
e,

U
vT

w
or
ks
ta
ti
on

se
rv
ic
es
,m

in
im

iz
ed

lo
ca
ls

er
ve
r
se
rv
ic
es

12

• Changing the software (backup of local data, install new operation system, software and updating)
can take up to three hours2 for each workstation, there are 60 workstations.

• Configuring the workstation after the migration needs some manual intervention by IT staff
members.

• Availability of IT staff is essential at the moment the user logs on in the new environment, for
support and instruction.

A number of approaches have been discussed:

1. Migration by halting, migrating and restarting all stations at once.

2. Phased migration, by department of by floor.

3. Migrate one workstation at a time.

When we analyze the discussion we find that we are in fact identifying coordination, constraints and
dependencies. At the same time we are trying to design possible migration paths. The as-is situation is
clear: All workers are using the local infrastructural services documented in figure 4.2. The employees
use applications and services provided by the servers D01, D04 and D05 connected to the UU network.
Some applications in the UvT infrastructure can be reached using a VPN connection. In the to-be
situation, see 4.3, all workstation and server services3 are provided by the UvT network.

The search for a good migration design has a backtracking aspect. When not all requirements are
fulfilled, we go back and try to adapt the earlier steps or move steps between the workstation and the
infrastructural level. We further evaluate this process by looking at it from different perspectives, to
check the consistency and to minimize the overhead for the worker and for the IT staff.

The first migration strategy we discussed is a brute force migration path. We prepare the migration
by creating all accounts in the new environment, logging off all users to prevent versioning problems,
then copy the local and group data. Then, for each workstation, we backup the local hard disk, change
the software, switch the VLAN (or schedule it) and reboot. The advantages of this path are clear, no
individual coordination is needed, no versioning problems and the time needed to perform the migration
can be scheduled outside business hours. But in our particular situation, the support is problematic:
the scientific staff, for a major part, works at home. Getting all of them to be present the first day after
the migration is not feasible. Expanding the support staff during the first days after the migration is
an option, but does not completely solve the problem. Availability of support at the moment the staff
member does appear is difficult to realize because of the minimal IT-staff after the migration. Another
bottleneck is that a large number of the individual problems are expected to be discovered in the first
hours after the migration. This will produce delays for the other workers with problems. And there is
a risk involved. Backing up and transforming the workstations may take more time and handling than
expected. Turning back halfway through the process is not a feasible option.

The second option, migration in groups, is only a variant, but this approach is already better because
it limits the risks. But versioning problems regarding the shared data prevent this, the different groups
will work side by side but cannot have write access to the same shared data. Coordination of the
external VLAN switch and the workstation transformation is still problematic.

The third option has the advantage that the migration work is divided in manageable pieces. But
this requires individual VLAN switches, which is even more problematic. So we ask ourselves if we
can remedy the consequences for the current workstations if we perform this switch earlier. We were
able to realize this by keeping the old services also available in the new situation, in effect adding a
new infrastructural phase. And we now can also delay the migration of the shared files services, to
prevent the version problems. In the view 4.4 a new local network is constructed, using a new local
VLAN, connected to the already available Lichtpad connection (see also the to-be situation). This

2The Utrecht technical infrastructure, not the Lichtpad, is responsible for the slow performance, the bulk of the
physical network connections are half duplex 10 Mb/s. In combination with the UvT installation and update process,
which consists of transferring many small files this results in a worst case situation. The (few) full duplex 100 Mb
connections perform much better, and reduce the installation part of the process with a factor 10 or more.

3The mail service is integrated in the UvT mail infrastructure, and provided by a FKT server

13

network is transparently coupled with the UvT network. Locally the FKT(U) server nodes are also
connected to this new network using additional network cards. An additional Image server is added,
see below, and an extra node Migration machine to the infrastructure to enable migration services
like the synchronization of data. In the group Workstations we can see the three types of workstations
available. The original workstation FKT(U), connected to the original network, the identical worksta-
tion FKT(U)/UvT but now connected to the new Lichtpad network and the workstation of the future
with the new set of software, the workstation UvT. Remark: the use of the services by the workstations
is not drawn.

Creating this infrastructural phase gets the VLAN switch problem out of the way and opens the
possibility to perform the workstation migration on the fly. To speed up the migration from the worker
perspective, we decided to prepare a number of UvT workstations and use them to physically swap the
workstation. In a temporary workshop the backup will be made and the machine will be transformed
into a new UvT workstation. The procedure for the worker is the following.

1. The worker signals that s/he is ready to migrate

2. As soon as possible the worker receives a UvT workstation, the old one is taken in. (the work-
station swap).

3. An IT staff member will perform the adjustments and give instructions.

4. The worker can continue the work.

In the background, the old workstations are handled:

1. An backup-image is made to be able to recover lost local files at a later date.

2. The workstation is transformed into a UvT workstation.

The ’new’ UvT workstations are now ready to be used in the workstation swap for the next worker.
When all workstations are migrated we can remove the local workstation services and enter the next

phase, the view 4.5. There is still a server connection to the UU network, to provide the connection
from the Internet to the DMZ web server and the external DNS.

This step of going to the last phase (the to be situation) is to change and remove the last services
and remove the now obsolete network connection.

This approach was successfully used in January 2008. Our investigation of ArchiMate and Paradigm
will use this migration as a focus point. With hindsight we can analyze this scenario and maybe develop
different scenarios using these (and some other more general) techniques.

4.5 First evaluation of ArchiMate, lessons learned

The infrastructural ArchiMate views proved to be very useful to document, discuss and design actual
and future technical situations. Simplified snapshots can be used to illustrate infrastructural migration
paths. These migrations are relatively simple and do not really need coordination modeling. We just
add new services and network paths without interrupting the old ones, switch over the workers and
in the end remove the old services. But when we consider our requirements, it proved to be better to
look at the migration process from the viewpoint of the worker. When we look at the main concepts
of the ArchiMate language see figure 4.6 from the ArchiMate book ([1]), we conclude that until now
we have modeled the active structure in the technology layer. This is understandable, the applications,
the objects and business processes do not essentially change.

But there is an exception: the migration process is a new business process. In our case, the design of
this process was ad hoc and not very structured. The migration process was not modeled in ArchiMate,
we used instruction sheets and checklists and adjusted them along the way.

Although the actual, successful migration was not modeled, it certainly was inspired by the on-
the-fly migration examples in the Paradigm articles. This poses the question whether the design of the
migration processes and the migration itself would have been improved if the ArchiMate and Paradigm
approach was used fully from the start.

14

F
ig
ur
e
4.
4:

U
vT

an
d
lo
ca
lw

or
ks
ta
ti
on

se
rv
ic
es

15

F
ig
ur
e
4.
5:

O
nl
y
U
vT

w
or
ks
ta
ti
on

se
rv
ic
es

16

Figure 4.6: he three layers vs. behaviour and structure in the ArchiMate Language

5 Re-examining the migration using an ArchiMate and Paradigm
methodology

5.1 Modeling migration processes

By modeling the migration in Paradigm terms we hope to improve the quality of the migration - as it
took place - by separating concerns and explicitly identifying the coordination. We will compare this
to the actual migration and analyze the differences. Secondly we want to integrate this model into
ArchiMate.

Rephrasing the migration in Paradigm/McPal terms is the first step. We have identified that there
are different roles in the migration process. The role Worker and the role IT staff are clear. But we
should not forget the planning and coordination involved, the role IT manager. Each role has a different
perspective on the migration steps. The coordination between the manager and the staff is invisible for
the worker. And adding new services is a migration step at the manager level, invisible for the worker.
The Paradigm model will show the detailed processes as well as the global picture, abstracting the
detailed processes, showing the connections and thus integrating the different perspectives.

5.1.1 The Standard support procedure

But to start simple and to further introduce the Paradigm concepts, we first model a simpler case: the
well-known IT support call. The actual migration shows that this is a good starting point. We first
model it in Paradigm using the techniques and example of [6] and later transform it for the migration
procedure. We will see that we can use to model this transformation. After that we remodel them in
ArchiMate while trying to preserve the benefits of Paradigm model.
We first simplify the support procedure: In the normal situation a number of employees work individ-
ually on their workstation and no coordination is necessary. Each employee can signal ’I need support’
which is immediately recorded in a queue managed by the IT support staff. This call is picked up from
the queue sooner or later by one of the members of the IT support staff. In the meantime the worker
can continue with another task. The work that needs to be done by the IT staff, the actual support
(from a distance or locally on the work floor) can be seen as a critical section. After the support the
worker process continues and the IT staff member is ready to take on the next support assignment.

This procedure is similar to the worker-scheduler process in the Paradigm articles (see e.g. [7]) but

17

Worker (1..n)

Work

use

WorkWs

ask

exit

InNeedWs

exit

get
InNeed
getuse

Support
end

ServiceDesk

Listen

assignj

readyj

accepti

Register

registrated

Staff(1..m)

Idle

Pre

Support

Post

accept give

returnready

Figure 5.1: The worker, scheduler and support processes.

in general there will be more than one IT staff member. We first model the worker process, then the
support coordination process and the support processes. After that we create the consistency rules.
The first observation we make is that in Paradigm we do not detail worker or scheduler decisions within
a process4. Whether this is a problem we will see later, in any case it helps to prevent making the
model too detailed. As in any modeling attempt we have to decide exactly what we want to show. We
focus on the coordination, the signal ’I need support’, the initial response and the actual support.

Figure 5.1 presents each worker process, the scheduler and the support process as state machines
using states and transitions. A state represents a situation, and a transition an action5. The workers
have their own independent tasks, using a workstation (WorkWs) or not (Work). On a certain moment,
while working with the workstation the worker may have a support question or may experience an IT
problem he or she cannot resolve. In that case a support call is issued (and recorded) and the worker
enters the state InNeedWs. The worker can continue on other non-related tasks or decide to work
without the workstation in InNeed. In both states the worker is waiting for the support to be given.
When the call is activated and actual assistance is delivered the state Support is entered, to be left
again when the assistance has ended. The assistance can be seen as a critical section, any IT supporter
gives support to one worker at a time.

The worker process can be divided into subprocesses. After the transition ask the worker is restricted
to the states InNeedWs and InNeed. He can only leave these states after acknowledgment by the
ServiceDesk. We model this constraint by using the Paradigm concept of a trap. A trap marks a set
of states and transitions, that cannot be exited unless a certain external condition is valid. The name
of the trap reflects the condition the worker is in. In this case the trap is called requested. This marks
that a support request is made. A trap is visualized in the diagrams with a polygon around the state

4For example by using guards.
5As in any model this is an abstraction: a state can represent a situation from a observer perspective. Inside this

state, when we further analyze, there are situations and actions, for example if we we take a worker perspective.

18

StandAlone

Work
use

WorkWs
ask

exit

InNeedWs
exit

InNeed
use

requested

Waiting

InNeedWs
exit

InNeed
use

honored(triv)

InNeedWs
get

InNeed
get

InSupport

Work
use

WorkWs
exit

Support
enddone

Figure 5.2: The subprocesses of each worker

n global processes
Workeri(STATUS)

i = 1..n
Standalone

requested

Waiting

honored

InSupportdone

Figure 5.3: Global process of each worker, level STATUS.

(or states) it consists of. A subprocess is given a descriptive name, here StandAlone and ends in a trap.
The state(s) inside a connection trap are also part of the next subprocess. A connecting trap connects
the subprocess to another subprocess. This trap will be left when the IT service desk acknowledges the
request, which moves the worker to the next subprocess.

We reflect in the next subprocess that the request has been registered and that the worker is
waiting6 for the request to be honored. We have created a separate subprocess Waiting to model this.
The trap honored encloses the whole subprocess. And this trap can be left if Scheduler assigns the
support call to a Staff member and the Staff member starts to give the actual support. The InSupport
subprocess shows the actual support given, leading to the preferred situation in which the worker is
again without request, working independently. So there are two coordination constraints that connect
the worker process to the other processes. The first one links the worker to the service desk and the
second one links the worker to the IT staff member. We show the subprocesses StandAlone, Waiting
and InSupport, in figure 5.2.

From these subprocesses and traps we build the following global states and transitions. Each worker
process has three global states, see figure 5.3. We see the traps of the subprocesses reappearing in the
transitions. The global states can be seen as a high-level view on the worker process showing only the
state-changes relevant for the external world. This provides a separation between the detailed level and

6The possibility that the worker finds the solution herself and cancels the call is not modeled here.

19

the external level, where the ’interfacing’ with the other processes takes place. The detailed process
can change in a number of ways, for example when a new detailed state is added between Support and
WorkWs, or inside a trap a state is added, but the global states and transitions can stay the same. We
will discover other advantages later.

InSupport

Idle

accept

Pre

Support

Post

done

give

return

Free

Idle

Pre

Support

Post

started

give

returnready

m global processes
Staffj(SM)
j = 1..m Free

started
InSupport

done

Figure 5.4: The Staff subprocesses and global processes

The role of the Service Desk is to register the request, assign a request to a staff member, monitor
the support process and update the status of the requests and the support assignments. The staff
member, as is illustrated in figure 5.4, after preparing in Pre, delivers the support to the worker, and
reports back to the service desk. The support had to be modeled using delegation because there can
be multiple requests for support and assignments to multiple staff members who deliver the support.
We need a data structure to record the requests and assignments. A state diagram is not suited7 to
model a list or a queue, but this can be remedied by using local variables. A coordination constraint
connects the staff member to the worker. When the actual support starts, signaled by the staff member
going from Pre to Support, the global state of the worker changes from Waiting to InSupport. And the
second constraint connects the staff member to the worker at the end of the support, but the service
desk is also involved, recording the changed states of both the staff member and the worker in its local
data.

Until now we have only used diagrams to illustrate our processes. Paradigm has a special textual
syntax to describe the processes defining the states and the transitions, the subprocesses and traps,
the changes of local variables and the coordination involved. The description consists of consistence
rules. See table 1

The first eight rules define the states and transitions of the worker. The rules s1-s4 describe
the detailed staff process. The rule s3 is special, it couples - using the ’*’ - the staff transition give
(support), going from Prepare to Support, to the global worker transition supported going from Waiting
to InSupport. The left side of the ’*’ is a detailed step in a process of one of the actors in a managerial
role and the right side is a detailed or global step in another process. This rule describes the start of

7We could have modeled the schedulers local awareness of the states of the worker and the staff by creating extra
states. There can be multiple requests and multiple active support-instances. It is possible to model a fixed size list of
requests showing the status of each request, by creating a state for each combination of request states. But this generates
a state explosion. For two requests we already need nine states. And in our model the length of the list is flexible and
can be as large as the number of workers. In Paradigm - the textual notation - we can use local variables for the lists. If
we really want to show the data structures in our visual model, we can use the UML concepts guard and method to to
refer to the lists using methods like addtoRequestList and removefromRequestList.

20

w1 Worker i: Work use−→ WorkWs
w2 Worker i: WorkWs exit−−→ Work
w3 Worker i: WorkWs ask−→ InNeedWs
w4 Worker i: InNeedWs exit InNeed
w5 Worker i: InNeed use−→ InNeedWs
w6 Worker i: InNeedWs get

−→
Support

w7 Worker i: InNeed get
−→

Support

w8 Worker i: Support end−−→ WorkWs
s1 Staff j: Idle accept

−−−−→
Pre

s2 Staff j: Post ready
−−−→

Idle

s3 Staff j: Pre give
−−→

Support *
Worker i(Status): Waiting honored−−−−−→ InSupport

s4 Staff j: Support return−−−−→ Post *
Worker i(Status): InSupport done−−→ Standalone

sd1 ServiceDesk : Listen accepti−−−−→
Register *

Worker i(Status): StandAlone requested
−−−−−−→

Waiting,

ServiceDesk :[R:=R∪{i}]
sd2 ServiceDesk : Listen assignj−−−−−→

Listen *

Staff j: Free started−−−−→ InSupport,
ServiceDesk :[S:=S∪{i,j}, i=head(R) and R:=R\{i}],

Staff j

sd3 ServiceDesk : Listen readyj−−−−→
Listen *

Staff j(Status) Support done−−→ Free
Worker i(Status): InSupport done−−→ StandAlone,

ServiceDesk [S:=S\{i,j}],
Staff j

sd4 ServiceDesk : Register registrated
−−−−−−−−→

Listen

st (Worker i, Worker i(Status)):(Work,StandAlone),(Staff j,Staff j(Status)):(Idle,Free),ServiceDesk :Listen

Table 1: Support consistency rules Crssupport

the actual support. In s4 we can read that the support at the location of the worker is ended, the
staff worker can now perform concluding actions in Post. Rule sd1 uses a more complex rule. In a
consistency rule it is also possible to show changes in local variables in a change clause with a notation
using square brackets8. Here the request for support is received by the service desk, who registers the
request in a local variable R. The service desk is on the left side and the worker action on the right
side.9 After registering the service desk returns to Listen (sd4). From this state the next coordinated
step can be taken in sd2, assigning one of the requests to one of the staff members. The service desk
records the assignment of the request of Workeri to Staffj in a local list S and the staff member records
the identity of the requester in a simple variable W. Now the request is delegated to the staff member
and can be removed from R. We have seen above the two rules for for the actual support. When the
staff member is ready finishing the support in Post he reports back to the desk. Rule sd3 reflects this.
As we can see here, on the right side of a consistency rule it is also possible to give multiple steps,
each in a separate process. We find here the staff member becoming available for a new assignment
in the global state Free and a global worker transition going to the starting state Standalone. The
bookkeeping is done in the local variables. Rule sd4 describes the detailed step of the service desk
returning to Listen after registering the call, with no coordination involved. In st the starting states

8Inside the brackets we use the mathematical set operators like intersection ∩, unification ∪, division \ and subset ⊂
9We could also switch the positions or put both transitions on the right side, and leave the left side blank, because

in this case there is no real manager-worker relation. The chosen position hints that accepting multiple requests is a
manager-like role.

21

of the models at the different levels is noted.
We see that the consistency rules enable us to formally specify different kinds of simple and more

complex coordination, like processing requests, and delegation, involving multiple actors c.q. roles.

5.2 Modeling the design of the migration

When designing the actual migration process we created different ad hoc scenario’s by identifying
migration steps, and changing the order of the steps. Looking back we can model this process as
follows in a (Paradigm) state model in figure 5.5. Because the design process is also a business process
we also model it and add it to our ArchiMate model.

init

goal

analyse
requierements

As-is
model

 model

goal reached

evaluate

business
services

not
ready

changeset
ready

ready

business
process

infrastructure

infrastructural
services

applications

application
services evaluate

to-be
model

 model

dependency
diagrams

 create

phases
known

 determine

additional
snapshot models

 build

Paradigm models

 build

Figure 5.5: The migration design process (Paradigm).

From the requirements given we formulate a goal for the new to-be situation. In the cycle in the
middle of the diagram we try to find all necessary changes to our model to realize our goal. We start
with the stakeholders, the business processes and services. Who are involved? Do we need to add new
services? Which processes are involved, are there steps we need to add? Do the affected work processes
need new or changed application services, which changes are needed in the applications layer? Are there
changes to make in the infrastructural layer? We further identify services that will become obsolete
at a certain point in time. In each cycle we add to our list of changes and note the dependencies
involved. When all requirements are fulfilled our change list is complete and we can use the list to
create the to-be model. But we also want a migration path. For that purpose we now10 use a simple
but clarifying diagram, a dependency diagram to visualize the dependencies and the impact of our
changes as a preliminary step in designing a Paradigm migration model. Note that our change list is
not final. Designing the migration can uncover that we need additional changes.

The business process in figure 5.6 also shows the design process the ArchiMate way. It is straight
forward to recognize our state diagram. To keep the view in balance we aggregated some of the nodes
and transitions into the process Impact analysis. In addition, we can also show the stakeholder and the

10We did identify the dependencies earlier, in the textual description and in the discussions, using trial and error.

22

Figure 5.6: The migration design (ArchiMate Business process view)

results of the process, the change set and the models. We visualize that the as is model is changed by
this process (or even created) and that the to be model is captured inside our current model.

This may seem trivial, as a new model can always be described as the current model with nodes
and relations removed and nodes and relations added (to-be model is as-is model minus removals plus
additions) but this only captures the static differences at the global level. The Paradigm model will
visualize the dynamic aspects, the dependencies and the coordination of the changes at all levels.

But first we apply this method to our migration at hand. We summarize and label the changes,
using the worker and the global perspective. This results in the following basic set. The set consists of
migration actions, services and dependencies.

• The new authentication, print- and file services must be available. The change action needed is
switch vlan. This provides the new services by virtually connecting the workstation to the UvT
services. From our as-is model we can see that this switch has considerable impact, it invalidates
the current services.

• The worker must retain the private network data, a copy of the private data is necessary, timed
just before the (individual) migration.

• the worker must retain access to the shared network data, the shared data.

• the worker must be able to use the new services, he needs a new version of the operating system
and client software, provided by the change UvT image.

• The new image needs to be configured (configuring) and the worker needs instructions to use
the new services delivered by the changes switch authentication and switch file system. The first
switch for the worker is prepared centrally, by creating a new account and invalidating the old
account. The second switch, the worker using the new file system exclusively, has also been
prepared at the central level.

• the old local data must be kept before the re-imaging takes place, using a backup action.

Analyzing these actions and changes using the as-is model we can see we need additional changes at
the process, application and infrastructural level

23

• The current accounts have to be added to new authentication service, with the action AddAc-
counts.

• The workstations need to be registered in the new network environment, the action Register-
Workstations.

• The local printers should be made accessible in the new environment, to be provided by the
action RegisterPrinters.

• With a concentrated, all at one time migration, realizing access to the shared data is trivial.
During the migration no access is possible, and after the migration the new shared data is
available. If we are using a phased migration, write access to the shared data can be guaranteed
by delaying the transfer to the new file server until all workstations are migrated by a new action
Providing the Original File service in the new infrastructure11. This is a new possible constraint
which will be resolved at a later stage.

• We need a provide a new Workstation backup service, an Imaging service and an action to Switch
the VLAN.

• We need procedures and checklists to help perform the worker changes and the changes to the
workstation, the action Provide Work Documentation.

Some of the infrastructural changes need further investigation. We need to try out the changes in a
separate testing environment to analyze the impact. This will uncover some new dependencies and
produces turn around times. Other infrastructural changes have a low impact and are not critical,
because they can be realized as independent actions. They can be tested in the testing environment
and performed in advance. The changes AddAccounts, RegisterWorkstations, registerPrinters will not
be presented here.

We have to transform our change set into migration processes. At this point in time we could a
project planning tool using Gantt Charts and Work Breakdown Structures. Then we can use tasks,
predecessor relations between tasks and resource sharing constraints to model different possible order-
ings of the tasks and finding the critical path. By changing the constraints, and changing the resources
available using the visual feedback of the diagrams and the calculated costs of material, time and
work we can try to find a optimal solution. But this method is not sufficient for our goals. Our tasks
depend not only on preceding tasks or resources but can create and invalidate services. This can not
be modeled using the basic project planning tools.

To help us getting a grasp on the dependencies we will show our findings visually in a dependency
diagram (see figure 5.7). In the diagram we see the actions, the migration services and the relations
between them, while concentrating on the worker perspective. We first make a diagram without the
grouping, using the actions, services and relations between them. Then we add the grouping nodes pre,
post and new services to summarize and phase the actions. For more complex migrations automated
tools can be used to identify groups of connected actions. We use normal boxes to show phases and
groupings, divided boxes for the actions and rounded boxes are used for the services. The edges depict
the dependency on another service or action.

For now we assume that all actions take place at the local, worker level and that they are dependent
on the presence of the worker. The nature of this dependency varies, for instruction it is clear that the
worker needs to be present, for the backup, imaging and copying the connection the worker must have
stopped working with the old workstation. This dependency will be illustrated more clearly later in
the Paradigm models.

The boxes post and pre show the two phases or segments of the migration. The action boxes with
the migration changes have an extra attribute, the turn around time.

Each arrow points in the direction of the dependency. A dependency can be an need-or-availability
relation, e.g. the new auth(orization) service is only available after the action switch authorization is

11A separate dependency graph is not give here.

24

wsmigration

post

pre

new services

new fs

new authconfiguring

time=00:20

instruction

time=00:10

image

time=03:00

backup

time=00:30

copy priv data

time=00:30

old fs

old vlannew vlan

switch fileservices

time=00:05

old auth
switch auth

time=00:05

switch VLAN

time=n.a.

external

support pre

support post

Figure 5.7: Dependency graph workstation migration (worker level)

performed. It can also be a consist-off relation, like the relation between wsmigration and pre/post. The
pre segment is build from three preparing actions, the copying of the private data, the backup and the
imaging. All three actions depend on the availability of the service support (pre). Note that the copying
can only be done if both the old and the new file system are available. The post segment is dependent
on the pre segment and through the actions configuring and instruction on the availability of the new
services namely new authorization and the new file services. It is also dependent on the availability of
the support (post). The new authorization is available after the action switch authorization but it also
needs the new vlan just like the new file system. The old authorization, the VLAN switch and the old
file system depend on the availability of the old VLAN. Each migration action can have a special kind
of dependency, the invalidates relation, shown here as a dotted line. The switch VLAN invalidates the
old vlan service and the switch file services invalidates the old file system. Note that the configuring
and the instruction need the new services to be present. Using the diagram we can:

1. Identify which new services are needed and which infrastructural changes need to be present at
the moment of an individual workstation migration.

2. See the possible orderings of the local migration actions. For each action and migration change
we decide who will perform the action and at what level.

3. See, looking at the endpoints of the diagram that the resources or services support pre, support
post and the VLAN switch are the most essential items.

4. Identify conflicts. To illustrate this we show the impact of VLAN switch in figure 5.8. It invalidates
the service old vlan. We have shown this by coloring the nodes that are dependent on this node.
We have to solve a problem: the copying of the private data is depending on both file services and
consequently on both VLANs. At this point we have discovered that we need additional changes
for the migration. In the next paragraph we will show a remedy using a new dependency diagram
and we create a Paradigm model for the global migration process see figure 5.10.

Using this method we identify changes and show how the changes are grouped end related. We
discover which actions have to be performed at a more global level due to a conflict situation and
we can evaluate which actions must be performed at this level. Conflicting migration actions can be
identified.

5.3 The migration process: the infrastructural preparation

In this simplified dependency diagram, in figure 5.9 we can see that switching the VLAN for the
workstation would mean losing the old services. The gray dotted arrow indicates that we have to
perform another infrastructural change, the Provide Original Services change. We can implement this
on the workstation level or at the server level. For obvious practical reasons we choose the global
level by adding network cards to the servers and connecting them to the new VLAN. This change
integrates the earlier Provide Original File service constraint. We now show the coordination that is

25

Figure 5.8: The impact of the VLAN switch

needed to implement this change. There are three roles involved, the infrastructural Migration manager
is responsible for the infrastructural migration process, the Network manager represents the external
party responsible for the UU network, capable to perform the changes to the network and the VLAN
switch and the Server manager who implements the internal configuration changes. We show the three
detailed Paradigm processes in figure 5.10, and the subprocesses in figure 5.11 and figure 5.12. The
processes are connected with consistency rules given in table 2.

old services

old fs

old auth

new services new fs

new auth

switch vlan

old vlan

new vlan

Figure 5.9: Dependency on VLAN

The Migration manager starts by requesting
a change from - in arbitrary order - the Net-
work manager and the Server manager. The two
jobs can partly be performed in parallel, but the
testing of Server manager can only be performed
when the infrastructural changes is completed.
This means that the Server manager has to know
when the network change is ready. Then the mi-
gration process waits for the Network manager to
signal that the job is done and after that waits
for the Server manager to signal that the server
changes are ready. We will model this communi-
cation using the subprocesses and global states. For the Network manager process we design three
subprocesses see figure 5.11. This partition we call SD (service delivery). In the first subprocess on
this level, Free, we are waiting for an outside request, that will come from the Migration manager.
After receiving the request it will be installed and tested. This step corresponds with installing net-
work equipment connecting the UvT and the UU network, realizing a new virtual LAN to connect to
the FKT network and enabling this new VLAN on the network connection point (VAP) in the server
room at the FKT. After that it will be reported that the work is done. It is interesting to note the
differences with the detailed process. The subprocesses show how the outside world interacts (or can
interact) with this process. The difference between the global transition form Install & test to Finish
and the transition from Finish returning to Free is subtle. When starting In Finish the process is not
yet listening to new requests. We can couple the process by choosing between the two ’signals’. The
three states of the detailed process only model the internal process, without the coordination with the
outside world. As we said earlier, this has the advantage that we separate the internal workflow from
the interaction, keeping both compact.

In the next figure, 5.12 we see the subprocesses and the global states of the Server Manager. We
name this level of subprocesses Config. It is a partition of the detailed process. Like the Network
manager we must be able to react on the request for change, coming from the Migration manager.
After that we are in the subprocess (and global state) Install, in which the network cards are placed.
But we can only leave this subprocess when we are notified that the Network manager is ready, which

26

Migration Manager

Idle
askServer

askNetw

ReqS
askNetw

ReqN askServer

ReqDone
N-ok

DoneN
S-ok

DoneS
finish

Network Manager

Idle

receive
Pre

addVLAN

Implfinish

Server Manager

Idle

receive

Pre
addNICs

Config

init

Testfinish

Figure 5.10: The infrastructural preparation: the detailed processes

Free

Idle

triv

Install
&Test

Idle

receive
Pre

addVLAN

Impl

ok

Idle

done
Implfinish

Finish

global process Network Manager

Free

triv
Install&Test

ok

Finishdone

Figure 5.11: The infrastructural preparation: the partition SD and global Network Manager process

27

Idle

triv

Free Idle

receive

Pre
addNICs

Config

initInstall

Config

init

Test

ok

Testing

Idle

done

TestokFinish

global process Server Manager

Free

triv
Install

init

Testing

ok
Finishdone

Figure 5.12: The infrastructural preparation: the partition CONFIG and global Server Manager process

enables the testing subprocess after connecting the new network cards to the new connection point.
The testing is done inside the trap ok of NetworkManager (SD). The trap can only be left when the
testing is done and this is acknowledged by the managing process i.e. the Migration manager. We now
return to the global Free state.

Using Paradigm we can show the coupling between the (atomic) physical infrastructure change, the
action taken by the external network infrastructure manager and how this is connected to the global
migration. Rules im1-3 describes the detailed actions taken by the Infrastructural manager to make a
second VLAN and network outlets available. Rule im3 also couples adding the network changes with
the start of the testing in the process Servermanager. In this case the Infra manager has a managerial
aspect and the Server manager a worker aspect. Another possibility is to model that the Migration
manager, after receiving the Infra-is-ready signal would enable the Server manager to change from
Install to Testing. Rules sm1-4 show adding the physical network cards (NIC) to each server, and
configuring and testing it, the detailed steps of the Server manager. The consistency rules mm1-7
define the detailed steps of the Migration manager and connect them to starting the Infra manager
process in mm1 and mm4 and the Server manager in mm2 and mm3. The mm5 rules states that
Migration manager receives the signal that the Networkmanager is ready and at the same time signals
the Server manager to start testing. The mm6 rules receives of the signal that the Server manager
has finished. Rule mm7 is the detailed step of returning to the start position and letting the both the
Network Manager and the Server manager know that the migration is ended..

We can also see the next phases of the migration. After the preliminary step the workstation
migration will be performed, and some cleaning up can be done, the connections to the original network
can be removed, services and servers no longer in use can be deactivated. But we are not ready for
that yet. We don’t have any rules yet to perform these steps. We can only perform the first migration
step, to the global phase Double services. We still have to design the workstation migration, the second
step.

In figure 5.13 we show the equivalent ArchiMate view, the Business Collaboration view. We can use
the actor symbol to show who controls each process. We changed the process slightly. In the Paradigm
model we can choose to request the VLAN change and the server change in arbitrary order. In the
ArchiMate model this is simplified: first comes the VLAN request and than the server change, but this

28

im1 Network manager : Idle receive−−−−→ Pre
im2 Network manager : Pre addV LAN−−−−−−−→ Impl *

Server manager(CONFIG): Install init−−→ Testing
im3 Network manager : Impl finish

−−−−→
Idle

sm1 Server manager : Idle receive−−−−→ Pre
sm2 Server manager : Pre addNICs−−−−−−→ Config
sm3 Server manager : Config init−−→ Test
sm4 Server manager : Test finish

−−−−→
Idle

mm1 Migration manager : Idle askServ−−−−−→ ReqS *
Network manager(SD): Free triv−−→ Install&Test

mm2 Migration manager : Idle askNetw−−−−−−→ ReqN *
Server manager(CONFIG): Free triv−−→ Install

mm3 Migration manager : ReqS askNetw−−−−−−→ ReqDone *
Server manager(CONFIG): Free triv−−→ Install

mm4 Migration manager : ReqN askInfra
−−−−−−→

ReqDone *

Network manager(SD): Free triv−−→ Install&Test
mm5 Migration manager : ReqDone N − ok−−−−→ DoneN *

Network manager(SD): Install & Test ok−→ Finish ,
Service manager(CONFIG) Install init−−→ Testing

mm6 Migration manager : DoneN S − ok−−−−→ DoneS *
Service manager(CONFIG): Testing ok−→ Finish

mm7 Migration manager : DoneS finish
−−−−→

Idle *
Network manager(SD): Finish done−−→ Free ,

Service manager(CONFIG): Finish done−−→ Free

Table 2: the global migration process: the consistency rules Crs infra for the infrastructural preparation

29

Figure 5.13: the global migration process: the infrastructural preparation (ArchiMate business collab-
oration view)

30

is not essential. The collaboration items are used to show the coordination. Unfortunately there is a
mismatch. In Paradigm a coordination connects two or more transitions in different processes. But the
ArchiMate collaboration used to depict the coordination connects processes or activities. One solution
to circumvent this, is to connect the processes and place the endpoint near the transition/trigger. An
alternative solution is to add a grouping business process when there are more than two activities in a
process. When there are two states it is clear to which transition the coordination refers. In some cases
we have to add a copy of a state to realize this. To express that the Paradigm coordination connects
transitions we name this additional business process after the internal transition.

We have now described the actions that change the As is model into the first snapshot Double
Services. The Paradigm rules which document the models are also sufficient to build the new business
processes in the ArchiMate model. If we could express the other changes, like the actual infrastructural
changes in Paradigm-like rules, we have a complete system to document any coordinated set of changes
in a ArchiMate model. For example the change addNICs in the detailed Server manager process is
equivalent with adding an assign relation in the infrastructural layer of the ArchiMate model from
each server to the network UU Lichtpad. Stretching the Paradigm notation we could formulate the
following rules in table 3, documenting the infrastructural changes between our As Is model (see 4.2)
and the first snapshot Double services(4.4). In set notation CRDoubleServices:= CRAsIs∪ CRaddNetwork.
Note that we do not give a complete description of CRAsIshere. CRsupport is a small subset.
The first rule im gives the addVLAN coordination. The second VLAN with the Lichtpad connec-

im Network manager Pre addV LAN−−−−−−−→ Impl *
i1 network UU Lichtpad<network> associate−−−−−−→ UU VLAN LP<network>

i2 UU VLAN LP<network> associate−−−−−−→ UU internal<path>

i3 UU internal<path> associate−−−−−−→ Lichtpad UU-UvT<path>

i4 Lichtpad UU-UvT<path> associate−−−−−−→ UvT network<network>

m1 Server manager Pre addNICs−−−−−−→ Config *
i4 dienaar02<device> assign

−−−−→
network UU Lichtpad<network>

i5 dienaar04<device> assign
−−−−→

network UU Lichtpad<network>

i6 dienaar05<device> assign
−−−−→

network UU Lichtpad<network>

Table 3: CRaddNetwork, the infrastructural changes in Paradigm notation, going from As Is to Double
Services

tion is realized by the rules i1-i4 describing adding the nodes and edges which connect the Utrecht
infrastructure to the UvT infrastructure using the Lichtpad communication path. Between brackets
the ArchiMate type of the node is given, and the name of the edge is the ArchiMate type of the
connector. m1 describes the expansion of the action addNICs (see the previous table) into the atomic
infrastructural changes i4-i6, which describe connecting the servers to the new network UU Lichtpad.

In table 3 the coupling sign * can be read as ’is realized on the infrastructural level by’. We add
elements to the model, reflecting the additions in the real world. Using this notation we have a powerful
way to express coordinated atomic changes in an ArchiMate model.

5.4 Designing the workstation migration

After the infrastructural changes we are now in the phase Double Services. We will return to our
workstation migration. A migration process could have been constructed from scratch, but using an
analogy to a well known existing process reduces the possibility of alignment problems. From the
worker perspective the infrastructural migration is just a special case of an IT support incident. For
the scheduler and staff roles the workstation migration is more complex, but the structure is similar.

5.4.1 Individual workstation migration (all actions at worker level)

We start with a simple approach. All migration actions will be performed in the worker-support process.
Interestingly the only addition we really have to make to our support model is renaming the worker

31

new services

new fs

new auth

old fs

switch filesystem 00:05

old auth
switch auth 00:05

post

pre

config

instruction 00:10

sync priv data 00:05

support

wsmigration

Figure 5.14: Dependency graph Workstation migration, second version (worker level)

signal ask(support) to ready-to-migrate. At this time we could use a special Paradigm adaptation
component McPal, to be explained later to transform the process, but this first model is only a thought
experiment. We delay the use of McPal until we have a definite migration model. We just change the
model and the consistency rules 12We now have a (suboptimal) workstation migration model.

In the migration phase Double services (with the new infrastructural services available but not
yet in use) the employees work individually on their workstation and no coordination is necessary.
The next action is the actual workstation migration. Each employee can signal ready-to-migrate which
is picked up by the (migration) Scheduler. The critical section is the work that needs to be done
by a member of the staff team (backup and transform the old station into a new UvT workstation,
configuring and instructing the user). After the switch the worker process continues in the migrated
situation and returns to the normal support situation. The team is ready to react on the next message
ready-to-migrate. The wsmigrated phase is reached after all workers/workstations have been migrated.
The migration actions that have to be taken by the support staff ’fit’ in the Staff state Support. We
could add the migration actions to the Staff process inside the Support state, making it a superstate,
but this is not a fundamental change. After the migration the migration states are removed and the
original support request is restored.

If we analyze the result using the data from the dependency diagram of figure 5.7 we conclude that
in this simple approach all actions are performed by the same staff member at the worker location.
The worker has to wait until his data is copied and the workstation is backed up and transformed.
This will lead to unacceptable total turnover times.

To come to this conclusion we obviously do not really need Paradigm, but Paradigm forces us to
separate and visualize the Worker and Support processes making it possible to reach this conclusion
earlier.

5.4.2 Individual workstation migration (second, more parallel version)

When we use the Worker perspective we realize that the worker needs an new workstation, but not
necessarily his own workstation. We can further reduce the turnover time by doing the bulk of the
copy earlier. We provide a new global service to synchronize the private data with the new private
storage on the new file server. This service runs every night for all users not migrated yet. Now we
only have to update the private data by data syncing during the individual migration, which only take
a few minutes.

We create a new staff roleWorkshop responsible for the actions backup and image in the background.
The Worker now doesn’t have to wait for a backup and transformation of his own workstation: he
receives a new (or refurbished) workstation prepared in advance by the Workshop. The Workshop will
backup and refurbish the old machine in a separate process.

This simplifies our dependency graph at the worker level, see figure 5.14. We have taken out
the obsolete references to the old and new VLAN and changed the copy private data action into a

12We have to decide what to do with the open requests. For now we assume a change in the Service desk work flow
ignoring the old requests in the list R. We further assume all old Support assignments have been be carried out.

32

Migrating Worker (1..n)

Work

use

WorkWs

exit

InNeedWs
exit

InNeed
use

ready migrate
ready migrate

INReadyMigr

getM

ReadyMigr

getM

INSupportMigr
end

SupportMigr

end

ServiceDesk

Listen

assignj

readyj

accepti

Register

registrated

Staff(1..m)

Idle

Pre

Support

Post

accept give

returnready

Workshop (1..p)

Idle

Backup

Transform

Ready

accept wipe

finishreturn

Figure 5.15: The detailed Migratingworker, Servicedesk, Staff and WorkshopStaff processes during the
workstation migration

synchronization action. We can now create the new set of workstation migration processes see figure
5.15.

In the migration phase Double services (with the new infrastructural services available but not yet
in use) the employees work individually on their workstation and no coordination is necessary. The
next action is starting the actual workstation migration. The Migrating Worker is based on the normal
Worker, the normal support ceases to exist and new requests can not be made. Instead each employee
can signal ready-to-migrate which is picked up by the migration scheduler (human/software). There
are two new states INReadyMigr and ReadyMigr. The first captures that there still is an outstanding
normal support call. The Support state is supplemented by two Support states, INSupportMigr and
SupportMigr. Again the first one remembers that there is an open support call. The subprocesses and
traps can be found in figure 5.16. The goal of subprocess Standalone is to give the signal requested,
when accepted by the Servicedesk Waiting is entered. The actual migration takes place during the last
subprocess Migration Support which is started by the assigned Staff member.
The critical section is now the work that needs to be done by a member of the migration team (switching
the old station for a new UvT workstation, configuring and instructing the user). For this process we
can reuse the Staff model without changes. We do need a third type of component, Workshop, similar
to Staff, with the states Idle, Backup, Transform and Ready. Like the Staff it has two subprocesses,

33

StandAlone (End)Work

use

WorkWs

exit

InNeedWs
exit

InNeed
use

ready migrate

INReadyMigr ReadyMigr

requested

Waiting

INReadyMigr ReadyMigr

honored(triv)

Migration Support

Work

use

WorkWs

exit

InNeedWs

exit

InNeed
use

INReadyMigr

getM

ReadyMigr

getM

INSupportMigr
end

SupportMigr

end

ready

global process Workerj(SM

StandAlone

req
Waiting

triv

Migration
supportready

global process migrating Workerj(SM)

S.A. Waiting Migration
support S.A.End

req triv ready

Figure 5.16: the subprocesses and global states of the Migrating worker

34

Free

Idle

Ready

startedreturn
Refurbish

Backup

Transform

Ready

done

wipe

finish WorkshopStaffj(WM)
j = 1..p

Free
started

Refurbish
done

Figure 5.17: The subprocesses and global states of WorkshopStaff

wss1 WorkshopStaff j: Idle accept
−−−−→

Backup

wss2 WorkshopStaff j: Backup wipe
−−→

Transform

wss3 WorkshopStaff j: Transform finish Ready
wss4 WorkshopStaff j: Ready return−−−−→ Idle
msd1 ServiceDesk: Listen assignj−−−−→

Listen *
Migrating worker(MM): Idle requested

−−−−−−→
Waiting ,

Staffj(SM): Free accept
−−−−→

InSupport ,

WorkshopStaff: Refurbish done−−−→ Free
ServiceDesk: [mcount:=mcount+1]

msd2 Staffj : pre give
−−→

Support *
Migrating worker(MM): Waiting honored−−−−−→ MigratingSupport ,

WorkshopStaff: Free started−−−−→ Refurbish ,
msd3 ServiceDesk: Listen returnj−−−−−→

Listen *
Staffj(SM): InSupport done−−−→ Free

Migrating worker(MM): MigrationSupport ready
−−−→

StandAlone (End)

Table 4: Excerpt from the coordination rules of Crsmigrationsupport

shown in figure 5.17.

After the switch the worker process continues in the migrated situation and returns to a normal
but unsupported situation. The migration team is ready to react on the next message ready-to-migrate.
On every requested signal there are two parallel and synchronized processes, the support and, in the
background, the backup of the switched machine is made and and the machine is transformed into
an UvT workstation, which can be used in a next migration interaction. The wsmigrated situation is
reached after all workers/workstations have been migrated. The migration team is in idle mode for an
possible next migration. At the end of this phase the support scheduler will be restored and support
resurrected.

The coordination can again be captured in the three strict rules of figure 4. Rule msd1 (cf. sd2 from
the table 1) controls the coordinated start of three components, making sure there is a staff member
assigned and a swap-machine available and delegates the start of the physical migration to the staff
member, who in rule msd2 performs the migration support and reports back to the ServiceDesk.

When the individual migration ends (msd3), the old workstation is delivered to the workshop to
start the backup and to be refurbished. A count of the migrated workstations is kept in the variable
mcount. Note that Staff has a managing role in one rule of this coordination and a managed role in
another.

Our task is to (1) temporarily transform the worker process into a migrating worker process and

35

Content Observing JITtting NewRuleSet
*

StartMigr
phaseOut

foreseenj

wantChange knowChange giveOut

Content

Observing JITtting NewRuleSet
*

StartMigr

ready

phaseOut

wantChange

foreseenj

knowChange

giveOut

Stationary
Phase

In Between
Phase

ready migrDone

Content

Observing

Migrating

NewRuleSet

StartMigr

migrDone

phaseOut

kickOffphaseOut

giveOut

Figure 5.18: McPal, a standard component to manage change: detailed process and subprocesses of
Evol partition

(2) make sure the Service Desk process is able to handle the workstation migration, (3) activate new
workshop processes.

5.5 Coordinated transforming from Worker Support processes to Worker Migra-
tion processes and back

We now describe how we can transform the worker support processes into the newly designed worksta-
tion migration processes. We could use a new managerial component, but instead we use the standard
change-manager McPal (acronym for Managing change Processes at leisure) to start and coordinate
this transformation, see figure 5.18 . This component performs foreseen and unforeseen adaptations by
changing the set of current consistency rules, referred to by the variable CRS. This variable is altered
using change clauses.

In rest McPal’s state is Observing. At a certain time at entering NewRuleset McPal is ready
to receive or activate a set of additional temporary of permanent rules using the clause CRS:=
CRS∪Crsmigr∪CrstoBe. Crsmigr describes special behaviour during the transition and CrstoBe the
targeted behaviour. But after performing this clause the model can not yet perform any of new be-
haviour, because the constraints and subprocesses are unaltered. In the next state (StartMigrate) the
subprocesses of rule set Crsmigr will be activated in a coordinated way. The last step strips the old
and the migration behaviour with the clause CRS:=CrstoBe.

For every support component to be changed we create Evol partitions, that phase the evolutionary
change. And we create the new component WorkshopStaff. After the workstation migration is complete
McPal starts a new migration, restoring the original support situation.

The transforming subprocesses are on a high level. We start with the worker process in figure
5.19. The first subprocess is the original supported worker process, the last is the migrating worker.

36

1 McPal: Observing wantChange
−−−−−−−−−→

JITTing *
DesignProcess(CrsM):Deliver giveCrsj−−−−−−→

WaitNext

2 McPal: JITTing knowChange
−−−−−−−−−→

NewRuleset *
3 McPal: [CRS = CRS∪Crsphase1−2∪Crsmigrationsupport

Table 5: Transforming Support to Migrating Support: the rules

1 McPal: NewRuleSet start−−−→ StartMigr *
McPal(Migr):Phase1 ready

−−−→
Phase1-2

2 McPal: StartMigr kickoff
−−−−−→

Content *
Worker(Evol):Phase1 triv−−→ Phase 1-2

3 McPal: Content phaseOut
−−−−−−→

Observing *
McPal(Migr):Phase 1-2 migrDone

−−−−−−−→
Phase 2 ,

Worker(Evol): migrationDone
−−−−−−−−−−−→

Phase 2
McPal[CRS = Crsmigrationsupport]

Table 6: Crsph1−2Transforming Support to Migrating Support

In between we combine the two. When designing a process migration we make sure that all states not
present in the to be phase can not be entered anymore and have a successor in the state set of the
new phase. This guarantees that these states are eventually not active so that the migration will start.
Even when certain states, in this case the states InNeedWs and InNeed, are present in the phase 2,
we sometimes want them to be not active, in this case because the meaning of the states shifts from
’a support request is present’ and implicitly ’the migration has not started’ in phase 1 to ’a support
request is present and the migration is ready’ in phase 2.

To go to MigrationSupport situation we first add new migrationsupport behaviour. We don’t give
the details here, we name this set Crsphase1−2and then switch to the to be situation CrsmigrationSupport.
This removes the old support-behaviour.

Assuming that all support is now finished, McPal now removes the end transition and introduces
the new Workshop transitions and states Crsworkshop and the new ServiceDesk rules CRMSD in effect
creating the Migration situation we designed in the previous section.

As a side remark: the rule sets should be seen as products of component Migration Design process
in figure 5.5, McPal will start migrating when this process is ready. We will not model this process
in detail here, in table 5we assume a subprocess Deliver and WaitNext and a partition CrsM which
produces the rule sets migrTo aka ph1-2, migrBack aka ph2-1 and toBe aka migrationsupport. McPal
adds the first two rule sets to the current Support model. Crsphase1−2 is detailed in table 6

The three rules of Crs add the start up of the McPal migration, first entering its subprocess Phase1-
2. McPals next step makes sure the Worker is forced to start changing into a MigratingWorker. The
ServiceDesk remains unchanged, at this time it is still performing the support routine. Only when in
the next detailed step of McPal, where the worker gets pushed into the MigrationWorker situation and
the new WorkShopStaff processes are active due to the CRS redefinition.
Each of the (Migration) Workers has now the opportunity to signal ready_for_migration. We assume
all workers have give this signal. The number of migrations is registered in the variable mcount (see
rule msd3). It is not modeled here, but at reaching the total number of workers ServiceDesk could
enter a trap AllMigrated and doing so inform McPal. This would trigger a new migration, restoring
the Support situation. See the first rule of table 8

Note that all transformations are on-the-fly and preserve the coordination on the lower levels.

37

triv

Phase 1

Work

use

WorkWs

ask

exit

InNeedWs

exit

get
InNeed
getuse

Support
end

transformDone

Phase 1-2

Work

use

WorkWs

exit

InNeedWs

exit

InNeed
use

ready migrate

ready migrate
INReadyMigr

getM

ReadyMigr

getM

Support INSupportMigr SupportMigr

end

triv

Phase 2 (MigratingWorker)

Work

use

ready migrate

WorkWs

ready migrate

exit

InNeedWs

exit

InNeed
use

ready migrate
INReadyMigr

getM

ReadyMigr

getM

INSupportMigr

end
SupportMigr

end

Figure 5.19: Transforming the Worker into Migrating worker, the Evol subprocesses.

38

1 McPal: Observing wantChange
−−−−−−−−−→

JITTing *
DesignProcess(CrsM):Deliver giveCrsj−−−−−−→

WaitNext

2 McPal: JITTing knowChange
−−−−−−−−−→

NewRuleset *
McPal: [CRS = CRS∪Crsphase2−1∪CrsSupport]

Table 7: Crsph2−1Transforming Migration Support back to Support

1 McPal: NewRuleSet start−−−→ StartMigr *
ServiceDesk(Evol):Servicing allMigrated

−−−−−−−−−→
Servicing ,

McPal(Evol):Phase2 ready
−−−→

Phase2-1
2 McPal: StartMigr kickoff

−−−−−→
Content *

Worker(Evol):Phase2 triv−−→ Phase 2-1
3 McPal: Content phaseOut

−−−−−−→
Observing *

McPal(Evol):Phase 2-1 migrDone
−−−−−−−→

Phase 1 ,
Worker(Evol): migrationDone

−−−−−−−−−−−→
Phase 1 ,

McPal:[CRS = Crssupport]

Table 8: Crsph1−2Transforming Support to Migrating Support

39

6 The complete picture

In the process of our work we have made a suite of Paradigm and ArchiMate models

1. We introduced ArchiMate and Paradigm (without McPal).

(a) We described the infrastructural level of our case in ArchiMate, the As Is model and the
other snapshots. The snapshots came from the actual business case.

(b) Using Paradigm we created the original set of worker(support) processes with a sched-
uler(service desk) coordinating the support process.

(c) We modeled the Migration design process which creates several migration processes (im-
plementation of infrastructural changes, preparing the workstation migration, the actual
workstation migration and finishing the workstation migration, performing finishing infras-
tructural changes)

2. We described the model transformations using the Paradigm McPal component (Observing-
>JITting->NewRuleSet) which

(a) first transforms the original static As Is model into the As Is situation that is ready to start
migration preparation,

i. First McPal is at rest, no activity. McPal receives and deploys the new rule set (Crsmigrationdesigner)
which describes and creates the Migration Designer as a Paradigm STD (and as an
ArchiMate business process) (or alternatively starts the process Migration designer de-
scribed by the rule set Crsmigrationdesigner) . This migration design process produces
the change sets, the Paradigm migration models and the global migrations phases.

 start migration design

change_sets P. migration model(s) phases

As Is, ready to start migration preparation

As Is (Static)

 (add) run migration design process

Snapshot 1, ready to start ws migration

 prepare (infra,applications,processes)

Snapshot 2, WS Migration Ready

 run coordinated workstation migration

To Be (Static)

 minimize (infra,applications,processes)

To Be (Ready for Next Migration)

 opt. run migration design process

40

i. It produces a first set of necessary changes, the impact of the changes and the depen-
dencies between the changes. After visualizing the impact and the dependencies in a
diagram and further designing transforms them into coordinated Paradigm processes
described by the rule sets Crs infraMigration and CrsfinishInfraMigrationfor the infras-
tructural changes and Crsph1−2Crsmigrationsupport for the transformation of the support
process into a workstation migration process and Crsph2−1to restore the original sup-
port situation. The level of the ’real’ infrastructural changes, like adding a network card
of changing a service has also been modeled using the Paradigm notation.

ii. McPal receives Crs infraMigration and at certain time (Event: Prepare infra migration)
activates the infrastructural migration. The first phase-step in 2 gets active.

iii. Now the processes MigrationManager, InfraManager, and Local Migrator are added to
the model. They model the requesting and monitoring of external and internal changes
of the network infrastructure. This step is a common one in migration projects. In our
case it is providing the new network services within the working infrastructure.

(b) signals that the As Is model is to be transformed into DoubleServices,

i. The three new processes perform in a coordinated way the infrastructural changes
(addVLAN and addNIC) making the new services globally available.

ii. After finalizing McPal removes or deactivates the processes of InfraManager and Mi-
grator. CR := CR / CRfinishInfraMigration

(c) starts the workstation migration comprising three internal phases, in ’DoubleServices’,

i. McPal processes the rule set Crsph1−2and Crsmigrationsupportwhich prepares the worksta-
tion migration by transforming the worker and support processes into the workstation
migration process (for each worker) while preserving the outstanding calls and starts
all processes and adds/activates the Workshop process. (Phase Transform1-2)

ii. After this transformation the workstation migration can be started, coordinated by the
Service Desk (Phase Migrating)

iii. After all workstation migrations are finished McPal, using Crsph2−1 transforms the
worker support processes into to the original processes, restoring the original calls, and
removes the Workshop process. (Phase Transform 2-1)

(d) and starts the transition to the last phase, involving the minimizing of the obsolete services

(e) returns to the stationary situation, waiting for a possible new migration design

To summarize, we have structured the design of our migration in phases at different levels. In our
case we have the global level of designing the as is, the to be situation and the migration phases
(or snapshots) including the preparation of the transitions and the ’cleaning up’ afterwards. We used
ArchiMate to model the infrastructure, the applications and the processes of each phase. We have
added migration processes to each phase, that can transform the phase into the next phase. The global
design process produced intermediate building blocks for the migration. These migration processes
change the elements of our model and can also create or transform other processes. We have used
Paradigm to model the coordination and the constraints of the design and the migration processes and
have integrated them in the ArchiMate models.

7 Observations

1. Paradigm modeling can capture the migration steps of an actual migration processes.

2. The migration design process can also be modeled using Paradigm, change sets and dependency
graphs.

3. Paradigm can be used successfully to model the dependencies between infrastructural changes,
application changes and process changes.

41

4. Paradigm can be used to model the coordinated changes to the model by mapping the ArchiMate
nodes (the different types of nodes, application objects, services, processes and connections) to
P. nodes and transitions, while preserving the type (for example in a UML stereotype)

It remains difficult to decide whether using the Paradigm approach in our real-life migration from
the start would have been cost and time effective. Although the basic concept of Paradigm are clear
and elegant, it takes quite some time to really get acquainted with Paradigm modeling. But building
Paradigm models really forces (and helps) the modeler to more fully understand and communicate all
the difficulties and dependencies of migration projects.

References

[1] M. Lankhorst, Ed., Enterprise Architecture at Work, Modelling, Communication and Analysis.
Springer, 2005.

[2] H. Bosma, H. Jonkers, and M. Lankhorst, “Inleiding in de ArchiMate-taal,” Telematica Instituut/
ArchiMate consortium, Tech. Rep., 2005, https://doc.telin.nl/dscgi/ds.py/Get/File-49772.

[3] “The open group.” [Online]. Available: http://www.opengroup.org/

[4] S. Andova, L. P. J. Groenewegen, and E. P. de Vink, “Dynamic consistency in process algebra:
From paradigm to acp,” Electron. Notes Theor. Comput. Sci., vol. 229, no. 2, pp. 3–20, 2009.

[5] L. Groenewegen, A. Stam, P. Toussaint, and E. de Vink, “Paradigm as organization-oriented coor-
dination language,” in Proc. CoOrg 2005, L. v. d. Torre and G. Boella, Eds. ENTCS 150(3), 2005,
pp. 93–113.

[6] L. Groenewegen, J. Stafleu, A. Stam, and E. de Vink, “Paradigm and on-the-fly migration as
constraint orchestration,” 2006, wordt gepubliceerd.

[7] L. Groenewegen and E. d. Vink, “Evolution-on-the-fly with Paradigm,” in Proc. Coordination 2006,
P. Ciancarini and H. Wiklicky, Eds. LNCS 4038, 2006, pp. 97–112.

42

https://doc.telin.nl/dscgi/ds.py/Get/File-49772
http://www.opengroup.org/

	Introduction
	Layout
	ArchiMate and Paradigm
	ArchiMate
	The Language
	Modeling migration in ArchiMate

	Paradigm
	Integration of Paradigm in ArchiMate

	Analyzing the design of an actual migration plan
	The case
	The workstation migration, technical background
	The requirements for the migration
	The as-is and the to-be situation
	First evaluation of ArchiMate, lessons learned

	Re-examining the migration using an ArchiMate and Paradigm methodology
	Modeling migration processes
	The Standard support procedure

	Modeling the design of the migration
	The migration process: the infrastructural preparation
	Designing the workstation migration
	Individual workstation migration (all actions at worker level)
	Individual workstation migration (second, more parallel version)

	Coordinated transforming from Worker Support processes to Worker Migration processes and back

	The complete picture
	Observations

