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Chapter 1

Introduction

Concurrency is one of the hot topics in nowadays computing. The interest
in it surprisingly comes from two distinct directions. Firstly, the omnipres-
ence of the Internet and the emergence of web services allow programs to
be distributed over different computers connected through a direct, real-time
connection. Secondly, the increasing number of processors (or cores) in single
computers and the cause of this increase, the diminishing enhancement of sin-
gle processor (or core) performance, raise the need to exploit this increasingly
parallel computing power.

One way of implementing concurrency is through coordination of (sequen-
tial) components. The Reo coordination language takes such an approach.
It “glues” existing components together into new components by connecting
their ports to nodes, and by interconnecting nodes through channels. These
channels are simple two-sided components through which data can flow. To-
gether with nodes they form the building blocks of Reo, and they decide
where data does and does not flow.

Reo [1] is a language under development. Its desired behavior is formu-
lated, but not all implications of that behavior are fully understood, and no
implementation exists that is both correct and satisfyingly efficient. To fill
this gap, different semantic models have been constructed; models of Reo
that give a more formal meaning to the language or some aspect of the lan-
guage. Often these models choose to narrow their domain of application in
favor of providing more efficient or conceptually simpler implementations.

This thesis introduces a new semantic model, Physical Reo. It models
Reo as a continuous flow system, instead of the discrete flow system that
it is. It takes physical flow systems, primarily electric current systems, as
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inspiration, and derives its name from this.
The purpose of Physical Reo is to describe Reo as faithfully as possible

as such a physical system, and to benefit from the advantages that physi-
cal systems inherently have. These include that the influence that channels
and components exercise on each other — possibly through many intermedi-
ate channels and components — can be described by local constraints, and
that such systems under the influence of these local constraints can optimize
themselves to valid interactions. These properties can in turn be used to
develop more efficient (distributed) methods for use with Reo.

Although this thesis does not present a definitive implementation of Phys-
ical Reo, what it does present are two “semantic models” of or approaches
to implementing Physical Reo. The first approach is “voltage based”, in the
sense that its focus is on the analogy with voltages in electric circuits. The
second approach is “current based”, focusing on the analogy with electric
current. Moreover, an efficient algorithm derived from the voltage based
approach is also presented. Apart from the algorithms usefulness because
of its low complexity, it is a good example of how Physical Reo can be the
inspiration for an efficient implementation of Reo.

The rest of this thesis is organized as follows. Chapter 2 will discuss
mathematical (physical) structures underlying electric circuits. Chapter 3
describes Reo and its most important semantic models. Chapter 4 intro-
duces Physical Reo, shows how it can be used for practical applications and
compares it to existing semantic models. Finally, chapter 5 will draw the
conclusions and suggest future work.
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Chapter 2

Graphs and Circuits

2.1 Graphs

This section introduces the graph terminology and related matrix represen-
tations and operations as used throughout this thesis.

A graph is normally described as an ordered pair of sets G = (N, E),
where N contains nodes (or vertices), and E contains edges. To disam-
biguate, NG and EG may be used. Directed graphs, or digraphs, have di-
rected edges, identified by a pair of nodes E ⊆ N × N . Undirected graphs
identify their edges by a set of nodes E ⊆

(

N

1

)

∪
(

N

2

)

, where
(

N

i

)

is a binomial
coefficient that represents the set of all combinations of i elements of N , and
(

N

1

)

is the set of edges with both sides connected to the same node.
Some important graph terms are an edge’s endpoints, a directed edge’s

tail and head, a nodes leaving and entering edges, and source and sink nodes.
They are defined in equations (2.1) to (2.4). An edge’s endpoints are the
nodes to which it is connected; its tail is the first node of its node pair, its
head is the second. An edge is said to enter a node if that node is its head,
and to leave a node if that node is its tail. A source node is a node without
entering edges, and a sink node is one without leaving edges.

ends(e) = {n, n′} ⇔ e = (n, n′) ∨ e = (n′, n) ∨ e = {n, n′} (2.1)

e = (n, n′) ⇔ tail(e) = n ∧ head(e) = n′ (2.2)

e leaves n ⇔ tail(e) = n e enters n ⇔ head(e) = n (2.3)

issrc(n) ⇔6 ∃e ∈ E : e enters n issnk(n) ⇔6 ∃e ∈ E : e leaves n (2.4)
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Multi-graphs allow multiple edges between the same vertices. These are
expressed by splitting the sets of edges from their incidences on vertices.
This results in the ‘incidence structure’-like notation G = (N, E, I) where E

is an abstract set of edges, and (for digraphs) I : E → N ×N determines its
incidence.

A path π in a directed multi-graph G is a sequence of edges, where the
head of every edge equals the tail of its successor if it has a successor (2.5).
A cycle is a path in which the head of its last edge equals the tail of its first
edge (2.6).

pathsG = {(e0, . . . , en) ∈ E∗
G| head(ei) = tail(ei+1 for 0 ≤ i < n} (2.5)

cyclesG = {(e0, . . . , en) ∈ pathsG | head(en) = tail(e0)} (2.6)

Graphs can be united to create a new graph. In this thesis, only non-
disjoint unions, as defined in (2.7), are used. The other way around, graphs
can be decomposed into subgraphs of which the union is the original graph.
The ultimate decomposition is into graphs consisting of one edge, which is
the graph induced by that edge (2.9).

G ∪ G′ = (NG ∪ NG′, EG ∪ EG′ , IG∪G′) (2.7)

IG∪G′ : e 7→

{

IG(e) if e ∈ EG

IG′(e) if e ∈ EG′

(2.8)

indG(e) = (ends(e), {e}, IG) (2.9)

A convenient representation of a directed multi-graph is its incidence
matrix A, where its edges form the row indexes and its nodes the column
indexes. The incidence matrix of a graph is the subtraction of its head matrix
Ahead from its tail matrix Atail as described in equation 2.10.

A = Atail − Ahead (2.10)
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Atail =







Atail,e0,n0
. . . Atail,e0,nm

...
. . .

Atail,en,n0
Atail,en,nm







Atail,ei,nj
=

{

1 if ∃n′ ∈ N : I(e) = (n, n′)

0 otherwise
(2.11)

Ahead,i,j =







Ahead,e0,n0
. . . Ahead,e0,nj

...
. . .

Ahead,ei,n0
Ahead,ei,nj







Ahead,ei,nj
=

{

1 if ∃n′ ∈ N : I(e) = (n′, n)

0 otherwise
(2.12)

In matrix manipulations of such incidence matrices, it can be useful to
set some rows or columns to zeros. This can easily be accomplished by a
multiplication by a matrix such as in equation (2.14), where σ can specify a
subset of N or E in any (intuitively) clear way, for example as a subset or a
predicate.

1σ : 1σ,n,n′ =

{

1 if n = n′ ∧ n ∈ Nσ

0 otherwise
(2.13)

1σ,e,e′ =

{

1 if e = e′ ∧ e ∈ Eσ

0 otherwise
(2.14)

2.2 Electric systems

This section will discuss electric current systems with two-sided components
as (directed) multi-graphs. After the general case, linear analog systems will
be discussed more in depth. Nodes, edges and the incidence function of a
graph G will be written hereafter as NG, EG and IG, to disambiguate from
physical quantities such as electric current I.

An electric circuit C is described as an edge-labeled directed multi-graph.
Every edge is labeled with an electrical component definition by comp : EG →
Ce, where the set of all electrical components Ce consists of, among others,
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voltage sources described by V = {x · V |x ∈ R}, constant resistors described
by R = {x · Ω|x ∈ R, x > 0}, or resistors that depend on the potential
difference over them, described by RV . From here on, only voltage sources
and constant resistances will be considered, though. Electric systems of this
sort are linear systems.

Different graphs and component labelings can describe the same circuit
by inverting edges and components accordingly, which is expressed by the
electric circuit equivalence relation in (2.15).

C ∼ C ′ ⇔ NGC
= NG′

C
∧ EGC

= EG′

C
∧

∀e ∈ EGC
: endsGC

(e) = endsG′

C
(e)∧

∀e ∈ EGC
:

{

compC(e) = − compC′(e) if IGC
(e) 6= IG′

C
(e) ∧ compC(e) ∈ V

compC(e) = compC′(e) otherwise

(2.15)

To describe the state S that an electric circuit is in, a few other labelings
are used. These consist of the potential difference ∆V : EG → V, the
electric current I : EG → I with I = {x · A|x ∈ R}, and node voltage
V : NG → V. The partial resistance labeling R : EG → R is only defined on
resistor components, and gives the resistance specified by comp(e). Electric
circuit states can also be described by equivalent labeled graphs (2.16).

S ∼ S ′ ⇔ CS ∼ CS′ ∧ ∀n ∈ NGS
: VS(n) = VS′(n)∧

∀e ∈ EGC
:

{

∆VS(e) = −∆VC′(e) ∧ IS(e) = −IS′(e) if IGC
(e) 6= IG′

C
(e′) ∧ compC(e) ∈ R

∆VS(e) = ∆VC′(e) ∧ IS(e) = IS′(e) otherwise

(2.16)

Ohm’s law (2.17) can now be expressed in this terminology for all resistor
edges (2.18).

V = I · R (2.17)

∀e ∈ EG : ∆V (e) =

{

I(e) · R(e) if comp(e) ∈ R

comp(e) if comp(e) ∈ V
(2.18)
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Kirchhoff’s laws (2.19, 2.20) describe (the stable state of) an electric
system.

∑

∆V = 0 (2.19)
∑

I = 0 (2.20)

Kirchhoff’s Voltage Law describes that the voltage drop through every
directed cyclic path is zero. In graph terminology, this is expressed by (2.21).
Note that this holds in all equivalent graphs of G as well.

∀π ∈ cyclesG :
∑

e on cycle π

∆V (e) = 0 (2.21)

Kirchhoff’s Current Law describes conservation of current; the total cur-
rent going in to a node equals the total current going out of that node. In
graph terminology it can be expressed as (2.21).

∀n ∈ NG :
∑

{e∈EG|n∈ends(e)}

I(e) = 0 (2.22)

Linear systems are ‘solvable’ in the sense that a stable state can be com-
puted for them, which means that ∆V and I can be calculated for resistor
edges with Kirchhoff’s and Ohm’s laws. Kirchhoff’s Voltage Law can be
interpreted as stating that the potential difference between two vertices is
independent of the path between them. This makes it possible to assign an
electric potential to every node, which is its potential difference with respect
to a chosen ground node.

Kirchhoff’s and Ohm’s laws can be nicely expressed with linear algebra.
Node voltages can be put in a vector VNG

, and multiplication by incidence
matrix AG gives the vector of potential differences ∆VEG

. This is the matrix
form of Kirchhoff’s Voltage Law (2.23).

∆VEG
= AG · VNG

(2.23)

Ohm’s law in matrix form (2.24) uses the diagonal matrix R−1
G , which is

the diagonal matrix containing R(e)−1 for all edges. The result IEG
is the

vector of currents through the edges of G.
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IEG
= R−1

G · ∆VEG
(2.24)

(R−1
G )ei,ej

= (RG,ei,ej
)−1 RG,ei,ej

=

{

R(ei) if ei = ej

0 otherwise
(2.25)

Kirchhoff’s Current Law (2.26) again makes use of the incidence graph,
but now in transposed form. Vector I0NG

describes the current coming into
or going out of the circuit at every node of G. This vector has 0 on all entries,
except for the nodes directly connected to a voltage source.

I0NG
= AT

G · IEG
(2.26)

The complete linear equation that needs to be solved to find the stable
state of a system is given in (2.27), and can be solved with the constraint
given in (2.28) and by choosing one node as ground node, having a per
definition voltage of zero (2.29).

I0NG
= AT

G · R−1
G · AG · VNG

(2.27)

I0NG,n = 0 if ∀e ∈ EG : n ∈ ends(e) ⇒ C(e) ∈ R (2.28)

V (n) = 0 for ground node n (2.29)

Stabilization

The formulas above describe the stable state of a circuit. This section de-
scribes the process of stabilization; that is, how a circuit stabilizes from any
state to a state that obeys Ohm’s and Kirchhoff’s laws.

The voltage at the nodes depends on the time a circuit has been stabilizing
and its initial state. In this derivation of the stabilization process, first a
discrete time approximation will be considered (2.30). Note that ∆VNG

is
the change in voltage of the nodes over time ∆t, and different from the
potential differences over the edges ∆VEG

.

ti+1 = ti + ∆t VNG
(ti+1) = VNG

(ti) + ∆VNG
(ti) (2.30)
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The current, the quantity of electrons, coming in from or going out into
an edge, is a node’s “observation” of the voltage drop per ohm through that
edge. Every edge connected to a node has an influence on that node’s next
voltage level. This can, for any node n that is not connected to a voltage
source and for some function f , be described by (2.31).

∆V (n, ti) =
∑

n∈ends(e)

I(e, ti) · f(∆t) =
∑

n∈ends(e)

∆V (e, ti)

R(e)
· f(∆t) (2.31)

First, it will be considered how ∆V (e) would change over time if the
nodes connected to e were not connected to any other edge, with ∆∆V (e, ti)
being the change in potential difference over e over time ∆t (2.32).

∆V (e, ti+1) = ∆V (e, ti) + ∆∆V (e, ti) (2.32)

∆∆V (e, ti) is (directly) proportional to ∆V (e, ti) and I(e, ti), and there-
fore inversely proportional to R(e). Moreover, for a very small ∆t, we may
assume that ∆V (e, ti+1) approaches ∆V (e, ti), or put differently, ∆V (e, ti)
locally is proportional to ∆t, leading, for some constant K, to (2.33), and
after some rearranging to (2.34), and for ∆t → 0 to (2.35).

∆∆V (e, ti) = K ·
∆V (e, ti)

R(e)
· ∆t (2.33)

∆∆V (e, ti)

∆t
=

K

R(e)
· ∆V (e, ti) (2.34)

d

dt
∆V (e, t) =

K

R(e)
· ∆V (e, t) (2.35)

Symmetry requires that both nodes connected to e contribute equally
to the change in potential difference over e, as in (2.36) where d

dt
V (n, e, t)

denotes edge e’s contribution to the voltage change in time of node n at time
t. The combined contribution of all edges connected to n is given in (2.37),
and can again be nicely described as a matrix multiplication (2.38).

d

dt
V (n, e, t) =

1

2
·

d

dt
∆V (e, t) (2.36)
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d

dt
V (n, t) =

∑

n∈ends(e)

K

2 · R(e)
· ∆V (e, t) =

∑

n∈ends(e)

K

2
· I(e, t) (2.37)

d

dt
VNG

(t) =
K

2
· AT

G · R−1
G · AG · VNG

(t) (2.38)
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Chapter 3

Reo

Using Reo, [1] coordination of (sequential) components/processes is done by
coordinating data that is exchanged between them. Components commu-
nicate through ports, which Reo requires to be either source or sink ports.
Source ports are ports that may or may not accept (try to read) data de-
pending on the state of the component, but never offer (try to write) data.
Sink ports are their duals that may or may not offer data, but never ac-
cept data. Reo coordinates the components by either (consumptive) reading
or (possibly temporarily) blocking data offered on sink ports, and by either
writing or (possibly temporarily) not writing data to accepting source ports.
The components can adjust their behavior to the state — read/write (not)
pending — of their ports.

Reo is a language for creating and modifying circuits that determine which
data is read from and written to the ports of components that they are
connected to, as well as for the actual communication between these ports.
These circuits consist of nodes and different types of channels. Every channel
has two ports, which are normally called channel ends. As such, channels
can be seen as components. A channel end is either a source end or a sink
end. Every channel end is connected to a node. A circuit constructed or
constructible by Reo will be called a Reo circuit or connector.

This chapter leaves out the construction part, and focuses on the behavior
of constructed connectors.

Nodes try to read from one of their connected sink ends and write the
read data to all of their connected source ends. If they can’t do all of this,
which is also the case if there are no source ends attached to a node, they
will not read and write at all. Channels come in different flavours. The
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most important ones, from which most other channels can be constructed in
a fairly easy way, are described in table 3.1.

notation
drawn
edge

description

sync r r-
Tries to read data on its source end and write
that same data on its sink end; if this fails it
blocks

lossy r r-
Accepts data on its source end and tries to write
that same data on its sink end; if this fails, data
is lost inside the edge

sync drain r r- � Tries to read (uncorrelated) data on both of its
source ends; if this fails it blocks

async drain r r- � Tries to read (uncorrelated) data on both of its
source ends; if this fails it blocks

sync spout r r-� Tries to read (uncorrelated) data on both of its
source ends; if this fails it blocks

async spout r r-� Tries to read (uncorrelated) data on both of its
source ends; if this fails it blocks

cell r r-
The state consists of either a data item (full cell)
or nothing (empty cell); its behavior depends on
that

cell(⊤) r r-s
Blocks on its source end, offers its contained
data item on its sink end. If the data is read,
the cell becomes empty

cell(⊥) r r-
Accepts on its source end, does not offer on its
sink end. If data is written, the cell becomes
full

Table 3.1: Description of some Reo channels

Whenever the state of one of the stateful channels of a connector changes,
the state of the connector changes. Such a connector state change is a tran-
sition. Every channel state change is induced by a read/write of data, and
a connector transition can be described by all reads/writes in it. Note that
in this way a connector is a non-deterministic state machine; it can allow
different successor states. Note also that different transitions can lead to the
same successor state.
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The description above is expressed by seemingly local constraints, in the
sense that for every individual channel and node, it would be possible to check
based on the properties of their connected ports whether they are valid or
not. It is not obvious, though, what ‘trying to read/write’ should mean, and
how the trying of one node or channel affects the others.

Reo generally takes an approach in which trying means nothing more than
allowing. No action can happen just as well as the tried action. That this
looks like channels or nodes are trying to read or write, pushing or pulling
data, comes from the fact that states do not change if no action happens. To
‘try’ to read or write data, expresses that the possibility of reading or writing
remains until the read or write actually happens.

The rest of this chapter is organised as follows. Section 3.1 describes Reo
circuits more formally as labeled multi-graphs. Section 3.2 looks at different
semantic models for Reo, and their reason for existence.

3.1 Connectors as Multi-Graphs

A Reo circuit C is a labeled multi-graph, where every edge is labeled with a
channel type by chan : EG → Cr, where Cr is the set of Reo channels. The
channels will in this thesis be restricted to those mentioned in table 3.1.

Like between electric circuits, there exists an equivalence relation between
Reo circuits. This equivalence is given in (3.1)

C ∼ C ′ ⇔ NGC
= NG′

C
∧ EGC

= EG′

C
∧

∀e ∈ EGC
:

{

IC(e) = IC′(e) if chan(e) ∈ {sync, lossy, cell}

endsC(e) = endsC′(e) otherwise

(3.1)

The state S of such a circuit is defined by the states of its stateful channels,
in this case only its cell channels. The state of a cell channel consists of its
content. This can be either a data item in some data set D, in which case
it’s a full cell, or no data item at all, denoted as ⊥, in which case it’s an
empty cell. The edge labeling state in (3.2) describes the circuit state at
some point in time completely.
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state : Ecell → D⊥

Ecell = {e ∈ E| chan(e) = cell} D⊥ = D + {⊥} (3.2)

A transition T : (D⊥)Ecell → (D⊥)Ecell maps a state to a new state. In
Reo, transitions are constrained by data flow; a cell channel transits from
full to empty if its data flows out of it, and from empty to full if data flows
into it. Before this can be formalized, some work has to be done.

A labeling of nodes inp : N → E∪{⊥} is possible that indicates which of
its entering edges writes to it. Such a labeling is valid if it satisfies the con-
straints of all nodes and channels. These channel constraints are summed up
in table 3.2, where rside, wside : EG → D⊥ and rtail(e), rhead(e), wtail(e), whead(e)
refers to the data item that e reads from or writes to its tail or head node
respectively. The node constraints are described by equation 3.3.

∀n ∈ NG : ∀e ∈ EG : tail(e) = n ⇒ whead(inp(n)) = rtail(e) (3.3)

Such an inp labeling defines a transition completely (modulo actual data).
Data flows out of a full cell channel e exactly if it’s chosen by its head node
n to write to it — that is, if inp(n) = e; Data flows into an empty cell
channel e exactly if its tail node n chooses any edge to write to it — that is
inp(n) 6= ⊥.

channel constraint

sync rtail(e) = whead(e)

lossy

{

rtail(e) = whead(e) if possible

whead(e) = ⊥ otherwise

sync drain rtail(e) = rhead(e)

async drain rtail(e) = ⊥ ∨ rhead(e) = ⊥
sync spout wtail(e) = whead(e)

async spout wtail(e) = ⊥ ∨ whead(e) = ⊥
cell(d) rtail(e) = ⊥ ∧ whead(e) ∈ {d,⊥}
cell(⊥) whead(e) = ⊥

Table 3.2: Constraints on Reo nodes and channels
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3.2 Semantic Models

Semantic models are formal descriptions of the behavior of Reo circuits.
Their purpose can be to give a valid implementation for it or an efficient
one, or even just to give a better understanding of its behavior. As indicated
by the word ‘model’, a semantic model does not necessarily have to describe
Reo circuit behavior perfectly and completely.

Often, semantic models focus on an aspect of Reo’s behavior, neglect-
ing some other aspects. They can for example describe whether data flows
through a node or not, neglecting what the actual data is. A semantic model
can also be useful if it provides an efficient calculation of circuit behavior,
even if it describes Reo less accurately than some other known model.

Section 3.2.1 takes a closer look at some typical difficulties that semantic
models have to deal with. The sections 3.2.2, 3.2.3 and 3.2.4 briefly describe
the most important semantic models, and how they deal with the difficulties
from section 3.2.1.

3.2.1 Common Problems

This section discusses some common problems that semantic models tend to
run into. The semantic models that are discussed in the following sections
are evaluated in large part by their ability to solve these problems.

Context Sensitivity

Some components behave differently in different contexts. The lossy syn-
chronous channel, for example, is not allowed to actually lose data if that
data is accepted on its sink end; but whether that is the case depends on
factors outside the channel. The ability to adapt behavior to whether data
is offered or accepted by the context is context sensitivity.

It appears to be difficult to describe context sensitivity well in semantic
models. Those that do not, replace the lossy synchronous channel with a
channel that may lose data regardless of its context — this is known as the
non-deterministic lossy synchronous channel. On the other hand, those that
do can get other problems, as will appear in the next paragraphs.

A way to add context sensitivity to a semantic model, is to somehow
require that data must flow whenever it can. This can solve the problem of
not having context sensitivity, but is still incompatible with the definition of
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Reo. Consider, for example, a circuit consisting of two full cell channels, each
connected to an empty cell channel (figure 3.1). The given solution would
require immediate, and thus simultaneous, flow from both full cells to the
empty cells, whereas in Reo, it can just as well happen that flow from the
one full cell precedes flow from the other full cell.

u u u

u u u

x

x - -

- -

Figure 3.1: A circuit with two unrelated subcircuits

Causality

Causality loops, in which effects are their own cause, form another problem.
In Reo, a data item has to come from some data source. This tends to not
fit directly in most semantic models. Consider a synchronous channel with
its head and tail connected to the same node, and an empty cell channel
leaving that same node (figure 3.2). If the circular channel would write data
on its sink end, the data would be replicated, and one copy would go into the
source end of the same channel. The copy would become its own original on
its way to the sink node, and the empty cell would be filled. Though locally
this transition looks valid, the fact that a result (the data coming into the
circular channel) causes its own cause (the data being offered on the sink
end) makes it invalid.

u u@@R -

Figure 3.2: A circular circuit
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Data Sensitivity

Reo is data sensitive, which means that a connector can behave differently
for different data items. For example, a filter channel exists, which behaves
as a synchronous channel for a specified subset of data set D, and accepts
but destructs the other elements of D. This specification of the subset is
done through a pattern to which a data item can conform or not.

Some semantic models focus on whether there is flow or not, and focusing
on that neglect actual data. In most cases, it is possible to reconstruct which
data item flows through a node or channel by tracing its way back to where
it came from. In most cases where this is not possible, it does not matter
what the data item is. If it can not be reconstructed which data item flows
into a channel, but the channel, for example a filter channel, depends on it,
these models have to work around this problem.

A way to work around not having data sensitivity in a semantic model is
encoding every data item (and ‘no flow’) in a sequence of bits. Every data
item representation now flows through data buses consisting of synchronised
channels and nodes. The disadvantage of this solution is that it makes a
circuit more specific to the data sets to which it applies. For example, a
pattern “all elements less than 10” can apply to any data set consisting of
numbers of some sort, whereas such a general pattern can not be described
by the suggested data bus solution.

3.2.2 Connector Coloring

Connector coloring [3] labels all channel ends with a “color”. Every valid
labeling of a connector determines a transition. A connector labeling is valid
if it satisfies all the local constraints that are imposed on it.

In connector coloring, nodes are represented by (combinations of) the
three-way merger and replicator channels. With this representation, channel
ends are directly connected to at most one other channel end.

The local constraints that rule out invalid colorings consist of the con-
straints that a channel puts on its ports, and those that are put on uncon-
nected ports and two ports that are connected to each other. Connector
coloring comes in two flavors, and the constraints on connected ports are
determined by this flavor. The constraints that a channel puts on its ports
are channel and flavor specific.

The two flavors of connector coloring are discussed separately below.
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Two Color Semantics

In two color semantics, every channel end can have one of two colors: flow
(drawn as a solid line) or no flow (drawn as a dashed line). The allowed col-
orings of the most important channels are listed in table 3.3. The constraint
on unconnected ports is that they should have no flow. Two connected ports
should have the same color.
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Table 3.3: Colorings of channels with two colors

Two color semantics gives a method for enumerating all transitions of a
circuit in a certain state. It does so without context sensitivity, and thus
puts too few constraints on transitions. On the other hand, it nicely reflects
the fact that data does not have to flow just because it can. The relational
nature of the model makes it such that causality loops are not detected,
which possibly allows invalid transitions. Finally, two color semantics is data
insensitive.

Three Color Semantics

Three color semantics substitutes the color “no flow” from two color seman-
tics with two colors: “needing a reason not to flow,” which is drawn as a
dashed line with a closed inward arrow, and “giving a reason not to flow,”
which is drawn as a dashed line with a closed outward arrow; both obviously
indicate that there is no flow. “Needing a reason” means that the reason
needs to be given by the connected port. This implies that a constraint
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on two connected ports is that they can not both be “needing a reason”.
As a matter of fact, in addition to the constraints of two color semantics,
this forms the complete set of constraints on two connected ports. For an
unconnected port, no other constraint holds than that there cannot be flow.

Table 3.4 describes the new colorings of the most important channels.
Note that, for every coloring of a channel, substituting “giving a reason not
to flow” with “needing a reason not to flow” gives a valid coloring too.
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Table 3.4: Colorings of channels with three colors

Like two color semantics, three color semantics gives a method to enu-
merate possible transitions for a circuit state. Its improvement with respect
to two color semantics is that it adds context sensitivity. On the other hand,
it introduces the Reo incompatibility mentioned in 3.2.1. As far as causality
and data sensitivity are concerned, there is no change with respect to two
color semantics.

3.2.3 Constraint Automata

A constraint automaton [2] is a description of a Reo circuit as automaton
with guarded transitions. Such an automaton is a tuple (Q, N,−→, Q0),
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where Q is the set of states, N is a set of names representing the set of all
channel ends, −→ is the transition relation, and Q0 is the set of initial states.
The transition −→ relation is a subset of Q× 2N ×DC×Q where DC is the
set of data constraints that guard a transition.

A transition can be viewed as a data assignment to a connector’s channel
ends. 2N , the powerset of N , is the set of all combinations of ports. Its
element in a transition describes which ports participate in it, in the sense
that data flows through them. A guard, or data constraint, describes which
data assignments to these ports are valid. Data constraints are described by
propositional formulae with atoms of the form dA = d for any d in data set
D, where dA refers to the data in any port A ∈ N . Note that formulae like
dA = dB can also be constructed if D is finite, namely by

∨

d∈D dA = d∧dB =
d.

Where coloring semantics is most naturally interpreted as a generator of
possible Reo circuit transitions, constraint automata can be considered to be
acceptors of transitions. Constraint automata are not context sensitive, but
correctly always allow the transition with “no flow” (in parts of the circuit).
They do not detect causality loops. Data sensitivity is handled correctly.

3.2.4 Constraint Satisfaction

Constraint satisfaction as presented in [4] is more like a semantic meta-model
of Reo. It describes valid transitions by constraints, using different sets of
constraints for different aspects of the system. Whether there is flow in a
port or not is determined by a dedicated set of constraints, and what data
is allowed in the ports where there is data is determined by another. Data
sensitivity is easily added with yet another set of constraints.

On the one hand, none of the problems presented in 3.2.1 seem to be in-
herent to constraint satisfaction. On the other hand, constraint satisfaction
does not designate the actual sets of constraints used to describe (their corre-
sponding aspects of) valid transitions, and as such is not an actual semantic
model. Given a transition candidate, it can (easily) be checked whether it
is a valid transition or not by checking the constraints. There is no straight-
forward way, though, to find one or all transitions that are valid for a Reo
circuit in a given state.
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Chapter 4

Physical Reo

The very name ‘Reo’ is a transcription of the Greek word for “flow”. In Reo
circuits, data items flow. In electric circuits, electrons flow. In Reo, it seems
like data wants to flow from where it is present to where it is accepted, as
is actually the case with electrons in electric circuits. This is a very strong
analogy, which is made even more appealing by the fact that although the
laws of electric circuits are local, electric circuits are context sensitive; that
is, the behavior of a point in an electric circuit can depend on the state of
another point in a different location.

There are, however, significant differences. In the context of Reo, “flow”
refers to the flow of one data item, rather than to a current of many particles,
as in electric circuits. This flow of data can only happen in one direction.
And although Reo connectors themselves are often agnostic of actual data,
different flowing data items are not interchangeable, as electrons are. More-
over, there is the subtle difference that in traditional interpretations of Reo,
data items can be replicated or annihilated (lost) in a circuit. Electrons
can enter or leave an electric circuit, but replication and annihilation in the
circuit are prohibited by Kirchhoff’s Current Law.

Physical Reo is a semantic model for Reo that tries to come as close as
possible to a physical model, and specifically Ohm’s and Kirchhoff’s laws.
Physical models, in this respect, are models that are local and continuous.
Physical Reo focuses on describing context sensitivity and causality loops,
but possibly neglects data sensitivity.

This chapter presents two approaches to Physical Reo, neither of which
are satisfactory as a definition of it. One of the presented approaches is
correct on context sensitivity and causality loops, but implicitly assigns a
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priority to every data item, which sometimes makes it block even if a tran-
sition is possible. The other approach correctly gives the choices back to
the nodes, but is nondeterministic and leaves its choice context insensitive.
This is the reason that it cannot describe the deterministic lossy synchronous
channel, and for some circuits never finds a transition.

After presenting the two approaches to Physical Reo, an application of
the voltage based approach is given. It leads to a very efficient algorithm
for computing a Reo transition, with a complexity linear (given a voltage
initialisation) to the number of edges in the circuit. To overcome the possi-
bility that no transition is found for a Reo circuit for which one does exist,
a hybrid setup with a fall-back method is suggested.

Section 4.1 will look at a simpler subset of Physical Reo circuits, and
explain how they provide a semantic model for a subset of Reo circuits.
Section 4.2 will extended this subset to describe all data insensitive Reo
circuits. Section 4.3 describes an efficient implementation of the voltage
based approach. Section 4.4 evaluates the given approaches to Physical Reo,
and compares them to existing semantic models.

4.1 Simple Connectors

This section introduces Physical Reo. Physical Reo circuits are more like
electric circuits than Reo circuits are, and are more like Reo circuits than
electric circuits are. Two approaches to how Physical Reo can find transitions
for Reo circuits are given. This section is limited to a small subset of Reo
circuits, though many of its statements will apply to any circuit.

A Physical Reo circuit C (4.1) is defined as a directed multi-graph G =
(NG, EG, IG) with node labeling nodetype : NG → {reo, oer} and the (par-
tial) labelings R : NG ∪ EG → R, const : NG ∪ EG → {const, var}. In the
rest of this section, nodes of type oer will be left out of consideration; they
will be discussed in section 4.2.

C = (G, nodetype, R, const) (4.1)

A Physical Reo circuit state SC (4.2) is defined by the (partial) labeling
V : NG ∪ EG → V . This labeling can be interpreted as a voltage labeling.
The labeling R can be interpreted as a resistance labeling, and const as
whether a voltage is constant because it is a voltage source. The labeling
I : NG∪EG → I, which is fully determined by V and R, can be interpreted as
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(electric) current. Like electric circuits, Physical Reo circuits are differential
systems in which voltage, current, and resistance determine the state change.

S = (C, V ) (4.2)

Every Reo circuit C consisting of synchronous channels, cell channels,
synchronous spouts and asynchronous drains has an underlying Physical Reo
circuit, und(C) (4.4), that describes the behavior of C. The underlying circuit
is obtained by substituting every Reo channel with a certain set of nodes
and edges. Which channel is substituted by which set of nodes and edges is
indicated by table 4.1. Note that the nodes of a Reo circuit are shared by
its underlying circuit.

To formalize the substitution of Reo channels, a decomposition of Reo
circuits is needed. Every circuit can be decomposed into atomic subcircuits
consisting of one channel and its source and sink nodes (4.3); their union
reconstructs the original circuit. How the underlying circuit of these atomic
subcircuits is created is given by the equations in table 4.1. The underlying
Physical Reo circuit of the original Reo circuit is obtained by taking the
union of these underlying circuits (4.4).

dec(C) = {(indGC
(e), chanC)|e ∈ EG(C)} (4.3)

und(C) =
⋃

C′∈dec(C)

und(C ′) (4.4)

A Reo transition can be derived from a stable state of its underlying
circuit. For this derivation, a correspondence corr : EC → Eund(C) is set up
between Reo channel ends, and ports in the underlying circuit. These can
be found in the last column of table 4.1.

Whether a state is stable is determined by the differential equations that
relate voltage, current, resistance and the change in time of these. For such
a system of equations, there are different options, with different ways to
translate them back to Reo transitions. The following sections will present
two such options, one focusing on analogy with voltage, the other on analogy
with current in electric circuits.
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4.1.1 Voltage Based Approach

The voltage based approach to Physical Reo considers current to be nothing
more than the medium through which potential difference is communicated
between nodes. This leaves Kirchhoff’s Voltage Law as well as Ohm’s law
untouched.

∆V = A · V (4.5)

I = R−1 · ∆V (4.6)

Kirchhoff’s Current law, on the other hand, needs revision. A node’s
voltage will change as if it were connected to only two of its connected edges.
These two are selected based on their current; the ones with the biggest en-
tering current contribute to the node’s voltage change. This entering current
can be the current through an entering edge, or the inverse of the current
through a leaving edge. If there are different edges with equal incoming cur-
rents, either one can play the role of contributor to the node’s voltage change.
For a node connected to only one edge, of course, only that one influences
its voltage.

A node’s selection sel ⊆ EG of edges can be described as an element

of
(

EG

2

)NG
, the set of all functions that map a node to a set of two edges.

A formalization of the constraints as given above on such a selection, are
expressed in (4.8).

sel ∈

(

EG

2

)NG

(4.7)

∀n ∈ NG, e ∈ sel(n), e′ ∈ EG \ sel(n) :

n ∈ nodes(e′) ⇒ (n ∈ nodes(e) ∧ I(e) ≥ I(e′)) (4.8)

In(e) =

{

I(e) if e enters n

−I(e) if e leaves n
(4.9)

The described substitute for Kirchhoff’s Current Law can be expressed
as a matrix multiplication, as described in (4.10), where matrix B can be
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interpreted as the matrix that expresses a selection sel (4.12 - 4.14). Note
that, though B is not fully determined by the circuit state, BT · I is.

I0NG
= BT · I (4.10)

dV

dt
= K · 1var · B

T · I (4.11)

B = Btail − Bhead (4.12)

Btail,e,n =

{

Atail,e,n if e ∈ sel(n)

0 otherwise
(4.13)

Bhead,e,n =

{

Ahead,e,n if e ∈ sel(n)

0 otherwise
(4.14)

Such a circuit stabilizes to a state where I0NG
is the current entering the

circuit through the nodes, which is zero for var nodes, resulting in dV
dt

= 0.
In this stable state, the second biggest current entering a node is the inverse
of the biggest current entering it. As a consequence, there is at most one
positive entering current, and none only if there are two or more connected
edges without current. Before the stabilization process can start, nodes will
need to be initialized with voltages.

For the stable state to be translated to a valid Reo transition, there
are some requirements on the (initial) voltages of the const nodes. Every
Physical Reo voltage source representing a data source in Reo should have a
higher voltage than any voltage source representing a data sink. Moreover,
no two const nodes can have the same voltage.

A Reo transition can be derived from the stable state of its underlying
circuit in the following way; a data item flows from a data source to a data
sink if and only if there is a (directed) path in its underlying circuit from the
data source to the data sink with monotonously decreasing voltages.

4.1.2 Current Based Approach

The primary assumption of current based Physical Reo is that current is
replicated in nodes. For this, it is most convenient to have the label I apply
to nodes, and, as a consequence, V to edges and R to nodes.

Every node nondeterministically selects one of its entering edges that has
a higher voltage than any of its leaving edges. The potential difference over
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it is then defined as the difference between the voltage of its chosen edge
and the maximum voltage among its leaving edges. Through sink or source
nodes, of course, there can be no current. The valid selections of entering
and leaving edges are formalized in (4.15) to (4.18).

seltail ∈ E
NG

G selhead ∈ (EG ∪ {⊥})NG (4.15)

∀n, n′ ∈ NG, e ∈ EG : IG(e) = (n, n′) ⇒

∃n′′ ∈ NG : IG(seltail(n)) = (n, n′′) ∧ V (seltail(n)) ≥ V (e) (4.16)

∀n ∈ NG : opthead(n) =

{e ∈ EG|∃n′ ∈ NG : V (e) > V (seltail(n)) ∧ IG(e) = (n′, n)} (4.17)

∀n ∈ NG :

{

selhead(n) ∈ opthead(n) if opthead(n) 6= ∅

selhead(n) = ⊥ otherwise
(4.18)

Every valid selection can be expressed as a matrix multiplication, as in
(4.19) to (4.22). Note that not only matrix C is not fully determined by the
circuit state, but also the vector ∆V (4.19). The current through a node is
described by Ohm’s law (4.23).

∆V = CT · V (4.19)

C = Ctail − Chead (4.20)

Ctail,n,e =

{

Atail,n,e if e = seltail(n)

0 otherwise
(4.21)

Chead,n,e =

{

Ahead,n,e if e = selhead(n)

0 otherwise
(4.22)

I = R−1 · ∆V (4.23)

Current goes out of an edge only if the edge is chosen by its sink. On
its source end, on the other hand, the current through its connected node
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always enters. The matrix expressing this can be described as a combination
of A and C (4.24).

dV

dt
= K · (Atail − Chead) · I (4.24)

A node is fixed with its choice until the current through it approaches zero.
Then it will again nondeterministically choose another one of its entering
edges that has a higher voltage than any of its leaving edges, if possible. If
this is not possible, no edge will be chosen at all. Note that the previous
choice of a node, the edge from which current has most recently entered,
should formally be considered part of its state, and as such part of the circuit
state.

The nondeterminism of nodes can cause a circuit not to stabilize or to
loop through states indefinitely before finally stabilizing. But even if the
voltages at the edges stabilize, it can be that the node’s choice is not stable.
These instable cases are not translated back to a Reo transition. If a circuit
does stabilize, the stable state is one in which the current going into an edge
equals the current going out of it.

Of course, edge voltages have to be initialized. There is no constraint on
a voltage initialization to be valid, but to have data sources ‘try’ to write
their data, their corresponding voltage sources should have higher voltages
than those of the voltage sources corresponding to data sinks.

The Reo transition induced by this stable state is the one with flow exactly
in those channel ends of which the corresponding port has nonzero current.

4.2 Complex Connectors

The previous section introduced Physical Reo, but left oer nodes out of
consideration. As a result, not all Reo channels could be described. This
section describes the behavior of reverse nodes, and how they are used to
describe more Reo channels.

Reverse nodes are the reverse of normal Reo nodes in the sense that the
same way that Reo nodes either replicate the data from exactly one connected
sink end to all connected source ends or block, reverse nodes either read data
on all connected sink ends and write one of them to exactly one source end
or block.
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With reverse nodes, Physical Reo is able to also describe synchronous
drains, asynchronous spouts and lossy synchronous channels. Table 4.2 shows
the underlying circuits and correspondence relations for each of these. Re-
verse nodes are indicated by unfilled circles, normal nodes by filled ones.
How reverse nodes affect the stabilization process of the voltage based ap-
proach and the current based approach will be explained in the following
subsections.

4.2.1 Voltage Based Approach

As with normal nodes, Ohms law and Kirchhoff’s Voltage Law are unchanged
for the voltage based approach, but Kirchhoff’s Current Law is adapted. A
reverse node selects its two connected edges with the lowest entering current
to influence its voltage. For normal Reo nodes, equation 4.8 still holds; for
reverse nodes, however, the “greater than” signs have to be reversed. This
is written out in equation 4.25. The rest of the derivation presented in this
section is identical to that in section 4.1.1.

With the constraints on the voltage initialization of a circuit as given in
section 4.1.1, the voltage based approach to Physical Reo describes the lossy
synchronous channel as a nondeterministic one. Adding the constraint that
all internal voltage sources of lossy synchronous channels must have higher
voltages than other voltage sources that represent data sinks is sufficient to
make lossy synchronous channels behave deterministically.

∀n ∈ NG, e ∈ sel(n), e′ ∈ EG \ sel(n) : n ∈ nodes(e′) ⇒

nodetype(n) = reo ⇒ (n ∈ nodes(e) ∧ I(e) ≥ I(e′))

nodetype(n) = oer ⇒ (n ∈ nodes(e) ∧ I(e) ≤ I(e′)) (4.25)

With the introduction of reverse nodes, the derivation of a Reo transition
from a stable state of its underlying circuit gets more complex. It is no
longer a sufficient condition for a data item to flow that there is a path with
monotonously decreasing voltages from its data source to a data sink. It is
now also necessary that for every edge entering a reverse node on that path,
there is a path with (recursively) the same property entering the specified
reverse node through the specified entering edge, as well as it is necessary
that for every edge leaving a Reo node on that path, there is a directed path
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with (recursively) the same property leaving the specified Reo node through
the specified leaving edge.

4.2.2 Current Based Approach

As with the voltage based approach, in the current based approach reverse
nodes are influenced by low instead of high voltages. This is expressed in the
selection of its entering edge with the lowest voltage, and a leaving edge with
a lower voltage than that if possible. Equations 4.28 to 4.30 are the equations
that formalize sel for reo nodes, and substitute 4.16 to 4.18. Equations 4.31
to 4.33 extend sel for oer nodes.

seltail ∈ (EG ∪ {⊥})NG selhead ∈ (EG ∪ {⊥})NG (4.26)

NG,reo = {n ∈ NG| nodetype(n) = reo}

NG,oer = {n ∈ NG| nodetype(n) = oer} (4.27)

∀n ∈ NG,reo, n
′ ∈ NG, e ∈ EG : IG(e) = (n, n′) ⇒

∃n′′ ∈ NG : IG(seltail(n)) = (n, n′′) ∧ V (seltail(n)) ≥ V (e) (4.28)

∀n ∈ NG,reo : opthead(n) =

{e ∈ EG|∃n′ ∈ NG : V (e) > V (seltail(n)) ∧ IG(e) = (n′, n)} (4.29)

∀n ∈ NG,reo :

{

selhead(n) ∈ opthead(n) if opthead(n) 6= ∅

selhead(n) = ⊥ otherwise
(4.30)

∀n ∈ NG,oer, n
′ ∈ NG, e ∈ EG : nodetype(n) = oer∧IG(e) = (n′, n) ⇒

∃n′′ ∈ NG : IG(selhead(n)) = (n′′, n) ∧ V (selhead(n)) ≤ V (e) (4.31)

∀n ∈ NG,oer : opttail(n) =

{e ∈ EG|∃n′ ∈ NG : V (selhead(n)) > V (e) ∧ IG(e) = (n, n′)} (4.32)
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∀n ∈ NG,oer :

{

seltail(n) ∈ opttail(n) if opttail(n) 6= ∅

seltail(n) = ⊥ otherwise
(4.33)

With this definition of seltail and selhead, no further changes have to
be made to the derivation of matrix C. The equation describing the voltage
change of the edges, on the other hand (4.24), needs to be replaced by (4.34).

dV

dt
= K · (1reo · (Atail − Chead) + 1oer · (Ctail − Ahead)) · I (4.34)

4.3 A Practical Application

This section presents a linear time algorithm for finding a Reo state transition
using the voltage based approach and given a voltage initialization. First, an
outline of the algorithm is presented. Then the actual algorithm is discussed,
illustrated by code snippets written in Python. Finally, complexity and the
use of the algorithm is discussed.

The algorithm abstracts away from actual voltages, and considers the
ordering of adjacent nodes based on their voltages in the stable state of the
circuit. It is implemented as a depth-first walk through a Physical Reo circuit
in the direction of lower or equal voltages, starting in the highest voltage
node. This strategy guarantees that all unvisited nodes have voltages that
are lower than or equal to the voltages of visited nodes. During the walk,
the status of a node is conditionally copied to the subsequent node.

The possible node statuses are presented in listing 4.1. The node status
offer indicates that there is a (directed) path from a data source to the
node it applies to, with only non-increasing voltages along its edges; block
and noffer both indicate that there is an edge with non-decreasing voltage
along it in every path from a data source to the node; accept implies the
status offer, and moreover indicates that there is a path from it to a data
sink with only decreasing voltages. The status revoke is used for cleaning
up, and will be discussed later.

o f f e r = Signa l ( )
block = Signa l ( )
n o f f e r = Signa l ( )
accept = Signa l ( )
revoke = Signa l ( )

Listing 4.1: Possible node statuses

31



A Physical Reo circuit is described as a list of nodes and a list of edges,
where the edges contain references to their tail and head nodes. As an
example, the exclusive router circuit is given in listings 4.2 and 4.3. The
nodes have booleans is_reverse which makes a node normal or reverse,
and is_data_sink and is_data_source. A node is a data sink if and only
if is_data_sink is true. The meaning of is_data_source is a bit more
subtle; if a node is a data sink, and is_data_source is true, then the node
is an internal data sink of a lossy synchronous channel, and thus has a higher
voltage than other data sinks. If a node is not a data sink, it is a data source
if and only if is_data_source is true.

nodes = [
Node ( i s d a t a s ou r c e=True ) ,
Node ( ) ,

# top l o s s y

Node ( i s r e v e r s e=True ) ,
Node ( i s d a t a s ou r c e=True , i s d a t a s i n k=True ) ,
Node ( ) ,

# synchronous drain

Node ( i s r e v e r s e=True ) ,
Node ( i s d a t a s i n k=True ) ,

# bottom l o s s y

Node ( i s r e v e r s e=True ) ,
Node ( i s d a t a s ou r c e=True , i s d a t a s i n k=True ) ,
Node ( ) ,

Node ( i s d a t a s i n k=True ) ,

Node ( ) ,

Node ( i s d a t a s i n k=True ) ,
]

Listing 4.2: Exclusive router nodes

edges = [
Edge ( nodes [ 0 ] , nodes [ 1 ] ) ,

# top l o s s y

Edge ( nodes [ 1 ] , nodes [ 2 ] ) ,
Edge ( nodes [ 2 ] , nodes [ 3 ] ) ,
Edge ( nodes [ 2 ] , nodes [ 4 ] ) ,

# synchronous drain

Edge ( nodes [ 1 ] , nodes [ 5 ] ) ,
Edge ( nodes [ 5 ] , nodes [ 6 ] ) ,

# bottom l o s s y

Edge ( nodes [ 1 ] , nodes [ 7 ] ) ,
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Edge ( nodes [ 7 ] , nodes [ 8 ] ) ,
Edge ( nodes [ 7 ] , nodes [ 9 ] ) ,

Edge ( nodes [ 4 ] , nodes [ 1 0 ] ) ,
Edge ( nodes [ 4 ] , nodes [ 1 1 ] ) ,
Edge ( nodes [ 9 ] , nodes [ 1 1 ] ) ,
Edge ( nodes [ 9 ] , nodes [ 1 2 ] ) ,
Edge ( nodes [ 1 1 ] , nodes [ 5 ] ) ,

]

Listing 4.3: Exclusive router edges

Except for these properties, which fully determine the Physical Reo circuit
state, nodes are initialized with a list of all entering edges and a list of
all leaving edges. Moreover, lists of data sources, data losers (data sinks
internal to lossy synchronous channels), and other data sinks are constructed
once. These initializations are shown in listing 4.4. Like the other mentioned
properties, these are unchanged during the algorithm.

da ta s ou r c e s = [ ]
d a t a l o s e r s = [ ]
da ta s i nk s = [ ]

for node in nodes :
node . l e av i ng edge s = [ ]
node . en t e r i ng edge s = [ ]
i f node . i s d a t a s i n k and not node . i s d a t a s ou r c e :

da ta s i nk s . append ( node )
e l i f node . i s d a t a s i n k and node . i s d a t a s ou r c e :

d a t a l o s e r s . append ( node )
e l i f not node . i s d a t a s i n k and node . i s d a t a s ou r c e :

da ta s ou r c e s . append ( node )

for edge in edges :
edge . t a i l . l e av i ng edge s . append ( edge )
edge . head . en t e r i ng edge s . append ( edge )

Listing 4.4: Circuit initialization

Before starting the walk through the circuit, the node properties that
change during the algorithm have to be initialized, as shown in listing 4.5.
Their meaning will become clear when their use is explained.

for node in nodes :
node . s t a tu s = None
node . cho i ce = None
node . counter = 0

for edge in edges :
edge . t a i l . counter += 1
i f edge . head . i s r e v e r s e :

edge . head . counter += 1
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Listing 4.5: Algorithm initialization

The walk starts at any of the data sources. Obviously, data is offered
there, so the status offer will be propagated through the circuit from there
on. If the propagation from this data source is completed, offer will be
propagated from the other data sources one by one (listing 4.6).

def propagate ( s i gna l , edge or node ) :
edge , node = (

(None , edge or node ) i f i s i n s t a n c e ( edge or node , Node )
else ( edge or node , edge or node . head )
i f s i g n a l == o f f e r or s i g n a l == no f f e r
else ( edge or node , edge or node . t a i l )
)

. . .

for node in da ta s ou r c e s :
propagate ( o f f e r , node )

Listing 4.6: Propagation starting in data sources

First, propagation of offer, block and noffer through normal Reo nodes
is explained (listing 4.7). The only difference between block and noffer is
that noffer is propagated forward — in the direction of the edge — and
block is propagated backward.

If a Reo node is visited for the first time, its status is set to the signaled
status. It means that (nonnegative) current is entering the node from the
edge through which it is visited, and implies that (nonnegative) current will
flow out through all other edges. Current from an edge head to an edge tail
(or no current at all) always implies that no data flows through that edge, so
block will be signaled from the visited node to all edges entering it. Current
from an edge tail to an edge head means that the status of the edge tail can
be propagated to the edge head; that is: if offer was signaled to a node,
offer is signaled through its leaving edges, but if either block or noffer

was signaled, noffer is signaled through its leaving edges.

def propagate ( s i gna l , edge or node ) :
. . .
i f not node . i s r e v e r s e :

i f s i g n a l in ( o f f e r , no f f e r , b lock ) and node . s t a tu s == None :
node . s t a tu s = s i g n a l
node . cho i ce = edge

for next in node . en t e r i ng edge s :
i f next != edge :

propagate ( block , next )
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for next in node . l e av i ng edge s :
i f next != edge :

n e x t s i g n a l = o f f e r i f s i g n a l == o f f e r else no f f e r
propagate ( nex t s i gna l , next )

i f s i g n a l == o f f e r and node . i s d a t a s i n k :
node . s t a tu s = accept
propagate ( accept , edge )

Listing 4.7: Propagation of offer, block and noffer through Reo nodes

If data is offered to a data sink, the data is accepted, and the accept

status comes into play. Acceptance is propagated backwards through nodes
with status offer (listing 4.8). Initially, a Reo node’s counter is set to the
number of leaving edges. Every edge through which accept is signaled sub-
tracts one from its tail’s counter. If the counter reaches zero, which indicates
that the offered data was accepted on all leaving edges, the offered data is also
accepted on the current node. Next, its status is adapted accordingly, and
propagated back to its choice — the edge through which the offer entered.

def propagate ( s i gna l , edge or node ) :
. . .
i f not node . i s r e v e r s e :

. . .
i f s i g n a l == accept :

node . counter −= 1
i f node . counter == 0 :

node . s t a tu s = accept

i f node . i s d a t a s i n k or not node . i s d a t a s ou r c e :
propagate ( accept , node . cho i ce )

Listing 4.8: Propagation of accept through Reo nodes

Where normal Reo nodes have at most one edge through which current
enters, reverse nodes have a most one node through which current leaves.
This means that a reverse node has to be visited from all but one edges
before it can propagate a status through the one edge through which it has
not been visited yet. The complete code for propagation of offer, block
and noffer through reverse nodes is given by listing 4.9.

As soon as a noffer is signaled to a reverse node, it is clear that the node
will never be able to offer data anymore, so its status is set. Note, however,
that the propagation of blocks and noffers is delayed until only one edge
is left to propagate through, so that the signal does not prematurely block
the propagation of data coming from lower voltage nodes.
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Just as normal Reo nodes use their counter to count down the unvisited
leaving edges, reverse nodes use their counter to count down all unvisited
edges. A status that is signaled to a reverse node stops propagating there,
unless only one edge is left through which it can be propagated further. In
that case the node’s choice is set to this last edge. The signal to propagate is
offer if all entering edges have signaled offer or otherwise block or noffer.

def propagate ( s i gna l , edge or node ) :
. . .
i f edge :

i f node == edge . head : edge . v i s i t e d t a i l = True
i f node == edge . t a i l : edge . v i s i t ed head = True

. . .
i f node . i s r e v e r s e :

i f s i g n a l in ( o f f e r , no f f e r , b lock ) :
i f s i g n a l == n o f f e r :

node . s t a tu s = no f f e r

node . counter −= 1
i f node . counter == 1 :

node . counter = 0

node . cho i ce = reduce (
lambda c , e : c or ( e i f not e . v i s i t ed head else None ) ,
node . enter ing edges , None ) or reduce (
lambda c , e : c or ( e i f not e . v i s i t e d t a i l else None ) ,
node . l eav ing edges , None )

n e x t s i g n a l = ( block i f node . cho i ce . head == node
else no f f e r i f node . s t a tu s == n o f f e r
else o f f e r )

node . s t a tu s = o f f e r i f n ex t s i g n a l == o f f e r else block

propagate ( nex t s i gna l , node . cho i ce )

i f node . s t a tu s == o f f e r and node . i s d a t a s i n k :
node . s t a tu s = accept
for edge in node . en t e r i ng edge s :

propagate ( accept , edge )

Listing 4.9: Propagation of offer, block and noffer through reverse nodes

If all entering edges of a reverse data sink have signaled offer, its status
is set to accept and propagated back through all entering edges. No book-
keeping has to be done by reverse nodes receiving the accept signal, and the
signal is immediately propagated back to all of its entering edges, which all
have nodes with status offer on their other side (listing 4.10).

def propagate ( s i gna l , edge or node ) :
. . .
i f node . i s r e v e r s e :

. . .
i f s i g n a l == accept :
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node . s t a tu s = accept

for next in node . en t e r i ng edge s :
propagate ( accept , next )

Listing 4.10: Propagation of accept through reverse nodes

After the propagation of offer starting from the data sources has fin-
ished, the data sinks — being voltage sources too — start propagating block

signals if their statuses are not set yet (listing 4.11). Because data losers are
required to have higher voltages than other data sinks, they start propagating
first.

for node in da t a l o s e r s :
propagate ( block , node )

for node in da ta s i nk s :
propagate ( block , node )

Listing 4.11: Propagation starting in data sinks

After this walk through the circuit, if acceptance is propagated back to a
data source, data is in principle able to flow. This is in principle because it
is possible that another offered data item has been accepted by a data sink,
and that this acceptance has propagated back to this data source, but not to
all offered data items. In that case, the “unjustifiedly” accepted data item
has to be revoked. This is done by propagation of the revoke status from
every data source that might be a cause of such an unjustified acceptance
(listing 4.12). Revocation sets the status of all nodes that depend on the
acceptance of the current node to revoke (listing 4.13).

for node in da ta s ou r c e s :
i f node . s t a tu s == o f f e r :

propagate ( revoke , node )

Listing 4.12: Revocation starting in data sources

def propagate ( s i gna l , edge or node ) :
. . .
i f node . i s r e v e r s e :

. . .
i f s i g n a l == revoke and node . s t a tu s in ( o f f e r , accept ) :

node . s t a tu s = revoke

for next in node . en t e r i ng edge s :
propagate ( revoke , next . t a i l )

i f node . cho i ce :
propagate ( revoke , node . cho i ce . head )

. . .
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i f not node . i s r e v e r s e :
. . .
i f s i g n a l == revoke and node . s t a tu s in ( o f f e r , accept ) :

node . s t a tu s = revoke

for next in node . l e av i ng edge s :
propagate ( revoke , next . head )

i f node . cho i ce :
propagate ( revoke , node . cho i ce . t a i l )

Listing 4.13: Propagation of revoke through nodes

After revocation is propagated where needed, the nodes with status accept
— and only those — are the ones where data flows in the next Reo transition.

As mentioned at the outset of this section, the complexity of the presented
algorithm is (at worst) linear with the number of edges in the circuit. That
is, given a voltage initialization, computing the Reo transition according to
the voltage based approach. It can be, though, that one voltage initialization
does not lead to a Reo transition, whereas another one does. This means that
all voltage initializations — in this context meaning all combinations of all
permutations of data sources, data losers and non-losing data sinks — might
have to be tried before a transition is found, which gives a complexity of
O(#data sources! · #data losers! · (#data sinks − #data losers)!).

As mentioned in the previous sections, it is also possible that the voltage
based approach does not find a transition for any voltage initialization. In
that case, any other method can be used as a fall-back. As a matter of fact, it
is more efficient not to compute the transitions for all voltage initializations
before using the fall-back. As an illustration, a rough (worst case) estimation
of the complexity of three color semantics is O(4(#edges)), whereas the com-
plexity of the linear time algorithm executed for all voltage initializations is
roughly approximated by O(#edges(#edges)).

The explanation for this bad performance of the voltage based approach
applied to all voltage initializations is that the differences between result-
ing walks through the circuit on average differ very little per voltage ini-
tialization. Finding the optimal set of permutations to which to apply the
voltage based approach before using the fall-back method requires additional
research, but suggestions could be 1) a singleton set, 2) a set of two permu-
tations, the second one consisting of the reverse order of both data sources,
losers and sinks with respect to the first one, and 3) a set of eight permuta-
tions, all having either the same or the reverse order of data sources, losers
and sinks with respect to each other.
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4.4 Evaluation

Physical Reo intuitively is the analog counterpart of discrete Reo. In Reo,
write attempts are propagated through a circuit, and acceptance or blocking
is propagated back. In Physical Reo, a measure of how much a data item
wants to flow continuously propagates back and forth through the system.
The forward propagation of this measure is the analog counterpart of write
attempts; the backward propagation that of acceptance or blocking.

One of the uses of semantic models for Reo is to make it easier to reason
about circuits. As far as simplifying reasoning about circuits is concerned,
Physical Reo makes a few contributions.

Firstly, the substitution of channels by (reverse) nodes and simple di-
rected edges makes it possible to describe circuits as directed graphs, and
represent them as incidence matrices. Not only circuits, but also transitions
— determined by which connected sink end is selected by every Reo node —
can be represented as a matrix. This substitution of channels is not limited
to Physical Reo only; it might find applications in other contexts too.

Secondly, Physical Reo makes the context of Reo channels explicit. In
the voltage based approach, context information is passed between nodes in
the form of current, and current only. It is used to determine the correct
behavior of all channels, including the lossy synchronous channel. In the
current based approach, voltages are the context information. No method
has been presented to use this information to describe the lossy synchronous
channel correctly, though.

Physical Reo’s most notable practical contribution to Reo is the algorithm
presented in section 4.3. It is a method for finding a valid Reo transition
with a reasonable chance, and it does so in linear time. Inherent to using
the voltage based approach, the found transition is valid, including causality
loop behavior and context sensitivity.

Concerning practical applications, the concept of Physical Reo has two
interesting characteristics. Firstly, it is inherently distributed. This is a
consequence of the requirement that it is local and continuous, as in physical
systems. Every node and every edge can base its state change only on the
current state of itself and its direct neighbors (the local part). Moreover, for
small changes in time, these state changes are small, and the order in which
nodes and edges change their states is irrelevant (the continuous part).

Secondly, Physical Reo is (piecewise) continuous and piecewise differen-
tiable. The process of stabilization can be seen as the optimization of a
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circuit’s stability. This stability, by some measure, is a function of the states
of the nodes and edges of a circuit. For approaches where nodes and edges
have no (discrete) memory, this stability function is continuous and piece-
wise differentiable. If nodes or edges do have discrete memory, this function
becomes piecewise continuous. Such properties make Physical Reo more suit-
able for analytical methods to find transitions. It has to be said, though, that
the discontinuities (of the derivative) correspond to the choices that nodes
can make.

In the presented voltage based approach, both nodes and edges have no
discrete internal state. It is therefore continuous and piecewise differentiable.
In the presented current based approach, nodes do have an internal discrete
state, which is in fact the reason that some circuits do not stabilize.

Comparison With Other Semantic Models

Coloring semantics, whether using two or three colors, is good at summing
up Reo transitions, even though these might be invalid. In the voltage based
approach to Physical Reo, the transition matrices B (4.12) sum up all choices
of all nodes (including no-flows). Each of these gives a linear equation that
is solvable, and for which it can be checked if the nodes’ choices really form
a stable state.

Two color semantics is best compared to the current based approach to
Physical Reo. Both are not context sensitive and not data sensitive. For
the cases where the current based approach does stabilize, it does guarantee
that no causality loops occur. Three color semantics is best compared to
the voltage based approach to Physical Reo. Both handle context sensitivity
well, and are data insensitive. Here too, an advantage of Physical Reo is that
it permits no causality loop. A disadvantage is that not all transitions are
found by it.

Constraint automata are, like two color semantics, best compared to the
current based approach. They are both not case sensitive, but constraint
automata have the added value of data sensitivity. Again, if a transition is
found by Physical Reo, it has the advantage of not having causality loops.

Since constraint satisfaction is actually a meta-model, and Physical Reo
is a semantic model, it is better to discuss whether Physical Reo is a useful
model to use with constraint satisfaction than to compare the two. This
is probably not the case, since Physical Reo is a method to determine a
valid Reo transition, and not a set of constraints that determine whether a
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transition is valid.
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Table 4.1: Definition of und for some simple channels
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Table 4.2: Definition of und for some channels with oer nodes
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Chapter 5

Conclusion

In this thesis, Physical Reo, a new semantic model for the Reo coordination
language, has been presented. Physical Reo is a computational semantic
model, in contrast to constraint semantic models like connector coloring and
constraint automata. It has been presented in the form of two approaches:
a voltage based approach and a current based approach.

To support the introduction of Physical Reo, an underlying, more orthog-
onal description of connectors has been introduced. With the introduction
of nodes that have a behavior that is dual to that of the known Reo nodes,
most connectors can be described with synchronous channels as their only
used channel type.

The two developed approaches to Physical Reo must be noted not to
implement it perfectly. The voltage based approach, due to its implicit as-
signment of a relative priority to every data item, may not allow data flow for
all voltage initializations, even if the circuit it describes does have a solution
with flow. This problem seems to be inherent to the voltage based approach.

The current based approach as presented is not guaranteed to stabilize
for all circuit states. This makes the approach unsuitable for implementa-
tion. Moreover, it is not clear if and how data sources can determine locally
whether a Physical Reo circuit has stabilized, which is needed before data
can flow. The current based approach, on the other hand, does have ad-
vantages over the voltage based approach. These are, firstly, that decisions
about which data flows where are made by the nodes, as in Reo, instead of
by the data items flowing through them, and secondly, that these decisions
are not deterministic. The latter means that one circuit state can lead to
different transitions, depending on the nondeterministic choices that nodes
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make. It is for these reasons that the current based approach seems to be
more interesting for further research.

Notwithstanding the limitations of the voltage based approach, the pre-
sented algorithm based on it has an added value because of its efficiency.
Future work needs to be done, though, to determine how big the chance is
that a voltage initialization leads to a non-blocking Reo transition, and which
combination of voltage initializations gives the best performance for finding
a transition.

Apart from being an implementation of Physical Reo, the presented al-
gorithm may also instigate more research on similar walk based implemen-
tations on Reo. The abstractions it makes with respect to the voltage based
approach may open doors for improvements that are not necessarily com-
patible with Physical Reo, but still work well as adaptations of the Physical
Reo based walk through through connectors.
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