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Chapter 1

Introduction

This thesis is about the automated classification of medical reports by a com-
puter program. Our ultimate goal is to design a program which can support
medical practitioners in the annotation of their medical reports with a dis-
ease code. Currently this annotation of medical reports is done by human
experts, which is a time consuming process. Because of natural variation in
human judgment it is not uncommon for multiple annotators to assign dif-
ferent codes to the same text. Hospital and insurance company guidelines
therefore demand that the annotation process be done with utmost preci-
sion, and that reports are not coded unless the code is certain.
Research on automated classification of medical reports has received increas-
ing interest over the last decade. The reduction of the administrative burden
upon medical specialists, and thereby the reduction of overhead cost, be-
ing an important reason. It is estimated that in 2007 in the US alone $25
billion was spent on the coding of clinical text. Besides this it also makes
for a challenging research topic because medical reports are known for their
unique sublanguage characteristics, namely verb less sentences, domain spe-
cific punctuation semantics and unusual metonomies. These characteristics
make automated classifying a very challenging task to perform.
In our research we had two different datasets available. One with medical
reports in English which contained all sorts of radiology reports, and one set
in Dutch with reports that all came from people who were suspected of acute
appendicitis. Both datasets contain several hundreds reports. To classify the
reports we make use of some well-known approaches and we have developed
several algorithms which incorporate some of our own ideas. Starting with a
simple bag-of-words representation we have several different ways to define
and calculate the amount of similarity between the reports as well as multi-
ple ways to use this information to come to the conclusion which class the
report belongs to. The results are encouraging, but further research will be
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necessary to develop them further and see if they work in the general case.
The thesis begins with some background information about Artificial Intelli-
gence, and document classification in particular, as well as the classification
used, in Chapter 2. In Chapter 3 we will discuss some related work, in the do-
main of medical reports, as well as some of the research done in the document
classification domain. Chapter 4 will clarify the reason we chose to do this
research and the goals we are aiming for. Chapter 5 will describe the prob-
lems we faced with the medical reports themselves and with the classification.
Chapter 6 provides the solutions we have found to tackle these problems and
Chapter 7 goes into some of the implementation details. Chapter 8 shows
the results and in Chapter 9 the conclusions and some recommendations for
future research can be found.
This thesis is part of the Master in Computer Science at Leiden University,
The Netherlands. I would like to thank my supervisor Walter A. Kosters
(from LIACS, the Leiden Institute of Advanced Computer Science) for his
support as well as Ying L. O (from LUMC, the Leiden University Medical
Centre) for providing us with the medical reports and also being available
for our questions.
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Chapter 2

Background

2.1 Artificial Intelligence

Artificial Intelligence (AI) is defined as: “the study and design of intelligent
agents,” [1]. AI attempts not only to understand how we think but also aims
to build intelligent entities. The idea of machines that could think for them-
selves can already be found in the ancient Greek myths. Formal reasoning
by philosophers and mathematicians led to the study of logic. Alan Turing
suggested that his Turing machine could simulate any conceivable act of
mathematical deduction, by simply shuffling only the symbols “0” and “1”.
Together with the evolution of neurology, information theory and cybernet-
ics, this led to the idea that it would be possible to build an electronic brain.
AI has always been fascinating to people, and it is a popular subject for Hol-
lywood movies. Today it plays an important role in the technology industry,
and it encompasses a huge variety of subfields.
Although the name Artificial Intelligence was first introduced in 1956 it has
been around since 1943. This first period (1943–1956) is characterized by
attempts to model artificial neurons. McCulloch, Pitts, Hebb and Minsky
were some of the most influential researchers during this period. It was Alan
Turing however who first stated a complete vision of AI in his 1950 arti-
cle “Computing Machinery and Intelligence”[2], which introduced his Turing
test, machine learning, genetic algorithms, and reinforcement learning. In
1956 it was John McCarthy who introduced the name Artificial Intelligence.
Newell and Simon developed their “Logic Theorist”, which was able to prove
many mathematical theorems. Although the computers were primitive and
possibilities of programming tools at that time were also very limited, the
period from 1956 till 1969 was one in which AI booked quite some success.
Being a very new area of research it was not automatically accepted by the
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intellectual establishment, and it was during this period that many things
not thought possible by the establishment were demonstrated to be possible.
Also the first attempts to be competitive in the game of checkers saw the day-
light. McCarthy developed the Lisp programming language, which became
the dominant AI programming language. SHRDLU was one of the programs
that lead to great enthusiasm about the possibilities of AI. All these systems
showed very promising performance on simple examples. However when faced
with more realistic problems they failed miserably. Cuts in funding for AI
research from national governments in the 1970s led to the first “AI-winter”.
In the 1980s, with the introduction of expert systems, AI grew out from a
few million dollar industry in 1980 to one of many billions of dollars in 1988.
A second AI-winter began when the high expectations failed to be fulfilled,
as well that the introduction of the personal computer caused the collapse of
the Lisp machine market. The rapid increase of PC power however resulted
in renewed interest in the mid 1990s. AI also has focused more on solving
subproblems, and has increased its links with other research disciplines.
Our interest mainly focuses on the progress made in the fields of Natural

Language Processing (NLP), Information Retrieval (IR) and Data Mining

[3, 4, 5]. NLP studies the problems of automated generation and understand-
ing of natural human languages. IR is experiencing a regrowth in interest
since the use of Internet searching has become widely popular. Manning et
al. [6] give an overview of both traditional IR and web-based search. Data
mining focuses on discovering trends and patterns within large sets of nu-
merical data. Each year several conferences are held around the world on the
topic of Information Retrieval, and speech and natural language processing.
At present AI is split up into different subdomains. These subdomains are
not set in stone and are therefore subject to discussion. Some examples of AI
subdomains are: search, logical AI, pattern recognition, common sense knowl-
edge and reasoning, planning, genetic programming, social intelligence and
motion and manipulation. Some examples of applications of AI are game
playing, of which the game of chess has received most attention when, in
May 1997, IBM’s Deep Blue supercomputer beat the reigning World Chess
Champion, Garry Kasparov, in six matches. Other areas where AI appli-
cations play an important role are: robotics, speech recognition, computer
vision and heuristic classification.

2.2 Document Classification

Text mining is “The process of finding useful or interesting patterns, mod-
els, directions, trends, or rules from unstructured text” [7]. In other words,
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extracting previously unknown information from textual documents. Text
mining can be seen as a subfield of the slightly older and broader field of
data mining [5]. Data mining usually deals with structured data from which
trends and patterns have to be discovered. Text however is usually fairly
unstructured, so the challenge is to identify certain structure within text to
allow us to use data mining techniques to be used. Text mining is more than
a simple search within a group of textual documents, e.g., the one we typi-
cally see in web search, because it actually gives us more information about
text documents than we previously had. Document classification (sometimes
called text categorization) is one of the subproblems within the text min-
ing domain, which focuses on organizing textual documents into predefined
categories or classes. Other typical text mining tasks include document sum-
marization, ranking, text filtering and text visualization.
One of the first references which expresses the need to organize data was as
early as Vannevar Bush in 1945, when he proposed the use of his Memex
machine to deal with the “growing mountain of research”. In 1961 Lauren
B. Doyle stated: “natural characterization and organization of information
can come from analysis of frequencies and distributions of words in libraries”
(where libraries is somewhat loosely used to identify what we now call cor-
pora, i.e., collections of documents). Text mining as a field in computer sci-
ence therefore might be relatively new, but the dream to be able to extract
information from large sets of data has been around for quite some time.
The first documented attempts in modern text mining originate from the
mid 1980’s when people started the very labor intensive process of manual
text mining. Since that time more and more textual data has become avail-
able, mainly due to the increasing popularity of the Internet and automation
using computers in general, which still causes an immense growth of avail-
able unorganized textual documents. The introduction of blogs, microblogs
such as Twitter and social networking services as Facebook and LinkedIn, as
well as the continued increase of use of email, greatly increase the amount of
textual data every day. Common estimates show that currently around 80%
of the world’s data is held in unstructured documents [8]. This includes all
business relevant information, mostly stored in reports, email, news- and dis-
cussion groups. It doesn’t look like the world of information will stop growing
or become less complex any time soon!
In the 1980’s and 1990’s texts were mainly analyzed using NLP techniques
[9]. After this initial phase there was general consensus that it involved more
than NLP, and Document Classification became a true interdisciplinary part
of computer science, involving data mining and machine learning techniques.
Document classification consists of several different tasks: simplifying and
structuring the input text, deriving patterns within the structured data and
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finally evaluation and interpretation of the output. There are basically two
ways to do this: supervised document classification and unsupervised doc-
ument classification. Supervised document classification uses some form of
external feedback (such as a human expert) to classify a training set. From
this some model to map input (text) to output (a class) is generated. Un-
supervised document classification uses no external information about the
classification of the documents, this is often referred to as document cluster-
ing, as there are no predetermined categories but one merely tries to cluster
documents together that are similar.
The first step in document clustering is usually preprocessing, which is meant
to reduce the complexity of the documents. It focuses on noise removal as
well as finding a suitable representation for textual documents. Then the
documents have to be transformed from their full text version to a docu-
ment vector. One of the major challenges in document classification is the
extreme high dimensionality of textual data. The number of document fea-
tures not seldom exceeds the number of training documents, mainly caused
by the complex semantic structure of text, such as word order and punctu-
ation marks, as well as the occurrence of synonymy (several words with the
same meaning) and polysemy (one word having multiple meanings). There
are several techniques to reduce the dimensionality of the documents some-
what: the removal of “noise”: stop words (words such as “the”, “a”, “and”,
etc. occur so frequent in any text that they have no meaning when looking
at text similarity) as well as the stemming of words (conversion of words
into their basic form: connection, connecting and connects are all mapped to
connect) are commonly used.
Another step in the simplification process is feature selection. The “term
frequency-inverse document frequency” (TF-IDF) approach is one of the
most popular methods used to give a weight to each word according to its
uniqueness, in other words the relative frequency of the occurrence of a word
in a report in respect to the entire corpus. Other examples of feature se-
lection methods are: information gain, Chi-square, expected cross entropy,
odds ratio, mutual information and Gini index [10]. Some of these will be
explained in Section 3.2, when looking over some related work. One of the
oldest techniques is to simply treat a text as a bag-of-words, simply counting
the occurrence of separate words. More advanced techniques look at simple
linguistics as well as varied word forms, such as abbreviations, plurals and
conjugations as well as multi-word terms, called n-grams. Complete use of
the semantic relations within text seems impossible, due to the high com-
plexity nature of text. Finding the right representation remains one of the
biggest challenges in text mining, and often the simplest methods still prove
to give good results.
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After the text documents have been reduced to a word vector, the second
stage of document clustering takes place. This is the machine learning phase.
As described above this can be done using supervised learning or through
unsupervised learning. Both involve the use of machine learning algorithms,
which is an area that receives a lot of interest in the research community.
We focus on the use of supervised learning algorithms, where pre-defined
category labels exist. Some different approaches include: (artificial) neural
networks, genetic programming, decision tree learning, support vector ma-
chines, k-Nearest Neighbor and fuzzy correlation are examples of some of the
more commonly used techniques. Some of these techniques will be described
in Section 3.2, when we are looking at related work. Our approach uses the
k-Nearest Neighbor algorithm. This compares the degree of similarity from
a text to k (where k is a pre-determined natural number) reports from the
training data. The idea is that the properties of a report x are likely to be
similar to the properties of a report in the neighborhood of x. This sounds
very straightforward and trivial until we think a bit more about the term
“neighborhood”. If we look at a neighborhood that is too small we might
not find any other data points, if our neighborhood is too big it can contain
a very large subset of data points. By using a fixed number k we solve this
problem: where data is dense the neighborhood will be small and where data
is sparse the neighborhood will be large, see Figure 2.1.

Figure 2.1: Example of the k-Nearest Neighbor algorithm, where k = 4.

To be able to talk about neighborhoods we also need to define a way to
measure similarity, in other words: What is meant by distance? Defining dis-
tance or similarity is the challenge of any implementation of the k-Nearest
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Neighbor (KNN) algorithm. The training phase of the KNN algorithm con-
sist only of storing the feature vectors and their corresponding categories
of the training set. In the classification phase the distances from the new
documents feature vector to all stored vectors are computed and k closest
samples are selected. The category of the new document is derived from the
categories of those selected documents, usually by simply selecting the most
common category among the k nearest neighbors. This method is quite easy
to implement, requires little tuning and performs quite well [1]. Finding the
optimal value of k can be challenging, and classification time can get rather
long, especially when we are dealing with large datasets. More preprocessing
would then be necessary to reduce the calculation time by either preventing
the calculation of distances to all points in the dataset or by further reducing
the dimensionality of the data [11].
Applications of document classification (DC) are:

• Email filtering
Email can be filtered to prevent the inbox from being overflooded by
spam, but it can also be used to categorize incoming mail into folders,
based on the words in the subject field or the group of recipients.

• News monitoring
Companies that rely heavily on getting the latest news and informa-
tion, e.g., those in international economics or stock exchange, currently
have employees which scan through newspapers and other sources. This
process can be automated by DC.

• Mail routing
Large enterprises use something called work-flow management to allow
incoming documents, both digital as well as in paper form, to circulate
between relevant employees. Getting documents in the right work flow
is a major task, which can be automated by using DC.

• Automated classification of scientific articles
With the ever growing amount of scientific reports and articles, the
interest in finding relevant documents also grows. Keywords and infor-
mation from an abstract or introduction can be used to categorize or
cluster relevant articles together for better retrieval than through an
ordinary web search.
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2.3 International Classification of Diseases

The International Classification of Diseases (ICD) is the international stan-
dard for all general epidemiological, many health management purposes and
clinical use. Within this international standard there is some room for na-
tional health organizations to create their own entries. The World Health

Organization (WHO) [12] has been responsible for the ICD since its creation
in 1948 when the sixth revision was published. The tenth revision, ICD-10,
has been in use since 1994. The classification itself dates back to the 1850’s
when it was known as the International List of Causes of Death, which be-
came a standard in 1893. It is used to classify diseases and other health
problems recorded on many types of health and vital records including death
certificates and health records. It also allows the WHO to generate mortality
and morbidity statistics for its member states.
The ICD-10 classification consists of 22 chapters. Each of these chapters
contains a subset of diseases. An overview of the different chapters in the
classification can be found in Appendix A. As can be seen from this table
some diseases are classified by the type of disease, while other are classified
by the affected organ(s) or functional system. Each ICD-10 code consists of
a letter, followed by two numbers and optional one or two decimal numbers.
The hierarchical structure of ICD-10 can be seen in the following example
concerning Acute appendicitis. We can distinguish four levels of specificity.
Acute appendicitis on the highest level is a disease of the digestive system,
thus being in chapter XI (K00-K93). On the second level we have all diseases
of the appendix in the K35-K38 range. On the third level K35 deals with
acute appendicitis, with the subclassification on the fourth level found in
Table 2.1.
The size of each level within this classification as well as the order in the
ICD-10 classification are arbitrary, thus resulting in a so-called nominal or

categorical level of measurement as defined by Stevens in a 1946 Science ar-
ticle [13]. This means that there is no intrinsic ordering of categories, i.e.,
the order is not based on being better or worse, or any other quantitative
measurement.
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K35 Acute appendicitis
K35.0 Acute appendicitis with generalized peritonitis

Appendicitis (acute) with:
perforation
peritonitis (generalized)(localized) following rupture or perforation
rupture

K35.1 Acute appendicitis with peritoneal abscess
Abscess of appendix

K35.9 Acute appendicitis, unspecified
Acute appendicitis with peritonitis, localized or NOS
Acute appendicitis without:
generalized peritonitis
perforation
peritoneal abscess
rupture

Table 2.1: Example of the ICD-10 classification of acute appendicitis.
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Chapter 3

Related work

A lot of research is done on document classification. We are going to discuss
some relevant research done, where we focus on classification of medical re-
ports on one hand, and on the other hand we look at some of the different
techniques which are popular in the document classification domain.

3.1 Medical reports

Due to the nature of medical reports it is believed by some [14] that proper
classification is highly dependent on the use of domain knowledge. The cost
involved in adding this domain knowledge to classification algorithms, how-
ever, sometimes exceeds the cost of manual classification. Therefore there
will always be a trade off between having a self-learning algorithm and the
input of knowledge from human experts.
One branch of research, referred to as Medical Informatics, focuses on auto-
matically extracting information from medical reports to allow the creation
of a more structured form to store the clinical data. This makes them suitable
for use by automated decision support systems. An example of this would
be to extract certain clinical conditions from the text and to store these in
separate fields [15]. To do this an extra preparation step is introduced before
the actual document classification process begins.
Another approach is to use domain experts in the feature selection process
to select specific attributes or features, or even to combine certain features
together. Although this induces extra cost to the feature selection process it
also leads to a reduced number of variables used and thereby the complexity.
Most of the research done is on datasets which are highly pruned. They con-
tain several hundreds of medical reports, but the reports belong to a very
limited number of classes. This allows for very good results and therefore isn’t
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really useful for a comparison with the situation we have. Recently there has
been a shared task on a larger dataset [16] and, although the authors also
selected a subset of only 45 ICD codes, it does show some promising results.

3.2 Document classification

When looking at recent research done in the general document classifica-
tion domain, it is obvious that all researchers focus on one of the different
tasks within the classification process. This has become necessary because
the domain has already developed to an extent where research on the entire
process simply becomes to comprising. To give an overview of the available
techniques we will therefore look at each of the different tasks necessary to
get from a textual document to a correct classification. First we will look at
ways to translate the textual data into a feature vector. Then we will look
at ways to compare these document vectors and examine different clustering
techniques. And finally we will discuss some alternatives to decide, from this
selection, what the category of our new document should be.

3.2.1 Document representation

The first step which allows us to compare our medical reports is to find
a suitable representation for our textual documents. We need to find some
structure which allows our algorithms to calculate how similar our medical
reports are. We want to translate our raw text medical reports into a so-called
feature vectors. The vector stores which features are existent within a report.
There are two types of feature selection methods used in machine learning:
wrappers and filters. Wrappers use the results of their own subset selection
to train a classifier. The subset that receives the best results is then chosen
as the final set. As a result wrappers have to train a classifier for each feature
subset and are therefore very time consuming, especially when the number of
features is high, which is generally the case in text classification. Wrappers are
thus considered to be unsuitable for text classification. Filters perform their
feature selection independent of the learning algorithm. A common approach
is the Term frequency/inverse document frequency (TF-IDF), where each
word is weighted on how unique it is. Some of the more recent work focuses on:
Chi-square, information gain, ant colony optimization, Gini index, Poisson
distribution, and expected cross entropy, are only a few examples [10, 17].
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3.2.2 Classifier construction

The second phase consists of machine learning. In text classification this is
usually done by means of supervised learning, i.e., pre-classified documents
are used to generate a function which maps unclassified documents to the
desired class. Rocchio’s algorithm, k-Nearest Neighbor, decision trees, Naive
Bayes, decision rule, regression methods, neural networks, support vector
machines, and fuzzy correlation, are some examples of the popular methods
used in current day research. Increasing in popularity are so-called hybrid
techniques, which combine two of the before mentioned techniques, one for
the vectorization and another for the classification. Support vector machines,
Naive Bayes and k-Nearest Neighbor appear to receive the most attention in
this context [10].

3.2.3 Classifier evaluation

Evaluation of document classifiers is typically done experimentally, rather
than analytically. The reason is that, if we wanted to evaluate it analytically,
we would need a formal definition of what correctness and completeness are in
this context. The idea of text classification, namely assigning a document to
the membership of a category, is nonformalizable due to its subjective char-
acter. Therefore evaluation of a classifier can only be done by experimental
means. Evaluation of the results is often done by calculating precision and
recall. Both of these are calculated on a per class basis. When borrowing
terms from logic, precision can be viewed as the degree of soundness, while
recall is the degree of completeness. Recall and precision always have to be
viewed together to give a good view of the performance of a classifier, and
are therefore often combined in the F -score, which is the harmonic mean of
the precision and recall.
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Chapter 4

Project motivation and goal

Automated document classification is an area of research that receives a lot
of interest nowadays, mainly due to the increasing amount of digital data.
More sophisticated methods are available then ever before and new ones are
being developed continuously. Automated classification of medical reports
raises some ethical questions. People generally don’t like the idea that com-
puters, or other devices that they can’t control or understand the working
of, have an influence in their medical diagnosis or treatment. For the time
being it therefore looks as if the role of the computer is limited to that of an
instrument for the medical personnel, a tool that can help them take certain
decisions. Once these kind of tools have proven their value maybe the scep-
ticism will make place for enthusiasm.
Our research has two main goals, both with their respective subgoals. The
first goal is to be able to classify the medical reports such that we can utilize
the program to predict the correct ICD-10 code of a new medical report. We,
as computer scientists, have no knowledge of the medical jargon. Of course
we could have developed this, but we instead decided that we wanted to write
a program which had no prior knowledge of the data it was going to receive,
thereby making it as versatile as possible. The only expert knowledge that
we used was the classification which was in the set of medical reports which
we had.
Our second goal is to make use of well-known, existing methods and tech-
niques but mainly to be creative and try to find new ways to create a proper
classification. Thinking out-of-the-box and experimenting with different ideas
which are not part of the mainstream thoughts is done explicitly. We have
been able to come up with several new ideas for comparing the similarity be-
tween reports. Because we want to introduce our own ideas to the program,
we needed to program it ourselves to have full control of what is going on
inside.
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Because we were aiming for two different goals we had to be aware not to
sacrifice one for the other. Getting the best possible classification and having
the program be relatively simple and modifiable has been quite a challenge.
During our research on a dataset of Reuters newsreports, we achieved an
accuracy of up to 77% when running it on 1,000 reports and up to 85% when
running it on 6,000 reports [18]. Because both medical datasets we have only
contain several hundreds reports we are not expecting to get results that
high.
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Chapter 5

Problem definition

5.1 Medical reports

Before we are going to look at the challenges we face when analyzing our
medical reports, we want to get a better idea of what these reports look like.
We have two different datasets:

• General radiology reports (in English)
A collection of 380 reports from a University hospital in the United
Kingdom. All reports originate from the radiology department, but
they deal with a wide range of diagnoses. Some reports have been diag-
nosed as belonging to several different ICD-10 codes. In total there are
627 diagnoses. A report therefore has an average number of diagnoses
of 1.65. In reality most reports have either one or two related ICD-10
codes, while only few have more. See Table 5.1 for more details.

No. of ICD 10 codes No. of reports.
1 211
2 125
3 24
4 11
5 4
6 3
7 1

Table 5.1: Distribution of the number of ICD-10 codes per report.

This implies that we are looking at a so-called multilabel case, where the
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mapping of one document to multiple categories is possible. This auto-
matically implies that the categories are overlapping. In the Document
Classification domain it is common to assume that the multilabel case
is a special case of the single-label or binary document classification.
For this to be true the assumption that all classes are independent of
each other has to hold. For medical reports however this isn’t necessary
the case. In fact it might be plausible that some pairs of diagnoses are
quite common due to the similarity of the disease or of the area being
looked at by the radiologist. Having to deal with multilabel categoriza-
tion complicates the classification.
Below is an example report, labeled as D18.0 and M51.4:

1234567 01/01/2001 CT SPINE THORACO LUMBAR \par

1234567 01/01/2001 CT SPINE LUMBAR \par

Indications: Lesion in L4 on MRI ?nature.

Possible haemangioma in T11 \par Technique:

Spiral scans were obtained from T10 -T12 and from

L3-S1 \par Findings: \par Comparison was made

with the MRI from Jan 2001 \par There is

degenerative change in the lower thoracic and

lumbar spine. \par No destructive bony lesion in

the lower thoracic spine. \par There is a defect

in the superior end -plate on the left side of the

L4 vertebral body with surrounding sclerosis ,

corresponding to the region of abnormality

previously described on MRI. The appearances

would be consistent with an end -plate infarction

with formation of a large Scmorl ’s node. It is

reassuring that the overall dimensions of the

lesion have not increased significantly since the

last scan although a defect has now developed. \

par Conclusion \par Features consistent with

evolving end -plate infarction. \par Findings

discussed with Drs Abcdef and Ghijkl \par

A \par in the medical report denotes the beginning of a new paragraph.
When reading several reports like this one it becomes clear that a lot
of medical terminology is used, and that those findings that are normal
or expected are only briefly noted, while the explanation on abnormal
findings is much more elaborate.
Another issue with these reports is that we have only 380 labeled re-
ports, and that there are several thousands possible ICD-10 codes. In
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our training set alone we are already looking at 278 unique ICD-10
codes. When we examine the most common diagnoses we see that only
seven of them occur in ten or more reports. Using our approach we will
probably need a more densely populated set of reports.
Another way to look at the classification is to use the area which is
affected by the disease, this could be an organ or a certain body part.
The ICD-10 classification also classifies each disease using a ICD-10
region. This does not solve the multilabel case issues we talked about
before, but it does reduce the number of classes. When we look at the
distribution of the reports over the different regions we see that we
have a much better report to class ratio than we have with the ICD-10
codes. We are also facing 67 unique classes instead of the 278 unique
ICD-10 codes, and we have seven classes now for which we have more
than twenty reports in our training set. Because of this we are also
going to classify our reports on the different regions involved in the
research instead of just on the ICD-10 codes. For more details and an
overview of the similarities and differences between the two approaches
the reader is referred to Table 5.2 at the end of this section.
Because of the characteristics of the dataset it is going to be referred
to as the heterogeneous dataset in the rest of this thesis.

• Reports on suspected appendicitis (in Dutch)
The second dataset contains medical reports written in Dutch. It con-
tains 442 report on people with suspected appendicitis or related prob-
lems. In contrast with the English reports we are dealing with a sin-

glelabel case here, i.e., each report belongs to only one class. Therefore
there are also 442 diagnoses. Because all these reports are about a very
specific part of the body there are also much less different ICD-10 codes
used, only 29. The reports should be much more similar when compared
to the English reports. This can turn out to be an advantage as well as
a disadvantage. It can be an advantage because the density of reports
will be much higher, thus allowing us to better compare a new report
to already existing reports. It can also be a disadvantage because the
classes could be so overlapping that we will not be able to distinguish
between them. Below is a report that is classified as K35.9: “Acute
appendicitis, unspecified”.

Relevante klinische gegevens Buikpijn en koorts.

Verdenking appendicitis , leukocytose , druk en

loslaatpijn McBurney. Verslag Er is geen oud

onderzoek ter vergelijking. In de

rechteronderbuik appendix welke proximaal een
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diameter heeft van 6/7mm. Duidelijke gelaagdheid

van de wand. Mediaal van de epigastrische vaten

veel vet infiltratie waarin het distale deel van

de appendix gelegen is met een diameter van 1,4cm

, hierin bovendien een hyperechogene structuur

met slagschaduw , passend bij appendicoliet. De

appendix is niet comprimeerbaar. Enig dbris in de

appendix. Tevens veel vrij vocht in de omgeving ,

dit kan indirect teken zijn van perforatie.

Reactieve enigszins verdikte wand van het

terminale ilium. Normaal aspect van nieren

beiderzijds. Spoortje vocht in Morrison pouch.

Normaal aspect van milt , lever en galblaas.

Normaal aspect van het pancreas. Conclusie

ECHOgrafisch beeld van appendicitis acuta ,

mogelijk perforatie. Uitslag besproken met

piepernummer 00000. Einde verslag.

When comparing reports from this dataset to the reports in the het-
erogeneous dataset it is clear that their structure is much more loosely
defined. Because these reports are quite similar due to the expected
disease, this dataset will be referred to as the homogeneous dataset.

5.2 Feature Selection

Now that we have an idea of what our reports look like we have to think about
the challenges we will face when interpreting these reports. For our program
to be able to compare the reports we have to find a suitable representation
for the textual documents first. We are going to look at certain features (or
properties) of the documents, and store them in a so-called feature vector. We
first have to decide which features in the reports we are going to consider,
and then for each report we are going to store how frequent each feature
occurs.
Several design decisions have to be made for the selection of the features we
want to consider. Firstly, how do we look at the reports? Do we consider
sentences as a whole, do we look at combinations of words or do we ignore
the order of words and only count their number of occurrences? Secondly
there is the matter of disavowal words (no, not, non, none, etcetera) which
refer to another word. It is hard to determine which word they refer to, it
could be the word that immediately follows, but it could also be somewhere



Chapter 5. Problem definition 21

Dataset Heterogeneous Homogeneous
Classification done on: ICD-10 code ICD-10 region ICD-10 code
Number of reports 380 380 442
Avg. report length 94 words 94 words 93 words
Total number of diagnoses 627 661 442
Avg. number of diagnoses/report 1.65 1.74 1
Number of unique diagnoses used 278 67 29
Top 10 diagnoses with frequency:

1. I26 (38) lung (156) NSAP (90)
2. J98.1 (19) brain (84) K35.9 (81)
3. J90 (15) kidney (59) K35.0 (65)
4. R65 (15) abdomen (32) K35.1 (56)
5. K80.2 (11) intestines (28) K52.9 (38)
6. N28.1 (10) lymph (25) I88.0 (19)
7. I63.9 (10) liver (24) K57 (17)
8. N20.0 (9) pancreas (17) K59.0 (9)
9. R59.0 (8) gallbladder (15) N83 (7)

10. J47 (8) thorax (10) N94 (7)

Table 5.2: Some statistics about our two different datasets, and also on the two
different approaches within the Heterogeneous set.

else in the sentence, or even outside of the sentence. Lastly there is the issue
of the importance of words. Some words (the, it, a, an, to, etc.) are very
common and occur in almost every article. Therefore they do not help when
comparing reports. So maybe we should ignore them?
The first step is critical for the behavior of the rest of the program. If we
choose to ignore the order in which words occur and only count their existence
we use the so-called bag-of-words model. The feature vector simply consists
of a list of word and their frequency. If we look at words (or even characters)
and also the words surrounding them we use the so-called n-grams, which are
commonly used in statistical natural language processing. An n-gram looks
at a (short) sequence of words. If n = 3 than each feature would consist of
a series of three words. The processing of sentences as a whole still creates
many practical problems.
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5.3 The different ways to measure distance

When we have decided what our feature vector is going to look like, we can
start to think about ways to compare these vectors. The problem here is the
high dimensionality of the feature vector itself, it usually contains tens to
hundreds of features to be compared. If we want to be able to discover the
reports in our database that are most like a new report we have to find a
way to describe and quantify similarity between their feature vectors. We are
going to define this as the distance between two feature vectors: the smaller
the distance between two vectors, the more the two reports are alike, and
therefore the bigger the chance they deal with the same disease. So what
is the definition of the word distance in terms of natural language reports,
i.e., how do we find out which reports are more similar to each other than
others? The answer to this question is usually tough enough to answer for a
human expert and more often than not if you ask several experts they come
up with different answers. So finding a definition for this distance will be a
tough challenge for our program. After this is done we also have to find ways
to calculate the distance between our natural language reports. Because of
the complexity of this issue we might look at several different algorithms for
calculating distance.

5.4 Determining the ICD-10 code

Now that we have a sorted list of the distances between a new report and all
existing reports in the database, we need to determine which ICD-10 code
belongs to the new report. To do this we first have to determine how many,
and which, reports in the list we are going to consider. We are using several
different strategies to make this selection, both fixed and dynamic. After that
we can look at the different codes of the selected reports, and decide how we
are going to weigh each of them in order to find the ICD-10 code of our new
report. In this last step we also use several different techniques to determine
the most probable ICD-10 code of the new report.
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Chapter 6

Solution

6.1 Feature Selection

Before considering automatic classification of our reports we had to make a
translation from text to a so-called feature vector. We used several different
approaches:

Classic Bag-of-Words
In the classic bag-of-words only the frequency of a word within a re-
port is considered. The word order, position, or the semantic relation
between words is ignored. Although clearly an oversimplification, re-
search shows that the results of this method are still quite good. In
Figure 6.1 is an example of a word X that occurs in 8 positions in our
report. This example will be used for all our other feature selection
methods in this report as well.

Figure 6.1: Example of the classic bag-of-words model.

Multiple Bags-of-Words
Our medical reports each consist of three parts. First there is the clinical
information, which contains the medical background of the patient as
well as the symptoms for which research takes place. Second there is
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a section with the findings in which the doctor gives a description of
what (s)he sees. The report ends with a conclusion in which the doctor
draws conclusions from his/her findings.
In this approach we treat each of these three sections separately, and
therefore use three bags for each report. Each possible combination
of one, two or three of these bags has been considered. For example
we have only compared the clinical information and the conclusion, or
just the conclusions, of two reports. In the example in Figure 6.2 the
occurrences of word X for each section of the report are stored, so 2 for
the first section, 5 for the middle section and once in the last section.

Figure 6.2: Example of the multiple bag-of-words model.

Bag-of-Intervals
This approach has gone beyond only counting the number of occur-
rences of a word. It looks at the words in the nearby surrounding and
if the same word is within a certain distance it is treated as one occur-
rence. The distance which determines wether two occrunces are con-
sidered as one is called the worddistance-parameter. In our example in
Figure 6.3 the frequency of X is 4.

Figure 6.3: Example of the bag-of-intervals model.
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Bag-of-Intervals with positions
The same approach as above was used for the bag-of-intervals with
positions, however it also compares the positions within each report
where a word occurs. To be able to compare reports of different lengths
it was necessary to normalize each report to a fixed length of 100, which
is close to the average length of our reports. After this normalization the
positions of the intervals were compared. An outer margin around these
intervals was allowed which was used when looking for corresponding
intervals in another report. This margin is called the margin-parameter.
In our example in Figure 6.4 it can be seen that we now store the word
in combination with the begin- and end-position of the interval. So
<X, 12, 16, 21, 28, . . .> means that the word X has an interval from
position 12 to position 16 and also from position 21 to 28.

Figure 6.4: Example of the bag-of-intervals with positions model.

The margin-parameter has been set to roughly half the length of the
worddistance-parameter. The reason for this becomes clear when think-
ing of a simple example with two words that are just within the maxi-
mum worddistance of each other, they both virtually contribute to half
of this distance. So the maximum margin-parameter (which is on the
outside) should be the same as this individual contribution: half the
length of the worddistance. Figure 6.5 shows two words that are just
within the worddistance of each other and shows the margin around
the interval as well.
The algorithm used to define these intervals from the occurrences of a
word can be found in Figure 6.6.
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Figure 6.5: The margin- and worddistance-parameter.

input

position: positions of a given word W
nr : number of occurrences of W
Wmargin: the worddistance margin

output

boundaryL, boundaryR: left and right interval boundaries
interval : number of intervals

begin

interval ← 1
for current ← 1 to nr do

if current = 1 then

boundaryL[interval ]← position[current ]
else if position[current ]− position[current − 1] > Wmargin then

boundaryR[interval ]← position[current − 1]
interval++

boundaryL[interval ]← position[current ]
boundaryR[interval ]← position[current ]

end

Figure 6.6: Algorithm — Creates the intervals from a list containing the positions
of a word.

6.2 The different ways to measure distance

In each of the first three ways to represent our report: classic-bag-of-words,
multiple bags-of-words and bag-of-intervals, the feature vectors contain <word,
number of occurrences> pairs. The distance between pairs of articles was
calculated in four different ways. In other words: four different definitions of
distance have been used. Following is a description of these definitions and
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their characteristics. In the definitions below, A and B are the feature vectors
of the two reports being compared, which can also be seen as sets.

Hamming distance
This is the easiest way to measure the distance. It is the sum of the
number of unique words that occur in only one of the two reports. It
treats the bag-of-words model as a simple set-of-words, i.e. we only look
at it in a binary way, the word either exists or it doesn’t. We are not
interested in the number of occurrences.

DHamming(A, B) = |A \B | + |B \ A |

Here A \B are the features (words) that are in A, but not in B.

The Hamming distance is a metric. Indeed with D = DHamming:

D(A, B) ≥ 0 , D(A, B) = 0 ⇐⇒ A = B (positive definite)

D(A, B) = D(B, A) (symmetry)

D(A, B) ≤ D(A, C) + D(C, B) (triangle inequality)

Jaccard or Weighed Hamming distance
The “normal” Hamming distance, described above, only counts the
number of unique words that appear only in report A or only in report
B. It does not take into account the number of unique words that
the two reports have in common. The Jaccard distance does take this
into account. The Jaccard distance divides the number found in the
Hamming distance by the number of unique words that occur in either
of the two reports. By doing this we normalized for the size of the
report:

DJaccard(A, B) =
|A \B | + |B \ A |

|A ∪B|

The Jaccard distance is also a metric. To clarify the difference between
the Hamming distance and the Jaccard distance we take a look at the
following two examples.
First we assume that there is a report A that contains 50 unique words.
Report B also contains 50 unique words. Report A and B have 10
unique words in common. The Hamming distance for this example is
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40 + 40 = 80. The Jaccard distance is 80

90
≈ 0.889.

Now we take a look at another example. Assume report C and D each
contain 270 unique words of which they share 230 unique words. Intu-
itively one would say that the distance between C and D (sharing 230
out of 270 unique words, which is over 85%) is less than the distance be-
tween A and B (sharing 10 out of 50 unique words, which equals 20%).
The Hamming distance between C and D however is the same as that
between A and B: 40 + 40 = 80. The Jaccard distance is 80

310
≈ 0.258.

Because the Jaccard distance takes the number of shared words into
account it is expected that this will give better results for the distance
between reports.

Multiset distances
Both the Hamming distance and the Jaccard distance use the so-called
binary representation for comparing the reports. This means they only
look at the words on an existing or non-existing basis. They don’t take
the number of occurrences of words into account. We take a look at
several examples to make this clear.
Example 1: a word occurs once in report A and once in report B. This
is obviously a perfect match.
Example 2: a word occurs five times in report A and also five times
in report B. This is once again a perfect match, or is it perhaps even
better than Example 1?
It becomes more interesting when the number of words is not the same.
We look at another two examples.
Example 3: a word occurs once in report A and ten times in report B.
Example 4: a word occurs five times in report A and ten times in report
B.
For the Jaccard distance all of these four examples are the same because
the word occurs in both reports. We however ask ourselves the question
if this is correct, isn’t Example 4 better than Example 3? And what
about Example 2 and Example 1?
To allow us to distinguish between those examples we used the so-
called multiset distance, [19]. A multiset is a set in which repeated
elements are considered. Therefore with each unique word (a member)
we also stored the number of occurrences in each report; this number
of occurrences is called the multiplicity of the member. The multiset
is sometimes also called weighted set. In the normal sets we are only
interested in the existence of members, not their multiplicity. We define
the multiset distance as follows:
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Dmultiset(A, B) =

∑n

i=1
|f(ai)− f(bi)|

|A ∪B|

The multiset distance takes the sum over all unique words occurring
in at least one of the reports A and B. This sum is the absolute dif-
ference of the values of function f in ai and bi, where ai and bi are the
number of occurrences of the i-th word from our list in report A and
B, respectively.
We use two different functions for f within this multiset distance,
thereby creating two different ways to measure distance:

f1(x) =
x

x + 1

f2(x) = 1− 2−x

Figure 6.7: The graphs of the multiset functions f1 and f2.

For both choices of f the multiset distance is a metric [20]. We will refer
to the distance using f1 as the multiset1 distance and to that using f2

as the multiset2 distance. Both functions have a range of zero to one,
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where f1 and f2 both approach the limit of 1 as the word frequency
grows. But f2 does this a lot faster than f1 does, see Figure 6.7. So
in f1 the distance penalty is bigger, especially in the lower frequency
region. Note that when we would be using sets here instead of multisets
we would get the Jaccard distance.

Interval relation
For the similarity between our bag-of-intervals with positions a slightly
different approach had to be used. In this case we didn’t just have a
feature vector A which contained the words and the number of their
occurrences but instead, for each word w in A we had a list Aw with the
word and the left and right boundaries of each of the intervals. Because
of this the comparison between two reports became slightly different
as well, it was no longer sufficient to only look at numbers, but it
was also necessary to consider the relative location of the occurrences
of word-intervals. Each word-interval that didn’t have an overlapping
interval in the other report adds some value to the relation, where
overlapping intervals do not contribute to the relation. However the
more overlapping intervals the two reports have the smaller the relation
penalty is for a non-overlapping interval, similar to the Jaccard and
multiset distances:

interval(Aw) = the collection of intervals in Aw

ξ(Aw, Bw) = {u ∈ interval(Aw) | ∄v ∈ interval(Bw) : u ∩ v 6= ∅}

Rinterval(Aw, Bw) =
| ξ(Aw, Bw)| + | ξ(Bw, Aw) |

|interval(Aw)| + |interval(Bw)|

Rinterval(A, B) =
∑

w

Rinterval(Aw, Bw)

In other words: the interval relation is the number of intervals which
are unique to A plus the number of intervals which are unique to B
over the total number of intervals in A and B.
Here Rinterval(A, B) = 0 can hold when A 6= B, and also the triangle
inequality does not hold in general. An example of this relation mea-
sure can bee seen in Figure 6.8.
The algorithm used to calculate the interval relation between two re-
ports is given in Figure 6.9.
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Figure 6.8: Example of the interval relation between two reports using the bag-
of-intervals with positions method.

Overlap relations
The interval relation only counts the number of intervals. To be able
to do something with the length of the intervals and the amount of
overlap, we introduced the overlap relations. Two different approaches
were used. Overlap relation 1 is defined by the sum of the length of the
intervals that are unique to report A and B over the sum of the length
of all intervals. Overlap relation 2 is more precise, in the fact that it
doesn’t only measure the unique intervals, but it also adds parts of
intervals that don’t have an overlap in the other report, while overlap
relation 1 only looks at intervals that have no overlap at all.

length(Zw) = sum { |z| , z ∈ interval(Zw) }

Roverlap(Aw, Bw) =
length(ξ(Aw, Bw)) + length(ξ(Bw, Aw))

length(Aw) + length(Bw)

Roverlap(A, B) =
∑

w

Roverlap(Aw, Bw)

This is the same as in the situation of the interval relation, only here
we look at the length of the intervals instead of the number of intervals

An example of the two overlap relation measures can be found in Figure
6.10 and Figure 6.11, the relation is calculated using the length of the
orange parts over the length of all parts.
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input

A.boundaryL,A.boundaryR: left and right interval boundaries of report A
A.interval : number of intervals of report A
B .boundaryL,B .boundaryR: left and right interval boundaries of report B
B .interval : number of intervals of report B

output

RintervalAB : interval relation between report A and B
overlap: number of overlapping intervals between A and B
nonoverlap: number of non-overlapping intervals between A and B

begin

matchfound ← false

inA← false

inB ← false

A.current ← 1
B .current ← 1
for i ← 1 to 100 do

if A.boundaryR[A.current ] = i then

inA ← false

if matchfound and not inB then

overlap++

matchfound ← false

else if not matchfound then

nonoverlap++

A.current++

if B .boundaryR[B .current ] = i then

inB ← false

if matchfound and not inA then

overlap++

matchfound ← false

else if not matchfound then

nonoverlap++

B .current++

if A.boundaryL = i then

inA ← true

if inB then

matchfound ← true

if B .boundaryL = i then

inB ← true

if inA then

matchfound ← true

RintevalAB ← overlap / (overlap + nonoverlap)
end

Figure 6.9: Algorithm — Calculates the interval relation between two reports.
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Figure 6.10: Example of the overlap1 relation on the bag-of-intervals with posi-
tions method.

Figure 6.11: Example of overlap2 relation on the bag-of-intervals with positions
method.

6.3 Determining the ICD-10 code

Each of the distance functions from Section 6.2 results in a sorted list of the
distances between the new report and the reports already in the database. To
determine the most probable ICD-10 code we once again use several meth-
ods, as was announced in Section 5.4.
The first step was to decide which reports from our list needs to be considered
to find the ICD-10 code of the new report. The method used to select the
appropriate reports is the well-known k-Nearest Neighbor algorithm [1], See
also Section2.2. To determine how many reports are going to be consider, i.e.,
k, we used both a static and a dynamic selection method: “fixed quantity”
and “distance boundary” respectively.
In the fixed quantity method the number of reports is fixed and therefore
always known beforehand. It simply selects the k closest reports (where k
is a pre-determined number). To find the optimal number k, it is necessary
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to do calculations with multiple different values of k. See Figure 2.1 for an
example.
The other method, distance boundary, selects all reports that are within a
certain preset distance of the new report. It results in an unknown number
of selected reports in our list (potentially the list can be empty or contain all
reports).
The usage of each of these two selection criteria resulted in a shortlist of
reports that are considered important to decide what the ICD-10 code be-
longing to our new report is. This shortlist was used to make an educated
guess on the code of the new report. Several different wighing schemes were
used to determine which code is most likely to belong to the new report.
The first, and most basic, method is to just pick the code that occurs most
frequently in our shortlist. Alternatively the codes were weighed: giving the
codes of the closest report a higher score than those further away. This was
done using a fixed score, where the closest reports ICD-10 code receives a
score of k, the second closest a score of k − 1, etc. The third alternative has
been to also weigh the ICD-10 codes according to their distance, this time
using a score dependent on the actual distance of the report (e.g., score =
1/distance).
The ICD-10 code which receives the highest score after evaluating all reports
in the shortlist will be our best guess, but we also compared our second and
third best guesses to see if they match the ICD-10 code of our reports.
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Chapter 7

Implementation

The actual implementation is done in two parts. The first part is written
in the Perl programming language, the second in the C++ language. Both
of these programs are developed on a PC with SUSE Linux version 10.1.
Following is a description of what both these programs do. The full source
code can be found at [21]. The Perl part is used to calculate the distance
between reports using all described definitions of distance. It calculates all
seven distance between each possible pair of reports and puts these in a
separate matrix for each distance. These distance matrices are meant as
input for the C++ program. The two programs therefore work together as a
separate front- and back-end.

7.1 Perl program

The Perl program is the first step in interpreting the medical reports. It
takes a comma separated file with all the reports as input. The input file
contains three columns: Patient number, ICD-10 code and the actual written
report. It goes through the file one line at a time. The patient number is
used to check for duplicate entries, and also because the input file uses a
new line when adding an ICD-10 code to the same report (where the patient
number is the same, but the report column empty). We store the ICD-10
code and further analyze the written report. The third column containing
the actual report consist of three different paragraphs: Clinical information,
findings and conclusion. For each of these three paragraphs the words are
split and are counted and stored in our document vector. The word count is
also stored for the report as a whole as well as the frequency in all reports.
When counting words we also immediately store its position for the position
distance, we keep track of the distance between the current occurrence and
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the last one and if they are within the worddistance-parameter we store them
as one interval for the overlap distance. The ICD-10 codes are also saved as
a list with all the reports belonging to a certain ICD-10 code. The total
frequency count for each ICD-10 code is stored as well. The final action is
the storage of a list with ICD-10 codes and the corresponding ICD-10 region,
to be able to do the match on the ICD-10 region in the British reports.
Now that we have all the information we need from our input files, we are
going to process this information. For each pair of document vectors all seven
different distances are calculated and stored in matrices, which are later
stored in seven separate files. We only use the bottom half of the matrix,
because all our distance definitions result in symmetrical results, i.e., the
distance from report A to report B is the same as the distance from report
B to report A.

7.2 C++ program

The C++ program takes all seven files containing the distance matrices as
its input, as well as the list of ICD-10 codes per report to allow us to check
whether the correct ICD-10 code is found. Each of the seven distance matrices
are are stored into their respective arrays, and then we perform the selection
of the k nearest neighbors. Once we have found those, we are going to use
each of our three scoring methods on their ICD-10 codes: most frequently
used, fixed score and score relative to the distance. This results in a ranked
list of potential ICD-10 codes for each report. We compare the top guess,
as well as the top 3, to the actual ICD-10 code of the report. We calculate
not only the accuracy but also the true positives, false positives and false
negatives for each ICD-10 code which allows us to calculate precision, recall
and F -score.
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Chapter 8

Results

The results of our program, applied to both datasets, will be explained in
this chapter. Note that the heterogeneous dataset is classified in two ways,
namely on ICD-10 code but also on ICD-10 region (as has been explained in
Section 5.1). This gives us three different results to discuss. In each of them
we are going to look for the most probable class, but we will also look at the
list of the 3 most probable classes.
In order to be able to analyse the quality of the results of our program we use
the leave-one-out principle. This principle generates the results by removing
a single report from our data, and use all the other reports as training data.
When the classification is complete we compare the outcome with the actual
class that was given to the report. We do this for every report. All the reports
in our database have their topics manually defined by human experts. The
leave-one-out principle ignores the topic of the report being looked at, and
compares only the content of the reports. It therefore simulates it as being a
new report.
The first thing we look for is the accuracy of our program. Accuracy gives
the percentage of reports for which our program generates the correct class.
Although accuracy is a good way to get a general idea of the performance of
the program, we would also like to get an idea about the recall and precision

of our program. A drawback of these measurements is that they are defined
per topic only. Thus they give more detailed information about the behavior
of our program but it is harder to use them to get a good overview of the
classification over all classes. We therefore use the accuracy to find out which
combination of methods gives good results and than we are going to use recall
and precision to get a more in-depth view.
The precision of a certain topic is the number of true positives (i.e., the
number of reports correctly labeled as having that topic) divided by the
number of reports labeled as belonging to the topic (i.e., the sum of true
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positives and false positives, which are items incorrectly labeled as having
that topic). Recall is the number of true positives divided by the number of
true positives and false negatives (i.e., reports that were not labeled as having
this topic, but should have been). Both recall and precision will therefore have
a value between 0 and 1. The definitions of precision and recall are:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Here NP = the number of true positives, FP = the number of false positives,
and FN = the number of false negatives

As an example, if we define all reports as belonging to topic T , then the recall
of T would be 1 (all reports on topic T are returned as topic T ), but precision
would be close to 0 (many report are incorrectly labeled as belonging to T ).
And if we defined only 1 report, of which are absolutely sure it belongs to
U , as belonging to class U , while there may have been many reports which
belong to class U , the precision would be 1 (all reports labeled as U did
indeed belong to U) and the recall very low (many reports that belong to
class U are not labeled as U).
It is therefore quite clear that recall and precision are not very usable when
they are being looked at separately, therefore we use the so-called F -score
(or F -measure). This is the harmonic average of precision and recall:

F =
2 ∗ precision ∗ recall

precision + recall

The F -score is the most common measure in Information Retrieval [22]. If we
are more precise we have to talk about F1-score because precision and recall
are weighted equally, as opposed to F2-score which weights recall twice as
much as precision, and F0.5 which weights precision twice as much as recall.

8.1 Heterogeneous dataset

Because of the relative small number of reports (380) in our heterogeneous
dataset and the high number of possible ICD-10 codes (thousands) we are
looking at very widely distributed data. Because of the nature of the methods
we use we do not expect to get very high accuracy here. Therefore we are not
only going to predict the possible ICD-10 codes but we will also be looking
at the region of the disease.



Chapter 8. Results 39

8.1.1 The ICD-10 code case

As said before this will be a very tough challenge for our program. When we
look at our most probable prediction for each report, in the best case scenario,
we are able to find the right ICD-10 code in 23.4% of the cases. This scenario
is achieved when k = 10, using the weight relative to the distance of the
reports, and the multiset1 distance definition. See Table B.1 in Appendix B
for an overview of the results from the other methods.
When comparing the top 3 of most probable ICD-10 codes, the correct class
was within this top 3, in the best possible solution, in 31.8% of the cases.
This happens when k = 25, the scoring method is fixed and using the Jaccard
distance. See Table B.2 for full results. Both of these results are as expected,
due to the small amount of reports and the large amount of possible classes
it is indeed hard to classify many reports correctly.
To have a better idea how good the classification really is we have to look at
the precision, recall and F -score. We have selected the five classes with the
highest frequency. In Table 8.1 are the results of our program, when we only
give our best possible guess. In Table 8.2 are the results when we compare
our three most probable classes against the actual class in the report. The
numbers between brackets in the first column are the number of reports
in each respective class. The accuracy when comparing with the top 3 was
significantly better than when comparing only the best guess. This makes
sense because we accept it as a good guess when any of the classes in the top
3 occurs in the ICD-10 code list of the report. It is therefore remarkable that
the recall, precision and F -score between these two methods are similar.

8.1.2 The ICD-10 region case

Because the number of ICD-10 codes is so large we are also classifying the
reports on the ICD-10 region. Because the number of regions is smaller than
the number of ICD-10 codes we are expecting the results to improve. When
we look at Table B.3, we can conclude that the results have indeed improved.
When we only look at the prediction that comes out on top of our list we see
that the accuracy goes up to 63.6%. If we compare our top 3, we have the
correct answer in 72.7% of the cases, see Table B.4 for all the results when
using the top 3. From both these tables it is clear that the accuracy is quite
a bit better than the accuracy we achieved when searching for the ICD-10
codes.
In the ICD-10 code case we saw that the difference between best guess and
the top 3 was marginal. We did the same comparison for the ICD-10 region
case. The results can be found in 8.3 and 8.4, for best guess and top 3
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ICD-10 code recall precision F -score
I26(39) 0.485 0.943 0.641
J98.1(19) 0.143 0.083 0.105
R65(16) 0.227 0.312 0.263
J90(16) 0.000 0.000 0.000
K80.2(11) 0.273 0.500 0.353

Table 8.1: Results from the heterogeneous dataset, when classifying ICD-10 codes
and comparing our best guess. These results are retrieved when k =
10, using the relative distance scoring method and multiset1 distance.

ICD-10 code recall precision F -score
I26(39) 0.493 0.974 0.655
J98.1(19) 0.105 0.250 0.148
R65(16) 0.263 0.333 0.294
J90(16) 0.143 0.091 0.111
K80.2(11) 0.222 0.400 0.286

Table 8.2: Results from the heterogeneous dataset, when classifying ICD-10 codes
and comparing it with our top 3. These results are retrieved when k

= 25, using the fixed scoring method and Jaccard distance.

respectively. The results are once again very clear, there is no significant
difference between the best guess and the comparison with the three most
probable classes.
To be able to make a fair comparison between the classification on ICD-10
code and on ICD-10 region it is necessary to take a closer look at these
predictions to see why they have improved, by analysing precision, recall and
F-score. When we compare the results from Table 8.1 and Table 8.3, which
are both done on the most probable class, and we look at the F -score it
becomes immediately clear why the ICD-10 region classification works much
better than the ICD-10 code classification. In the lower frequency classes
which we see in Table 8.1 we never achieve a proper F -score. Apparently
we need more than a few documents in a class to be able to classify the
reports belonging to that class correctly. The results in Table 8.3 confirm
this assumption. It also shows that both precision and recall are high for
the most frequent classes. This means the classification not only labels the
reports correctly, but also that it retrieves most reports which do belong to
that class.
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region recall precision F -score
lung(154) 0.699 0.926 0.797
brain(84) 0.821 0.970 0.889
kidney(56) 0.761 0.795 0.778
abdomen(31) 0.350 1.000 0.519
intestines(26) 0.545 0.571 0.558

Table 8.3: Results from the heterogeneous dataset, when classifying ICD-10 re-
gions and comparing our best guess. These results are retrieved when k

= 25, using the fixed distance scoring method and multiset1 distance.

region recall precision F -score
lung(154) 0.762 0.961 0.850
brain(84) 0.896 0.952 0.923
kidney(56) 0.700 0.833 0.761
abdomen(31) 0.417 0.769 0.541
intestines(26) 0.444 0.471 0.457

Table 8.4: Results from the heterogeneous dataset, when classifying ICD-10 re-
gions and comparing it with our top 3. These results are retrieved
when k = 10, using the fixed distance scoring method and Jaccard
distance.

8.2 Homogeneous dataset

The homogeneous dataset contains 441 different reports. We classify these
reports on ICD-10 code only because they all deal with the same region. Once
again we look at our most probable class, as well as the three most probable
classes. In the former (full results can be found in Table B.5 in Appendix B)
we achieve an accuracy of up to 36.3% by using the 25 nearest neighbors,
relative distance scoring method and the Jaccard distance definition. In the
latter (full results in Table B.6) we achieve 57.6% if we look at the 100 near-
est neighbors, relative distance scoring and the Jaccard distance.
Compared to the results from the heterogeneous dataset the most notable
change is the rather large improvement between the accuracy when looking
at the best guess and when looking at the top 3. We know that these reports
deal with a very specific disease and location of research, namely acute ap-
pendicitis. A possible reason for the big jump in accuracy could be that the
classes in the homogeneous dataset are more overlapping, i.e., the reports
are more similar and it is harder to distinguish the boundaries between the
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different classes.
If we look at the recall, precision and F -score of the best case scenario (see
Table 8.5) it is quite clear that in the higher frequency classes the precision
is high but recall low while in the lower frequency classes it is exactly the
other way around, the recall even reaches the perfect score of 1, but the pre-
cision drops accordingly. Having a high precision and low recall, as is the case
in the higher frequency range, means that these classes are underestimated:
most reports labeled as belonging to these classes do indeed belong to the
class, but many are not found. Having high recall and low precision means
the class is overestimated: all reports in the class are found, but many others
are labeled as belonging to that class as well.

ICD-10 code recall precision F -score
NSAP(90) 0.401 0.856 0.546
K35.9(81) 0.505 0.806 0.621
K35.0(65) 0.333 0.778 0.467
K35.1(56) 0.556 0.147 0.233
K52.9(38) 0.500 0.029 0.056
I88.0(19) 1.000 0.222 0.364
K57(17) 1.000 0.118 0.211

Table 8.5: Results from the homogeneous dataset, when classifying ICD-10 codes
and comparing it with our top 3. These results are retrieved when k =
100, using the relative distance scoring method and Jaccard distance.

This table only shows the results when comparing the class with our top 3
of most probable classes. The results when comparing the class to our best
guess are similar, just like we have seen with the heterogeneous dataset.
These findings support our idea that the documents in the homogeneous
dataset are so similar that it is hard to distinguish between one class or the
other and as a result the low frequency classes are overestimated and the
high frequency classes underestimated.
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Chapter 9

Conclusions and future work

During this research we have explored many different options for solving the
text classification problem for our two datasets with medical reports. This
paper concludes with a structured analysis of each of the methods used and
gives suggestions for future research. We will go over each of the different
distance measures, the selection using k-Nearest Neighbor, and the different
scoring methods used.

Distance measures
The Hamming distance can be seen as the simplest way to define dis-
tance, it uses only the number of unique words that two reports differ.
In all given circumstances this gives significantly worse results than the
other distance measures.
The Jaccard distance uses the same distance as Hamming, but it adds
to it a normalization on the number of unique words that two reports
share. From the result tables in Appendix B it immediately shows that
this is a big improvement over the Hamming distance. The reason why
the Jaccard distance performs better is because it not only counts the
difference between two reports, but does this relative to the length of
the reports, thereby making it a better method to compare our reports,
which vary in length from roughly 50 to 400 words.
In the multiset distances we also look at the number of occurrences
of a word within a report, whereas Hamming and Jaccard only look
at the binary case. Results from both multiset distances are similar to
those of the Jaccard distance, i.e., they are within a few percent points
of each other, sometimes favoring one of the multiset distances and
sometimes the Jaccard distance. We can conclude from this that the
frequency of a word does not improve the quality of classification. If we
use the multiset distance but give a normal set as its input it generates
exactly the Jaccard distance, from this we can conclude that this extra



Chapter 9. Conclusions and future work 44

information does not improve our classification.
The other three relations, the interval relation and both overlap re-
lations, also consider the position of the word occurrences instead of
only the frequency count. Although we had high expectations of this
approach, it is clear from the results that they are quite a bit worse
than the Jaccard and multiset approaches, and more in line with the
results from the Hamming distance. The reason for this probably lies
in the fact that the medical reports are a summation of what the doc-
tor observes, within these documents there is no standardized order
in which these observations have to be written down. The text order
is therefore very dependent on the doctor that has written the report
and the order in which he looks at the different images from the CT
scan. This explains why our results using this approach were not as we
expected.

Selection and scoring methods
The choice between the two proposed selection methods, k-Nearest
Neighbor and the distance boundary method, was easily made. Af-
ter the analysis of the results from our first run we already expected
k-Nearest Neighbor to have the upper hand and all following runs con-
firmed this. Having a pre-set distance boundary is not flexible enough
to deal with the different high- and low-density areas in the feature vec-
tor space. This results in large differences in the amount of documents
which are being compared between different areas.
The selection which k is optimal in the k-Nearest Neighbor method, is
very challenging for each application that uses this method. We gen-
erally found that k should be at least 10 and not more then 50. This
number mainly depends on the size of the different classes as well as
the total number of reports in a dataset.
To be able to draw conclusions which of the three scoring methods,
used to weigh the ICD-10 codes of those reports selected by k-Nearest
Neighbor, is superior to the others, we are required to take an in-depth
look at the results. We have to look at the two datasets separately, be-
cause they give different outcomes. When we look at the homogeneous
dataset, which are about patients with the same kind of disease and
therefore the reports being very similar, there is a clear winner. The
scoring method which uses a score relative to the distance of the report
surpasses the other two methods. In the reports from the heterogeneous
dataset there is no clear distinction between the relative distance and
the fixed distance scoring method. Both are better than the most fre-
quently used score, which gives an equal score to each of the selected
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reports, irrespective of their distance or ranking. From this we can con-
clude that we have to take the (relative) distance of the report into
account when weighing the different topics of the nearest reports.

The two datasets
When we consider the entire process of text classification for both
datasets there are some very clear similarities as well as some differ-
ences. Let us look at the similarities first. Both datasets contain sev-
eral hundreds reports, which is very few for text mining. Due to this
scarcity we did not do any preselection on the reports, which in turn
led to datasets which contained ICD-10 codes which would be impos-
sible to find by the techniques we used, or any technique one can think
of, simply due to the fact that there was not enough training data for
those classes.
If we consider the reports from the heterogeneous dataset then it is
clear from looking at the wide spread distribution of the ICD-10 codes
that classification is going to be very hard. It is encouraging to see that
the most frequent classes achieve decent F -scores. If we classify them
on ICD-10 region, the result becomes even better, both in terms of ac-
curacy but mainly when looking at the different F -scores. The F -score
gives us the best idea of how well the program classifies the different
reports as it incorporates both precision and recall.
For the homogeneous dataset this is a little different. When we com-
pare accuracy, the classification on ICD-10 code appears to be better
then it is in the heterogeneous dataset, however there are fewer classes
to be considered. When looking closer at the results it becomes clear
that the classification is actually worse than it is for the heterogeneous
dataset. This can be concluded from the F -score, which is significantly
lower, as well as the larger difference between the best guess and when
the best three are considered. It is remarkable that the homogeneous
dataset performs better when k is larger, compared to the heteroge-
neous dataset, while the total number of reports is equal. The reason
for this is that the reports are more similar on one side, and the classes
being larger on the other side.

We have tried to classify the medical reports, using a simple concept but
with some elegant ideas and solutions. Using a bag-of-words approach we
found the best methods to define the distance to be the Jaccard distance
and both multiset distances. Using k-Nearest Neighbor to select the relevant
reports and then weighing their topics according to their (relative) distance
from the new report, to determine the class for the new report gave the best
results. The results in the heterogeneous dataset when classifying on ICD-10
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region are especially encouraging. Results of around and over two-third cor-
rect are generally accepted to be good results for automated classification of
medical reports. Judging from these results we believe the used methods are
still viable in a research domain that continues to grow in quantity as well
as complexity all the time. Having control over each aspect of the process
allowed us to test many different concepts.
The new ideas we developed to also take the position of a word into account
have not led to the expected improvement. It would be interesting to do
more research on these new techniques. It would probably require a quite or-
ganized, hierarchical structure of the document to successfully deploy these
ideas. To be able to test our methods beyond that of these two dataset it
would be interesting to do the same on a larger dataset, which would also
allow us to do some preselection of reports and classes. The lack of a standard
dataset with medical reports which is freely available makes it very hard to
compare results between different researchstudies. Most, if not all, do a form
of preselection which obviously can have a major impact on the results.
Other research indicates that classification of medical reports is very depen-
dent on the input of knowledge from a domain expert. Another suggestion
for future work would be to try and extract this knowledge from the already
classified documents. While we only compare our reports on the basis of how
similar they are it might be worth trying to discover the relationship be-
tween certain features and the corresponding ICD-10 code. This could lead
to a large increase in correctly classified reports.
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Appendix A

ICD-10 categories

Chapter Blocks Title
I A00-B99 Certain infectious and parasitic diseases
II C00-D48 Neoplasms
III D50-D89 Diseases of the blood and blood-forming organs and certain

disorders involving the immune mechanism
IV E00-E90 Endocrine, nutritional and metabolic diseases
V F00-F99 Mental and behavioural disorders
VI G00-G99 Diseases of the nervous system
VII H00-H59 Diseases of the eye and adnexa
VIII H60-H95 Diseases of the ear and mastoid process
IX I00-I99 Diseases of the circulatory system
X J00-J99 Diseases of the respiratory system
XI K00-K93 Diseases of the digestive system
XII L00-L99 Diseases of the skin and subcutaneous tissue
XIII M00-M99 Diseases of the musculoskeletal system and connective tis-

sue
XIV N00-N99 Diseases of the genitourinary system
XV O00-O99 Pregnancy, childbirth and the puerperium
XVI P00-P96 Certain conditions originating in the perinatal period
XVII Q00-Q99 Congenital malformations, deformations and chromosomal

abnormalities
XVIII R00-R99 Symptoms, signs and abnormal clinical and laboratory

findings, not elsewhere classified
XIX S00-T98 Injury, poisoning and certain other consequences of exter-

nal causes
XX V01-Y98 External causes of morbidity and mortality
XXI Z00-Z99 Factors influencing health status and contact with health

services
XXII U00-U99 Codes for special purposes

Table A.1: ICD-10 Classification.
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Appendix B

Result tables

In this appendix all the full result tables as discussed in Chapter 8 and 9 are
presented.
In these tables we use the following abbreviations:

• k: The number of closest reports we consider.

• mfu: Most frequently used. Each topic in the shortlist is counted and
the most frequent one is chosen as the topic of the new report.

• fixed: The fixed scoring method, where each topic receives a score of
{k, k − 1, k − 2, . . . , 3, 2, 1} in order of increasing distance.

• distance: The scoring method where topics receive a score of 1/distance.
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Hamming Jaccard interval overlap1 overlap2 multiset1 multiset2
(k=3),mfu 9.2% 17.9% 8.9% 8.9% 7.9% 17.6% 16.8%
(k=3),fixed 5.0% 18.7% 4.2% 4.2% 2.4% 18.7% 19.2%
(k=3),distance 5.8% 18.9% 3.9% 3.9% 2.6% 18.4% 18.7%
(k=5),mfu 12.1% 20.3% 11.6% 11.6% 9.2% 19.7% 19.5%
(k=5),fixed 7.1% 20.8% 6.1% 6.1% 5.0% 19.7% 19.7%
(k=5),distance 7.9% 21.1% 6.8% 6.8% 6.1% 20.8% 21.1%
(k=10),mfu 12.9% 22.1% 10.3% 10.3% 9.5% 21.3% 20.3%
(k=10),fixed 11.1% 21.3% 8.7% 8.9% 7.9% 21.6% 21.1%
(k=10),distance 12.1% 21.8% 8.4% 8.4% 8.2% 23.4% 22.1%
(k=25),mfu 13.7% 17.9% 13.7% 13.7% 13.2% 17.6% 17.9%
(k=25),fixed 15.0% 22.4% 13.2% 13.2% 12.1% 21.1% 21.3%
(k=25),distance 14.7% 18.9% 14.7% 14.7% 15.3% 19.5% 19.5%
(k=100),mfu 10.3% 15.0% 10.3% 10.3% 10.3% 13.2% 13.7%
(k=100),fixed 13.4% 18.4% 12.6% 12.6% 12.6% 16.3% 15.8%
(k=100),distance 10.8% 16.6% 10.8% 10.8% 10.8% 13.9% 14.2%

Table B.1: Accuracy for the reports in the heterogeneous dataset for finding the ICD-10 code, when looking at the most
probable prediction only (380 reports).
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Hamming Jaccard interval overlap1 overlap2 multiset1 multiset2
(k=3),mfu 9.5% 19.7% 8.9% 8.9% 7.9% 19.2% 18.2%
(k=3),fixed 11.1% 25.3% 10.3% 10.3% 8.4% 26.1% 25.5%
(k=3),distance 10.5% 25.8% 10.0% 10.0% 8.7% 26.1% 25.5%
(k=5),mfu 12.6% 21.6% 11.6% 11.6% 9.2% 21.8% 22.1%
(k=5),fixed 13.4% 26.6% 13.4% 13.4% 11.6% 26.1% 26.3%
(k=5),distance 13.7% 27.6% 13.4% 13.4% 11.6% 27.1% 27.9%
(k=10),mfu 13.9% 25.0% 11.1% 11.1% 10.0% 24.7% 23.9%
(k=10),fixed 15.3% 29.7% 13.9% 13.9% 12.9% 28.9% 28.2%
(k=10),distance 15.8% 31.1% 13.4% 13.4% 12.9% 30.0% 28.7%
(k=25),mfu 15.3% 24.7% 15.3% 15.3% 14.7% 24.5% 25.3%
(k=25),fixed 20.0% 31.8% 18.9% 18.9% 17.4% 29.5% 28.7%
(k=25),distance 20.0% 28.7% 20.0% 20.0% 20.0% 28.4% 29.7%
(k=100),mfu 13.4% 18.2% 13.2% 13.2% 13.2% 17.4% 17.4%
(k=100),fixed 16.6% 25.8% 15.8% 15.8% 15.8% 23.7% 24.5%
(k=100),distance 14.5% 21.3% 14.5% 14.5% 13.7% 18.7% 20.5%

Table B.2: Accuracy for the reports in the heterogeneous dataset for finding the ICD-10 code, when looking at the top 3
of most probable predictions (380 reports).
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Hamming Jaccard interval overlap1 overlap2 multiset1 multiset2
(k=3),mfu 29.8% 61.2% 30.0% 29.5% 25.9% 60.6% 60.3%
(k=3),fixed 22.6% 61.4% 21.8% 21.8% 19.3% 58.7% 59.0%
(k=3),distance 29.8% 62.8% 29.2% 28.9% 26.7% 59.8% 60.3%
(k=5),mfu 37.5% 60.9% 32.2% 32.2% 28.1% 61.7% 61.2%
(k=5),fixed 35.8% 62.8% 32.0% 32.0% 29.8% 62.5% 62.5%
(k=5),distance 38.8% 63.4% 33.3% 33.3% 30.6% 63.1% 63.1%
(k=10),mfu 40.2% 62.3% 35.0% 35.0% 31.4% 62.8% 63.1%
(k=10),fixed 43.3% 62.8% 37.2% 37.2% 33.1% 62.0% 63.1%
(k=10),distance 43.3% 62.8% 37.2% 37.2% 33.3% 62.3% 63.4%
(k=25),mfu 45.2% 61.2% 41.0% 41.0% 39.4% 61.4% 62.0%
(k=25),fixed 43.5% 62.3% 38.0% 37.7% 34.4% 63.6% 63.4%
(k=25),distance 46.3% 61.7% 43.0% 43.0% 40.5% 62.5% 62.5%
(k=100),mfu 43.8% 54.8% 43.8% 43.8% 43.8% 53.2% 54.3%
(k=100),fixed 45.5% 59.5% 41.9% 41.9% 39.7% 58.4% 58.7%
(k=100),distance 44.9% 55.1% 44.6% 44.6% 44.9% 53.4% 54.8%

Table B.3: Accuracy for the reports in the heterogeneous dataset for finding the ICD-10 region, when looking at the most
probable prediction only (380 reports).
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Hamming Jaccard interval overlap1 overlap2 multiset1 multiset2
(k=3),mfu 30.9% 65.3% 30.6% 30.0% 26.4% 63.9% 63.4%
(k=3),fixed 26.4% 67.5% 24.8% 24.5% 21.2% 65.8% 65.8%
(k=3),distance 33.6% 68.9% 32.5% 32.0% 28.4% 67.5% 67.5%
(k=5),mfu 39.9% 66.9% 35.0% 35.3% 30.6% 65.8% 65.3%
(k=5),fixed 41.3% 71.3% 36.6% 36.6% 33.3% 68.6% 68.3%
(k=5),distance 44.1% 71.9% 38.6% 38.8% 34.7% 69.4% 68.9%
(k=10),mfu 43.0% 69.1% 39.1% 39.1% 35.8% 68.0% 67.5%
(k=10),fixed 48.2% 72.7% 43.5% 43.3% 37.5% 68.6% 69.1%
(k=10),distance 47.9% 72.2% 42.1% 42.1% 37.7% 69.4% 69.4%
(k=25),mfu 51.2% 70.8% 47.4% 47.4% 44.6% 68.6% 68.0%
(k=25),fixed 49.6% 71.6% 44.9% 44.6% 40.5% 69.7% 69.4%
(k=25),distance 52.6% 72.5% 49.6% 49.6% 45.7% 70.5% 69.4%
(k=100),mfu 53.2% 66.7% 53.4% 53.4% 54.0% 65.0% 65.6%
(k=100),fixed 54.8% 70.2% 51.5% 51.5% 49.6% 66.4% 66.4%
(k=100),distance 53.4% 68.0% 53.2% 53.2% 53.7% 65.6% 66.1%

Table B.4: Accuracy for the reports in the heterogeneous dataset for finding the ICD-10 region, when looking at the top 3
of most probable predictions (380 reports).
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Hamming Jaccard interval overlap1 overlap2 multiset1 multiset2
(k=3),mfu 18.4% 27.9% 17.5% 17.7% 16.6% 26.5% 27.2%
(k=3),fixed 22.7% 30.8% 23.8% 23.8% 22.9% 29.7% 29.0%
(k=3),distance 23.1% 32.2% 22.9% 23.1% 21.8% 30.8% 31.3%
(k=5),mfu 17.0% 27.9% 15.9% 15.9% 15.6% 28.6% 28.1%
(k=5),fixed 21.8% 29.3% 19.5% 20.0% 19.0% 30.2% 30.4%
(k=5),distance 22.0% 32.4% 21.8% 21.8% 22.7% 32.2% 32.4%
(k=10),mfu 21.5% 26.8% 18.1% 18.1% 20.9% 26.3% 26.8%
(k=10),fixed 20.9% 28.6% 21.1% 20.9% 20.4% 29.0% 29.3%
(k=10),distance 26.1% 32.7% 24.9% 24.9% 26.8% 33.8% 34.7%
(k=25),mfu 26.3% 28.8% 26.5% 26.3% 25.2% 26.1% 28.1%
(k=25),fixed 25.2% 31.1% 24.7% 24.5% 25.2% 31.1% 29.0%
(k=25),distance 28.8% 36.3% 31.1% 30.8% 29.7% 31.7% 33.1%
(k=100),mfu 23.8% 30.6% 23.8% 23.8% 24.3% 30.2% 29.9%
(k=100),fixed 26.8% 30.2% 26.3% 26.3% 26.5% 32.0% 30.8%
(k=100),distance 25.4% 33.6% 27.2% 27.2% 27.0% 34.0% 32.9%

Table B.5: Accuracy for the reports in the homogeneous dataset for finding the ICD-10 code, when looking at the most
probable prediction only (441 reports).
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Hamming Jaccard interval overlap1 overlap2 multiset1 multiset2
(k=3),mfu 22.2% 32.4% 21.5% 21.3% 20.2% 31.1% 31.1%
(k=3),fixed 26.3% 38.8% 26.3% 26.3% 24.7% 39.2% 39.9%
(k=3),distance 29.0% 42.0% 28.6% 28.3% 26.8% 42.0% 42.9%
(k=5),mfu 25.2% 36.5% 24.0% 24.0% 23.6% 35.6% 37.2%
(k=5),fixed 29.5% 42.4% 27.2% 27.2% 24.9% 43.8% 44.2%
(k=5),distance 32.4% 45.6% 30.2% 30.2% 30.4% 45.4% 46.3%
(k=10),mfu 32.4% 38.5% 30.2% 29.9% 32.9% 38.3% 39.0%
(k=10),fixed 32.2% 44.7% 30.8% 30.6% 29.9% 43.1% 43.3%
(k=10),distance 37.4% 47.4% 36.1% 36.1% 39.0% 46.5% 49.0%
(k=25),mfu 44.4% 46.5% 43.8% 43.5% 42.0% 43.5% 46.3%
(k=25),fixed 41.0% 47.8% 41.5% 41.3% 40.4% 46.9% 46.7%
(k=25),distance 46.9% 53.5% 47.6% 47.4% 45.8% 51.0% 52.2%
(k=100),mfu 46.5% 53.7% 48.5% 48.3% 47.2% 52.4% 52.2%
(k=100),fixed 49.7% 54.6% 47.4% 47.4% 47.6% 53.7% 54.6%
(k=100),distance 48.5% 57.6% 51.5% 51.2% 51.0% 55.3% 54.9%

Table B.6: Accuracy for the reports in the homogeneous dataset for finding the ICD-10 code, when looking at the top 3 of
most probable predictions (441 reports).
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