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Abstract

Due to its practical importance and inherent complexity, the optimization of distribution

networks for supplying drinking water has been the subject of extensive study for the

past 30 years. The optimization is governed by sizing the pipes in the water distribution

network (WDN). The pipe diameters are to be selected from a list of available commer-

cial diameters, making WDN optimization a pure discrete optimization problem. The

size of the search space is determined by the number of available diameters, raised to

the power of the number of pipes (e.g., 634, 1621). Originally being a search for the

least cost solution, subject to delivering pre-defined water demands to the consumer

nodes at a minimum required pressure, the optimization model has gradually changed

to a multiobjective scheme including objectives for reliability under mechanical failure

(e.g., pipe breakage) and hydraulic failure (e.g., increased demands). Also, robust opti-

mization schemes have been suggested, which aim for hydraulically reliable optima by

accounting for fluctuating demands at the consumer nodes. We intend to determine the

added value of the multiobjective robust approach (robust), over the basic multiobjective

model (raw). Raw and robust results, obtained using the same number of evaluations,

are both re-evaluated to approximate their robustness using 2000 randomly generated

demand samples per solution. Surprisingly, the results indicate that in terms of robust-

ness, the raw Multiobjective Evolutionary Algorithms used (NSGA-II, SMS-EMOA)

outperform their variants that explicitly include extensions for robust evaluation; the

standard extensions for robust optimization, namely the Single Evaluation Model (SEM)

and Multi Evaluation Model (MEM), were tested.
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Preface

The traditional approaches of designing water distribution networks (WDNs) by trial

and error and using “rules of thumb” are both time-consuming and likely to produce

suboptimal solutions. Motivated by reducing the high investment and maintenance costs

inherent to these systems, optimization of the design of WDNs has been the subject of

study by scientists in different fields for more than thirty years. It must be recognized

however that automated optimization can still only assist the engineer in design and that

engineering judgment and experience remains required to provide practicable solutions

[88].

In WDN optimization the water distribution backbone of a city is modeled using pipes,

nodes, and reservoirs. In this model the pipes take up a central position as it is the

selection of diameter sizes for pipe segments that governs the optimization process.

Smaller diameters are less expensive to procure, while larger diameters result in higher

water pressure at the demand nodes in the network.

The difficulty of optimizing water distribution systems is mainly due to the discrete

nature of the decision variables and the size of the search space, which can be calculated

as the number of possible discrete pipe diameters (the available commercial diameters) to

the power of the number of pipes in the network [91]. Optimal design of pipe networks

belongs to the class of large NP-hard problems [97] that are difficult to solve using

classical operational research techniques [75].

Many formal optimization techniques have been proposed for the optimal design of

WDNs. Most of these techniques have employed traditional linear and nonlinear pro-

gramming approaches, where the decision variables were assumed to be continuous [88].

Comprehensive reviews of these techniques are available, e.g., in [49]. From the mid-

nineties of the past century on, there has been a growing interest in the application of
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Evolutionary Algorithms (EAs) to the design of water distribution systems, since they

can directly handle the discrete nature of the problem [69, 76].

In the original problem formulation the design optimization was formulated as a single

objective (SO) problem with investment cost as objective and a constraint on the minimal

pressure required to be available at the consumer nodes. The constrained SO approach

has the tendency however of eliminating all capacity beyond the minimum level, as

this has no value in the model [95]. Surplus capacity at a reasonable cost is actually

of high value, because of the great deal of uncertainty in predicting future consumer

demands. Criticism on the constrained single objective model by, for instance, Walski

[95] is acknowledged by many authors (e.g., [28, 35, 38, 71]), his main points being [35]:

• it is difficult for practitioners to define objective functions and constraints;

• there should not be a single set of demands for which the system is designed;

• optimization fails to account for the fact that a total distribution system is not

built all at once;

• optimization tends to reduce costs by reducing the diameter of or completely elim-

inating pipes, thus leaving the system with insufficient capacity to respond to pipe

breaks or demands that exceed design values without failing to achieve required

performance levels.

De Neufville et al. [23] presented one of the first studies that recognized that WDN op-

timization is an inherently multiobjective problem. Formiga et al. [43] address some of

the issues listed above by approaching WDN optimization as an unconstrained multiob-

jective (MO) problem, using three objectives: Investment Cost, Demand Supply Ratio,

and System Entropy. Investment Cost was inherited from the original formulation, while

Demand Supply Ratio was included as an objective to maximize the mean nodal pres-

sure. The third objective, System Entropy, was included to increase the reliability of

the network by appreciating redundancy in the system.

Following a multiobjective approach has the potential of providing interesting solutions

that are ignored when only Investment Cost is taken into account: imagine two solutions,

one being slightly more expensive than the other but scoring better on both reliability

and mean nodal pressure. One the other hand, cost may be the prime consideration.
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The least network cost for satisfying the minimal pressure constraint in the SO model

may, for instance, exceed the available budget in developing countries [4]. Using the MO

model, suboptimal but cost-efficient solutions can be considered. Multiobjective EAs

(MOEAs), due to their general success in this arena, are becoming increasingly favored

for WDN optimization [52].

As water distribution networks are basically intended to last indefinitely, subject to

future additions and extensions, another approach has been that of maximizing the ro-

bustness of the WDN design under changing future requirements and component wear.

Pipe roughness increases over time as encrustation occurs, and nodal consumer demands

are difficult to predict since they vary over short time periods and because they are mod-

eled as lumped at single locations rather than distributed along a pipe [62]. The WDN

design can be prepared for this changing environment by optimizing over fluctuating

environmental settings such as pipe roughness and consumer demands.

This work aims at determining the added value of the Multiobjective Robust approach

(robust), over the basic Multiobjective approach (raw), using a fixed budget of evalua-

tions by the hydraulic simulator. Solutions by the raw and robust approaches can both

be tested for actual robustness of design, providing a means of comparing both models

on attained robustness levels.

This document is structured as follows:

Chapter 1 lays out the WDN optimization problem;

Chapter 2 introduces and formalizes multiobjective and robust optimization;

Chapter 3 provides multiobjective optimization methods;

Chapter 4 presents the experimental setup and the results obtained;

Chapter 5 concludes and indicates future research directions.





Chapter 1

Design Optimization of Water

Distribution Networks

Water distribution networks (WDNs) are complex and require huge investments in their
construction and maintenance. For these reasons, a need to improve their efficiency by way
of minimizing their cost and maximizing the benefit accrued from them is strongly felt [71]. In
the past, design of water distribution networks was based on experience. However, in the last
three decades, a significant number of computerized methods have been applied to WDN
optmization, ranging from linear programming, dynamic programming, and enumeration
techniques in the early years, to more recently Evolutionary Algorithms [69, 76], Tabu Search
[65, 87], Simulated Annealing [21, 86], Ant Colony Optimization [66], Harmony Search
[45], Particle Swarm Optimization [68], Shuffled Complex Evolution [64], and Dynamically
Dimensioned Search [84].

WDN optimization is driven by the selection of appropriately sized network components.
Originally approached as a single objective constrained problem considering minimization of
cost under required pressure constraint, criticism with respect to the resulting impractical
and unreliable designs [95] led to multiobjective reformulations of the problem coming into
favor, like those by Formiga et al. [43] and Prasad and Park [71]. Complementary, we have
seen stochastic approaches emerge that strive for reliability by varying loads laid on the
network [5].

Section 1.1 introduces the overall process of WDN optimization, which breaks up in three
modules: the hydraulic simulator, the objective functions, and the multiobjective optimizer.
These are then addressed in depth in Section 1.2, 1.3, and 2.1 respectively.
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1.1 Problem Definition

Provided with a network definition consisting of a fixed network layout (i.e., the arrange-

ment of the nodes and pipes) and accompanying nodal demands, we define the WDN

design optimization problem as selecting the “optimal” diameter sizes for the pipes in

the network, taken from a table of available commercial diameters. Nodal demand is the

flow of water required by one or many network users (e.g., residential, industrial, com-

mercial) at a network node [38], which is to be supplied at an adequate water pressure

[88]. WDN designs should also be prepared to carry incidental large peak flows required

for firefighting [38].

The optimal diameters are selected with regard to minimizing cost and simultaneously

maximizing reliability. Reliability is the extent to which the design is able to service

demands under mechanical and/or hydraulic failures [71]. Mechanical failures are mal-

functions of network components such as pumps, valves, and pipe breakage; hydraulic

failures are changes in demand or pressure, increased friction due to aging of the pipes

etc. [67]. In principle the network layout itself could be subjected to optimization as

well, but due to the extreme complexity involved and since largely being restricted by

the location of roads, this is mostly left out of consideration in pipe network optimization

[71].

From a reliability point of view, the largest diameter available is ideally used through-

out the network as this will cause the least friction loss in the pipes and provide the

maximum number of good alternative routes should mechanical failures occur. In our

model each pipe gets assigned a roughness coefficient determined by the construction

material used per selected diameter, indicating the resistance working on the water be-

ing transported. Concerning pipes that are made up out of the same material, larger

diameters exercise less friction than smaller ones. However, selecting maximum-sized

diameters network-wide will also be the most expensive solution available. Thus in this

work multiobjective optimization is used, with one objective function expressing cost

and two objectives introducing reliability, leading to a set of mutually non-dominated

solutions from which the civil engineer can select good compromise solutions based on

preferences regarding the objectives involved.
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In literature a distinction is made between two types of WDN design problems: design

optimization for a new network, to be built from scratch, and rehabilitation of an existing

network [33], in the form of adding new and restorating existing pipes. This work

examines both types of design problems, but with respect to rehabilitation only parallel

expansion is considered, i.e., the insertion of new pipes in the network next to operational

links.

WDN optimization as applied here is an iterative process, which can be abstracted as a

multiobjective optimization loop consisting of three main components (cf. Fig. 1.1):

1. Hydraulic simulator (cf. Section 1.2): an optimizer that solves the non-linear hy-

draulic equation system by minimizing residuals (cf. Section 1.2.4), taking as input

the network definition (i.e., network layout and nodal demands) and one of the

solutions generated by the multiobjective optimizer at a time (i.e., a list of selected

diameter per pipe), while providing flows and pressures as output (to be used as

input by the objective functions);

2. Objective functions (cf. Section 1.3): calculate the fitness of a solution expressed in

three objectives, based on the network definition, the flows and pressures received

from the hydraulic simulator (depending on the current diameter selection), and

the current diameter selection determined by the solution that is being assessed;

3. Multiobjective optimizer (cf. Section 2.1): generates new solutions, which are vec-

tors of diameter codes (the codes point to certain size, price, and roughness triples

in the table of commercial diameters), and selects the best solutions to proceed to

the next generation based on their objective function values.

In the following sections we go into depth of the three components that make up the

optimization loop.

1.2 Hydraulic Simulator

Within the optimization loop the hydraulic simulator models the WDN design it receives

as input (i.e., network definition and selected pipe diameters) consisting of various net-

work components, in the benchmark test problems studied in this work (cf. Chapter 4)
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Figure 1.1: The Multiobjective WDN Optimization Loop

limited to nodes, reservoirs, and pipes. Through solving the non-linear hydraulic equa-

tion system (cf. Section 1.2.4), it produces two kinds of output: the hydraulic heads at

the nodes and the flows in the pipes. Hydraulic head quantifies the potential energy of

the water due to elevation (and added pressure through pumping facilities) [80].

In this study the EPANET 2 simulator by Rossman [73] is used, specifically the

EPANET-Linux-1.5 port by López-Ibáñez1. Starting from a set of known hydraulic

heads at the reservoir nodes (namely: the elevation of the reservoir), it calculates the

hydraulic head at each internal node and the flow in each pipe, while compensating for

friction loss depending on the choice of diameters for the pipes. Pressure at an internal

node is attained by the relative elevation of the reservoir node, compared to the elevation

of the internal node itself.

EPANET is based on the Gradient Method by Todini and Pilati [83], and applies one

of three friction head loss formulas (cf. Section 1.2.5) for determining pressure loss

occurring in the pipes during transport. It is nowadays the de facto network solver

used at the Center for Water Systems, University of Exeter (an institute that is very

active in research on WDN optimization, publications include [5, 6, 28, 34–37, 51–

55, 71, 76, 90, 93]), as well as by many other researchers (e.g., [1, 17, 19, 45, 48, 64–

66, 84, 85, 91, 94]). EPANET uses the steady-state flow model that considers fluid

properties at all points in the network to be constant over time. Of the different hydraulic

1López-Ibáñez’ EPANET-Linux-1.5 C implementation can be obtained via http://iridia.ulb.ac.

be/~manuel/epanetlinux.html

http://iridia.ulb.ac.be/~manuel/epanetlinux.html
http://iridia.ulb.ac.be/~manuel/epanetlinux.html
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models in use, this is the biggest simplification of a real WDN, but also the least difficult

to mathematically formulate and the least expensive to solve [53].

We give the formal definition of a simulated WDN design, which is the combination

of constants determined by the network definition, values that are calculated by the

hydraulic simulator (simulator variables), and values that are set by the multiobjective

optimizer (decision variables). Furthermore, we derive the hydraulic equation system

of the steady-state flow model, address the friction head loss formula, and discuss unit

(i.e., of measurement) related technicalities.

1.2.1 Constants

The following values are immutable between different WDN designs (i.e., that are based

on the same network definition). They are not changed by the hydraulic simulator or

other components of the optimization loop.

mexist number of existing pipes in the network (needed in case of a parallel

expansion problem, else mexist = 0);

mnew number of new pipes in the network;

m total number of pipes in the network, i.e., m = mexist +mnew ;

r number of reservoir nodes in the network;

n number of internal nodes in the network;

r + n total number of nodes in the network;

Li length of pipe i;

bi begin node of pipe i;

ei end node of pipe i;

Ci roughness coefficient of pipe i, for use in the friction head loss formula (cf.

Section 1.2.5); formally not a constant for new pipes, i.e., the pipes i ∈
{mexist + 1, . . . ,mexist +mnew}, but in the examined test problems all

available diameter triples have the same roughness (cf. Chapter 4);

Zj elevation of node j ∈ {1, . . . , r + n};
Qj water demand drawn from internal nodes, i.e., the nodes j ∈

{r + 1, . . . , r + n};
pzero pressure corresponding to zero nodal water demand satisfaction;

preq pressure required to satisfy the nodal water demand completely.
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Figure 1.2: Example Network Layout
Network layout for test problem Two Loop. Tables of associated node data, pipe data,
and available commercial diameters are listed in Chapter 4.

For an illustration of constants in a network layout, see Figure 1.2.

1.2.2 Simulation Variables

The following variables are calculated or can change in the simulation of a WDN design:

pj effective pressure remaining at internal node j ∈ {r + 1, . . . , r + n};
hj hydraulic head (i.e., potential energy of the water) at node j ∈

{1, . . . , r + n}, where:

hj =





Zj j ≤ r
Zj + pj else

(1.1)

qi water flow in pipe i, from orig(i) to dest(i);

orig(i) origin of the water flow in pipe i, where:

orig(i) =





bi qi ≥ 0

ei qi < 0
(1.2)
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dest(i) destination of the water flow in pipe i, where:

dest(i) =





ei qi ≥ 0

bi qi < 0
(1.3)

1.2.3 Decision Variables

The following variables drive the optimization loop and are varied by the multiobjective

optimizer, but are fixed per WDN design:

Di selected diameter code for new pipe i ∈ {mexist + 1, . . . ,mexist +mnew},
indicating the size/price/roughness entry from the table of available commercial

diameters supplied with the (test) problem (cf. Chapter 4); for existing pipes i ∈
{1, . . . ,mexist} Di is defined as well, but cannot be varied by the optimizer.

1.2.4 Hydraulic Equation System

Two sets of equations have to be satisfied [43], the first concerning hydraulic head loss

in the pipes (i.e., pressure loss, in correspondence with the law of conservation of energy

[80]) and the second about maintaining flow continuity around the nodes (in correspon-

dence with conservation of mass [62]). Hydraulic head loss in all pipes i ∈ {1, . . . ,m} is

given by:

loss i = horig(i) − hdest(i) = Ki|qi|α (1.4)

where:

Ki resistance coefficient of pipe i, depending on pipe roughness, length, and the

selected diameter (i.e., Ki ≡ K(Ci, Li, Di)); the exact form of this coefficient is

determined by the used friction head loss formula (cf. Section 1.2.5);

α exponent of the friction head loss formula.

Flow continuity around all internal nodes j ∈ {r + 1, . . . , r + n} is defined as:

fj =
∑

i: j=dest(i)

|qi| −


 ∑

i: j=orig(i)

|qi|


−Qj = 0 (1.5)
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This rule basically means that the flow into a node must equal the flow going out of that

node.

For a set of known hydraulic heads at the reservoir nodes, the remaining heads and the

flows are sought that satisfy Equation 1.4 and 1.5. This can be done by combining these

equations and reformulating the system as a minimization problem. First, isolate |qi| in
Equation 1.4:

|qi| =
(

loss i
Ki

) 1
α

=

(
horig(i) − hdest(i)

Ki

) 1
α

(1.6)

Then, replace all occurrences of |qi| in Equation 1.5 by the righthand term of Equation

1.6:

fj =
∑

i: j=dest(i)

(
horig(i) − hdest(i)

Ki

) 1
α

−
∑

i: j=orig(i)

(
horig(i) − hdest(i)

Ki

) 1
α

−Qj = 0 (1.7)

Next we define the following system calculating the sum over all n squared errors around

zero (i.e., solves Equation 1.7 for every internal node):

r+n∑

j=r+1

(fj − 0)2 (1.8)

Now we can express the hydraulic simulator as a minimization problem solving the non-

linear equation system by minimizing residuals; a tuple of hydraulic heads at the internal

nodes j ∈ {r + 1, . . . , r + n} is sought that minimizes the sum of the n squared errors

around zero:

arg min
(hr+1,...,hr+n)∈Rn

r+n∑

j=r+1

(fj(h1, . . . , hr+n))2 (1.9)

This steady-state flow system is non-linear of order n [43], and can be solved using

iterative numerical methods such as Newton-Raphson [70] and Hardy-Cross [3]. In

EPANET the Gradient Method employs a sparse matrix method by George and Liu

[46] to solve the non-linear equation system.

Leakage of water flow in the network is an important factor from an economical stand-

point [33]. Note that Equation 1.5 assumes no flow losses due to leakage occur in the

pipes, except losses implicitly included in the nodal demands [88]. A more accurate ex-

pression would be to include a pressure-dependent leakage term ψi

(
porig(i)+pdest(i)

2

)
[89, 92]

accounting for the flow of water through pipe i not arriving at its destination node
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dest(i):

fj =
∑

i: j=dest(i)

(
|qi| − ψi

(
porig(i) + pj

2

))
−

∑

i: j=orig(i)

|qi| −Qj = 0 (1.10)

where pj is the effective pressure remaining at node j:

pj = hj − Zj (1.11)

As in EPANET the assumption of no (separate) leakage flow loss occurring is made as

well [73], we hold on to the formal definition of the hydraulic simulator given in Equation

1.9.

1.2.5 Friction Head Loss Formula

In an ideal setting, the hydraulic head remains the same at all nodes and does not

decrease during transportation of the water through the network. In a real situation

however, some potential energy of the water is converted into heat due to friction occur-

ring in the pipes, depending on pipe roughness. The friction head loss formula calculates

this pressure loss.

With EPANET we have the choice among three head loss formulas. The Hazen-Williams

formula is the most commonly used head loss formula in the United States. It cannot be

used for liquids other than water and was originally developed for turbulent flow only.

The Darcy-Weisbach formula is the theoretically most accurate. It applies over all flow

regimes (turbulent and its inverse, laminar) and to all liquids. The Chezy-Manning

formula is more commonly used for open channel flow (e.g., through rivers and canals).

[73]

In this study the widely adopted, empirically derived Hazen-Williams equation [76] is

used:

loss i = ω
Li

C α
i size(Di)β

|qi|α (1.12)

where:

ω numerical conversion constant, depending on the units used (cf. Section

1.2.6);
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α exponent taken to be 1.852 [73];

β exponent taken to be 4.871 [73];

size(Di) diameter size corresponding to diameter code Di.

The resistance coefficient Ki of pipe i (mentioned in Section 1.2.4) then becomes:

Ki = ω
Li

C α
i size(Di)β

(1.13)

Note that in the Hazen-Williams equation, the value of the pipe roughness coefficient

Ci is inversely related to the actual pipe roughness, e.g., an increase in pipe roughness

leads to a lower value of the pipe roughness coefficient Ci.

1.2.6 Units

In principle arbitrary units may be used in a test problem for each of its properties

(cf. Chapter 4). Dependences exist between certain pairs of properties however, with

the requirement of using the same unit for both. Whenever a dependency exists but

different units are used, values will have to be converted using conversion factors2. The

following dependences are to be accounted for:

• Zj ⇒





hj

Li

pzero ∧ preq ∧ pj

• qi ⇒ Qj

• size(Di) ∧ qi ⇒ ω

Per property we discriminate between the unit used in the calculation (calculation unit)

and the unit defined in the test problem (defined unit). Inputs for which dependences

exist (e.g., Li, Qj , ω) will have to be converted from the defined unit to the calculation

unit prior to calculation; outputs for which dependences exist (e.g., pj) will have to be

converted from the calculation unit to the defined unit after calculation.

2For an exhaustive listing, visit http://www.asknumbers.com

http://www.asknumbers.com
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The numerical conversion constant ω is a special input case as it is unitless. In EPANET

ω is defined as 4.727 for size(Di) in ft and qi in cfs [73]. The numerical constant can be

converted for usage with different units as follows:

ω =
convQα

convDβ
· 4.727 (1.14)

where:

convQ conversion factor from defined unit for qi to cfs;

convD conversion factor from defined unit for size(Di) to ft.

For example, when qi is expressed in m3/s and size(Di) in m (i.e., the default combina-

tion in literature for comparing used ω values [76]), ω becomes:

ω =
convQ1.852

convD4.871 · 4.727 = 10.667 (1.15)

where:

convQ = 35.31466 m3/s → cfs;

convD = 3.28083 m → ft.

1.3 Objective Functions from Related Work

We list a selection of objective functions taken from literature, concerning network cost

and network reliability. For reliability, functions are included that express the extent to

which a network design exceeds the basic requirements concerning reliability, but also

functions that express the degree by which the network is unreliable, so that the designer

can make a cost-effective trade-off.

The aim for reliable networks can have adverse effects on water quality, as oversized

distribution mains and storage tanks will have negative effects on water age due to

low flow velocity and little turnover [37]. In practice, water authorities need to satisfy

water quality criteria, in addition to delivering nodal demands at the required pressure.

However, water quality-based optimization has a much higher computational burden,
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relative to hydraulics [17]. In this work water quality is left out of consideration, hence

we do not include objectives for water quality in this overview.

Not all objective functions considered useful necessarily need to be used in the opti-

mization process. Next to the actual optimization, the design process consists of an

elaborate decision phase, in which the results of the optimization need to be analyzed

and alternatives weighed. In order to discriminate between solutions, complementary

definitions of quality can proof helpful.

1.3.1 Functions of Cost

The expenses for the main hydraulic components of the WDN are divided into investment

costs and operational costs [43]. The investment costs, which are distributed along the

useful life of the network, cover the acquisition costs and the costs of installation of the

pipes, pumps, and tanks. The operational costs depend for a significant part on energy

consumption by motor pumps [43, 48, 93].

In this study we only consider investment cost. No pumps and tanks are included in the

benchmark test problems, hence investment cost is determined by the expenses related

to procurement and installation of the pipes.

1.3.1.1 Investment Cost

Investment Cost is expressed as the lump sum needed for inserting the new pipes in the

network, priced in segments of unit length with a certain diameter [43]:

FIC =



mexist+mnew∑

i=mexist+1

price(Di)Li


→ min (1.16)

where:

price(Di) unit price of new pipe i ∈ {mexist + 1, . . . ,mexist +mnew}; the prices of

the diameter sizes are included in the table of available commercial

diameters, which is supplied with the test problem.
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1.3.2 Functions of Reliability

Whenever there is a mechanical or hydraulic failure, the internal head losses will increase

causing failure of the network. These increased head losses during failure conditions can

be met, if sufficient excess power is available for internal dissipation [71]. Furthermore,

excess capacity is valuable in case of the need to respond to increasing demands in future

years. Alternatively, when budget constraints are strict, a means is required to determine

the best less than optimal solution with respect to the actual pressures at which demands

of certain non-critical nodes are serviced. Next to these two types of pressure-related

objective functions, we include two measures of the redundancy available in the network

for countering mechanical failure.

1.3.2.1 Maximum Individual Head Deficiency

The head deficiency at node j is the extent to which the available pressure at that node

comes short of attaining the required service level preq :

deficj = (Zj + preq)− hj (1.17)

In case of multiple demand patterns (which are defined in some test problems in liter-

ature, e.g., peak-average-minimum, 24 one-hour time steps), the largest deficiency over

all patterns is selected per node [28]:

deficj = max
k∈{1,...,Ndp}

[(Zj + preq)− hj,k] (1.18)

where:

Ndp number of demand patterns;

hj,k hydraulic head at node j under demand pattern k.

Maximum Individual Head Deficiency [28, 35] is then defined as minimization of the

head deficiency at the most depressed internal node j:

FmIHD =

[
max

j∈{r+1,...,r+n}
deficj

]
→ min (1.19)
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1.3.2.2 Sum of Maximum Individual Head Deficiency

In [18] a slightly different formulation of Equation 1.19 is used, which we term Sum

of Maximum Individual Head Deficiency. Instead of dealing with the multiple patterns

within the definition of deficj , as in Equation 1.18, the sum of the Maximum Individual

Head Deficiency over all patterns is taken, based on the original Equation 1.17, and

which is to be minimized [18]:

FsmIHD =



Ndp∑

k=1

max
j∈{r+1,...,r+n}

deficj,k


→ min (1.20)

where:

deficj,k head deficiency at node j under demand pattern k (cf. Equation 1.17).

1.3.2.3 Total Head Deficit

Using Equation 1.17 or 1.18, we can express the Total Head Deficit [4, 51, 52, 55, 74]

as the sum of the head deficiencies at the internal nodes in the network, which is to be

minimized:

FtHD =




r+n∑

j=r+1

deficj


→ min (1.21)

1.3.2.4 Number of Nodes with Head Deficiency

Using Equation 1.17 or 1.18, the Number of Nodes with Head Deficiency [34, 74], to be

minimized, is given by:

FNHD =
[∣∣{deficj > 0 | j ∈ {r + 1, . . . , r + n}}

∣∣]→ min (1.22)

1.3.2.5 Minimum Surplus Head

The surplus head at node j is the excess pressure available above the required service

level preq . This surplus head indicates the available energy for dissipation during failure
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conditions and is given by:

surplusj = hj − (Zj + preq) (1.23)

Minimum Surplus Head is then defined as maximization of the surplus head at the most

depressed internal node j [71, 82]:

FmSH =

[
min

j∈{r+1,...,r+n}
surplusj

]
→ max (1.24)

1.3.2.6 Total Surplus Head

Based on Equation 1.23, Total Surplus Head is a counterpart to Minimum Surplus Head,

instead maximizing the summation of the surplus head at each internal node j [71]:

FtSH =




r+n∑

j=r+1

surplusj


→ max (1.25)

1.3.2.7 Weighted Demand Supply Ratio

Weighted Demand Supply Ratio tells us to what extent the water demand at the various

internal nodes in the network is met. In order to determine the portion of its water

demand a node is capable of servicing, a functional relationship between pressure and

water demand at a node needs to be established (cf. Figure 1.3). Let Q met
j be the

portion of the water demand met at node j [81]:

Q met
j =





0 pj < pzero

Qj

√
pj−pzero

preq−pzero pzero ≤ pj ≤ preq

Qj pj > preq

(1.26)

We can then determine the average Demand Supply Ratio [43], weighted by the nodal

demands Qj :

FwDSR =

[∑r+n
j=r+1Q

met
j∑r+n

j=r+1Qj

]
→ max (1.27)
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Figure 1.3: Functional Relationship Q met
j

Plot of Q met
j for test problem Two Loop (cf. Chapter 4), which defines pzero = 10 and

preq = 30.

1.3.2.8 Resilience Index

In [82] a Resilience Index is proposed based on the concept that the total power put into

a network is equal to the total power lost through friction plus the total power delivered

at the internal nodes to service demands [36, 37, 71]:

P in = P fric + P del (1.28)

Let supplied j be the total demand supplied by a reservoir node j ∈ {1, . . . , r}:

supplied j =
∑

i: j=orig(i)

|qi| (1.29)

The total power put into a network is then given by the sum over the products of head

and supplied demand at the reservoir nodes j ∈ {1, . . . , r}, where γ is the specific weight

of water:

P in = γ

r∑

j=1

supplied j · hj (1.30)

The total power delivered to the internal nodes j ∈ {r + 1, . . . , r + n} is given by:

P del = γ
r+n∑

j=r+1

Qj · hj = γ
r+n∑

j=r+1

Qj · (Zj + pj) (1.31)



1.3 Objective Functions from Related Work 17

The variant of P del corresponding to network-wide delivery at required pressure preq is:

P del ,req = γ

r+n∑

j=r+1

Qj · (Zj + preq) (1.32)

We can now define the Resilience Index of a network as follows:

FRI =

[
1− P fric

P fric,req

]
→ max (1.33)

Here P fric can be calculated using Equation 1.28, and P fric,req is defined analogously

based on P dem,req . Hence the aim is to minimize the total power lost through friction

P fric , effectively maximizing the total power delivered to the nodes.

1.3.2.9 Network Resilience

Maximization of surplus head alone is not sufficient for a reliable network. A branched

network with sufficient surplus head at the nodes may adjust to increased demands,

but a pipe outage will have severe consequences on the downstream nodes. Hence in

[71] Network Resilience is proposed, incorporating the effects of both surplus power and

redundancy through reliable loops. The surplus power at an internal node j is given by:

Pj = γ ·Qj · surplusj (1.34)

Reliable loops are ensured if the pipes connected to a node are not widely varying in

diameter, which we express as the uniformity unif j of a node j:

unif j =

∑
i: j=b(i)∨e(i) size(Di)

|{i : j = b(i) ∨ e(i)}| ·max[size(Di)]
(1.35)

The uniformity of a node j is taken as the sum over the diameter sizes of all pipes

connected to it (i.e., node j is connected to the beginning (j = b(i)) or the end of pipe i

(j = e(i))), divided by the number of pipes connected to j times the maximum diameter

size of such a pipe. If the pipes connected to node j all have the same diameter, or only

a single pipe is connected to j, the uniformity of j is equal to 1. If the pipes connected

to node j differ in diameter, the value of unif j is smaller than 1.
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We can now define the combined effect of surplus power and nodal uniformity, termed

nodal weighted surplus power :

Xnod
j = unif j · Pj (1.36)

For the entire network, the weighted surplus power X and maximum surplus power Xmax

are given by:

X =
r+n∑

j=1

Xnod
j (1.37)

Xmax = P in − P del ,req (1.38)

where:

P in total power put into the network, cf. Equation 1.30;

P del ,req total power delivered to the nodes corresponding to network-wide demand

delivery at preq , cf. Equation 1.32.

We then get the Network Resilience by maximizing the normalized weighted surplus

power:

FNR =

[
X

Xmax

]
→ max (1.39)

When the variables in Equation 1.33 and Equation 1.39 are substituted by the appropri-

ate terms, it can be seen that Network Resilience is equivalent to the Resilience Index,

but with surplus power at each node weighted by uniformity [71].

1.3.2.10 System Entropy

The water demand at a given internal node is ideally met using multiple different paths

to that node. The required flow should be distributed over these routes as evenly as

possible. This way, should a segment of the network fail, alternative routes exist that

could still supply a reasonable part of the demand. Let inj be the water flow transported

towards node j by the incoming pipes i connected to it (thus for reservoir nodes inj = 0):

inj =
∑

i: j=dest(i)

|qi| (1.40)
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Let IN be the sum of all incoming flows in the network:

IN =

r+n∑

j=1

inj (1.41)

Let sj be the entropy of node j, defined as:

sj =
∑

i: j=dest(i)

−|qi|
inj

ln
|qi|
inj

(1.42)

Let S be the entropy of the entire network:

S =
r+n∑

j=1

inj
IN

(sj − ln
inj
IN

) (1.43)

System Entropy is then expressed as the exponential of S, increasing the range for easier

comparison of different solutions [43]:

FSE = [expS]→ max (1.44)

1.4 Multiobjective Optimization Approach

The biggest hurdle faced in water distribution network design is predicting future de-

mands [71]. The population of the area supplied by the WDN may increase or shrink

in future years, extended periods of drought can occur. Even if these developments

could be reasonably well predicted, their exact relation to the increase or decrease of the

demands is uncertain [36]. To give an appreciation of the need of preparing for future

demand, consider the planning and construction of the New York City Third Tunnel

WDN that started in 1969 [23, 77] and is expected to be complete by 20203, a 50 years

plus horizon for the construction phase only.

Thus, a designer would like to provide as much excess head at the demand nodes as

possible, subject to monetary constraints [71], but also adhering to tolerance levels

[38]. Too high pressure increases leakage [92], component wear, and the likelihood of

encountering steady state and water hammer pipe failures. Appropriate surplus head

3Information on the current status of the New York City Third Tunnel WDN available on the NRI
Water Technology website: http://www.water-technology.net/projects/new_york/

http://www.water-technology.net/projects/new_york/
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is utilized to overcome the gain in head loss under increasing demand or other failure

conditions (cf. Section 1.1). Certain critical nodes may provide more future benefit from

excess head than others, depending on the actual changes occurring, e.g., in the demand

patterns and with respect to pipe deterioration. Contrary, a designer also wants insight

into non-critical nodes that could be supplied at a certain pressure below the required

level preq without service being impaired, providing for budgetary flexibility. From a

water network design perspective, a slight pressure deficit in some non-strategic nodes

(feeding non-sensitive users, e.g., other than hospitals, schools or firefighting hydrants)

is often outweighed by the corresponding significant cost reduction [28].

Two approaches for safeguarding reliability of a WDN design are described in literature:

through objective functions expressing reliability, next to cost, in a multiobjective opti-

mization model (deterministic model), and via the repeated evaluation of WDN designs

with varied nodal demands and pipe roughness of the existing pipes (stochastic model).

While the stochastic model generally requires more evaluations by the hydraulic simula-

tor than the deterministic model in order to converge, it has a better chance of finding

the critical and non-critical nodes in the network (i.e., the nodes that benefit most from

surplus head and suffer least from head deficiency, respectively), appreciating limited

capital resources.

In this work we aim to compare the two models for reliable WDN optimization. This

is done by running separate experiments following the deterministic and the stochastic

model. In the stochastic model, the solutions in the final result sets are tested for robust-

ness by evaluating them on a large sample set of varied environmental parameters (i.e.,

the nodal demands and roughness of existing pipes), delivering robust approximations

of the objectives depending on the environmental parameters. In the same manner, the

final result sets of the deterministic experiments can be tested for robustness as well,

which provides us with the means of comparing the results obtained using both models.

We first lay out the deterministic approach used in this study, and then discuss the

stochastic approach.

1.4.1 Deterministic Approach

The deterministic models for reliable WDN optimization encountered in literature are

multiobjective schemes applying the cost function Investment Cost (cf. Section 1.3.1)
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and an author dependent selection of the objective functions available for attaining

and/or comparing solutions on reliability (cf. Section 1.3.2). We distinguish between

the FIC , FNR approach [71] (reliability through Network Resilience, which we fill refer

to as the method Prasad) and the FIC , FwDSR, FSE approach [43] (reliability through

Weighted Demand Supply Ratio and System Entropy, which we will refer to as the

method Formiga). These two methods have in common that they express reliability in

terms of both pressure and redundancy of pipes in the network.

The two objective method Prasad accounts for hydraulic reliability through surplus

head (cf. Section 1.3.2.9), while the three objective method Formiga ignores surpluses

above the required level preq and only provides insight into the degree of fulfillment

of the total demand, based on the available nodal pressures (cf. Section 1.3.2.7). It

should be noted that when using the method Prasad, seemingly efficient in the sense

that it combines redundancy and surplus head in one objective (i.e., a smaller number

of objectives generally makes for an easier multiobjective optimization problem), it is

necessary to enforce a constraint on the nodal pressures pj , namely, pj ≥ preq [71]. We

must make sure that the nodal heads are at least at the required level, otherwise there

is the possibility of surpluses at certain nodes canceling out deficits at other nodes,

potentially leaving us with consumer nodes that are not serviced at all. The use of a

constraint however introduces discontinuities in the search space of possible solutions,

thereby increasing the difficulty of the optimization task.

Comparing the two methods concerning mechanical reliability, we find that the entropy

of a node (cf. Section 1.3.2.10) is a more convenient formulation than the nodal uni-

formity (cf. Section 1.3.2.9). First of all, nodal entropy focusses only on the incoming

flows to the consumer (i.e., internal) node in question and ignores the outgoing flows,

as they are of no particular importance to that node. On the other hand, nodal uni-

formity treats all pipes connected to a node as being of equal importance, that is, it

groups incoming and outgoing pipes together. Furthermore, although this difference is

subtle, for measuring redundancy in a network, the equal spread of the incoming water

flow over the pipes connected to a node seems more significant than the equal actual

diameter size of the pipes transporting the, possibly varying, flows to a node. Namely,

we are interested in the part of the demand that would still be serviced should one of

the incoming sources fail, and considering the remaining incoming flows is then most

straightforward.
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Resuming, method Prasad encompasses only two objective functions, where method

Formiga defines three, but the former requires enforcing a constraint on the nodal pres-

sures which introduces added complexity. Furthermore, Prasad takes surplus heads into

account where Formiga does not, but cannot be used for determining non-critical nodes

to be supplied at below required pressures, valuable from an economical point of view.

Moreover, the Prasad definition of surplus head does not take adhering to tolerance

levels into account (cf. Section 1.3.2.9). Lastly, Formiga provides a better formulation of

network redundancy. Hence, although it ignores surplus heads, in this work the uncon-

strained, three-dimensional method Formiga is adopted for the deterministic approach:

Investment Cost (FIC ), Weighted Demand Supply Ratio (FwDSR), and System Entropy

(FSE ).

1.4.2 Stochastic Approach

Stochastic WDN optimization deals with two instances of environmental uncertainty

(i.e., uncertainty related to changes in the environment, contrary to noise in the deci-

sion variables [16]). First of all, there is the inherent uncertainty in predicting future

nodal demands; secondly, pipe roughnesses can increase significantly with age depending

on the pipe material and corrosive properties of the water transported [5]. Stochastic ap-

proaches for WDN optimization can roughly be divided into two classes: methodologies

that use some analytically based technique for the propagation of uncertainties to the

simulator output values (cf. Figure 1.1) (e.g., [6, 13, 85, 90]), and methodologies that use

stochastic simulation, that is, sampling-based techniques to quantify uncertainties (e.g.,

[47, 54]). Although the sampling-based techniques are typically several orders of mag-

nitude slower than the analytical approaches, the application of stochastic simulation is

more universal and straightforward, not depending heavily on the characteristics of the

test problem being examined [5]. For this reason, we restrict ourselves to sampling-based

techniques.

We consider environmental uncertainty in the consumer demands at the nodes and in

the roughness coefficients of the existing pipes, hence the latter only concerns parallel

expansion problems. The following probability distributions are used [5, 54]:
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• consumer demands: Gaussian distribution with mean equal to the given consumer

demand, and standard deviation equal to 10% of the mean (i.e., coefficient of

variation Cv = 0.10);

• roughness coefficients of existing pipes: uniform distribution, defined on an interval

of ±10% of the given roughness coefficient.

The stochastic model is often implemented as a two-dimensional multiobjective model,

using a second objective next to Investment Cost that expresses the robustness R of a

design, as follows [54]:

R =

r+n∏

j=r+1

P (pj ≥ preq) (1.45)

Here the design robustness is defined as the probability that the pressure at all internal

consumer nodes is equal to or above the required minimum service level preq , where P

stands for that probability per node. When a sampling-based technique is used, evalu-

ating and averaging each design over N sample samples, the second objective becomes:


 1

N sample

Nsample∑

k=1

R


→ max (1.46)

In this study, we instead use a natively multiobjective robust approach, building on the

deterministic multiobjective Formiga method. Varying environmental parameters does

not influence Investment Cost (FIC ), like it remains uninfluenced in the stochastic model

described above, but in our approach the robustness of a design is expressed in terms of

the robust counterparts of Weighted Demand Supply Ratio (FwDSR) and System Entropy

(FSE ). These are obtained as the average over random samples (cf. Section 2.2), like

in Equation 1.46. An interesting property of the method Formiga is that when using

varying nodal consumer demands in combination with FwDSR, the latter effectively does

account for surplus head at critical nodes through peaks included in the random demand

samples (where it does not when applied in the deterministic approach).

1.4.3 Multiobjective Evolutionary Algorithms

In this study Evolutionary Algorithms (EAs) are applied as multiobjective optimizer.

EAs are population-based stochastic optimizers, inspired by the principles of biological
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evolution. The variants used here are specialized for multiobjective problems (cf. Chap-

ter 3). In recent years, EAs have become the standard for WDN optimization, motivated

by the fact that they can natively deal with the discrete nature of WDN optimization.

The candidate solutions, which are vectors of diameter codes, are taken as the individu-

als, where the genes are the pipes in the network and the alleles are the possible diam-

eter codes. While here only considering pipes in the WDN optimization problem, other

components can easily be added to the vectors of decision variables (i.e., individuals)

when using EAs. With regard to the stochastic approach, EAs can be straightforwardly

extended with methods for robust evaluation (cf. Section 2.2), optimizing over robust

approximations of the fitness instead. Note that instead of referring to the determinis-

tic and stochastic approach (terms commonly used in the field of WDN optimization),

we will speak of the multiobjective raw and multiobjective robust approach (the terms

common in the robust optimization field).



Chapter 2

Multiobjective Robust

Optimization

As WDN optimization is formulated as a problem involving multiple objectives, we need a
method of comparing candidate solutions using multiple, possibly conflicting, expressions of
quality. Also, a means of comparing sets of solutions found by different (runs of) a posteriori
multiobjective optimizers is required. Both topics are addressed in Section 2.1.

Furthermore, as this study aims at comparing the basic multiobjective approach with the
multiobjective robust approach of WDN optimization, robust optimization is formalized and
methods for robust evaluation of candidate solutions within the framework of an multiob-
jective optimizer are discussed in Section 2.2.

2.1 Multiobjective Optimization

When dealing with a problem that considers multiple objective functions to compare

candidate solutions on quality, we can map the objective functions to a single quality

measure, and then let the optimization algorithm search for a single best solution. This

a priori approach requires preferences to be formulated beforehand regarding the ob-

jectives involved. However, stating preferences can be a difficult task in multiobjective

optimization, especially if the knowledge about the structure of the set of optimal so-

lutions is incomplete [11]. On the other hand, by adopting the a posteriori approach,
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the decision maker postpones the final decision on preferences between conflicting objec-

tives until having been presented with a set of compromise solutions. Such sets can be

obtained by Pareto optimization [20, 24]. The aim herein is to approximate the Pareto-

optimal set that consists of all solutions that cannot be improved in any one objective

without degradation in another [99].

In [11] a formal description of Pareto optimization is given, concerning optimization of

a problem comprising nf objective functions f = (f1, . . . , fnf ), with fi : S → R for all

i ∈ {1, . . . , nf}, and S denoting the search space (or: decision space) of the problem. The

WDN benchmark test problems examined in this study have a search space S consisting

of discrete values, and involve three objective functions, one of which is to be minimized

and the rest to be maximized (cf. Chapter 1 for the definition of the WDN optimization

model, cf. Chapter 4 for the benchmark test problems). For notational clarity, but

without loss of generality, we here consider an all minimization problem, as in [11]. The

dominance relation (≺), which defines a partial order on the space of objective function

value vectors y,y′ ∈ Rnf , is then defined as:

y ≺ y′ ⇔
(
∀i ∈ {1, . . . , nf} : yi ≤ y′i

)
∧
(
∃j ∈ {1, . . . , nf} : yj < y′j

)
(2.1)

In words, y is said to dominate y′, if and only if 1) none of the objective function

values contained in y are greater than their counterpart contained in y′, 2) at least one

objective function value in y is smaller than its counterpart in y′. For decision variable

vectors x,x′ ∈ S we write:

x ≺ x′ ⇔ f(x) ≺ f(x′) (2.2)

That is, x is said to dominate x′, if and only if the objective function value vector that is

associated with it dominates the objective function value vector associated with x′. The

Pareto-optimal set M of the problem consists of the minimal elements of the dominance

relation, given by [30]:

M =
{
x ∈ S | @x′ ∈ S : x′ ≺ x

}
(2.3)

The corresponding image under f in the objective space Rnf is called the Pareto front of

the problem. Furthermore, a point in the search space (i.e., a vector of decision variables)

is called non-dominated within a set A ⊆ S if there is no point in A dominating it. Hence,

the Pareto-optimal set M consists of all points that are non-dominated in S.
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2.1.1 Hypervolume Measure

The hypervolume measure or S metric is a means to compare the result sets (i.e., sets

of decision variable vectors) of different multiobjective optimization runs, on the same

problem. It indicates the quality of the Pareto front approximation that a set of decision

variable vectors gives rise to. It rewards the convergence towards the actual Pareto front,

as well as a representative distribution of points along the front [11]. The S metric was

originally proposed by Zitzler and Thiele [101], who called it the size of dominated space

[30].

Let Λ denote the Lebesgue measure [20], then for a set A ⊆ S, the hypervolume measure

is calculated as follows [11, 30]:

S(A) = Λ

(⋃

x∈A

{
y ∈ Rnf | f(x) ≺ y ≺ yref

})
(2.4)

We see the hypervolume measure being defined as the Lebesgue measure of the union

of the hypercubes that are delimited by the reference point yref ∈ Rnf , and the images

under f of the points in A. Overlapping parts of domination cones contribute only

once (cf. Figure 2.1), the domination cone of x being defined in the objective space by

{y ∈ Rnf | f(x) ≺ y ≺ yref }.

The choice of the problem-specific reference point is arbitrary, as long as the reference

point is dominated by the image under f of each member of the problem-specific Pareto-

optimal set M (i.e., ∀x ∈M : f(x) ≺ yref ) [11]. Furthermore, an accurate calculation of

the S metric requires a normalized and positive objective space [30].

Zitzler et al. [102] state that hypervolume measure is so far the only known unary

metric that is capable of detecting that a set of decision variable vectors is not worse

than another set. In 2007, the weighted-integration hypervolume measure was proposed

as a generalization of the hypervolume measure, and shares these properties with the

original S metric [98]. Fleischer [39] proved for discrete spaces that the hypervolume

measure is maximized if and only if the set of decision variable vectors contains only

Pareto optima. On the other hand, hypervolume has some non undesirable properties

too: it is sensitive to the relative scaling of the objectives through the choice of reference

point, and to the presence or absence of extremal points in a front [15] (cf. Figure 2.2).
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improve performance of point removal methods in situations
where many solutions are eliminated from a front. Rather
than perform

∑p
i=1 m− 1 + 1 expensive hypervolume eval-

uations, the local search technique performs a larger number
of computationally cheaper hypervolume evaluations. Even
though the local search requires more individual hypervol-
ume evaluations, this method can be faster than the front
reduction method used by Emmerich et al.

1) Benefits of Search for Front Composition: When re-
ducing a front’s size we wish to find the reduced front that
maximises the hypervolume of the front. However, the use of
a greedy front reduction algorithm does not guarantee the op-
timally composed reduced front will be found. Furthermore,
calculating all possible reduced fronts is generally infeasible.
Thus other optimisation algorithms, such as a local search or
evolutionary algorithm, should theoretically achieve a better
hypervolume on some fronts.

Fig. 1. Demonstrates a situation where the greedy point removal scheme
described will fail to achieve the maximum hypervolume obtainable for the
subset of points. If the selection scheme aims to remove two thirds of the
points, then it will keep points A and F, obtaining a hypervolume of 224
rather than keeping points B and E obtaining a hypervolume of 252.

It is easy to generate an example where the greedy front
reduction scheme will not find the reduced front with the
optimal hypervolume. Figure 1 depicts an example where a
local search technique could discover a substantially better
front composition than the greedy scheme.

2) Ability to bound time taken by algorithm: We pro-
pose the use of a local search algorithm to maximise the
hypervolume obtained by a reduced front. One advantage of
this technique is that it is possible to stop the search after
a given time limit. In contrast, it is not possible to reduce
the time taken by the greedy front reduction method to less
than the time taken for one iteration. Using a local search,

a MOEA is able to optimise the composition of a front in a
time-frame that is satisfactory to a user. Additionally, if the
user is willing to allow further computation, the local search
may achieve a better front composition than other techniques
within an equivalent computation time.

3) HV Local Search: Our hypervolume front reduction
local search algorithm operates as follows:

1) Generate initial front composition.
2) Perturb the front (resulting in a modified front of the

same size).
3) Accept the new front composition as the current front

if it has a better hypervolume.
4) Repeat steps 2-4 until run-time constraint is exceeded.
We tested other search algorithms such as Simulated

Annealing and Evolutionary Algorithms and found that they
did not achieve major improvements compared to a local
search in the tested time frames.

IV. EXPERIMENTS

We evaluated the front reduction techniques on two distinct
fronts from the DTLZ[10] test suite: the spherical front
and the discontinuous front. For each front, we generated
mathematically a representative set of 10,000 points from
the (known) Pareto optimal set: then to generate a front of
size m, we sampled this set randomly. The linear front from
DTLZ gives similar results to the spherical front, and the
degenerate front gives anomalous results as its hypervolumes
can be calculated in polynomial time[9].

We also tested these techniques on randomly generated
fronts. For these fronts we generated sets of m mutually
non-dominating points in n objectives simply by generating
points with random values x, 0.1 ≤ x ≤ 10, in all objectives.
In order to guarantee mutual non-domination, we initialised
S = φ and added each point x to S only if x̄ ∪ S would
be mutually non-dominating. We kept adding points until
|S| = m.

We use the method used by Emmerich et al. where the
reference point used is calculated using the smallest indi-
vidual value in the front in each dimension. Discontinuous
and spherical fronts were cast as a minimisation problem, as
in DTLZ, while random fronts were cast as a maximisation
problem.

Firstly the greedy front reduction algorithm was run on
a diverse range of front types (varying objective functions,
numbers of objectives, numbers of points) to determine an
acceptable front composition containing half the individuals
in a front. For each of these front types, we ran the greedy
algorithm and local search on five different fronts. The
hypervolume selection local search was allowed to run for
an duration equivalent to the greedy front reduction method.
The local search was run five times on each front and these
results averaged.

All timings were performed on a dedicated 2.8GHz Pen-
tium IV machine with 512MB of RAM, running Red Hat
Enterprise Linux 3.0. All algorithms were implemented in C
and compiled with gcc -O3.
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Figure 2.1: Three-dimensional Hypervolume Example
Displayed is a maximization problem involving three objectives, with reference point
yref = (0, 0, 0). Six non-dominated individuals are indicated in the objective space by
their objective function value vectors yi. Exclusively dominated dominated hypervol-
ume per individual i ∈ {1, . . . , 6} accounts to ∆S = (∆S1, . . . ,∆S6) = (4, 2, 2, 1, 2, 4).
Total hypervolume for the set {1, . . . , 6} is the sum of the exclusively dominated hyper-
volumes plus the overlapping parts, S = (4+2+2+1+2+4)+(4+4+8)+(2+2+4) = 39.
Figure courtesy of [14].

Major pitfall of the S metric was the time complexity of the original algorithm calcu-

lating it, limiting its usefulness for large sets of points or problems with many objec-

tives: O(knf+1) [58], with k being the number of objective function value vectors in

the examined set and nf being the number of objective functions of the problem. Bet-

ter algorithms have been developed since, the current best worst-case time complexity

for nf = 3 is O(k log k) [10], and the best worst-case time complexity for nf > 3 is

O(knf/2 log k) [9].

2.1.1.1 Reference Point for WDN Optimization

For WDN optimization, the choice of a reference point and the requirement of a normal-

ized and positive objective space is handled using vectors of the worst and best possible

values per objective, respectively, given a certain WDN test problem, i.e., the Boundary

and Ideal points of the test problem. The Boundary point of a test problem yBoundTP

is calculated by selecting the most expensive pipe diameter for all new pipes in the net-

work, setting the water demand met to 0 for all internal nodes, and taking the entropy
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Figure 2.2: Choice of Reference Point
The relative value of the S metric depends upon the choice of reference point yref .
Two non-dominated sets, A = {1, 2, 3} and B = {4, 5, 6}, are displayed by their images
in the objective space {y1,y2,y3} and {y4,y5,y6}. In (a) S(A) > S(B), while in (b)
S(A) < S(B).
The importance of selecting an undisputed reference point is illustrated. For WDN
optimization, this is tackled by calculating the worst possible value per objective, given
a certain test problem. Combining these values provides us with the Boundary point
of the test problem, which can be used in normalizing the objective space and this way
effectively serves as reference point. Figure courtesy of [58].

of the network as 0:

yBoundTP =




FIC

(
D =

(
arg max

Di

[price(Di)]

)mexist+mnew

i=mexist+1

)

FwDSR

(
Qmet = (0)n

)
= 0

FSE (S = 0) = 1




(2.5)

where:

D = (Dmexist+1, . . . , Dmexist+mnew ) (2.6)

Qmet =
(
Qmet
r+1, . . . , Q

met
r+n

)
(2.7)

Furthermore, the Ideal point of a test problem yIdealTP is calculated by selecting the

least expensive pipe diameter for all new pipes in the network (i.e., no new pipes are

added in case of a parallel expansion problem), setting the water demand met equal to
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the requested demand for all internal nodes, and taking the maximum entropy of the

network by assuming the flows in all pipes equal to each other:

yIdealTP =




FIC

(
D =

(
arg min

Di

[price(Di)]

)mexist+mnew

i=mexist+1

)

FwDSR

(
Qmet = Q

)
= 1

FSE (q = (1)m)




(2.8)

where:

q = (q1, . . . , qm) (2.9)

Q = (Qr+1, . . . , Qr+n) (2.10)

The objective space is then normalized to [0, 1]nf by

yi − y IdealTP
i

y BoundTP
i − y IdealTP

i

,∀i ∈ {1, . . . , nf} (2.11)

For WDN optimization this projects the objective space onto [0, 1]3 and sets all objectives

to be minimized. The following normalized reference point yref can then be used:

y ref
i = 1 + ε, ∀i ∈ {1, 2, 3} (2.12)

Here ε is an arbitrary (small) positive value to make sure that all solutions in an examined

non-dominated set dominate the reference point, and hence contribute to the S metric

score of the set. In this study ε = 10−7 is used.

2.2 Robust Optimization

The robustness of a solution is the property of being insensitive to slight changes in the

environment, or noise in the decision variables [16]. We here focus on changes in the

environment, as the main factors involved in the robustness of a WDN design lie therein.

In many real world problems adaptation to a changing environment is not possible, e.g.,

because the environment changes too quickly, because the environment cannot be moni-

tored closely enough, or because the changes occur after the commitment to a particular

solution has been made [16]. The last is the case with WDN optimization. Therefore

one might want to take precautions and search for solutions that perform well under all
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possible future scenarios that can be expected [16]. Due to the uncertainty, the fitness

function in those cases is stochastic. Let f(x,a) be the deterministic fitness function

determining the quality of solution x in an environment a. Its stochastic counterpart,

under disturbed environment, then is f(x,α), where α is a vector of noisy environmen-

tal parameters. α is sampled from the problem-specific distribution of the variation in

the environmental parameters a, i.e., α ∼ pdf(a) [60].

In the context of robustness, a distinction is made between three fitness concepts [16]:

• raw fitness fraw : the objective function value as calculated by the original deter-

ministic objective function, i.e., fraw (x) = f(x) ≡ f(x,a);

• effective fitness feff : the robust objective function value, taken as the expected

fitness accounting for fluctuating environmental parameters, i.e., [60]:

feff (x) =

∫ ∞

−∞
f(x,α)dα (2.13)

However, for most problems it is impossible to find closed form expressions for feff

(e.g., when given in the form of a simulation model [16], as is the case with WDN

optimization), and it is commonly approximated using Monte Carlo integration

[61]:

feff (x) =
1

N sample

Nsample∑

i=1

f(x,αi) (2.14)

αi ∼ pdf(a) (2.15)

where:

N sample number of samples used for robustness evaluation, 2000 in this study;

x vector of decision variables;

αi vector of noisy environmental parameters, i.e., sample i;

pdf(a) distribution of the variation in the environmental parameters a.

• estimated fitness fest : estimation of the robust objective function value, an ap-

proximation of the effective fitness that is used during optimization by the robust

evaluation method, as calculating the effective fitness is too costly in terms of com-

putation time. The way in which the estimated fitness is calculated depends on

the robust evaluation method used.
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The concepts given above apply to the single objective optimization model, in which a

single objective function f is used for expressing solution fitness, hence the aim of robust

optimization is, considering a minimization problem [25]:

Minimize feff (x)

subject to x ∈ S



 (2.16)

They can readily be generalized to the multiobjective optimization model, with objective

functions fi with i ∈ {1, . . . , nf} expressing solution quality. The goal of multiobjective

robust optimization is, considering an all minimization problem [25]:

Minimize feff (x) = (feff
1 (x), . . . , feff

nf (x))

subject to x ∈ S



 (2.17)

2.2.1 Robust Evaluation Methods

Two straightforward robust evaluation schemes that can be applied within the (multi-

objective) optimizer to estimate the effective fitness of candidate solutions, instead of

optimizing over their raw fitness, are the Single Evaluation Model (SEM) and Multi

Evaluation Model (MEM) [61]. In SEM the estimated fitness is calculated as a single

randomly perturbed evaluation:

fest(x) = f(x,α) (2.18)

Its MEM counterpart applies Monte Carlo integration, like in the approximation of the

effective fitness, but using at least 2 samples:

fest(x) =
1

N sample

Nsample∑

i=1

f(x,αi) (2.19)

In this study, N sample = 10 is used with MEM.

With regard to MEM, in [16] it was found that de-randomizing the way different samples

within one sample set are generated is beneficial, using Latin Hypercube sampling instead

of Monte Carlo sampling (i.e., pure random sampling governed by the probability density

function). Furthermore, when using a population-based (i.e., multiset) algorithm, it
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is beneficial to use the same sample set in evaluating all the candidate solutions per

generation (i.e., round or iteration of the algorithm loop). Both approaches are used

with MEM in this study.

Concerning SEM, which evaluates candidate solutions using a single random sample of

(in the context of WDN optimization) environmental parameters, the following can be

stated [12]: due to selection (i.e., comparing and discarding of candidate solutions on,

in this case, estimated fitness), the robustness of a design is not tested with respect

to the density function pdf(a). Selection is instead driven by beneficial realizations of

the single sample α. Designs that are by chance paired with an advantageous sample

of environmental parameters will get preferred. To prevent this effect in SEM, we will

use the same single random sample of environmental parameters in evaluating all the

candidate solutions per generation.





Chapter 3

Multiobjective Evolutionary

Algorithms

Evolutionary Algorithms (EAs) are population-based (i.e., multiset) stochastic global op-
timizers. Guided by abstractions of the Darwinian principles of organic evolution (e.g.,
recombination, mutation, selection) these algorithms converge to the (supposedly) global
optima in the search space of possible solutions.

In the context of WDN optimization various multiobjective EAs (MOEAs) are applied in liter-
ature, the most popular being NSGA-II by Deb et al. [27], SPEA2 by Zitzler et al. [100], and
MOGA by Fonseca and Fleming [40]. In this study NSGA-II is used, featuring multiobjective
selection based on crowding-distance (cf. Section 3.1). SMS-EMOA by Emmerich et al. [30]
was partly derived from NSGA-II, but is centered instead around multiobjective selection
based on dominated hypervolume contribution. As SMS-EMOA was shown to outperform
NSGA-II and SPEA2 on standard two objective and three objective benchmarks (i.e., ZDT,
DTLZ) [11], it is considered in this study (cf. Section 3.2).

Next to the standard NSGA-II and SMS-EMOA, self-adaptive variants of these algorithms are
presented (cf. Section 3.3). Following [72], the self-adaptive variation operators of the Mixed-
Integer Evolution Strategy [63] are combined with the crowding-distance and hypervolume
contribution multiobjective selection schemes. For obtaining a steady state self-adaptive
SMS-EMOA, the approach of [72] is extended with ideas from Klinkenberg et al. [56].

3.1 NSGA-II

The Nondominated Sorting Genetic Algorithm II (NSGA-II) [27] is a generational MOEA

(involving parent and offspring populations of size µ) that aims at approximating the
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Pareto front for a given problem, while keeping high diversity in its result set. It builds

on three main modules:

• fast-non-dominated-sort: partitions the population Pt in fronts Fi, with index

i indicating the non-domination rank shared by all individuals contained in such

a front. The first front F1 is the actual non-dominated front, i.e., it consists of all

non-dominated solutions in population Pt at a certain generation t. The second

front F2 consists of all individuals that are non-dominated in the set Pt \ F1, i.e.,

each member of F2 is dominated by at least one member of F1. Generally, front

Fk comprises all individuals that are non-dominated if the individuals in fronts Fj
with j < k were to be removed from Pt (cf. Fig. 3.1). [11];

5

Algorithm 2 Generation of a new individual (x′′, σ′′) from
Pt in the simple (µ + λ)-ES

draw x(1), σ(1) and x(2), σ(2) randomly out of Pt

for all i ∈ {1, . . . , d} do
x′

i ← x
(1)
i or x

(2)
i

end for
σ′ ← (σ(1) + σ(2))/2
σ′′ ← σ′ · γ or σ′/γ
for all i ∈ {1, . . . , d} do

x′′
i ← x′

i + σ′′ · N(0, 1)
end for

Dealing with a single objective only (nf = 1, ng = 0), it is
reasonable to establish an order among individuals by compar-
ing the values of f1. In constrained optimization, Hoffmeister
and Sprave [37] proposed the following preference relation to
guide the search towards the (feasible) global optimal point:

x1 ≺c x2(x1 dominates x2) :⇔ (21)
g(x1) ≤ 0 ∧ g(x2) ≤ 0 ∧ f(x1) ≤ f(x2) or

g(x1) ≤ 0 ∧ g(x2) > 0 or
g(x1) > 0 ∧ g(x2) > 0 ∧ p(x1) < p(x2)

with

p(g(x)) =

ng∑

i=0

max{0, gi(x)}2.

There are many other ways to deal with constraints; how-
ever, the one suggested here is well suited for use within rank
based algorithms with metamodel assistance. It allows for an
independent modeling of constraint functions. Hence, neither
discontinuities or non-differential points are introduced, nor
are non-linear combinations of prediction terms to be handled.
This will further be discussed in section IV.

Since EA are population-based search methods, they are
also suitable for Pareto optimization for multi-objective prob-
lems (nf > 1). In Pareto optimization, a set that is dominant
with respect to the relation ≺p, defined as

x1 ≺p x2(x1 (Pareto) dominates x2) :⇔ (22)
∀i ∈ {1, . . . nf} : fi(x1) ≤ fi(x2) ∧

∃i ∈ {1, . . . nf} : fi(x1) < fi(x2)

is sought. In constrained multi-objective problems, equations
21 and 22 can be combined.

A straightforward method for adapting the (µ + λ)-EA to
Pareto-optimization is through NSGA-II [38]. The population
is first partitioned by means of non-dominated sorting (figure
4) and, then, sharing is employed (figure 5) by considering
distances between individuals of the same rank.

A comprehensive overview on this and other Pareto front
methods can be found in Deb [39] and Zitzler [40].

IV. METAMODEL-ASSISTED OPTIMIZATION

Aiming at the minimum possible number of costly evalua-
tions during the search for the optimal solution(s), black-box
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Fig. 4. Non-dominated sorting: The population is partitioned in sub-
populations of equal dominance rank. The non-dominated subset of the
population is identified and its members are given rank 1. Then, the non-
dominated set from the remaining individuals is computed and given rank 2.
This goes on until a rank is assigned to each individual.
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Fig. 5. Distance-based sorting of the Pareto front members: The circumfer-
ence of the boxes touching neighboring solutions determines their final rank.
Thus, individuals lying away from their closest neighbors are promoted.

optimization methods can incorporate metamodels in different
ways.

• The metamodel is trained at a pre-processing phase
and the optimization algorithm searches for the optimal
solution based exclusively on the metamodel; the so-
computed optimum is then evaluated by means of the
exact-costly tool, the metamodel is updated after enrich-
ing the training database and the above steps are repeated
until a convergence criterion is met. Bayesian global
optimization algorithms work in this way [41], [31].
In MAEA, the term “generation-based control” denotes
algorithms in which some generations are evaluated by
the exact tool and some other generations are evaluated
solely by the metamodel.

• In each generation (apart from the very first ones),
metamodels and exact evaluation tools are used in co-
operative manner. The evaluation of population members
does not rely entirely on the metamodel but the latter is
used to improve the efficiency of the local search steps.

Figure 3.1: Non-dominated Sorting
The population of individuals is partitioned into fronts. 13 individuals are indicated in
the objective space by their objective function value vectors. The numbers attached to
the points indicate the front that the individuals belong to, i.e., their non-domination
rank. Figure courtesy of [29].

• crowding-distance-assignment: calculates a crowding-distance value for each

individual within a certain front Fi as the difference in objective function values

between the nearest neighbors at each side of the individual, summed up over

all objectives (cf. Fig. 3.2). Extremal solutions (i.e., solutions with the smallest

and largest function values occurring within the front) are assigned an infinite

distance value, which, motivated by the pursuit of diversity, effectively preserves

them into the next generation should the front in which they are contained be

partially discarded when a new population Pt+1 is formed. [27];

• crowded-comparison operator (≺n): guides the selection process by defining a or-

dering on Pt. Each individual has two attributes, a non-domination rank and



3.1 NSGA-II 37

5

Algorithm 2 Generation of a new individual (x′′, σ′′) from
Pt in the simple (µ + λ)-ES

draw x(1), σ(1) and x(2), σ(2) randomly out of Pt

for all i ∈ {1, . . . , d} do
x′

i ← x
(1)
i or x

(2)
i

end for
σ′ ← (σ(1) + σ(2))/2
σ′′ ← σ′ · γ or σ′/γ
for all i ∈ {1, . . . , d} do

x′′
i ← x′

i + σ′′ · N(0, 1)
end for

Dealing with a single objective only (nf = 1, ng = 0), it is
reasonable to establish an order among individuals by compar-
ing the values of f1. In constrained optimization, Hoffmeister
and Sprave [37] proposed the following preference relation to
guide the search towards the (feasible) global optimal point:

x1 ≺c x2(x1 dominates x2) :⇔ (21)
g(x1) ≤ 0 ∧ g(x2) ≤ 0 ∧ f(x1) ≤ f(x2) or

g(x1) ≤ 0 ∧ g(x2) > 0 or
g(x1) > 0 ∧ g(x2) > 0 ∧ p(x1) < p(x2)

with

p(g(x)) =

ng∑

i=0

max{0, gi(x)}2.

There are many other ways to deal with constraints; how-
ever, the one suggested here is well suited for use within rank
based algorithms with metamodel assistance. It allows for an
independent modeling of constraint functions. Hence, neither
discontinuities or non-differential points are introduced, nor
are non-linear combinations of prediction terms to be handled.
This will further be discussed in section IV.

Since EA are population-based search methods, they are
also suitable for Pareto optimization for multi-objective prob-
lems (nf > 1). In Pareto optimization, a set that is dominant
with respect to the relation ≺p, defined as

x1 ≺p x2(x1 (Pareto) dominates x2) :⇔ (22)
∀i ∈ {1, . . . nf} : fi(x1) ≤ fi(x2) ∧

∃i ∈ {1, . . . nf} : fi(x1) < fi(x2)

is sought. In constrained multi-objective problems, equations
21 and 22 can be combined.

A straightforward method for adapting the (µ + λ)-EA to
Pareto-optimization is through NSGA-II [38]. The population
is first partitioned by means of non-dominated sorting (figure
4) and, then, sharing is employed (figure 5) by considering
distances between individuals of the same rank.

A comprehensive overview on this and other Pareto front
methods can be found in Deb [39] and Zitzler [40].

IV. METAMODEL-ASSISTED OPTIMIZATION

Aiming at the minimum possible number of costly evalua-
tions during the search for the optimal solution(s), black-box
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population is identified and its members are given rank 1. Then, the non-
dominated set from the remaining individuals is computed and given rank 2.
This goes on until a rank is assigned to each individual.
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Fig. 5. Distance-based sorting of the Pareto front members: The circumfer-
ence of the boxes touching neighboring solutions determines their final rank.
Thus, individuals lying away from their closest neighbors are promoted.

optimization methods can incorporate metamodels in different
ways.

• The metamodel is trained at a pre-processing phase
and the optimization algorithm searches for the optimal
solution based exclusively on the metamodel; the so-
computed optimum is then evaluated by means of the
exact-costly tool, the metamodel is updated after enrich-
ing the training database and the above steps are repeated
until a convergence criterion is met. Bayesian global
optimization algorithms work in this way [41], [31].
In MAEA, the term “generation-based control” denotes
algorithms in which some generations are evaluated by
the exact tool and some other generations are evaluated
solely by the metamodel.

• In each generation (apart from the very first ones),
metamodels and exact evaluation tools are used in co-
operative manner. The evaluation of population members
does not rely entirely on the metamodel but the latter is
used to improve the efficiency of the local search steps.

Figure 3.2: Crowding-distance Sorting
Five individuals, all belonging to the first front F1, are indicated in the objective space
by their objective function value vectors. The crowding-distance value of an individual
is determined by its nearest neighbor on each side, and individuals on the boundaries
are assigned infinite values. Hence, extremal points and points whose neighbors lie far
apart are favored. Figure courtesy of [29].

a crowding-distance value. Between two individuals with with differing non-

domination ranks, we prefer the individual with the lower rank. Otherwise, with

both individuals belonging to the same front, we prefer the individual that is lo-

cated in the lesser crowded region (i.e., with higher crowding-distance value). [27]

The main loop of NSGA-II is given in Algorithm 1. For algorithmic descriptions of pro-

cedures fast-non-dominated-sort and crowding-distance-assignment the reader is

referred to [27]. The exact order in which the operations are listed in Algorithm 1 differs

from the main loop in [27], but this is because we follow Deb’s nsga2-v1.1 implemen-

tation1.

The algorithm proceeds as follows: initially, a random parent population P0 of size µ is

generated. Objective functions values are assigned to the individuals in P0 by sequen-

tially feeding them to the project simulator (cf. Chapter 1). For the variation operators

that employ the crowded-comparison operator in generating offspring individuals at the

start of the main loop, it is necessary that the parent individuals in P0 be assigned a

non-domination rank and crowding-distance value.

1Deb’s nsga2-v1.1 C implementation can be obtained via http://www.iitk.ac.in/kangal/codes.

shtml.

http://www.iitk.ac.in/kangal/codes.shtml
http://www.iitk.ac.in/kangal/codes.shtml
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Algorithm 1 NSGA-II

1: /* Initialization */

2: P0 ← initialize(); // Initialize random population of µ individuals

3: evaluate(P0); // Evaluate individuals in initial population through simulation

4: {F1, . . . ,Fν} ← fast-non-dominated-sort(P0); // All ν fronts of P0

5: for all i ∈ {1, . . . , ν} do

6: crowding-distance-assignment(Fi); // Calc. crowd.-dist. of indiv. in Fi
7: end for

8: t← 0;

9: /* The evolution loop */

10: while not terminate do

11: Qt ← make-new-pop(Pt); // Generate µ offspring individuals by variation

12: evaluate(Qt); // Evaluate individuals in Qt through simulation

13: Rt ← Pt ∪Qt; // Combine parent and offspring populations in Rt

14: {F1, . . . ,Fν} ← fast-non-dominated-sort(Rt); // All ν fronts of Rt

15: Pt ← ∅; i← 1;

16: repeat

17: crowding-distance-assignment(Fi); // Calc. crowd.-dist. of indiv. in Fi
18: Pt+1 ← Pt+1 ∪ Fi; // Include individuals from the i-th front in Pt+1

19: i← i+ 1;

20: until (|Pt+1|+ |Fi| ≥ µ); // Add fronts until the size of {Pt+1 ∪ Fi} exceeds µ

21: sort(Fi,≺n); // Sort Fi in descend. order using crowded-comparison operator

22: Pt+1 ← Pt+1 ∪ Fi[1 : (µ− |Pt+1|)]; // Best µ elements form the new parent pop.

23: t← t+ 1; // Increment the generation counter

24: end while

The termination criterion for the evolution loop is exceedance of a certain amount of

generations, depending on the available number of evaluations (cf. Chapter 4). Bi-

nary tournament parent selection based on ≺n and problem-specific variation operators

(cf. Section 3.1.1) are used to create a child population Qt of size µ. After generating the

offspring population, it gets combined with the parent population and this 2µ set Rt is

partitioned into fronts according to non-domination rank. Following the new parent pop-

ulation Pt+1 is to be formed. Front-wise, the best µ individuals in Rt proceed to the next
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generation, a procedure in which the last front added is (potentially) partly discarded af-

ter sorting its members on crowding-distance value (cf. Fig. 3.3). To this end nsga2-v1.1

includes an instance of the 1962 Quicksort algorithm by Hoare [50], which in our case

has a time complexity of O(µ logµ). Then the generation counter is incremented, and

a new iteration starts, provided the termination criterion is not satisfied. The overall

worst-case time complexity of NSGA-II is governed by fast-non-dominated-sort, be-

ing O(µ2) for the three-dimensional WDN optimization problem [27].

Epsilon-Dominance Multi-Objective Optimization

combined into a bigger population of size 2N and this combined population is sorted
into different non-domination levels, only N good solutions are required to be chosen
based on their non-domination levels and nearness to each other (Deb et al., 2002a).
This procedure is illustrated in Figure 3. For the scenario depicted in the figure, the

   distance
   sorting

2) Crowding
sorting

 1) Non−dominated
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Figure 3: NSGA-II procedure.

first two non-dominated fronts are directly copied to the new population P (t + 1),
while all members of the third non-dominated front cannot be copied, due to lack of
available population slots. The required number of solutions (N ′) from the third front
are chosen in order to have the maximum diversity (in terms of the crowding distance)
among the chosen solutions. This is where the original NSGA-II uses a computation-
ally effective crowding procedure, described in the previous section (Figure 2). In the
clustered NSGA-II approach, we replace the crowding procedure with the clustering
approach described in Figure 1. In this procedure, the solutions in the last permissible
non-dominated level (the third front for the scenario in Figure 3) are considered for the
clustering procedure. Let us suppose that the number of population slots remaining
to be filled is N ′ and the solutions in the last permissible non-domination level from
the combined population is n′. By definition, n′ ≥ N ′. To choose N ′ solutions from
n′, we form N ′ clusters from n′ solutions and choose one representative solution from
each cluster. Ideally the solutions marked with a box in Figure 3 can be chosen as a
representative solution of each box. In this procedure, the extreme solution of each
extreme cluster can be chosen and the solution close to the center of a cluster can be
chosen from intermediate clusters. The clustering algorithm used in this study is sim-
ilar to that used in SPEA (Zitzler and Thiele, 1999). Although this requires a larger
computational time, the clustered NSGA-II is expected to find a better distributed set
of Pareto-optimal solutions than the original NSGA-II, but at the expense of a larger
computational overhead.

3.2 A Steady-State ε-MOEA

The above algorithm is a generational evolutionary algorithm in which all N popula-
tion members (offspring) are created before comparing them with parent solutions. In
the context of single-objective EAs, it has been adequately shown that computational
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1)

P(t+1)

R(t)

Figure 3.3: NSGA-II Explained
In step 1 we see the parent population Pt and offspring population Qt, combined in
Rt, going through non-dominated sorting. In generating the new parent population
Pt+1 (step 2), individuals are processed front-wise, assigning them crowding-distance
values and moving them to the new population. Enforcing the population size of µ
individuals, part of the individuals in the last front selected is discarded, governed by
crowding-distance value. Figure courtesy of [26].

3.1.1 Variation Operators for WDN Optimization

Variation for the discrete WDN optimization problem can be approached in two ways.

The decision variables are the diameter codes selected per pipe, pointing to a certain

size/price/roughness triple in the table of available commercial diameters (cf. Chapter

1). In principle, as these diameter triples are listed in increasing size and price order

(cf. Chapter 4), we could interpret the diameter codes as integers and exploit this or-

dering to guide the variation process. However, as typically only a very limited set of

diameters is available per test problem (e.g., 6–15 diameters, cf. Chapter 4), we find

that this approach is not feasible. Instead the diameter codes are regarded as nominal

values, and special nominal variation operators have been implemented for use with
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NSGA-II: nominal two-point crossover (i.e., the recombination operator) and a nominal

mutation procedure, which per nominal vector component decides whether to change it

to a uniform randomly selected new value.

3.1.2 Overview of Parameters

The configuration parameters that need to be set for NSGA-II are, when applied to

WDN optimization:

• parent population size µ: in this study µ = 100 is used;

• crossover probability: in this study 0.8 is used, which determines that two-point

nominal crossover is applied for 80% of the generated offspring, and the remaining

20% consists of direct copies of parent individuals.

The configuration parameters for NSGA-II for which fixed recommended values exist

are, when applied to WDN optimization:

• mutation rate: 1
nd

[27], where nd is the number of discrete nominal decision vari-

ables (i.e., the diameters Di to be selected for new pipes, hence nd = mnew

(cf. Chapter 1)), which means that per individual one decision variable is mu-

tated on average.

3.2 SMS-EMOA

The S Metric Selection Evolutionary Multiobjective Optimization Algorithm [11, 30] is

a steady-state MOEA (generating only one offspring individual per generation) and was

designed to cover a maximal hypervolume (also referred to as the S metric) with a

limited number of points. Extending on a combination of ideas borrowed from NSGA-II

and archiving strategies used in [59], it is founded on two pillars:

• non-dominated sorting : is used as a ranking criterion for the parent and offspring

individuals at a certain generation t (cf. Section 3.1);
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• contributing hypervolume: is applied as a selection criterion to discard the indi-

vidual from the combined parent and offspring pool Pt ∪ {qt} that contributes the

least hypervolume to the worst-ranked front Fν .

Using selection based on contributing hypervolume instead of crowding-distance is mo-

tivated among others by the observation that this makes that SMS-EMOA concentrates

on good compromise solutions with fair trade-offs, which is beneficial from a practical

point of view (cf. Figure 3.4) [30]. As opposed to NSGA-II certain kinds of divergence,

away from a non-dominated set of solutions to solutions that are strictly worse, cannot

occur within SMS-EMOA [31]. Also, the performance indicator that is used to measure

the quality of the result sets of the multiobjective optimizers (i.e., the S metric) is now

directly integrated in the optimizer algorithm itself.
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omitted, if extremal solution are to be kept anyway. Furthermore, our method
is independent from the scaling of the objective space, in the sense that the
order of solutions is not changed by multiplying the objective functions with a
constant scalar vector.

3.3 Comparison of ∆S and the Crowding Distance

The similarity of the SMS-EMOA to the NSGA-II algorithm is noticable. The
main differences between both procedures are the steady-state selection of the
SMS-EMOA in contrast to the (µ + µ) selection in NSGA-II and the different
ranking of solutions located on the same Pareto front.

We would like to compare the crowding distance measure, that functions as
ranking criterion for solutions of equal Pareto rank in NSGA-II, to the hypervol-
ume based measure ∆S . We recapitulate the definition of the crowding distance:
It is defined as infinity for extremal solutions and as the sum of side lengths of
the cuboid that touches neighboring solutions in case of non-extremal solutions
on the Pareto front. It is meant to distribute solution points uniformly on the
Pareto front. In contrast to this, the hypervolume measure is meant to distribute
them in a way that maximizes the covered hypervolume.

In figure 1 a set R of non-dominated solutions is depicted in a two dimensional
solution space. The left hand side figure shows the lines determining the ranking
of solutions in the NSGA-II. The right hand side figure depicts the same solutions
and their corresponding values of ∆S(s,R), which are given by the areas of
the attached rectangles. Note that for the crowding distance, the value of a
solution xi depends on its neighbors and not directly on the position of the
point itself, in contrast to ∆S(s,R). In both cases extremal solutions are ranked
best, provided we choose a sufficiently large reference point for the hypervolume
measure. Concerning the inner points of the front, x5 (rank 3) outperforms
x4 (rank 4), if the crowding distance is used as a ranking criterion. On the
other hand, x4 (rank 3) outperforms x5 (rank 4), if ∆S(s,R) is employed (right

(a) Crowding-distance
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omitted, if extremal solution are to be kept anyway. Furthermore, our method
is independent from the scaling of the objective space, in the sense that the
order of solutions is not changed by multiplying the objective functions with a
constant scalar vector.

3.3 Comparison of ∆S and the Crowding Distance

The similarity of the SMS-EMOA to the NSGA-II algorithm is noticable. The
main differences between both procedures are the steady-state selection of the
SMS-EMOA in contrast to the (µ + µ) selection in NSGA-II and the different
ranking of solutions located on the same Pareto front.

We would like to compare the crowding distance measure, that functions as
ranking criterion for solutions of equal Pareto rank in NSGA-II, to the hypervol-
ume based measure ∆S . We recapitulate the definition of the crowding distance:
It is defined as infinity for extremal solutions and as the sum of side lengths of
the cuboid that touches neighboring solutions in case of non-extremal solutions
on the Pareto front. It is meant to distribute solution points uniformly on the
Pareto front. In contrast to this, the hypervolume measure is meant to distribute
them in a way that maximizes the covered hypervolume.

In figure 1 a set R of non-dominated solutions is depicted in a two dimensional
solution space. The left hand side figure shows the lines determining the ranking
of solutions in the NSGA-II. The right hand side figure depicts the same solutions
and their corresponding values of ∆S(s,R), which are given by the areas of
the attached rectangles. Note that for the crowding distance, the value of a
solution xi depends on its neighbors and not directly on the position of the
point itself, in contrast to ∆S(s,R). In both cases extremal solutions are ranked
best, provided we choose a sufficiently large reference point for the hypervolume
measure. Concerning the inner points of the front, x5 (rank 3) outperforms
x4 (rank 4), if the crowding distance is used as a ranking criterion. On the
other hand, x4 (rank 3) outperforms x5 (rank 4), if ∆S(s,R) is employed (right

(b) Hypervolume Contribution

Figure 3.4: Selection Measures Compared
Six individuals, all belonging to front F1, are indicated in the objective space by their
objective function value vectors yi. Using crowding-distance, individual 5 would be
preferred over individual 4. On the other hand, ∆S(4,F1) > ∆S(5,F1). This indicates
that good compromise solutions, which are located near knee-points of convex parts
of the Pareto front, are given better ranks in SMS-EMOA than in NSGA-II. Figure
courtesy of [30].

The main loop of SMS-EMOA is given in Algorithm 2. We start from an initial popula-

tion P0 of µ individuals. Evaluation, termination, and variation proceed as in NSGA-II

(cf. Section 3.1), but using binary tournament parent selection based on non-domination

rank only. Should competing individuals share the same rank, a random choice between

them is made. Furthermore, variation generates only one offspring individual. The

reduce procedure, given in Algorithm 3, then discards the worst individual from the
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combined population Pt ∪ {qt}. This is the individual s in the last front Fν that mini-

mizes ∆S(s,Fν), which is termed the exclusive contribution of s to the hypervolume of

Fν [11]:

∆S(s,Fν) := S(Fν)− S(Fν \ {s}) (3.1)

The remaining individuals form the new parent population Pt+1, and a new iteration

starts.

Algorithm 2 SMS-EMOA

1: P0 ← initialize(); // Initialize random population of µ individuals

2: evaluate(P0); // Evaluate individuals in initial population through simulation

3: t← 0;

4: while not terminate do

5: qt ← generate(Pt); // Generate one offspring individual by variation

6: evaluate(qt); // Evaluate individual qt through simulation

7: Pt+1 ← reduce(Pt ∪ {qt}); // Select the µ best individuals

8: t← t+ 1;

9: end while

Directly using the S metric, which was originally intended as a quality measure for

comparing the results of multiobjective optimizers [101], in a selection criterion holds

drawbacks concerning running time. A new algorithm has been devised, however, that

computes the hypervolume of a three-dimensional set in O(µ logµ) [10]. Through incor-

poration of this algorithm (via the hv-1.3 implementation2 by Fonseca et al. [42]) the

worst-case time complexity of SMS-EMOA becomes O(µ2 logµ) for a three-dimensional

problem. This is still greater than the O(µ2) of NSGA-II. Moreover, the evolution

loop continuing for more generations due to the steady state model contributes signif-

icantly to a larger actual running time of SMS-EMOA compared to that of NSGA-II

(cf. Chapter 4).

2The hv-1.3 C implementation can be obtained via http://iridia.ulb.ac.be/~manuel/

hypervolume

http://iridia.ulb.ac.be/~manuel/hypervolume
http://iridia.ulb.ac.be/~manuel/hypervolume
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Algorithm 3 reduce(Q)

1: ({F1, . . . ,Fν} ← fast-non-dominated-sort(Q); // All ν fronts of Q

2: r ← arg min
s∈Fν

[∆S(s,Fν)]; // Select s ∈ Fν with lowest ∆S(s,Fν)

3: return (Q \ {r}); // Eliminate element r

3.2.1 SMS-EMOA-dp

In an attempt to improve the running time of the basic SMS-EMOA, a new variant

was contrived that applies the number of dominating points d(s,Q) as primary selec-

tion measure and hence is termed SMS-EMOA-dp [11]. The alternative selection method

is implemented through a modified reduce-dp procedure, which is given in Algorithm 4.

Algorithm 4 reduce-dp(Q)

1: (F1, . . . ,Fν)← fast-non-dominated-sort(Q); // All ν non-domin. fronts of Q

2: if ν > 1 then /* If Q contains dominated individuals (i.e., in latter front(s)): */

3: r ← arg max
s∈Fν

[d(s,Q)]; // Select s ∈ Fν with highest d(s,Q)

4: else /* If Q contains only non-dominated individuals (i.e., all in one front): */

5: r ← arg min
s∈Fν

[∆S(s,Fν)]; // Select s ∈ F1 with lowest ∆S(s,F1)

6: end if

7: return (Q \ {r}); // Eliminate element r

The value d(s,Q) stands for the total amount of individuals in the set Q that dom-

inate individual s. The d(s,Q) measure can therefore only be used to discard dom-

inated individuals. In case Pt ∪ {qt} (represented by Q in reduce-dp) contains only

non-dominated individuals (with all individuals belonging to the first front F1), the

standard ∆S(s,Fν) selection is applied. Next to the smaller runtime complexity, the

idea behind applying the d(s,Q) measure is to favor individuals located in those areas

where the better fronts are sparsely populated, potentially giving rise to new individ-

uals in later generations located exactly in those vacancies and on the better fronts

(cf. Figure 3.5) [11].

Determining the d(s,Q) values requires comparing the individuals in the last front Fν
with all individuals in the dominating fronts. However, fast-non-dominated-sort
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A modified Reduce procedure is given in Algorithm 3. The number of dominating points d(s,P(t)) is used
as selection criterion in case of dominated solutions and the contributing hypervolume DS is applied whenever
all individuals of P(t) are non-dominated. If the population consists of more than one front, the individual
with the highest d(s,P(t)) value among the solutions of the worst ranked front is discarded. Otherwise, the
d(s,P(t)) values of all individuals equal zero and the DS selection is used instead.

Algorithm 3. Reduce(Q)

1: fR1; . . . ;Rvg  nondominated-sortðQÞ /* all v fronts of Q */
2: if v > 1 then

3: r argmaxs2Rv
½dðs;QÞ� /* s 2 Rv with highest d(s,Q) */

4: else
5: r argmins2R1

½DSðs;R1Þ� /* s 2 R1 with lowest DSðs;R1Þ */
6: end if

7: return (Qn{r}) /* eliminate detected element */

One motivation for developing such a measure is the smaller runtime complexity compared to the hyper-
volume measure. Moreover, the motivation was to achieve a different ranking of dominated solutions in order
to emphasise on sparsely filled regions of the solution space. Here, individuals are kept for proceeding gener-
ations to fill gaps in the Pareto front approximation. The contributing hypervolume is applied to distribute
solutions well on the front they are lying on. Though the final purpose is to distribute solutions well on the
first non-dominated front (R1), this is not an end in itself on the other fronts. The d(s,P(t)) measure favours
solutions located in those areas, where the better fronts are sparsely populated. The idea is that emanating
offspring solutions may rise in rank to better fronts and fill those vacancies. In areas where the non-dominated
front is densely populated, it is of no use to keep dominated individuals.

The measure is visualised by means of an example in Fig. 1. The contributing hypervolume measure favours
y8 over y9 but the d(s,P(t)) measure favours y9 since there is only one dominating point. Solution y9 is obvi-
ously much more interesting because of the big vacancy between y5 and y6 on the first front.

The number of dominating points can be calculated efficiently: the selection candidates are compared with
all solutions to check the dominance. This is possible in time O(ml2), with m denoting the number of objec-
tives and l the population size. The expected runtime complexity is lower than the one of the basic SMS-
EMOA. The worst case complexity of the SMS-EMOA is the same, because the population may consist of
non-dominated solutions only. In this case, the d(s,P(t)) selection scheme is never applied. The average case
complexity is assumed to be better.
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Fig. 1. The hypervolume dominated by front R2 ¼ fy7; . . . ; y10g is light-coloured and the contributions DSðy8;R2Þ and DSðy9;R2Þ are
visualised by the attached dark rectangles. The hatched areas correspond to the regions containing points that dominate y8 or y9,
respectively. Here, d(y8,P(t)) = 4 and d(y9,P(t)) = 1, and DSðy8;R2Þ > DSðy9;R2Þ.
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Figure 3.5: Dominating Points Measure
Ten individuals are indicated in the objective space by their objective function value vec-
tors yi. The hypervolume dominated by front F2 = {7, . . . , 10} is displayed light-colored
and the hypervolume contributions of individuals 8 and 9, ∆S(8,F2) and ∆S(9,F2),
are visualized by dark rectangles attached to their objective function value vectors.
The hatched areas correspond to the regions potentially containing points that dominate
individual 8 or 9. Using dominating points selection, individual 9 would get selected over
individual 8, as d(9, Pt ∪ {qt}) = 1 < d(8, Pt ∪ {qt}) = 4. Hypervolume contribution
selection will however prefer individual 8, because ∆S(8,F2) > ∆S(9,F2). Figure
courtesy of [11].

already keeps count per individual of the number of individuals dominating it when

comparing all individuals amongst each other [27], so these values can be reused. The

worst-case time complexity of SMS-EMOA-dp equals that of the basic SMS-EMOA (as

the standard ∆S(s,Fν) selection is used if the entire population lies on one front), but

the average case complexity is assumed to be better [11].

3.2.2 Choice of Reference Point

A point for attention that applies to the S metric calculation is the choice of reference

point yref . In comparing multiple sets of points, the choice of reference point can

influence the relative ordering of the sets (cf. Chapter 2). For hypervolume contribution-

based selection however, this necessarily careful choice can be omitted by using a dynamic

reference point. As here points are compared that all belong to one set, namely the

worst ranked front Fν of the combined population Pt∪{qt}, per generation the dynamic

reference point can be taken equal to the Nadir point of Fν : the vector consisting of the

worst objective function values in Fν .

A consequence of using the Nadir point is that the extremal points in Fν (i.e., the points

containing a worst objective function value) do not contribute to the hypervolume at all
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as the product of their difference to the reference point equals zero. In [11] it is suggested

to use the worst objective function values increased by 1.0 (assuming a minimization

problem). This makes that for the hypervolume contribution, extremal points depend

solely on their remaining non-extreme objective function values, as the difference of the

extreme objective function values to the reference point equals 1.0.

Since it is straightforward to obtain the undisputed global reference point for a WDN test

problem, in this study we do not employ the dynamic scheme but use a fixed reference

point in determining the hypervolume contributions. Hypervolume calculation proceeds

as described in Chapter 2, using the Boundary and Ideal points of the test problem (i.e.,

vectors comprising, respectively, the worst and best objective function values possible

for the test problem).

3.2.3 Overview of Parameters

In order to assess the effect of the selection scheme in a controlled way, the settings of the

configuration parameters for SMS-EMOA and SMS-EMOA-dp, when applied to WDN

optimization, are chosen the same as for NSGA-II (i.e., to be set: µ = 100, crossover

probability of 0.8; fixed: mutation rate of 1
nd

(cf. Section 3.1.2)).

3.3 Mixed-Integer Evolution Strategy

Compared to other types of EAs, the Evolution Strategy (ES) stands out by using endoge-

nous mutation parameters included in each individual. Instead of applying exogenous

mutation control with a fixed mutation rate, globally for all individuals, this allows the

individuals in the population of an ES to self-adapt to their optimal setting(s) [7, 79].

An ES typically operates on real-valued individuals, i.e., candidate solutions consisting

of real-valued input parameters for the simulator or mathematical function under inves-

tigation. The Mixed-Integer Evolution Strategy (MIES) variant is specialized for working

with solutions comprising real-valued, integer, and/or discrete nominal variables [63, 72].

In this study we use MIES to optimize the discrete WDN optimization problem. Like

with NSGA-II and SMS-EMOA, instead of interpreting the decision variables as integer

values, we process them as nominal values (cf. Section 3.1.1). This is motivated by the
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limited number of commercial diameters available per test problem. Therefore only the

discrete nominal part of MIES is discussed here. For the complete listing, the reader is

referred to [63, 72].

In order to use MIES for WDN optimization it is extended with multiobjective selection

borrowed from NSGA-II and SMS-EMOA, leading to self-adaptive variants of these algo-

rithms: NSGA-II-sa and SMS-EMOA-sa. After introducing the shared MIES operators

and evolution loop in Sections 3.3.1 through 3.3.5, the specific details of NSGA-II-sa

and SMS-EMOA-sa are addressed in Section 3.3.6 and 3.3.7.

3.3.1 Representation

Individuals in MIES are tuples ~a of the following form:

~a = (. . . , ~d, . . . , ~p) (3.2)

where:

~d = (d1, . . . , dnd) nd discrete nominal decision variables;

~p = (p1, . . . , pnp) np mutation probabilities for the discrete nominal decision

variables.

The probabilities ~p are the strategy parameters of an individual and are used in the

mutation of its discrete nominal decision variables (cf. Section 3.3.4).

3.3.2 Initialization

For the µ initial individuals in population P0, the decision variable values and strategy

parameter values are obtained as follows:

~d = (di ∈ [ldi , udi ])
nd
i=1 (3.3)

~p =

(
pi = U

(
1

nd
, 0.5

))np

i=1

(3.4)

where:
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U(a, b) random number sampled from a continuous uniform distribution with lower

bound a and upper bound b;

ldi lower bound of the domain of decision variable di;

udi upper bound of the domain of decision variable di.

The decision variables in ~d are initialized uniform randomly to values in their allowed do-

mains. The upper bound of 0.5 for the probabilities in ~p is motivated by the observation

that mutation loses its causality once its application probability exceeds ca. 50% [63]. A

lower bound of 1
nd

is selected, which assures a minimum of one discrete mutation in every

application of the mutation operator. Furthermore, a setting of np = 1 is recommended.

When using a single mutation probability, for each position in the discrete subvector

~d it is decided independently whether to mutate it, but with equal probability for all

positions. Evidence that discrete nominal self-adaptation with individual stepsizes for

each nominal decision variable (i.e., np = nd) does not work properly was provided by

Schütz [78].

3.3.3 Recombination

For each to be created offspring, ρ individuals are randomly picked from the current

population Pt. Recombination is then applied to the decision variables and probabil-

ities, with the choice between two approaches: discrete recombination or intermediate

recombination. The first approach means a random parent from the ρ individuals is

chosen per variable or strategy parameter, in the second approach the ρ values are av-

eraged. The procedure is repeated λ times for generating the same number of offspring.

Discrete recombination is recommended for the decision variables, whilst intermediate

recombination is for the strategy parameters [7].

3.3.4 Mutation

The mutation operator gives MIES (and Evolution Strategies in general) the self-adaptive

properties (together with selection, i.e., λ ¿ 1 is required [56]). The endogenous strat-

egy parameters are prone to mutation, next to the decision variables, and hence to the

evolutionary process. The strategy parameters determine the distance that the mutated

decision variables will lie from the original variables in the search space. The essential
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difference between the standard ES and MIES is the extended mutation operator of the

latter.

The mutation procedure in MIES for newly generated individuals is given in Algorithm

5. First the probabilities are mutated. A new value for each decision variable is then

obtained by applying an update rule governed by the mutated accompanying probability

and the current value of the decision variable.

Algorithm 5 mutate(Qt, . . . , nd, . . . , np)

Input: {~a = (. . . , ~d, . . . , ~p) |~a ∈ Qt} // Original individuals contained in Qt

Output: {~a ′ = (. . . , ~d ′, . . . , ~p ′) |~a ′ ∈ Qt} // Mutated versions of individuals in Qt

1: /* Discrete nominal case: setup */

2: Nc ← N(0, 1); // Normally distributed random number

3: τ ← 1√
2·nd

; τ ′ ← 1√
2
√
nd

; // Global / local learning rate

4: /* Discrete nominal case: probability mutation */

5: if np = 1 then // Single probability mode

6: p′1 ← T r[1/nd,0.5]

((
1 + 1−p1

p1
· exp(−τ ·Nc)

)−1)
;

7: else // Multiple probability mode

8: for all i ∈ {1, . . . , np} do

9: p′i ←
(

1 + 1−pi
pi
· exp(−τ ·Nc − τ ′ ·N(0, 1)

)−1
;

10: p′i ← T r[1/nd,0.5](p
′
i);

11: end for

12: end if

13: /* Discrete nominal case: decision variable mutation */

14: for all i ∈ {1, . . . , nd} do

15: if U(0, 1) < p′min(np,i)
then

16: d′i ∈ [ldi , udi ] \ {di} // Choose a new value, uniformly distributed

17: end if

18: end for

In lines 1–3 we see a constant random number Nc, global learning τ , and local learning

rate τ ′ getting defined. N(0, 1) represents a random number sampled from a normal

distribution with mean 0 and standard deviation 1. These variables are used in the
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mutation of the probabilities in lines 4–12: the global factor exp(τ · Nc) allows for an

overall change of the mutability, while local factor exp(τ ′ · N(0, 1)) enables individual

changes to probabilities pi. The logistic function in line 6 and 9 ensures that increments

to the probabilities are as likely as decrements. It maps values from [0,1] to [0,1], after

which the probabilities are transformed to remain within [1/nd, 0.5]. Then in lines 13–18

the decision variables di get updated to a new value using the appropriate probability,

which is (repeatedly) the last pnp in case of nd > np, and these new values are selected

uniform randomly from the allowed domains.

To keep probabilities ~p ′ within the allowed domains, a transformation function T r[a,b](x)

is applied that reflects a value back with equal likelihood for each position within the

allowed interval [63], listed in Algorithm 6.

Algorithm 6 T r[a,b](x)

Input: x // Original value
Output: x′ // Value checked or transformed to be in [a, b]

1: y ← (x− a)/(b− a);
2: if byc mod 2 = 0 then
3: y′ ← |y − byc|;
4: else
5: y′ ← 1− |y − byc|;
6: end if
7: x′ ← a+ (b− a) · y′;

Analyzing T r[a,b](x) for an x ∈ [a, b], we see that y ∈ [0, 1], after which y′ = y (via line 3

if x 6= b, else via line 5) and thus x′ = x. Hence the transformation function does not

change an already feasible x. An x /∈ [a, b] will be reflected to a position depending on

the modulus of the remainder after substraction of a and division by b − a, in the left

or right half of the interval depending on byc mod 2.

3.3.5 Algorithm Outline

Combining its operators, the evolution loop of MIES is given in Algorithm 7. First the

initial population of size µ is generated (cf. Section 3.3.2) and evaluated by the project

simulator (cf. Chapter 1), which assigns output scores to each individual. The termi-

nation criterion for the evolution loop is, like in the basic NSGA-II and SMS-EMOA,
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exceedance of a certain amount of generations, based on the available number of evalu-

ations. The main loop starts with λ offspring being generated. If the number of parents

involved ρ is greater than 1, per offspring individual ρ parents are randomly selected

from Pt and recombined to generate it (cf. Section 3.3.3). Otherwise, if ρ equals 1, the λ

generated offspring are direct copies of a single, randomly selected parent r. This single

parent r is swapped with the individual at the first position in the parent population

Pt (SMS-EMOA-sa requires Pt[1] = r, cf. Section 3.3.7). Thus, this leaves us with λ

distinct individuals in case ρ ≥ 2, or λ equal individuals in case ρ = 1. Either way, the

λ offspring is subjected to self-adaptive mutation.

Algorithm 7 Mixed-Integer Evolution Strategy

1: P0 ← initialize(); // Initialize random population of µ individuals

2: evaluate(P0); // Evaluate individuals in initial population through simulation

3: t← 0;

4: while not terminate do

5: Qt ← generate(Pt, ρ, λ); // Generate λ offspring individuals

6: Qt ← mutate(Qt, . . . , nd, . . . , np);

7: evaluate(Qt); // Evaluate individuals in Qt through simulation

8: Pt+1 ← select(Pt, Qt); // Sel. µ ind. from Pt and Qt to form new pop. Pt+1

9: t← t+ 1;

10: end while

The select procedure is then where NSGA-II-sa and SMS-EMOA-sa come in. They

provide the multiobjective schemes to select the best µ individuals, originating from the

parent and offspring populations Pt and Qt, in order for a new iteration to start.

3.3.6 NSGA-II-sa

Self-adaptive NSGA-II (NSGA-II-sa) is a combination of self-adaptive MIES opera-

tors and multiobjective selection based on non-dominated sorting and crowding-distance

value (cf. Section 3.1). The main algorithm loop is that of MIES (given in Algoritm

7), and selection is handled by the select-NSGA procedure listed in Algorithm 8. The
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select-NSGA routine performs selection as in the basic NSGA-II (lines 13–22 of Algo-

rithm 1): the combined parent and offspring pool Rt is divided into fronts based on

non-domination, and the best ranked fronts deliver the individuals for the new parent

population Pt+1.

NSGA-II-sa is similar to the (µ+λ)-NSGA-II defined in [29, 32], but the latter is based

on a canonical ES for real-valued search spaces, where MIES-based NSGA-II-sa can be

applied to real-valued, pure integer, and mixed-integer problems.

Algorithm 8 select-NSGA(Pt, Qt)

1: Rt ← Pt ∪Qt; // Combine parent and offspring populations in Rt

2: {F1, . . . ,Fν} ← fast-non-dominated-sort(Rt); // All ν fronts of Rt

3: Pt ← ∅; i← 1;

4: repeat

5: crowding-distance-assignment(Fi); // Calc. crowd.-dist. of indiv. in Fi
6: Pt+1 ← Pt+1 ∪ Fi; // Include individuals from the i-th front in Pt+1

7: i← i+ 1;

8: until (|Pt+1|+ |Fi| ≥ µ); // Add fronts until the size of {Pt+1 ∪ Fi} exceeds µ

9: sort(Fi,≺n); // Sort Fi in descend. order using crowded-comparison operator

10: Pt+1 ← Pt+1 ∪ Fi[1 : (µ− |Pt+1|)]; // Best µ elements form the new parent pop.

11: return Pt+1;

Three variants of NSGA-II-sa were tested (cf. Chapter 4):

• NSGA-II-sa: using λ = µ as prescribed by Deb et al. [27];

• NSGA-II-sa-sp: using a fixed ρ = 1, which leads to the offspring being µ mutated

copies of a single parent (sp) per generation;

• NSGA-II-sa-sp-λ: using a fixed ρ = 1, and a user-defined number of offspring λ

(instead of a fixed λ = µ).
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3.3.6.1 Overview of Parameters

The configuration parameters that need to be set for the NSGA-II-sa variants are, when

applied to WDN optimization:

• parent population size µ: in this study µ = 100 is used;

• number of parents ρ: in this study ρ = 2 is used for NSGA-II-sa, and ρ = 1 for

NSGA-II-sa-sp and NSGA-II-sa-sp-λ;

• offspring population size λ: in this study λ = µ is used for NSGA-II-sa and NGSA-

II-sa-sp, and λ = 10 for NSGA-II-sa-sp-λ.

The configuration parameters for the NSGA-II-sa variants for which fixed recommended

values exist are, when applied to WDN optimization:

• number of mutation probabilities np: np = 1 [63], i.e., a single probability is

included in each individual (cf. Section 3.3.2);

• lower bound for mutation probabilities: 1
nd

[63] (cf. Section 3.3.2);

• upper bound for mutation probabilities: 0.5 [63] (cf. Section 3.3.2);

• recombination approach for decision variables: discrete [7] (cf. Section 3.3.3);

• recombination approach for mutation probabilities: intermediate [7] (cf. Section

3.3.3).

3.3.7 SMS-EMOA-sa

Self-adaptive SMS-EMOA (SMS-EMOA-sa) is a combination of self-adaptive MIES op-

erators and multiobjective selection based on hypervolume contribution (cf. 3.2) and

a new measure of expected hypervolume. The main algorithm loop is that of MIES

(given in Algoritm 7), and selection is handled by the select-SMS procedure listed in

Algorithm 9.

Given an offspring individual s ∈ Qt, with all offspring being derived from the same single

parent r ∈ Pt, the expected hypervolume S̃(s, r, Pt) is the hypervolume dominated by
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the set consisting of current population Pt and offspring individual s, while excluding

the single parent r from Pt:

S̃(s, r, Pt) := S({Pt \ {r}} ∪ {s}) (3.5)

Maximization of the expected hypervolume is used to perform a pre-screening on the λ

generated offspring, returning one individual that serves as the single offspring qt at a

certain generation t, such that the steady state model of the basic SMS-EMOA is effec-

tively preserved. Parent r is excluded from the S̃ calculations because the offspring are

likely to be similar to it. If r were included, we would end up comparing each offspring

s with r, instead of the offspring against each other.

Algorithm 9 select-SMS(Pt, Qt)

1: r ← Pt[1]; // Retrieve the single parent of the λ offspring

2: /* Select offspring individual s ∈ Qt which leads to the highest exp. S metric */

3: qt ← arg max
s∈Qt

[S̃(s, r, Pt)];

4: Pt+1 ← reduce(Pt ∪ {qt}); // Select the µ best indiv. from Pt and offspring qt

5: return Pt+1;

This approach of using self-adaptation with a single parent, multiple offspring, and pre-

screening to maintain the steady state model of SMS-EMOA was derived from [56],

where it is called (µ+ (1, λ))-SMS-EMOA+sa. It may seem elaborate, but in order for

self-adaptive mutation to work, it is required that more than one offspring individual be

created per generation (i.e., λ > 1). Here we use pre-screening governed by S̃(s, r, Pt)

instead of a pre-screening filter based on Kriging as in [56]. Generally, expected hy-

pervolume is more straightforward to apply than Kriging, as S̃ is entirely based on the

hypervolume measure. Choices concerning reference point are inherited. Another differ-

ence between SMS-EMOA-sa and (µ+ (1, λ))-SMS-EMOA+sa is, like with NSGA-II-sa

and (µ+λ)-NSGA-II (cf. Section 3.3.6), that the former is based on MIES and the latter

on a canonical ES.

Note that select-SMS requires the single parent used to generate the offspring to be

at a pre-specified position in the datastructure used to implement Pt (e.g., position
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1), which is taken care of in the generate procedure (cf. Algorithm 7). After applying

S̃(s, r, Pt) pre-screening, the reduce routine is employed. As in SMS-EMOA, we have the

choice between reduce based solely on hypervolume contribution (cf. Algorithm 3), and

reduce-dp combining hypervolume contribution with the dominating points measure

(cf. Algorithm 4). This gives rise to two self-adaptive variants of SMS-EMOA: SMS-

EMOA-sa and SMS-EMOA-sa-dp, the latter employing self-adaptation and dominating

points selection.

3.3.7.1 Overview of Parameters

The configuration parameters that need to be set for SMS-EMOA-sa and SMS-EMOA-

sa-dp are, when applied WDN optimization:

• parent population size µ: in this study µ = 100 is used;

• offspring population size λ: in this study λ = 10 is used.

The configuration parameters for SMS-EMOA-sa and SMS-EMOA-sa-dp for which fixed

recommended values exist are, when applied to WDN optimization:

• number of mutation probabilities np: np = 1 [63], i.e., a single probability is

included in each individual (cf. Section 3.3.2);

• lower bound for mutation probabilities: 1
nd

[63] (cf. Section 3.3.2);

• upper bound for mutation probabilities: 0.5 [63] (cf. Section 3.3.2);

• recombination approach for decision variables: discrete [7] (cf. Section 3.3.3);

• recombination approach for mutation probabilities: intermediate [7] (cf. Section

3.3.3);

• (number of parents ρ: required to be fixed at ρ = 1, i.e., the SMS-EMOA-sa model

is based on the mutation of a single parent).



Chapter 4

Experiments

A recurring set of problems is commonly used to test and compare methods tailored for
WDN optimization. Test problems Two Loop and Hanoi deal with the design of a new
water distribution network, while New York City is a parallel expansion problem. These
benchmark problems feature a high level of abstraction, involving only the primary network
components, and a single pattern of demands. Next to a higher number of pipes and nodes,
more realistic problems include tanks, mechanical pumps, and disinfection facilities that have
to be calibrated. Furthermore, the optimization is to be performed over multiple demands
patterns, for instance peak-average-minimum or 24 one-hour time steps.

Only the three relatively simple problems are optimized in this work, in order to allow for
a comparison between the multiobjective raw and robust model using multiple different
methods applying these models. The focus of this work is primarily on the comparison of
algorithms and models, and less on problem complexity. First the three test problems are
defined in Section 4.1 through 4.3, followed by descriptions of other more complex problems
in Section 4.4, then the experimental setup is discussed in Section 4.5, and finally the results
of the multiobjective raw and multiobjective robust experiments are given and analyzed in
Section 4.6 and 4.7.

4.1 Two Loop

Two Loop is a fictional network, defined in 1977 by Alperovitz and Shamir [2], and

has a relatively low complexity. The problem is to determine the optimal design for

a new water distribution network, i.e., there is no existing infrastructure. The Two

Loop network layout consists of 8 pipes, 6 nodes, and one reservoir (cf. Figure 4.1).

No pumping facilities are used, the internal nodes are fed by gravity. 14 commercial
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are used in the present work in order to compare the results 
obtained in this study with those published in the literature. 
Following the work of Savic and Walters [28], the maximum 
and minimum values of α covering the range of published 
values are chosen for both designs which are equal to 10.5088 
and 10.9031 respectively for Q in m3/h, and D in centimeters 
(= 8.439 ×105, and 8.710 ×105 respectively for Q in ft3/s, and 
D in inches). Besides another values of α which are the same 
values as used in the original works of each problem are also 
used for split-pipe design. As results, five solutions are to be 
obtained from each problem. 

A. Two-Loop Network 
The two-loop network, as shown in Fig. 3, was first 

introduced by Alperovits and Sharmir [1]. The network 
consists of eight pipes, seven nodes, and two loops. The 
network is fed by gravity from a constant head reservoir at the 
first node. The system is to supply water to meet the required 
demand and to satisfy minimum pressure head at each node. 
Fourteen sizes of commercial pipe are available for the 

network and each of them has its own unit cost. The Harzen-
Williams coefficient is fixed at 130 for all pipes. The basic 
data necessary for the optimization are given in the paper of 
Alperovits and Sharmir [1]. 

The solutions for the two-loop network taken from the 
literature are given in Table 1. Note that solutions of the 
continuous diameter design are not chosen, as they are not 
practicable in reality. SA performed for several runs with 
different seed numbers for the pseudorandom generator using 
different sets of parameters. For water distribution network 
problem, choices of parameters are really hard tasks. 
Appropriate parameter values are very difficult to define. The 
effect of changing values of each parameter on the 
performance of SA cannot be distinguished clearly. Moreover, 
the objective function values obtained from each solution are 
not converted into the same direction unlike those obtained 
from solutions of reservoir operation (Tospornsampan et al. 
[31]). However, the values of parameters T0, α, σ, and Lt that 
seem to work well for the problem are ranged from 10-100, 
0.9-0.95, 0.1-0.25%, and 500-1000 respectively. The best 
solutions obtained by SA in this study are shown in Table 2. 
The optimal pressure heads corresponding to those solutions 
are shown in Table 3. Though the convergence cannot be 
derived, SA produced very satisfactory results. Many good 
solutions that are better than or comparable to those in the 
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Fig. 3 Two-Loop Network  

TABLE 1 
PREVIOUS SOLUTIONS OF TWO-LOOP NETWORK 

Authors Fitting αa Cost (units) Solution 
Alperovits and Shamir (1997) 10.6792 479,525.00 Split-pipe
Goulter et al. (1986) 10.9031 435,015.00 Split-pipe
Kessler and Shamir (1989) 10.6792 417,500.00 Split-pipe
Eiger et al. (1994) 10.5088 402,352.06 Split-pipe
Loganathan et al. (1995) 10.6792 403,657.00 Split-pipe
Savic and Walters (1997) 10.5088 419,000.00 Single 
Savic and Walters (1997) 10.9031 420,000.00 Single 
Cunha and Sousa (1999) 10.5088 419,000.00 Single 
Cunha and Ribeiro (2003) 10.5088 419,000.00 Single 

a For Q in m3/h, and D in centimeters 
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Figure 4.1: Two Loop Network Layout
Figure courtesy of [86].

diameters are available, sharing the same Hazen-Williams roughness coefficient (i.e., all

diameters are made from the same material). The search space of Two Loop consists of

148 = 1.48 × 109 possible solutions (i.e., the number of available commercial diameters

raised to the power of the number of pipes in the network). The maximum nodal

pressure leading to zero demand satisfaction pzero is taken to be 10 m 1 and the pressure

required for full demand satisfaction preq is 30 m. Node data is given in Table 4.1, pipe

data in Table 4.2, and the commercial diameters are listed in Table 4.3. Two Loop

defines diameter sizes size(Di) in inch and demands qi in m3/h. This combination is

not available in EPANET (i.e., the hydraulic simulator used, cf. Section 1.2), so the

combination of qi in m3/h and size(Di) in mm was used. The diameter sizes were

converted from inch to mm prior to calculation (as prescribed in Section 1.2.6) using a

conversion factor of 25.4.

Table 4.1: Two Loop Node Data

Node Elevation Demand
(m) (m3/h)

1 210 (reservoir)
2 150 100
3 160 100
4 155 120
5 150 270
6 165 330
7 160 200

Table 4.2: Two Loop Pipe Data

Pipe Begin End Length
Node Node (m)

1 1 2 1000
2 2 3 1000
3 2 4 1000
4 4 5 1000
5 4 6 1000
6 6 7 1000
7 3 5 1000
8 5 7 1000

1Value communicated in 2008 by Klebber Formiga, Federal University of Gois (UFG) to have been
used in [43].
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Table 4.3: Two Loop Diameters

Diam. Size Price H-W
Code (in.) (m−1) coef.

0 1 2 130
1 2 5 130
2 3 8 130
3 4 11 130
4 6 16 130
5 8 23 130
6 10 32 130
7 12 50 130
8 14 60 130
9 16 90 130

10 18 130 130
11 20 170 130
12 22 300 130
13 24 550 130

4.2 Hanoi

Test problem Hanoi concerns the water distribution trunk layout that was to be realized

in Hanoi, Vietnam, first published in 1990 by Fujiwara and Khang [44]. Like with Two

Loop, the optimal design for a new water distribution network is to be determined.

The network layout consists of 34 pipes, 31 nodes, and one reservoir, organized in three

loops (cf. Figure 4.2). No pumping facilities are considered. 6 commercial diameters are 

 

is more than 11% of its total pipe lengths. In fact, SA 
produced many good solutions with different combinations of 
pipe segments, the designer may choose the solutions that are 
practicable though their costs may be little more expensive 
than the best but less realistic ones. The solutions thus 
obtained show that SA has produced significant improvement 
in solutions and that the least cost solution found in this study 
is the lowest-cost solution yet presented in the literature for 
the Hanoi network. 

C. New York City Water Supply Network 
The data of the New York City water supply tunnels is 

taken from Quindry et al. [25], Fujiwara and Khang [11] and 
Dandy et al. [7]. The configuration of the network, as shown 
in Fig. 5, consists of 21 pipes, 20 nodes, and 2 loops. The 
work is to construct additional gravity flow tunnels parallel to 
the existing system to satisfy the increased demands at the 
required pressures. Sixteen sizes of diameters (including none 
pipe) are available and the cost of each pipe i with diameter Di 

and length Li is calculated from iii LDC ××= 24.11.1  in 

which cost is in dollars, diameter is in inches, and length is in 
feet. Although the cost function is used to calculate the 
investment cost for this problem, the unit cost of each pipe has 
been transformed into discrete values and is given in Dandy et 
al. [7]. In the present work, the discrete values of unit costs 
are used. The Harzen-Williams coefficient for this problem is 
assumed at 100 for all existing and new pipes. 

Previous solutions of the New York City water supply 
network obtained from the literature are shown in Table 7. 
The lowest cost design was found in the work of Fujiwara and 
Khang [11]. Unfortunately their solution was proved to be 
clearly infeasible (Loganathan et al. [18]; Dandy et al. [7]; 
Savic and Walters [28]). Therefore the feasible least cost 
solution of this problem is that of Savic and Walters [28], 
which is derived from the single pipe design.  

For this problem, the same sets of parameters were used as 
well but good solutions could be obtained easier than that of 
the Hanoi network. The best solutions obtained from SA are 
shown in Table 8. The optimal pressure heads corresponding 
to those solutions are shown in Table 9. The best solutions of 
the single pipe design obtained in the present study are as 
same as those obtained from Savic and Walters [28] and 
Cunha and Sousa [5]. The least cost of split-pipe design 
obtained from SA using the lower limit of α = 843900 is less 
than the least cost solutions of Savic and Walters [28] and 
Cunha and Ribeiro [6] which were derived from the single 
pipe design. The solution of split-pipe design obtained from 
SA using α = 851500 is very close to that obtained from 
Loganathan et al. [18] but the solution of Loganathan et al. 
[18] is found to be slightly infeasible but it is only marginal. 
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Fig. 3 Hanoi Network  

TABLE IV 
 PREVIOUS SOLUTIONS OF HANOI NETWORK  

Authors Fitting αa Cost ($ milliion) Solution 
Fujiwara et al. (1990, 1991) 10.5088 6.320 Split-pipe 
Sonak and Bhave (1993) 10.5088 6.046 Split-pipe 
Eiger et al. (1994) 10.5088 6.027 Split-pipe 
Savic and Walters (1997) 10.5088 6.073 Single 
Savic and Walters (1997) 10.9031 6.195 Single 
Cunha and Sousa (1999) 10.5088 6.056 Single 
Cunha and Ribeiro (2003) 10.5088 6.056 Single 

a For Q in m3/h, and D in centimeters 

International Journal of Computer, Information, and Systems Science, and Engineering Volume 1 Number 3
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Figure 4.2: Hanoi Network Layout
Figure courtesy of [86].
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Table 4.4: Hanoi Node Data

Node Elevation Demand
(m) (m3/h)

1 100 (reservoir)
2 0 890
3 0 850
4 0 130
5 0 725
6 0 1005
7 0 1350
8 0 550
9 0 525

10 0 525
11 0 500
12 0 560
13 0 940
14 0 615
15 0 280
16 0 310
17 0 865
18 0 1345
19 0 60
20 0 1275
21 0 930
22 0 485
23 0 1045
24 0 820
25 0 170
26 0 900
27 0 370
28 0 290
29 0 360
30 0 360
31 0 105
32 0 805

Table 4.5: Hanoi Pipe Data

Pipe Begin End Length
Node Node (m)

1 1 2 100
2 2 3 1350
3 3 4 900
4 4 5 1150
5 5 6 1450
6 6 7 450
7 7 8 850
8 8 9 850
9 9 10 800

10 10 11 950
11 11 12 1200
12 12 13 3500
13 10 14 800
14 14 15 500
15 15 16 550
16 17 16 2730
17 18 17 1750
18 19 18 800
19 3 19 400
20 3 20 2200
21 20 21 1500
22 21 22 500
23 20 23 2650
24 23 24 1230
25 24 25 1300
26 26 25 850
27 27 26 300
28 16 27 750
29 23 28 1500
30 28 29 2000
31 29 30 1600
32 30 31 150
33 32 31 860
34 25 32 950

available, sharing the same Hazen-Williams roughness coefficient. The search space of

Hanoi consists of 634 = 2.87 × 1026 possible solutions. pzero is taken to be 15 m 2 and

preq is 30 m. Node data is given in Table 4.4, pipe data in Table 4.5, and the commercial

diameters are listed in Table 4.6. Like with Two Loop, the diameter sizes were converted

from inch to mm prior to calculation using a conversion factor of 25.4.

2Value communicated in 2008 by Klebber Formiga, Federal University of Gois (UFG) to have been
used in [43].
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Table 4.6: Hanoi Diameters

Diam. Size Price H-W
Code (in.) ($/m) coef.

0 12 45.73 130
1 16 70.40 130
2 20 98.39 130
3 24 129.33 130
4 30 180.75 130
5 40 278.28 130

4.3 New York City

Test problem New York City was first examined in 1969 by Schaake and Lai [77] and

is about the rehabilitation of the primary water distribution system of the city of New

York. The problem is to determine the optimal design for additions to the then-existing

system of water supply tunnels, reinforcing the network by constructing tunnels parallel

to the existing tunnels (i.e., parallel expansion). Because of age and increased demands

the existing gravity flow tunnels were found to be inadequate to meet the pressure

requirements (at nodes 16, 17, 18, 19, and 20) for the projected consumption level [76].

The existing network layout consists of 21 pipes, 19 nodes, and one reservoir (cf. Figure

4.3). All existing 21 pipes are considered for duplication, using arbitrary diameters

for the new pipes, to be selected from 15 commercial diameters with an equal Hazen-

Williams roughness coefficient of 100. Accounting for the extra “do nothing” option,

the search space of New York City consists of 1621 = 1.93 × 1025 possible solutions.

The existing pipes have an Hazen-Williams roughness coefficient of 100 as well3. pzero

is taken to be 50 ft, which is equal to the 15 m used for Hanoi, and preq is 93 ft, equal

to 40 psi as reported in [23]. Node data is given in Table 4.8, pipe data in Table 4.9,

and the commercial diameters are listed in Table 4.7, taken from [22].

3One would expect the existing pipes to have an increased roughness caused by corrosion, which
would be reflected in a lower Hazen-Williams roughness coefficient (cf. Section 1.2.5) than of the new
pipes. Furthermore, certain pipes are likely to have been worn out more than others, depending on
the stress exercised by the actual flow of water. The robust (or stochastic) WDN optimization model
accounts for this issue (cf. Section 2.1).
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The least cost solution found in this study is the lowest-cost 
solution yet published in the literature for the New York City 
water network.  

VI. CONCLUDING REMARKS 
The heuristic-based SA has been developed and applied to 

optimize the least cost design of water distribution networks. 
The new procedure of the split-pipe design that obtained from 
the discrete diameter design using SA has been presented. The 
model was applied to the three well-known networks 
appearing in the literature: the two-loop network, the Hanoi 
network, and the New York City water network. Both 
solutions of the single pipe design and the split-pipe design 
were obtained using different values of head loss coefficients. 
They are compared with those published in the literature. 

SA provides very satisfactory solutions. The least cost 
solutions of all test networks obtained in this study are the 
lowest-cost solutions yet presented in the literature. It is 
proved from the present work that the least cost design of 
water distribution network is obtained from the split-pipe 
design because the solutions of the split-pipe design always 
produce lower costs than those obtained from the single pipe 
design when the same value of α is used. Though some 
solutions of the split-pipe design are less realistic, the designer 
can choose an appropriate one that is practicable as SA 
provides many good solutions with different combinations of 

pipe sizes and lengths.  
Results obtained from these applications prove that SA is 

flexible and has ability to effectively handle an optimization 
of a complex water distribution network in which the 
continuous diameter design, the single pipe design and the 
split-pipe design can be formulated. Significant advantage of 

TABLE VI 
OPTIMAL PRESSURE HEADS FOR HANOI NETWORK 

SA 1 
(Single) 

SA 2 
(Single) 

SA 3 (Split-
pipe) 

SA 4 (Split-
pipe) 

SA 5 (Split-
pipe) 

α a=10.5088 α a=10.9031 α a=10.5088 α a=10.6823 α a=10.9031

 
Link 

Min. 
Head 
Req. 
(m) Head (m) Head (m) Head (m) Head (m) Head (m) 

1 100 100.00 100.00 100.00 100.00 100.00 
2 30 97.17 97.08 97.18 97.12 97.08 
3 30 62.00 60.82 62.24 61.37 60.82 
4 30 57.23 55.92 58.06 56.54 56.39 
5 30 51.32 49.85 52.89 50.55 50.90 
6 30 45.07 43.45 47.50 44.22 45.17 
7 30 43.61 41.94 46.26 42.74 43.85 
8 30 41.85 40.14 44.85 40.96 42.33 
9 30 40.44 38.70 41.52 39.54 40.54 

10 30 39.40 37.64 38.34 38.49 37.08 
11 30 37.85 36.05 36.80 36.50 35.48 
12 30 34.43 34.86 34.16 34.32 34.30 
13 30 30.24 30.56 30.02 30.06 30.00 
14 30 35.49 33.69 30.33 34.59 31.66 
15 30 33.44 31.64 30.01 32.59 30.64 
16 30 30.36 30.91 30.82 30.57 30.86 
17 30 30.51 32.58 40.30 31.79 39.17 
18 30 44.29 48.97 51.45 47.56 50.00 
19 30 55.90 54.18 58.55 57.28 57.12 
20 30 50.89 49.57 51.30 50.20 49.58 
21 30 41.58 40.02 34.70 36.91 31.42 
22 30 36.42 34.74 30.04 31.67 30.13 
23 30 44.73 43.39 45.26 44.04 43.40 
24 30 39.03 37.66 39.75 38.35 37.94 
25 30 35.34 33.99 36.20 34.69 34.49 
26 30 31.44 30.39 31.47 31.00 30.90 
27 30 30.15 30.18 30.42 30.03 30.09 
28 30 39.12 38.00 39.50 38.53 36.53 
29 30 30.21 30.01 30.01 30.07 30.01 
30 30 30.47 30.51 30.15 30.45 30.00 
31 30 30.75 30.82 30.42 30.67 30.48 
32 30 33.20 31.73 32.72 32.48 32.48 
a For Q in m3/h, and D in centimeters 
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Fig. 5 New York City Water Network 

TABLE VII 
PREVIOUS SOLUTIONS OF NEW YORK CITY WATER SUPPLY NETWORK 

Authors Fitting αa Cost ($ milliion) Solution 
Morgan and Goulter (1985) 851500 38.9 Split-pipe 
Morgan and Goulter (1985) 851500 39.2 Single 
Fujiwara et al. (1990) None 36.6 Split-pipe 
Loganathan et al. (1995) 851500b 38.04 Split-pipe 
Dandy et al. (1996) 851500 38.8 Single 
Savic and Walters (1997) 843900 37.13 Single 
Savic and Walters (1997) 871000 40.42 Single 
Montesinos et al. (1999) 851500 38.8 Single 
Cunha and Ribeiro (2003) 843900 37.13 Single 

a For Q in ft3/s, and D in inches 
b Slightly infeasible 
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Figure 4.3: New York City Network Layout
Figure courtesy of [86].

Table 4.7: New York City Diam-
eters

Diam. Size Price H-W
Code (in.) ($/ft) coef.

0 36 93.5 100
1 48 134 100
2 60 176 100
3 72 221 100
4 84 267 100
5 96 316 100
6 108 365 100
7 120 417 100
8 132 469 100
9 144 522 100

10 156 577 100
11 168 632 100
12 180 689 100
13 192 746 100
14 204 804 100
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Table 4.8: New York City Node
Data

Node Elevation Demand
(ft) (ft3/s)

1 300 (reservoir)
2 162 92.4
3 162 92.4
4 162 88.2
5 162 88.2
6 162 88.2
7 162 88.2
8 162 88.2
9 162 170.0

10 162 1.0
11 162 170.0
12 162 117.1
13 162 117.1
14 162 92.4
15 162 92.4
16 167 170.0
17 179.8 57.5
18 162 117.1
19 162 117.1
20 162 170.0

Table 4.9: New York City Pipe
Data

Exist.
Pipe Begin End Length Diam.

Node Node (ft) (in.)

1 1 2 11600 180
2 2 3 19800 180
3 3 4 7300 180
4 4 5 8300 180
5 5 6 8600 180
6 6 7 19100 180
7 7 8 9600 132
8 8 9 12500 132
9 9 10 9600 180

10 11 9 11200 204
11 12 11 14500 204
12 13 12 12200 204
13 14 13 24100 204
14 15 14 21100 204
15 1 15 15500 204
16 10 17 26400 72
17 12 18 31200 72
18 18 19 24000 60
19 11 20 14400 60
20 20 16 38400 60
21 9 16 26400 72

4.4 Other Test Problems

Other test problems of which the definition is publicly available are Apulia [47], Anytown

[96] and EXNET [34]. The first is a medium-size municipal network in Apulia (Southern

Italy), gravity-fed, and with a single demand pattern. It consists of one reservoir, 23

internal nodes, 34 pipes, and 9 available diameters, making the search space of size

934 = 2.78 × 1032. The Anytown WDN was set up as a realistic benchmark and has

features and problems typical of those found in many real systems, such as sizing and

locating of pumps and tanks, and 5 demand patterns [36]. The EXNET is another

artificial benchmark that includes real system features, such as tank sizing, operation

schedules for pumps, and pipe rehabilitation decisions. It was published by the Center

for Water Systems (CWS), University of Exeter (cf. Section 1.2) and inspired by the

New York City and Anytown WDNs. It aims at clear definition of decision variables,

objective functions, and constraints.



62 Chapter 4 – Experiments

A recurring problem in CWS publications, but of which the definition is not publicly

available, is the BW network (North of UK) [28, 51, 55]. It spans over approximately 39

kilometers. Though BW is gravity-fed and only involves sizing of pipes under a single

pattern of demands, it has a large number of network components: 535 internal nodes

and one reservoir, connected by 632 pipes. Together with the 20 commercial candidate

pipe diameters, this gives rise to a search space of 20632 = 1.78× 10822.

4.5 Experimental Setup

The aim of this study is to compare the basic multiobjective approach (raw) and the

multiobjective robust approach (robust) for WDN optimization (cf. Chapter 1). In a

first stage raw experiments were performed to determine the best raw NSGA-II and

SMS-EMOA variant (cf. Chapter 3). These best raw variants were then extended with

the robust evaluation methods SEM and MEM (cf. Chapter 2) for running the robust

experiments. By determining the hypervolume based on effective fitness (Seff ) of the

result sets obtained by the raw and robust experiments, we are able to compare the raw

and robust approach for WDN optimization in terms of robustness of the found sets of

solutions.

General settings used in all experiments are:

• parent population size µ of 100;

• 20,000 evaluations by the hydraulic simulator, i.e., of candidate solutions;

• 30 runs per algorithm variant, motivated by the assumption that mean values and

standard deviations evaluated on, at least, 30 samples are sufficiently statistically

reliable [8].

For the algorithm variants’ specific configuration parameters, refer to Chapter 3.

The results of the raw experiments are compared using the hypervolume measure or

S metric. For calculation of the S metric in the context of WDN optimization, refer

to Chapter 2. The results of the robust experiments and best raw experiments are

compared using hypervolume based on the effective fitness of the solutions in the result

sets (i.e., their robust objective function values). The effective fitness of a solution is



4.5 Experimental Setup 63

approximated using Monte Carlo integration over 2000 samples of randomly generated

environmental parameters (cf. Section 2.2). In order to make a clear distinction between

the hypervolume based on raw fitness and the hypervolume based on effective fitness,

these are denoted by Sraw and Seff , respectively. A comparison with results of the

experiments performed in this work and those found in literature is not possible, as the

problem formulation Formiga (cf. Chapter 1) used in this study is not applied by other

authors than Formiga et al. [43]. Furthermore, Formiga et al. [43] used an extended

set of available commercial diameters for test problem Hanoi, and a different hydraulic

simulator.

Next to these hypervolume values, three-dimensional attainment surface plots are used

to compare the result sets, which represent Pareto front approximations of the problem

being optimized. An attainment curve (in case of two objectives) or attainment surface

(for three objectives) [41] is a boundary in the objective space separating those points

that are dominated by at least one of the objective function value vectors in a Pareto front

approximation, from those that no objective function value vector dominates or equals

[57]. This boundary is “the family of tightest goals known to be attainable as a result of

the optimization run” [41]. A two-dimensional example of an attainment surface is shown

in Figure 4.4. The concept of an attainment surface is closely related to the hypervolume

dominated by an approximation set, where the dominated hypervolume is bounded on

one side by the attainment surface of the approximation set, and a reference point on

the other side. However, in order to scale up the differences between the attainment

surface plots, the range of each axis is determined by the extremal values occurring

per test problem, taken over all result sets per problem, instead of using the reference

point that lies (much) further away from the approximation sets in the objective space.

For an example of an attainment surface plot of a WDN result set, see Figure 4.5. In

this plot the best solution found by the constrained single objective approach of WDN

optimization is indicated. For the best single objective (SO) solution per test problem

we adopt the following three solutions:

• Two Loop: 420,000 units, found in 1997 by Savic and Walters [76];

• Hanoi: 6.195 million dollar, found in 1997 by Savic and Walters [76];

• New York City: 38.8 million dollar, found in 1993 by Murphy et al. [69].
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Figure 1. Interpolating an approximation set
is easy to do but is ‘dangerous’ and incorrect

generates points (distributed on a grid), and lying on sum-
mary attainment surface � .

The rest of the paper is organized as follows. Section 2
revisits the concept of an attainment surface and demon-
strates its advantages by comparing some 2-d plots of points
from runs of an optimizer with plots of the associated at-
tainment surfaces. Section 3 goes on to recall the definition
of summary attainment surfaces and how these can be com-
puted from sampling lines. Section 4 constitutes the original
contribution of this paper. It gives a the new algorithm for
computing grids of points on a summary attainment surface
and derives the computational complexity of this algorithm.
Section 5 gives more examples of the use of the method, in-
cluding figures of 3-d attainment surfaces, and discusses the
correct interpretation of these plots. Section 6 concludes.

2 Attainment surfaces

Much of the description given in the following two sec-
tions follows closely the presentation in the original at-
tainment surfaces paper of [1], and is included here as a
‘memory-refresher’.

The output of a single run of a multiobjective optimizer
— an approximation set — on a two-objective minimization
problem, is plotted in Fig. 1. It is tempting to interpolate the
points obtained with a smooth curve, as shown in the plot,
and conclude that this should be the shape of the underly-
ing true Pareto front. Or, if not this, then to conclude that
the curve is what has been attained in this particular run of
the optimizer. Of course, everyone familiar with Pareto op-
timization should be clear that neither of these is a safe or
correct interpretation of the approximation set. However,
although it is not correct to interpolate the points with a
smooth line, one can replace the points by a boundary, and
usefully so; it is in fact possible to ‘draw a boundary in the
objective space separating those points that are dominated

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

m
in

im
iz

e 
f2

(x
)

minimize f1(x)

Figure 2. An attainment surface is the family
of tightest goals that has been attained by the
approximation set defining it

by or equal to at least one of the data points, from those that
no data point dominates or equals’ [1]. Such a boundary
is called an attainment surface, and one is shown in Fig. 2.
This boundary is ‘the family of tightest goals known to be
attainable as a result of the optimization run’ [1].

Importantly, by exchanging the plot of the (approxima-
tion set) points only, with the plot of the attainment sur-
face, it is much easier to identify ‘gaps’ in the distribution
of points — thus the attainment surface emphasises the dis-
tribution achieved, as well as indicating the quality of the
individual points.

Another advantage of attainment surfaces over simply
plotting points comes when we want to display the outcome
of multiple runs of one or more optimizers. Usually, plots
showing several runs are confusing and misleading because,
once again, the eye is tempted to interpolate between points,
or worse, just finds it impossible to pick out the points of
one run from those of another. For illustration, see Fig. 3.
Plotting the same data using attainment surfaces again em-
phasizes gaps in the different runs of the optimizer(s) more
easily, making it much easier to interpret results correctly,
as shown in Fig. 4. (It is true that both Fig. 3 and Fig. 4
would benefit from colour, but the attainment surfaces plot
would benefit the more).

Moreover, plots of multiple attainment surfaces yield
two further important boundaries. There is a region above
and to the right of all attainment surfaces (region 1 in
Fig. 4); the boundary of this region (which is generally
made up of different sections of the different attainment sur-
faces) is the set of goal vectors that has been attained in ev-
ery single run of the optimizer(s). For a single optimizer,
each point on this surface (independently) is therefore an
estimate of a goal that is attained in the worst case (i.e. it
visualizes worst-case performance). Similarly, there is a re-
gion below and to the left of all surfaces (region 2 in Fig. 4),

Figure 4.4: Attainment Curve Explained
The attainment curve of a two objective Pareto approximation set is the family of
tightest goals that has been attained by the approximation set defining it. Figure
courtesy of [57].

Figure 4.5: Attainment Surface Example
Example of an attainment surface defined by a Pareto front approximation set, for
test problem Hanoi. The surface displayed belongs to the test run scoring best on raw
hypervolume, which was found by method SMS-EMOA-sa-dp.
The axes are labeled by the three objective functions defined in the multiobjective
problem formulation Formiga: Investment Cost (FIC ), Weighted Demand Supply Ratio
(FwDSR), and System Entropy (FSE ) (cf. Chapter 1). The best single objective solution
known is indicated by its Investment Cost, to provide a course notion of the quality of
the set and for easier comparison with the other approximation sets for Hanoi.
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Though nowadays the constrained single objective approach is increasingly viewed to fall

short for WDN optimization [95], work nevertheless continues on the SO optimization

of the Two Loop, Hanoi, and New York City WDNs [45, 64, 66, 68, 84, 86, 87, 91].

New optimal results appear in literature, although it is sometimes not clear what value

was used for the Hazen-Williams numerical conversion constant ω in obtaining these

results. By leading to less calculated friction head loss, application of a lower ω value

allows for finding cheaper feasible solutions. Generally the new solutions only improve

slightly on Investment Cost as compared to the SO solutions listed as being optimal

here, which were confirmed feasible [76] (i.e., all nodal heads satisfying the minimum

pressure requirement) when evaluated with an ω value greater than or at least equal to

what is used in this study (cf. Section 1.2.6).



66 Chapter 4 – Experiments

4.6 Raw Results

The hypervolume scores of the raw experiments are given in Table 4.10, and box plots

summarizing these results are displayed in Figure 4.6. Furthermore, attainment surface

plots of the median, best, and worst Pareto front approximations per algorithm variant

and test problem combination can be found in Appendix A.
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Figure 4.6: Raw Results Overview
The box plots summarize the Sraw values (i.e., hypervolume based on raw fitness) of
the 30 result sets obtained per method. NS-II is short for NSGA-II, and SMS for
SMS-EMOA.

In our search for the best performing NSGA-II and SMS-EMOA variant, NSGA-II-sa-sp-

λ (self-adaptive NSGA-II, all offspring from a single parent per generation, and λ = 10

offspring individuals per generation) and SMS-EMOA-sa (self-adaptive SMS-EMOA)

are the clear winners. For all three test problems holds that NSGA-II-sa-sp-λ outper-

forms the other NSGA-II variants with > 99% significance, except for NSGA-II-sa-sp on

Two Loop, determined by a pairwise two-sample t-test assuming equal variances. SMS-

EMOA-sa outperforms outperforms all other methods tested, including the NSGA-II
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Table 4.10: Raw Hypervolume Results
Mean and standard deviation, and median of the Sraw values (i.e., hypervolume based
on raw fitness) of the 30 runs performed per tested NSGA-II and SMS-EMOA variant
are listed. Furthermore, based on the mean, the rank per algorithm type (AR) and
rank per test problem (TR) are listed. The software4 by Fonseca et al. [42] was used
for calculating the hypervolume.

Test Problem Algorithm Mean Std Median AR TR

Two Loop NSGA-II 0.748438 0.001922 0.747851 3 5
NSGA-II-sa 0.708046 0.011563 0.709782 4 8
NSGA-II-sa-sp 0.760933 0.001324 0.760995 2 4
NSGA-II-sa-sp-λ 0.761546 0.001310 0.761550 1 3

SMS-EMOA 0.748337 0.001960 0.748399 3 6
SMS-EMOA-dp 0.747895 0.001843 0.747742 4 7

SMS-EMOA-sa 0.765659 0.000341 0.765669 1 1
SMS-EMOA-sa-dp 0.765439 0.000401 0.765457 2 2

Hanoi NSGA-II 0.178945 0.026828 0.180552 3 7
NSGA-II-sa 0.130188 0.021982 0.125960 4 8
NSGA-II-sa-sp 0.373131 0.027302 0.376562 2 4
NSGA-II-sa-sp-λ 0.397358 0.010801 0.398622 1 3

SMS-EMOA 0.180601 0.023370 0.177832 4 6
SMS-EMOA-dp 0.188012 0.024251 0.184540 3 5

SMS-EMOA-sa 0.443710 0.013909 0.447712 1 1
SMS-EMOA-sa-dp 0.441277 0.018282 0.444481 2 2

New York City NSGA-II 0.316234 0.002415 0.315725 4 6
NSGA-II-sa 0.324274 0.001985 0.324190 3 5
NSGA-II-sa-sp 0.337591 0.008835 0.338253 2 4
NSGA-II-sa-sp-λ 0.353746 0.006000 0.353331 1 3

SMS-EMOA 0.301042 0.009771 0.303275 3 7
SMS-EMOA-dp 0.299845 0.009292 0.302286 4 8

SMS-EMOA-sa 0.356271 0.005514 0.356497 1 1
SMS-EMOA-sa-dp 0.354156 0.006459 0.352706 2 2

variants, with > 99% significance, except for SMS-EMOA-sa-dp (97%, 44%, 82%) and

NSGA-II-sa-sp-λ on New York City (91%). To provide insight into the scale of the differ-

ences in hypervolume, the median attainment surfaces of the worst and best performing

method per test problem are displayed in Figure 4.7. Comparing the mean and median

hypervolume score per test problem and method combination in Table 4.10, we see that

these values lie very close to each other for all combinations. Therefore, one could argue

that the median Pareto front can be seen as the expected front per combination.

Comparing the NSGA-II and SMS-EMOA variants that use the basic, non-self-adaptive

variation operators (i.e., NSGA-II, SMS-EMOA, SMS-EMOA-dp, cf. Section 3.1.1), we

4http://iridia.ulb.ac.be/~manuel/hypervolume

http://iridia.ulb.ac.be/~manuel/hypervolume
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see equal results for Two Loop and Hanoi, while NSGA-II performs better on New York

City. These results are typical, in the sense that SMS-EMOA outperforms NSGA-II

on artificial benchmarks [11], and that the SMS-EMOA-sa variants steadily outperform

the NSGA-II-sa variants. Hereby note that the best NSGA-II-sa variant, NSGA-II-sa-

sp-λ, employs exactly the same scheme as SMS-EMOA-sa: self-adaptation, all offspring

per generation are mutated copies of a single parent individual, and λ offspring are

created per generation. The only point where the methods differ is in the multiobjective

selection they apply: non-dominated sorting and crowding distance ranking, versus non-

dominated sorting and hypervolume-based ranking.

Furthermore, results show that using the dominating points (dp) scheme with SMS-

EMOA variants generally causes a (slight) decrease in performance. However, an ex-

pected runtime improvement was the prime motivation for considering the dp scheme.

The average running time per algorithm and test problem combination is given in Ta-

ble 4.11. Nevertheless, using dp as primary selection measure in SMS-EMOA does not

seem to speed up the algorithm either, at least in the context of WDN optimization.

Comparing NSGA-II and NSGA-II-sa, it can be seen that the self-adaptive variation

scheme slows down the algorithm. For SMS-EMOA and SMS-EMOA-sa holds the op-

posite, which is explained by the fact that the standard SMS-EMOA uses a steady-state

scheme in which only one offspring evaluated per generation, while SMS-EMOA-sa gen-

erates 10 offspring per generation (of which 9 are discarded in the pre-screening phase,

Table 4.11: Running Time of Raw Experiments
Per test problem and algorithm combination, the mean and standard deviation of the
running time of the 30 runs per combination is given in seconds. The experiments were
performed on a AMD Athlon64 X2 1.80 GHz machine with 2,00 GB of memory, running
Cygwin 1.7 on a 64-bit version of Windows 7, and using the gcc-4.4.2 compiler.

Algorithm Two Loop Hanoi New York City
Mean(s) Std(s) Mean(s) Std(s) Mean(s) Std(s)

NSGA-II 6.8 1.2 13.1 1.4 12.7 1.0
NSGA-II-sa 15.0 1.4 20.5 1.1 19.7 1.3
NSGA-II-sa-sp 16.9 3.2 19.8 1.5 19.3 1.2
NSGA-II-sa-sp-λ 91.2 10.2 97.8 9.2 93.9 7.3

SMS-EMOA 399.4 16.9 453.4 13.6 443.4 20.1
SMS-EMOA-dp 404.9 18.0 471.9 25.4 431.3 18.7
SMS-EMOA-sa 76.0 3.4 93.1 3.7 92.4 3.6
SMS-EMOA-sa-dp 76.5 6.2 82.5 6.7 76.6 1.8
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(a) Two Loop – NSGA-II-sa: Sraw = 0.709782 (b) Two Loop – SMS-EMOA-sa: Sraw = 0.765669

(c) Hanoi – NSGA-II-sa: Sraw = 0.125960 (d) Hanoi – SMS-EMOA-sa: Sraw = 0.447712

(e) New York City – SMS-EMOA-dp:
Sraw = 0.299845

(f) New York City – SMS-EMOA-sa:
Sraw = 0.356271

Figure 4.7: Median Raw Fronts Compared
Per test problem, of the worst and best performing method, the attainment surface
belonging to the median Pareto front approximation found is displayed. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness.

effectively preserving the steady-state scheme). This leads to a shorter evolution, involv-

ing less selection phases in which solutions need to be compared for some to be discarded.

This also explains the greater average running time of NSGA-II-sa-sp-λ compared to the

other NSGA-II variants: it evaluates 10 offspring individuals per generation, contrary

to 100 for the other variants.
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4.7 Robust Optimization Results

The hypervolume scores based on effective fitness of the robust optimization experiments

are given in Table 4.12, and box plots summarizing these results are displayed in Figure

4.8. Furthermore, attainment surface plots of the median, best, and worst Pareto front

approximations per algorithm variant and test problem combination can be found in Ap-

pendix B. Like with the raw results, the mean and median effective hypervolume scores

per combination are very close, supporting the assumption that the median Pareto front

is regarded as the expected front.
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Figure 4.8: Robust Results Overview
The box plots summarize the Seff values of the 30 result sets obtained per method
(i.e., hypervolume based on effective fitness of the solutions per result set). The robust
objective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. NS-II is short for NSGA-II,
and SMS for SMS-EMOA.
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Table 4.12: Robust Hypervolume Results
Mean and standard deviation, and median of the Seff values (i.e., hypervolume based
on the effective fitness of the solutions in a result set) of the 30 runs performed per
tested NSGA-II and SMS-EMOA variant (of which some include the robust evaluation
extensions SEM and MEM) are listed. The robust objective function values (i.e., the
effective fitness) have been approximated using Monte Carlo integration with a sample
set size of N sample = 2000. Furthermore, based on the mean, the rank per algorithm
type (AR) and rank per test problem (TR) are listed. The software5 by Fonseca et
al. [42] was used for calculating the hypervolume.

Test Problem Algorithm Mean Std Median AR TR

Two Loop NSGA-II 0.730225 0.004681 0.731287 3 6
NSGA-II-sa-sp-λ 0.738226 0.007041 0.739726 1 2
NSGA-II-sa-sp-λ-SEM 0.697023 0.089143 0.731093 4 7
NSGA-II-sa-sp-λ-MEM 0.736560 0.003886 0.736773 2 3

SMS-EMOA 0.732935 0.003505 0.733188 2 4

SMS-EMOA-sa 0.739309 0.007167 0.740761 1 1
SMS-EMOA-sa-SEM 0.689947 0.081256 0.729341 4 8
SMS-EMOA-sa-MEM 0.730682 0.003300 0.730963 3 5

Hanoi NSGA-II 0.118880 0.015350 0.114375 4 7
NSGA-II-sa-sp-λ 0.247061 0.015868 0.250803 1 2
NSGA-II-sa-sp-λ-SEM 0.185937 0.044410 0.190709 2 3
NSGA-II-sa-sp-λ-MEM 0.149747 0.018552 0.150106 3 4

SMS-EMOA 0.118010 0.012854 0.117908 4 8

SMS-EMOA-sa 0.267140 0.014514 0.268071 1 1
SMS-EMOA-sa-SEM 0.138262 0.031694 0.137554 2 5
SMS-EMOA-sa-MEM 0.127311 0.010882 0.126873 3 6

New York City NSGA-II 0.316082 0.002419 0.315273 3 5
NSGA-II-sa-sp-λ 0.353171 0.005990 0.352729 1 2
NSGA-II-sa-sp-λ-SEM 0.353027 0.005494 0.352249 2 3
NSGA-II-sa-sp-λ-MEM 0.289590 0.006901 0.290292 4 7

SMS-EMOA 0.300786 0.009754 0.302985 3 6

SMS-EMOA-sa 0.355450 0.005530 0.355717 1 1
SMS-EMOA-sa-SEM 0.352061 0.004451 0.350776 2 4
SMS-EMOA-sa-MEM 0.277086 0.007321 0.275752 4 8

Contrarily to what would be expected, the raw methods NSGA-II-sa-sp-λ and SMS-

EMOA-sa outperform their variants that explicitly include extensions for safeguarding

robustness of results. For all three test problems raw SMS-EMOA-sa outperforms almost

all other methods listed with > 99% significance concerning Seff , except for NSGA-II-

sa-sp-λ on Two Loop (44%) and New York City (86%), NSGA-II-sa-sp-λ-SEM on Two

Loop (98%) and New York City (90%), and NSGA-II-sa-sp-λ-MEM on Two Loop (92%).

5http://iridia.ulb.ac.be/~manuel/hypervolume

http://iridia.ulb.ac.be/~manuel/hypervolume
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In an attempt to determine the cause behind these results, a comparison is made between

what the optimizer regards as the fitness of its solutions, and what is the actual effective

fitness of those solutions. Concerning problem Hanoi, the result set of the best raw run

with respect to raw fitness, the result set of the best SEM run with respect to estimated

fitness, and the result set of the best MEM run with respect to estimated fitness are

analyzed in Figure 4.9. SEM seems to suffer from the strong effect of positive outliers in

(a) SMS-EMOA-sa: Sraw = 0.461406 (b) SMS-EMOA-sa: Seff = 0.283808

(c) SMS-EMOA-sa-SEM: Sest = 0.629417 (d) SMS-EMOA-sa-SEM: Seff = 0.090773

(e) NSGA-II-sa-sp-λ-MEM: Sest = 0.231888 (f) NSGA-II-sa-sp-λ-MEM: Seff = 0.203025

Figure 4.9: Supposedly Best Fronts Analyzed
To visualize the difference in the fitness seen internally by the optimizer (raw fitness
for raw methods, estimated fitness for SEM/MEM extended methods) and the actual
effective fitness, the best runs for test problem Hanoi with respect to “internal” fitness
are displayed. Hypervolume based on raw fitness is denoted by Sraw , hypervolume
based on estimated fitness by Sest , and hypervolume based on the effective fitness by
Seff . Investment Cost does not depend on the varying environmental parameters, unlike
Weighted Demand Supply Ratio and System Entropy.
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the estimated fitness, caused by biased generations in which all individuals get coupled

with a beneficial sample of environmental parameters. These individuals are preserved

in the population throughout the optimization because of the elitist MOEAs used, i.e.,

all but some individuals continue to a new generation. MEM on the other hand seems to

fall behind because of the high evaluation cost per individual: each candidate solution

is evaluated over 10 samples of environmental parameters, compared to a single fixed

set of environmental parameters for the raw method. Although its implementation of

estimated fitness delivers values close to the actual effective fitness, MEM requires more

evaluations in order to converge than the raw method.

Note that for the more difficult test problems Hanoi and New York City, the SEM ex-

tended methods do outperform basic NSGA-II and SMS-EMOA concerning Seff . Initial

results of experiments based on more evaluations show that the ordering between SMS-

EMOA-sa and the methods including extensions for robust evaluation still holds, at

least when using 100,000 evaluations. In literature however (much) larger numbers of

evaluations with WDN optimization are not uncommon for problems Hanoi and New

York City, using two objective optimization models (e.g., 250k [52], 1M [54], 2M [71]).

The average running time per algorithm and test problem combination is given in Table

4.13. Apparently generating a random sample of environmental parameters each gen-

eration slows the optimizer down in case of SEM. This should hold to a greater extent

for MEM as well, but is nullified by the shorter evolution, caused by the factor 10 more

evaluations used per generation.

Table 4.13: Running Time of Robust Optimization Experiments
Per test problem and algorithm combination, the mean and standard deviation of the
running time of the 30 runs per combination is given in seconds. The experiments were
performed on a AMD Athlon64 X2 1.80 GHz machine with 2,00 GB of memory, running
Cygwin 1.7 on a 64-bit version of Windows 7, and using the gcc-4.4.2 compiler.

Algorithm Two Loop Hanoi New York City
Mean(s) Std(s) Mean(s) Std(s) Mean(s) Std(s)

NSGA-II 6.8 1.2 13.1 1.4 12.7 1.0
NSGA-II-sa-sp-λ 91.2 10.2 97.8 9.2 93.9 7.3

NSGA-II-sa-sp-λ-SEM 97.6 1.2 136.0 4.3 130.7 1.2
NSGA-II-sa-sp-λ-MEM 12.5 1.3 26.2 0.5 20.7 0.6

SMS-EMOA 399.4 16.9 453.4 13.6 443.4 20.1
SMS-EMOA-sa 76.0 3.4 93.1 3.7 92.4 3.6

SMS-EMOA-sa-SEM 104.8 3.5 134.6 7.9 151.5 7.9
SMS-EMOA-sa-MEM 12.4 0.7 24.0 0.6 19.8 0.4





Chapter 5

Conclusion

Optimization of water distribution network (WDN) design forms a field of study at-

tracting a lot of attention by scientists in different fields. Originally being defined as a

single objective (SO) least cost problem subject to a constraint on the minimum nodal

pressure, in the past decade the aim has been towards alternative formulations of the

optimization model. This is motivated by the fact that the difficulties of WDN optimiza-

tion are not reflected well in the SO approach. The main issues of WDN optimization

are that it is hard to define the appropriate objective functions and constraints, not

a single set of demands should be used, the WDN is not built all at once, and that

optimization tends to eliminate redundancy in the system.

The unconstrained multiobjective model by Formiga et al. [43] tackles some of these is-

sues by appreciating redundancy in the network and discarding the constraint on nodal

pressure. Further extending this model to account for varying environmental parame-

ters (e.g., different sets of demands) is possible through applying robust optimization.

Robust optimization usually requires more evaluations in order to converge to a set of

good solutions, hence the aim of this study was to compare the basic multiobjective

model (raw) with the multiobjective robust model (robust) on attained robustness of

solutions, using a fixed budget of evaluations by the hydraulic simulator. For comparing

the different result sets, which represent Pareto front approximations, state-of-the-art

methods for performance assessment were used: the S metric expressing the space cov-

ered in the objective space by an approximation set, and attainment surface plots for

visually comparing the fronts obtained.
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Initially raw experiments were performed in order to determine the best variant of the

tested Multiobjective Evolutionary Algorithms (MOEAs) NSGA-II and SMS-EMOA in

the context of WDN optimization. In this work NSGA-II and SMS-EMOA employ

variation that operates on individuals consisting of decision variables representing the

diameter code selected per pipe. It was chosen to view these numerical diameter codes,

which point to size/price/roughness triples in the table of commercial diameters, as

nominal values. In principle the ordering determined by the size component of these

diameter triples could be exploited during the optimization, but because of the limited

amount of diameters defined per test problem (i.e., 6–15) it is assumed that the nominal

approach is faster. The basic nominal variation has a self-adaptive counterpart, which is

governed by a single mutation probability included in each individual and that is prone to

variation itself. The self-adaptive variation gives rise to self-adaptive variants of NSGA-

II and SMS-EMOA, of which NSGA-II-sa-sp-λ and SMS-EMOA-sa were shown to deliver

the best results. NSGA-II-sa-sp-λ outperformed all other NSGA-II variants, while SMS-

EMOA-sa even outperformed all other raw methods when tested on the three examined

WDN problems: Two Loop, Hanoi, and New York City. Furthermore, in the context of

WDN optimization, the SMS-EMOA-dp and SMS-EMOA-sa-dp variants (i.e., utilizing

dominating points selection when the population contains dominated individuals) were

shown not to improve on SMS-EMOA and SMS-EMOA-sa, either with respect to quality

of results or elapsed runtime.

Applying the straightforward extensions for robust evaluation SEM and MEM, the ro-

bust model was seemingly shown to have no added value whatsoever over the raw model:

the raw self-adaptive variant of SMS-EMOA (SMS-EMOA-sa) delivered the best results

in terms of robustness. The optimal raw solutions found by SMS-EMOA-sa appear to

also be the robust optimal solutions. This assumption is backed by the claim of Giustolisi

et al. [47] of evidence of the fact that optimal raw solutions belong to, or are at least

close to, the Pareto front of robust solutions. The course of action for obtaining robust

solutions would be applying the raw SMS-EMOA-sa method, and then re-evaluating the

results to determine the robust objective values.

The outcome of the model comparison shows that SMS-EMOA-sa is a promising tool

for WDN optimization. However, usage of the simple SEM and MEM schemes restricts

us from drawing sharp conclusions with respect to the added value of the robust model.
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SEM suffers from generations in which all offspring solutions are paired with a single ben-

eficial sample of environmental parameters, as these biased solutions will get preserved

in the population because of the coupling with the elitist Multiobjective Evolutionary

Algorithms. MEM on the other hand is hindered because it requires a lot of evaluations,

since the quality of each solution is averaged over multiple samples of environmental

parameters. However, very recently the archive-based MEM derivative ABRSS became

available [61], which aims at more efficient use of evaluations. ABRSS could be applied

to WDN optimization, possibly coupled with re-evaluation of all solutions contained in

the population at a certain generation and averaging over the earlier obtained fitness

values, as done in the MEM-based robust NSGA-II derivative RNSGAII, used for robust

WDN optimization in [54].

Future work should involve deviation from the three objective WDN optimization model

by Formiga et al. [43], in order to allow for a comparison with results from related studies,

for instance by applying the bi-objective Investment Cost and robustness model as used

with RNSGAII in [54] (similar to the model used with OPTIMOGA in [47], which

also applies MEM-like robust evaluation based on sampling). Convergence behavior

of MEM extended methods is to be assessed by allowing the optimization to continue

until stagnation occurs, instead of using a fixed evaluation budget, providing insight into

the number of evaluations required by MEM to stabilize. Lastly, different probability

distributions [47, 54] for varying the samples of environmental parameters in robust

WDN optimization are to be tested, to determine whether under these conditions the

ordering between the performance of the different methods (i.e., raw and robust) holds.
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Raw Attainment Surfaces
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(a) Median: Sraw = 0.747851

(b) Best: Sraw = 0.751644

(c) Worst: Sraw = 0.745416

Figure A.1: Raw – Two Loop – NSGA-II
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II runs for test problem Two Loop. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.709782

(b) Best: Sraw = 0.727481

(c) Worst: Sraw = 0.678980

Figure A.2: Raw – Two Loop – NSGA-II-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa runs for test problem Two Loop. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.760995

(b) Best: Sraw = 0.763510

(c) Worst: Sraw = 0.757428

Figure A.3: Raw – Two Loop – NSGA-II-sa-sp
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp runs for test problem Two Loop. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.761550

(b) Best: Sraw = 0.763428

(c) Worst: Sraw = 0.756467

Figure A.4: Raw – Two Loop – NSGA-II-sa-sp-λ
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp-λ runs for test problem Two Loop. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.748399

(b) Best: Sraw = 0.751705

(c) Worst: Sraw = 0.743534

Figure A.5: Raw – Two Loop – SMS-EMOA
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA runs for test problem Two Loop. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.747742

(b) Best: Sraw = 0.752085

(c) Worst: Sraw = 0.744476

Figure A.6: Raw – Two Loop – SMS-EMOA-dp
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-dp runs for test problem Two Loop. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.765669

(b) Best: Sraw = 0.766448

(c) Worst: Sraw = 0.765079

Figure A.7: Raw – Two Loop – SMS-EMOA-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa runs for test problem Two Loop. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.765457

(b) Best: Sraw = 0.766234

(c) Worst: Sraw = 0.764530

Figure A.8: Raw – Two Loop – SMS-EMOA-sa-dp
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the SMS-EMOA-sa-dp runs for test problem Two Loop. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.180552

(b) Best: Sraw = 0.278760

(c) Worst: Sraw = 0.119362

Figure A.9: Raw – Hanoi – NSGA-II
Median, best, and worst attainment surfaces are displayed of the Pareto front ap-
proximations found by the NSGA-II runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.125960

(b) Best: Sraw = 0.172669

(c) Worst: Sraw = 0.088576

Figure A.10: Raw – Hanoi – NSGA-II-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.376562

(b) Best: Sraw = 0.408424

(c) Worst: Sraw = 0.293202

Figure A.11: Raw – Hanoi – NSGA-II-sa-sp
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.398622

(b) Best: Sraw = 0.417328

(c) Worst: Sraw = 0.360623

Figure A.12: Raw – Hanoi – NSGA-II-sa-sp-λ
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp-λ runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.177832

(b) Best: Sraw = 0.234752

(c) Worst: Sraw = 0.141623

Figure A.13: Raw – Hanoi – SMS-EMOA
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.184540

(b) Best: Sraw = 0.243606

(c) Worst: Sraw = 0.156396

Figure A.14: Raw – Hanoi – SMS-EMOA-dp
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-dp runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.447712

(b) Best: Sraw = 0.461406

(c) Worst: Sraw = 0.410160

Figure A.15: Raw – Hanoi – SMS-EMOA-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.444481

(b) Best: Sraw = 0.464501

(c) Worst: Sraw = 0.369576

Figure A.16: Raw – Hanoi – SMS-EMOA-sa-dp
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the SMS-EMOA-sa-dp runs for test problem Hanoi. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.315725

(b) Best: Sraw = 0.321451

(c) Worst: Sraw = 0.311407

Figure A.17: Raw – New York City – NSGA-II
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II runs for test problem New York City. The Pareto front
approximations are determined by the raw fitness of the solutions per result set, and
labeled with the S metric score based on raw fitness. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.324190

(b) Best: Sraw = 0.328358

(c) Worst: Sraw = 0.321091

Figure A.18: Raw – New York City – NSGA-II-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa runs for test problem New York City. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.338253

(b) Best: Sraw = 0.354167

(c) Worst: Sraw = 0.313773

Figure A.19: Raw – New York City – NSGA-II-sa-sp
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II-sa-sp runs for test problem New York City. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.353331

(b) Best: Sraw = 0.364023

(c) Worst: Sraw = 0.341552

Figure A.20: Raw – New York City – NSGA-II-sa-sp-λ
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp-λ runs for test problem New York City. The
Pareto front approximations are determined by the raw fitness of the solutions per
result set, and labeled with the S metric score based on raw fitness. The best single
objective solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.303275

(b) Best: Sraw = 0.311999

(c) Worst: Sraw = 0.272478

Figure A.21: Raw – New York City – SMS-EMOA
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA runs for test problem New York City. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.302286

(b) Best: Sraw = 0.309793

(c) Worst: Sraw = 0.271830

Figure A.22: Raw – New York City – SMS-EMOA-dp
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the SMS-EMOA-dp runs for test problem New York City. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.356497

(b) Best: Sraw = 0.366959

(c) Worst: Sraw = 0.343821

Figure A.23: Raw – New York City – SMS-EMOA-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the SMS-EMOA-sa runs for test problem New York City. The Pareto
front approximations are determined by the raw fitness of the solutions per result set,
and labeled with the S metric score based on raw fitness. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Sraw = 0.352706

(b) Best: Sraw = 0.368006

(c) Worst: Sraw = 0.341140

Figure A.24: Raw – New York City – SMS-EMOA-sa-dp
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa-dp runs for test problem New York City. The
Pareto front approximations are determined by the raw fitness of the solutions per
result set, and labeled with the S metric score based on raw fitness. The best single
objective solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.731287

(b) Best: Seff = 0.737714

(c) Worst: Seff = 0.721586

Figure B.1: Robust – Two Loop – NSGA-II
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II runs for test problem Two Loop. The Pareto front
approximations are determined by the effective fitness of the solutions per result set,
and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.739726

(b) Best: Seff = 0.747797

(c) Worst: Seff = 0.724728

Figure B.2: Robust – Two Loop – NSGA-II-sa-sp-lambda
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp-lambda runs for test problem Two Loop. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.731093

(b) Best: Seff = 0.747961

(c) Worst: Seff = 0.387580

Figure B.3: Robust – Two Loop – NSGA-II-sa-sp-λ-SEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp-λ-SEM runs for test problem Two Loop. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.736773

(b) Best: Seff = 0.743826

(c) Worst: Seff = 0.728170

Figure B.4: Robust – Two Loop – NSGA-II-sa-sp-λ-MEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp-λ-MEM runs for test problem Two Loop. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.733188

(b) Best: Seff = 0.737065

(c) Worst: Seff = 0.718683

Figure B.5: Robust – Two Loop – SMS-EMOA
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA runs for test problem Two Loop. The Pareto front
approximations are determined by the effective fitness of the solutions per result set,
and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.740761

(b) Best: Seff = 0.749664

(c) Worst: Seff = 0.727030

Figure B.6: Robust – Two Loop – SMS-EMOA-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa runs for test problem Two Loop. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.729341

(b) Best: Seff = 0.750104

(c) Worst: Seff = 0.428744

Figure B.7: Robust – Two Loop – SMS-EMOA-sa-SEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa-SEM runs for test problem Two Loop. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.730963

(b) Best: Seff = 0.736646

(c) Worst: Seff = 0.723160

Figure B.8: Robust – Two Loop – SMS-EMOA-sa-MEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa-MEM runs for test problem Two Loop. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.114375

(b) Best: Seff = 0.170037

(c) Worst: Seff = 0.092906

Figure B.9: Robust – Hanoi – NSGA-II
Median, best, and worst attainment surfaces are displayed of the Pareto front ap-
proximations found by the NSGA-II runs for test problem Hanoi. The Pareto front
approximations are determined by the effective fitness of the solutions per result set,
and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.250803

(b) Best: Seff = 0.267425

(c) Worst: Seff = 0.193548

Figure B.10: Robust – Hanoi – NSGA-II-sa-sp-lambda
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II-sa-sp-lambda runs for test problem Hanoi. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.190709

(b) Best: Seff = 0.253062

(c) Worst: Seff = 0.064947

Figure B.11: Robust – Hanoi – NSGA-II-sa-sp-λ-SEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II-sa-sp-λ-SEM runs for test problem Hanoi. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.150106

(b) Best: Seff = 0.203025

(c) Worst: Seff = 0.117687

Figure B.12: Robust – Hanoi – NSGA-II-sa-sp-λ-MEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II-sa-sp-λ-MEM runs for test problem Hanoi. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.117908

(b) Best: Seff = 0.149984

(c) Worst: Seff = 0.094929

Figure B.13: Robust – Hanoi – SMS-EMOA
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA runs for test problem Hanoi. The Pareto front
approximations are determined by the effective fitness of the solutions per result set,
and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.268071

(b) Best: Seff = 0.289887

(c) Worst: Seff = 0.237268

Figure B.14: Robust – Hanoi – SMS-EMOA-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa runs for test problem Hanoi. The Pareto front
approximations are determined by the effective fitness of the solutions per result set,
and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.137554

(b) Best: Seff = 0.209256

(c) Worst: Seff = 0.087448

Figure B.15: Robust – Hanoi – SMS-EMOA-sa-SEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa-SEM runs for test problem Hanoi. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.126873

(b) Best: Seff = 0.155803

(c) Worst: Seff = 0.104283

Figure B.16: Robust – Hanoi – SMS-EMOA-sa-MEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA-sa-MEM runs for test problem Hanoi. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.315273

(b) Best: Seff = 0.321570

(c) Worst: Seff = 0.311470

Figure B.17: Robust – New York City – NSGA-II
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II runs for test problem New York City. The Pareto front
approximations are determined by the effective fitness of the solutions per result set,
and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.352729

(b) Best: Seff = 0.363401

(c) Worst: Seff = 0.341007

Figure B.18: Robust – New York City – NSGA-II-sa-sp-lambda
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II-sa-sp-lambda runs for test problem New York City. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.352249

(b) Best: Seff = 0.363897

(c) Worst: Seff = 0.342408

Figure B.19: Robust – New York City – NSGA-II-sa-sp-λ-SEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the NSGA-II-sa-sp-λ-SEM runs for test problem New York City. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.290292

(b) Best: Seff = 0.301702

(c) Worst: Seff = 0.276309

Figure B.20: Robust – New York City – NSGA-II-sa-sp-λ-MEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the NSGA-II-sa-sp-λ-MEM runs for test problem New York City.
The Pareto front approximations are determined by the effective fitness of the solutions
per result set, and labeled with the S metric score based on effective fitness. The ro-
bust objective function values (i.e., the effective fitness) have been approximated using
Monte Carlo integration with a sample set size of N sample = 2000. The best single
objective solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.302985

(b) Best: Seff = 0.311648

(c) Worst: Seff = 0.272257

Figure B.21: Robust – New York City – SMS-EMOA
Median, best, and worst attainment surfaces are displayed of the Pareto front approx-
imations found by the SMS-EMOA runs for test problem New York City. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.355717

(b) Best: Seff = 0.366207

(c) Worst: Seff = 0.343320

Figure B.22: Robust – New York City – SMS-EMOA-sa
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the SMS-EMOA-sa runs for test problem New York City. The Pareto
front approximations are determined by the effective fitness of the solutions per result
set, and labeled with the S metric score based on effective fitness. The robust objective
function values (i.e., the effective fitness) have been approximated using Monte Carlo
integration with a sample set size of N sample = 2000. The best single objective solution
known is indicated by its Investment Cost.
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(a) Median: Seff = 0.350776

(b) Best: Seff = 0.359738

(c) Worst: Seff = 0.344337

Figure B.23: Robust – New York City – SMS-EMOA-sa-SEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the SMS-EMOA-sa-SEM runs for test problem New York City. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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(a) Median: Seff = 0.275752

(b) Best: Seff = 0.296749

(c) Worst: Seff = 0.261244

Figure B.24: Robust – New York City – SMS-EMOA-sa-MEM
Median, best, and worst attainment surfaces are displayed of the Pareto front approxi-
mations found by the SMS-EMOA-sa-MEM runs for test problem New York City. The
Pareto front approximations are determined by the effective fitness of the solutions per
result set, and labeled with the S metric score based on effective fitness. The robust ob-
jective function values (i.e., the effective fitness) have been approximated using Monte
Carlo integration with a sample set size of N sample = 2000. The best single objective
solution known is indicated by its Investment Cost.
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