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Abstract

In this thesis we will try to evolve a program (tree) which will reproduce an original
text or a DNA string or more general data. To this end we use Genetic Programming
(GP). The goal is that the program will be shorter than the original, so compression is
achieved. Chances are that the program will not exactly reproduce the original, which
mean lossy compression. If necessary, the difference between the lossy compressed string
and the original string can be stored to make the compression lossless. Is this construction
feasible, how does the compression ratio compare to generic data compression algorithms?

The GP we created appears to be more suitable for general pattern recognition than
compression, huge run times make real life application unsuitable for compression. Simu-
lating real DNA evolution might be a nice spin-off.



Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Problem Description 2
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Small benchmark problem sets . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Genetic Programming 4
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Natural selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Tree, the datastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.6.1 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.7 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8 Selection and reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.9 Building block hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Delta Algorithms 11
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Longest common subsequence . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Levenshtein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Diff on text files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Block move algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Diff on binary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Further reading on delta algorithms . . . . . . . . . . . . . . . . . . . . . . 16

5 Compression 17
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Lossless vs. lossy compression . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Run length encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Minimum redundancy codes . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



CONTENTS ii

5.5 LZ77/LZ78 and LZW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6 The counting theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.7 Further reading on compression algorithms . . . . . . . . . . . . . . . . . . 25

6 Implementation 26
6.1 Implementation of software . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Representation of individuals . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 First test runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Stopping criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Results 34
7.1 Solutions for the benchmark problems . . . . . . . . . . . . . . . . . . . . . 34
7.2 Benchmark problem results . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 A bigger challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 Real life example: E.Coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 Speed optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Conclusions 48
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Acknowledgements 50

References 51



Chapter 1

Introduction

1.1 Introduction

“Genetic programming addresses the problem of automatic programming, namely, the
problem of how to enable a computer to do useful things without instructing it, step by
step, on how to do it.” [Foreword John R.Koza [1]]

In this thesis the goal is to evolve a program which reproduces an original “text” without
us making the actual program itself, tho this end we use Genetic Programming (GP). We
simply start with a bunch of random programs, which we will evolve in the same way
nature evolves all kinds of animals and plants etc. So our programs will be mutated, mate
with other programs, have children and eventually die so the stronger programs will con-
tinue the cycle of life. All we have to do is to define how the programs “look” like, which
programs are the “fit” ones and are allowed to mate and survive. Start the evolutionary
process and see what happens.

Compression in general is a method which aim is to store certain information using
less storage space without losing essential information. The Internet is full of compression,
photos are often stored in jpeg format, source code is stored in an archive and compressed.
Compression is all around us. Wouldn’t it be great if a genetic program could give new
insights in compression?

We start with a study of the available material on Genetic Programming (Chapter 3),
Delta Algorithms (Chapter 4) and Compression (Chapter 5). The results of these studies
will be summarized in the those chapters. After this study we will apply and combine this
knowledge in a software framework (Chapter 6) which will be used to run experiments
(Chapter 7). Finally we will discuss the results and theorize on further improvements
(Chapter 8).

This Master’s Thesis was written at the Leiden Institute of Advanced Computer Sci-
ence of Leiden University (LIACS). The supervisors are Dr. W.A. Kosters and Dr. M.T.M.
Emmerich.
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Chapter 2

Problem Description

2.1 Introduction

In this chapter we will describe our problem: We try to achieve compression with the
aid of Genetic Programming. At first we try to solve some simple problems. Our first
challenge will be compressing “DNA”: strings containing only four different characters:
A, C, G and T . In nature DNA strings are very long, we will start with some smaller
fabricated strings, we don’t want to wait days before an evolutionary process is finished.
But if the originals are too small compression can’t be achieved. Therefore, for some first
trial runs we will choose a string length of 100 characters, which seems like a good size.
We call the output of a program a candidate string, the more the candidate string will
resemble the original string the better. The programs with a better candidate string will
have a greater chance of surviving and producing offspring.

2.2 Small benchmark problem sets

In order to see if Genetic Programming will lead to a working compression algorithm we
define some small problems. These do not pose a very big challenge for a compression
algorithm, and we humans can see very easily how we would compress them. This enables
us to monitor if the Genetic Programming does its job in delivering a feasible compression
algorithm. The four basic benchmark problems are:

A simple repetition of 100 A’s:
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Table 2.1: Small benchmark problem 1.

2
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A simple ACGT repetition 25 times:
ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTAC

GTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGT

Table 2.2: Small benchmark problem 2.

A simple AACCGGTT repetition max 100 characters:
AACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAA

CCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACC

Table 2.3: Small benchmark problem 3.

Four times ACGTAACCGGTT followed by the DNA mirror image:
ACGTAACCGGTTACGTAACCGGTTACGTAACCGGTTACGTAACCGGTT

TGCATTGGCCAATGCATTGGCCAATGCATTGGCCAATGCATTGGCCAA

Table 2.4: Small benchmark problem 4.



Chapter 3

Genetic Programming

3.1 Introduction

Genetic Programming (GP) is an approach to problem solving in the area of natural
computing; as a general reference for this chapter we mention [1]. With “normal” sequen-
tial programming a problem is analyzed, divided into sub-problems, and when all the
sub-problems have been defined one starts writing a program to solve the sub-problems
one by one and thus solving the problem as a whole. With Genetic Programming solving
problems is approached in a different manner. The focus is not on the problem we want to
solve but we focus on constructing a virtual environment, which is capable of solving the
problem for us. Within this virtual environment computer programs are randomly cre-
ated, some solving the problem better than others. We only need to direct the computer
into the right direction to find the most suitable program to solve the problem.

The inspiration of this approach comes from the theory of evolution as seen in biology.
We don’t intend to fully reproduce biological evolution but we do take several concepts
from it and apply it to our virtual environment. Decisions have to be made concerning
the individuals in our virtual environment, in our case programs: the way they should
“look” like, how to create new programs from the existing ones, which programs should
be considered fit, the total number of individuals in our virtual environment, etc. By
making the “right” choices in all these matters, our virtual environment should solve the
problem for us and by studying this process and its outcome we hope to get some new
insights in the problem we want to solve.

3.2 Natural selection

Darwin [4] argued that: “. . . if variations useful to any organic being do occur, assuredly
individuals thus characterized will have the best chance of being preserved in the struggle
for life; and from the strong principle of inheritance they will tend to produce offspring
similarly characterized. This principle of preservation, I have called, for the sake of brevity,
Natural Selection.”
In these words from Darwin we can find some essential conditions needed to facilitate
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evolution:

– Variation of individuals should occur in the population.

– Different variants of individuals should differ in the probability of the individual to
survive and create offspring.

– Offspring should be able to inherit characteristics from the parent(s).

– Competition between individuals should occur, the “struggle for life”.

Our virtual environment will need to address these four conditions. Without them no
evolution will take place.

3.3 Representation

Individuals in Genetic Programs are traditionally represented as tree structures. But
graphs and linear representations are also possible. A tree representation has the advan-
tage of the relative ease of evaluating the result and implementing variation of individuals
by means of mutation and crossover. Humans generally think that a tree representation
gives more insight than a linear representation, thus making it easier to keep an eye on
the evolution process. In this research we only use tree structures, one of our goals is
to get some new insights in compression, so we choose a representation which is easy to
understand.

3.4 Tree, the datastructure

In this section we briefly mention some basic aspects of trees, see Figure 3.1 for more
information.

�

�

�

�
Node with depth 3

�

�

�

�
Terminal Node

�

�

�

�
Child Node

�

�

�

�
Terminal Node

�

�

�

�
Root Node

Figure 3.1: Tree, the datastructure.

The following aspects are defined regarding trees:

– Node: Smallest atom of a tree which holds either a terminal or a function, a node
can have one parent and several children.
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– Root: The top node of the tree which has no parent. All the other nodes have one
parent.

– Terminal nodes and set: A terminal node is a node which has no children, and
contains an element from the terminal set. The terminal set consists of all the
possible terminals which are allowed in the tree. Terminal nodes are also called leaf
nodes or leafs.

– Function set: The function set consists of all the possible functions which are allowed
in the tree. Functions get their input from the child nodes.

– Arity: The number of child nodes of a function node.

– Depth: The minimal number of nodes that need to be traversed to get from the root
node of the tree to the selected node.

– Maximal Tree Depth: The maximal depth of a tree constraints all nodes of the tree
to have this maximal depth or less. This is a common way to limit the size of the
tree.

– Maximal Tree Size: The maximal number of nodes a tree may contain.

– Binary tree: A tree with at most an arity of 2, child nodes are called left and right.

3.5 Initialization

The next step is to create the initial population, using some random process. In order
to achieve the best results the initial population should be as diverse as possible. Several
methods exist to create an initial population:

– Grow: As long as the tree of the individual has not reached the maximum depth
randomly choose from the function and terminal set. This way not all nodes from
the tree will have the maximum depth.

– Full: Choose randomly from the function set if the current node is not at maximum
depth; choose randomly from the terminal set if we are at the maximum depth.

– Ramped half-and-half: Also create trees lower than the maximum depth. For best
results half of them are grown and half of them are made with the full method.
So if the maximum depth is n, equally spread the number of trees with depth
n, n − 1, . . . 1. And create one half with the grow method and the other half with
the full method.

We will use the ramped half-and-half method in our GP, because it will give the most
variation of the initial population.
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3.6 Variation

The diversity in the population is maintained and expanded by two mechanisms:

– Crossover.

– Mutation.

3.6.1 Crossover

The crossover operator creates variation by combining the genetic material of two or more
parents. This is done by taking parts of the parents to create the children. The children
can “be lucky” and can receive the “good” parts of the parents and thus be improved
versions of their parents. See Figure 3.2 for an example. In this example the nodes and
terminals which are selected for crossover are marked with a double boxed line. Then the
actual crossover takes place and the sub-trees are exchanged. Child 1 has some genetic
material from Parent 2; the node labeled “P2 N3” with the leaves “P2 L4” and “P2 L5”.
Child 2 received the node “P1 N3” with the leaves “P1 L1” and “P1 L2”

Parent 1 Parent 2

P1 L1 P1 L2

P1 N3
�

�

�

�
P1 L3

�

�

�

�
P1 N2

�

�

�

�
P1 L4

�

�

�

�
P1 N1

�

�

�

�
P2 L1

�

�

�

�
P2 L2

�

�

�

�
P2 N2

P2 L4 P2 L5

P2 N3

�

�

�

�
P2 N1

Child 1 Child 2

P2 L4 P2 L5

P2 N3
�

�

�

�
P1 L3

�

�

�

�
P1 N2

�

�

�

�
P1 L4

�

�

�

�
P1 N1

�

�

�

�
P2 L1

�

�

�

�
P2 L2

�

�

�

�
P2 N2

P1 L1 P1 L2

P1 N3

�

�

�

�
P2 N1

Figure 3.2: Tree-based crossover.
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3.6.2 Mutation

Mutation is used to change an existing individual, this opens new possibilities to genetic
material which could be very beneficial to solve the problem. Two types of mutation can
be distinguished when using trees:

– Node mutation: Select one node and change it. Attention must be payed to either
preserve the arity, or “fixing” in case the arity changes.

– Sub-tree mutation: Select one node, delete the corresponding sub-tree and grow a
new sub-tree. Attention must be payed to the maximum depth.

3.7 Fitness

The fitness of an individual is very important. The more “fit” an individual is, the better
its ability to solve the problem. Now comes the best part: We determine which individ-
uals receive a good fitness and which individuals receive a bad fitness. We do this with
a fitness function, which grades the result of the individual. This fitness is used for se-
lection and reproduction, this way we direct the evolutionary process into the direction
which is most likely to produce a solution to our problem. As one can imagine a wrong
fitness function could lead to a suboptimal solution or no solution at all. It is not always
possible to make the perfect fitness function, fitness functions need to be as “fast” as pos-
sible. Every individual in the population needs its fitness to be determined so a slow fitness
function results in a slow evolution. In Section 6.3 we describe the fitness function we used.

Several types of fitness have been defined over time:

– Standardized: The fittest individual gets the value zero assigned.

– Normalized fitness: The fitness is always between zero and one.

3.8 Selection and reproduction

We have a way to determine how well a specific individual performs, i.e., fitness, now we
need a way to select individuals from the population, decide whether to apply mutation
or crossover and whether to keep or replace them in the population. This is the job of the
selection operator. A brief summary of some well-known selection methods are given in
this section.

– Fitness-Proportional Selection: Each individual has a chance to pass offspring into
the next generation. This chance is proportional based on the individuals fitness to
the fitness of the whole population. The probability of individual i is:

pi = fi/
N

∑

j=1

fj
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where N is the population size and fj the fitness of individual j. This method is
also called Roulette wheel.

– Tournament: Only a subset of individuals compete for survival. A fixed number,
called the tournament size, of individuals is randomly selected. The most fit indi-
viduals win, and are allowed to mutate and produce offspring, replacing the least
fit individuals of the tournament.

Elitism can be applied when selecting individuals for the next generation. For example
one can always put the top 5 of the best unique individuals in the next generation without
any alterations by mutations or crossover.

There are also variations of how to manage the population. A brief summary of the
most common ones:

– Generational: The creation and selection of individuals is done by distinct genera-
tions. The new population is created from the previous generation.

– Steady State: There is a continuous flow of individuals which are selected, mutated
and create offspring. The offspring replaces existing individuals in the same popula-
tion. Commonly the number of generations is counted in the following way: when the
number of fitness evaluations is equal to the population size the generation counter
is increased by one.

In this thesis we will use the generational algorithm with tournament selection and elitism.

3.9 Building block hypothesis

The building block hypothesis (BBH) was used by Holland [7] to show why genetic algo-
rithms in general are able to solve problems. The BBH has been sharply critized on the
grounds that is lacks theoretical justification. We agree with the critism but still think
that some basic ideas of the BBH can be helpful when thinking about GP. They give a
general idea why GP works and why it can be used to solve very diverse problems. The
building block approach also makes one think about mutation, crossover and fitness and
how to make the best choices in these matters. So it still can be a useful concept.

The underlying intuition is as follows: Take into account all the generic code of all
the individuals in the whole population and assume certain sections are responsible to
perform certain tasks. The building blocks are those sections which are needed to solve
the problem and by combining building blocks (in the right order) into one individual we
get the best possible solution.

So can thinking in building blocks help? The initial population will certainly contain
some useful building blocks. But it is not likely that all building blocks are present, so we
need a way to create or improve building blocks. This is the job of the mutation operator;
it is able to create new building blocks or improve the existing ones by changing the
underlying genetic code. The crossover operator’s job is to combine the building blocks
which are already present in the population as a whole into one individual.
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So theoretically mutation and crossover operators are able to improve individuals. But
keep in mind that very often they will be destructive instead of constructive. The building
blocks also need to be placed in the “right” order to be effective. For example, if our goal
is to remove dust in the room and we have the building blocks “turn on vacuum cleaner”,
“move vacuum cleaner around” and “turn off vacuum cleaner” the building blocks need
to be executed in that precise order to reach our goal.

One task like “turn on vacuum cleaner” could be stored by using several consecutive
instructions. If the crossover operators are not able to recognize the start and end of these
instructions they can break a building block in two, thereby destroying it. Hopefully fitness
based selection will be able to detect this and with several copies in the population the
building block is not lost. Mutation can also destroy or deteriorate a building block and
again we place our hope in fitness based selection to minimize the damage.

Up front it is very difficult to detect the building blocks and award the individuals
containing building blocks a high fitness. Building blocks tend to be genetically available
but situated at a wrong place in the genetic context.

When building blocks are used at a wrong “time” or “place” it will influence the fitness
of an individual in a negative way. The fitness function is likely to only award building
blocks which are also placed at the right genetic context. So even if crossover doesn’t
destroy a building block by breaking it in two, placing it in a wrong genetic context has
the same devastating effect on the fitness of the individual.

Realizing this, the chances of a successful crossover seem very slim. This is why large
populations and several evolution restarts are needed to achieve good results. Even if we
did our very best to design the best possible fitness function, selection, crossover and
mutation operators.



Chapter 4

Delta Algorithms

4.1 Introduction

Delta algorithms are algorithms that compute the difference between two strings or files.
Delta’s are useful in several ways. The obvious one is to see how much has been changed,
what was changed and where the changes took place. Delta’s can also be used to construct
a new version with only the old version and the delta, or the other way around: reconstruct
the old version with the new version and the delta. So using delta’s can save storage space
or transmission time of new versions. The program diff [11] is the best-known program
to produce delta’s for text files. In this chapter we explain and discuss several algorithms
and aspects which are related with finding delta’s.

4.2 Longest common subsequence

Instead of finding the difference one can do the opposite: find what is common and use
that information to find the difference. One method is to find the longest common subse-
quence, which is a well-known problem. The longest common subsequence is commonly
abbreviated as LCS, but since this can be confused with the longest common sub-string
we will abbreviate it as LCSeq, respectively LCStr, in this thesis. The LCSeq problem is
finding a longest sequence which is a subsequence of all sequences in a set of sequences.
A subsequence of some sequence is a new sequence which is formed from the original
sequence by deleting some of the elements without disturbing the relative positions of the
remaining elements (see the example at the end of this section). The LCSeq problem can
also be defined to find all maximal length common subsequences, which makes it more
complex. The general case of the LCSeq problem, with an arbitrary number of sequences,
is NP-hard [5; 6]. In this thesis we will mainly use a set size of two: the original and the
candidate sequence. If the set size is two the algorithm running time is O((r +n) log n),
where n is the length of the sequences and r is the total number of ordered pairs of posi-
tions at which the two sequences match. Thus the worst case running time is O(n2 log n),
however with relatively few matching positions O(n log n) can be expected [12]. Most
algorithms use the dynamic programming approach and have a running time of O(n m),

11



4.3. Levenshtein distance 12

where n is the length of the first sequence, and m is the length of the second sequence.
Note that a subsequence is not a sub-string, a sub-string is a consecutive part of a

string while a subsequence does not need to be.
Consider the following example:

String 1 = ACTG

String 2 = AACTGG

String 3 = AATGG

String 4 = AATGGG

String 1 is a subsequence of string 2, and also a sub-string of string 2.
String 3 is a subsequence of string 2, only the C is missing. String 3 is obviously not an
sub-string of string 2.
The LCSeq of string 2 and 4 would be AATGG, so string 3 is the LCSeq of string 2 and 4.

4.3 Levenshtein distance

The Levenshtein distance (also called the edit-distance) between two strings, is the min-
imum number of operations needed to transform one string into the other. The allowed
operations are: insertion, deletion or substitution of a single character. It is named after
Vladimir Levenshtein, who developed an efficient algorithm in 1965 [15]. For example
consider:

String 1 = AACTGG

String 2 = ACTG

The Levenshtein distance between string 1 and 2 is 2; two deletions will do the trick. Here
is a pseudocode to calculate the Levenshtein distance. It is based on the Wagner-Fischer
[20] algorithm for edit distance: a bottom-up dynamic programming algorithm which uses
an (n + 1) × (m + 1) matrix, where n and m are the lengths of the two strings. The
function has two arguments: string s of length m, and string t of length n, and it returns
the Levenshtein distance between them [23].

1 int LevenshteinDistance (char s [ 1 . . m ] , char t [ 1 . . n ] )
2 // d[i,j] = edit distance between s[1..i] and t[1..j]

3 declare int d [ 0 . . m , 0 . . n ]
4

5 for i from 0 to m

6 d [ i , 0 ] := i

7 for j from 1 to n

8 d [ 0 , j ] := j

9

10 for i from 1 to m

11 for j from 1 to n

12 i f s [ i ] = t [ j ] then cost := 0
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13 else cost := 1
14 d [ i , j ] := minimum(
15 d [ i−1, j ] + 1 , // deletion

16 d [ i , j−1] + 1 , // insertion

17 d [ i−1, j−1] + cost // the same or

18 // substitution

19 )
20

21 return d [ m , n ]

If we write down the matrix d in the form of an edit-graph it is much easier to see how
the algorithm works. Within the circles the lowest cost is placed.

d[i-1,j-1]

d[i-1,j]

d[i,j-1]

d[i,j]

deletion

insertionthe same or
substitution

t\
s

A

C

T

G

A A C T G G

0

1

2

3

4

1

0

1

2

3

2

1

1

2

3

3

2

1

2

3

4

3

2

1

2

5

4

3

2

1

6

5

4

3

2

i

j

The four shortest paths represent the four possible minimal edit operations to trans-
form string one into string two:

AACTGG AACTGG AACTGG AACTGG

-ACT-G A-CT-G -ACTG- A-CTG-
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t\
s

A

A

C

T

T

A C T G G

0

1

2

3

4

5

1

0

1

2

3

4

2

1

1

1

2

3

3

2

2

2

1

2

4

3

3

3

2

2

5

4

4

4

3

3

i

j

Again the four shortest paths represent the minimal edit operations:

-ACTGG A-CTGG -ACTGG A-CTGG

AACT-T AACT-T AACTT- AACTT-

4.4 Diff on text files

The classic program diff [11] is designed to work with normal text files. To speed up things
all the lines of the file are hashed and the hashed values are used to make a LCSeq. It is
quite possible that several lines are hashed to the same value so the LCSeq found using the
hashed values needs to be checked and repaired. This can be done by comparing the LCSeq
found using the hashed values with the original lines and editing out the false equalities.
It seems that the LCSeq which is found using this method is quite alright despite repairs,
only one case was found by someone and brought to diff’s authors attention in two years
time, in that case the repaired LCSeq was short by one [11].

The diff algorithm has been improved over time, although the basics are still the same.
“An O(ND) Difference Algorithm and it Variations” was written by Eugene W. Myers in
1986 [16]. In this paper some variations are summarized and the paper itself presents an
algorithm which is based on an intuitive edit graph formalism. The presented algorithm
employs the “greedy” design paradigm unlike others and exposes the relationship of the
longest common subsequence to the single-source shortest path problem. This algorithm
served as the basis for the new UNIX diff program.

A different approach, which does not use the LCSeq is described in Section 4.5.
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4.5 Block move algorithm

In “The string-to-string correction problem with block moves” W.F. Tichy [18] describes
why the LCSeq will not always give the shortest edit sequence. We start by giving two
examples to illustrate the shortcomings of the LCSeq. Consider the strings S = ABCDE and
T = DEABC. These strings have LCSeq ABC. The sub-string DE is not part of the LCSeq, a
block move would be able to detect DE in both strings and thus give a shorter edit script:

A B C D E

D E A B C
?

?
?

?
?

?
?

? A B C D E

D E A B C
?

?
?

?
?

?
?

?

uuuuuuuuuu

Repetition of sub-strings is also something that makes LCSeq based edit scripts in-
efficient, there is no other solution than a lot of single inserts. A block move based edit
script could simply repeat the sub-string. Consider the strings S = ABC and T = ABCABC:

A B C

A B C A B C

A B C

A B C A B C
HHHHHHHHH

Block moves could be a lot better than using LCSeq based edit scripts. Let us give the
formal definition: Consider two strings S = S[0, . . . , n], n ≥ 0 and T = T [0, . . . ,m],m ≥ 0
over an alphabet A with α symbols. A block move is a triple (p, q, l) such that S[p, . . . , p+
l − 1] = T [q, . . . , q + l − 1](0 ≤ p ≤ n − l, 0 ≤ q ≤ m − l + 1, l > 0). Thus a block move
represents a nonempty common sub-string of S and T with length l, starting at position
p in S and position q in T .

4.6 Diff on binary files

Normal diff, which is used on text files, would not suffice as a good Delta algorithm for
our problem. Diff uses end of line markers in the text files to make a fast approximation of
the LCSeq. We have no end of line markers in our original string, so this poses a problem.

In “Delta algorithms: An empirical analysis” [9] three Delta algorithms are compared:
diff, Bdiff and VDelta. Diff is made binary compatible by uuencoding. As expected com-
bining uuencode and diff gives very poor results in comparison to Bdiff and VDelta al-
gorithms. The paper [9] also states that Bdiff and VDelta exploit reordering of blocks
to produce short differences, we notice a striking resemblance. In Genetic Programming
“building blocks” are used and combined to work toward the solution, so an individual
with the right sub-strings but in the wrong order should not be punished, the order of the
blocks could be corrected with mutation or crossover. Bdiff and VDelta are both derived
from W.F. Tichy’s block-move algorithm [18].
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4.7 Further reading on delta algorithms

Two more interesting papers which we will not discuss here are: “An Empirical Study of
Delta Algorithms” by James J. Hunt and Kiem-Phong Vo and Walter F. Tichy [10] which
describes the VDelta algorithm.

“Engineering a Differencing and Compression Data Format” by David G. Korn and
Kiem-Phong Vo [14] which describes the VCdiff algorithm.



Chapter 5

Compression

5.1 Introduction

With the aid of data compression algorithms one can represent certain sets of data in such
a way that it takes less storage space than the plain straightforward representation. This
is particularly useful when storing or transmitting large amounts of data. In this chapter
we shall describe some well-known data compression algorithms.

5.2 Lossless vs. lossy compression

Data compression algorithms can be divided into two categories: the ones that exactly
reproduce the original and the ones that approximate the original. In most cases lossless
compression is needed: without being able to get the exact original back, the compression
would be useless. Good examples are computer code and a written essay. But there are
several other cases in which small loss is acceptable, for example in case of images and
sound. As long as the loss is not noticeable or disturbing there is no problem. With Genetic
Programming we will probably create a lossy compression algorithm (see Chapter 6), but
we can make it lossless by also storing “the diff”, this way the exact original can be
reconstructed.

5.3 Run length encoding

Quite a few compression algorithms are based on run length encoding [21]. These algo-
rithms are the most simple form of compression and most logical first step in compression.
Consider this example, where the original consists of the following string:

AAAAAACCCCCCTTTTTTGGGGGG

Run length encoding simply detects repetition and states how many times the repetition
occurs. So the string could be represented as:

A6C6T6G6

17
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This should be interpreted as A 6 times, C 6 times etc. So the original 24 characters are
represented in only 8 characters, this is a 67% compression ratio. The problem with this
form of run length encoding is that if, for example, the original consists of alternating
characters the compressed string could end up to be much bigger than the original indeed.
Consider this example:

ACTGACTGACTG

If one attempts to compress with run length encoding, one will get:

A1C1T1G1A1C1T1G1A1C1T1G1

The result is a “compressed” string which is twice as long as the original! This problem can
be fixed by altering the encoding algorithm just a little [3]: only use run length encoding
if two or more identical characters are repeated, and leave the others untouched. For
example, consider:

ACTGAACCCTTTTGGGGGAAAAAAAAAAACTG

Compressed with the first run length encoder:

A1C1T1G1A2C3T4G5A11C1T1G1

Compressed with the improved run length encoder:

ACTGAA0CC1TT2GG3AA9CTG

The original 32 characters get compressed to 24 by our first algorithm, this is a 25%
compression ratio. In this example the improved algorithm performs slightly better, using
22 characters which is a 31% compression ratio.

Decompressing the improved version is very easy. If you encounter two of the same
characters the third character states the number of repetitions. When we assume all
characters are stored as bytes, the maximum number of repetitions we can represent in
one character is 255. We need to define what happens when we encounter a sequence
which has more repeated characters. AA255 will decode to 257 A’s, but what if we have
500 A’s? The most simple solution is AA255AA241 (2+255+2+241 = 500), the run length
decoder algorithms stays as it is, while the run length encoder only needs to check for the
maximum number of repetitions.

If we look back to the first example, the improved algorithm would perform worse
compared to the first algorithm:

AA4CC4TT4GG4

using 12 characters, or 50%. This is why several variants of run length encoding algorithms
emerged, they were adapted to the type of data they were expected to compress.

Run length encoding algorithms perform lossless data compression, but in general these
algorithms only achieve good compression ratios if much repetition is involved. Because
the encoding and decoding algorithms are very simple and do not require much computing
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power or memory, they can easily be built in non sophisticated machines. A lot of patents
can be found in which some form of run length encoding is used.

Common examples which use some form of run length encoding are fax machines, tape
streamers and audio storage and transmission. Faxed documents are black and white and
contain mostly white space, resulting in a lot of repetition of white bits and good run
length encoding compression ratio [13]. In the case of tape streamers, audio storage and
transmissions, run length encoding combined with delta encoding performs quite nice.

5.4 Minimum redundancy codes

Huffman describes a method in which the most commonly used messages get the shortest
code [8]. This way the entire message is represented in the smallest manner. Let us see
how this works with the example we already used in the run length encoding section:

ACTGAACCCTTTTGGGGGAAAAAAAAAAACTG

We start by using the optimum binary code coding procedure, described in [8]. The
first step is to determine the character count and calculate the probabilities, the results
can be seen in Table 5.1:

Character Times Probability
A 14 43.750%
G 7 21.875%
T 6 18.750%
C 5 16.625%

Table 5.1: Huffman character count and probabilities.

We want to assign a binary code to each of the characters, the least used ones should
get the longest code, the most frequent used ones the smallest code. So we start at the
bottom, these are the least common characters, in our case C and T. T+C have a combined
percentage of 34.375%, which puts it between A and G, the result can be seen in Table 5.2:

Chars prob. prob.
5 A 43.750% 43.750%
4 T+C 34.375%
3 G 21.875% 21.875%
2 T 18.750%
1 C 15.625%

Table 5.2: Huffman optimum binary coding procedure, step 1.

Now G and T+C are the least common, combined they have a percentage of 56.250%,
which puts them above A, this results in Table 5.3:
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Chars prob. prob.
4 T+C+G 56.250%
3 A 43.750% 43.750%
2 T+C 34.375%
1 G 21.875%

Table 5.3: Huffman optimum binary coding procedure, step 2.

Which only leaves A and T+C+G, when we put these and the previous steps in one big
table, we get Table 5.4:

Chars prob. prob. prob. prob.
7 T+C+G+A 100.000%
6 T+C+G 56.250% 0

5 A 43.750% 43.750% 43.750% 1

4 T+C 34.375% 0

3 G 21.875% 21.875% 1

2 T 18.750% 0

1 C 15.625% 1

Table 5.4: Huffman optimum binary coding procedure, final result.

From the Table 5.4 we can read the optimum binary code for our characters. A gets a
1, G get a 0 from line 6 and a 1 from line 3, which are combined to 01 etc. This leads to
Table 5.5 with the optimum binary codes:

Character Times Probability Code
A 14 43.750% 1

G 7 21.875% 01

T 6 18.750% 000

C 5 16.625% 001

Table 5.5: Huffman optimum binary code.

Our example of 32 characters could be written down in bits. When we use normal
binary code we only need 2 bits to enumerate our 4 possible characters, so the example
would take 32 × 2 = 64 bits of storage space. While with Huffman encoding you get the
result which can be seen in Table 5.6:

A C T G A A C C C T T T T G G G

1 001 000 01 1 1 001 001 001 000 000 000 000 01 01 01
G G A A A A A A A A A A A C T G

01 01 1 1 1 1 1 1 1 1 1 1 1 001 000 01

Table 5.6: Example encoded with Huffman.
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Our example encoded with Huffman would be 14 × 1 + 7 × 2 + 11 × 3 = 61 bits long.
This is only 5% compression ratio, not so good! Run length encoding performed much
better. But consider this example:

AAGAAGAAGAAGAAGAAGAAGTCTCTCTCTCT

This example has the same number of A’s C’s T’s and G’s so Huffman would compress
this to 61 bits as well, whereas run length encoding would fail horribly. Normally Huffman
encoding is not used on such a small scale, and other factors are far from optimum. With
real live situations Huffman performs quite well. Huffman also is an example of a lossless
compression algorithm.

5.5 LZ77/LZ78 and LZW

More advanced well-known data compression algorithms are LZ77 en LZ78 [24]. Abra-
ham Lempel and Javob Ziv describe them in papers written in 1977 en 1978, hence the
algorithms got known by the names LZ77 and LZ78. Both are lossless data compression
algorithms. We have already seen run length encoding and minimum redundancy cod-
ing; LZ77 and LZ78 algorithms have a different approach: LZ77 is a “sliding window”
compression algorithm, LZ78 uses an explicit dictionary technique.

The LZ77 “sliding window” method is fairly straightforward, it tries to replace a
recurring pattern with a “copy command”. LZ77 maintains 2 buffers: A history buffer
which contains the characters that have been sent to output and a lookahead buffer which
contains the characters that must be sent to output. If a match can be made from the
lookahead buffer to the history buffer, a copy command is made. The command consists
of the offset which indicates where to start to copy and the number of characters to copy.
Consider the following example:

ACTGAACCCTTTTGAACCCT

In Table 5.7 we show the steps the LZ77 compression algorithm performs:

Step Output History Lookahead
ACTGAACCCTTTTGAACCCT

1 A A CTGAACCCTTTTGAACCCT

2 C AC TGAACCCTTTTGAACCCT

3 T ACT GAACCCTTTTGAACCCT

4 G ACTG AACCCTTTTGAACCCT

5 A ACTGA ACCCTTTTGAACCCT

6 5,2 ACTGAAC CCTTTTGGAACCCTG

7 C ACTGAACC CTTTTGAACCCT

8 7,2 ACTGAACCCT TTTGGAACCCTG

9 T ACTGAACCCTT TTGAACCCT

10 2,2 ACTGAACCCTTTT GAACCCT

11 10,7 ACTGAACCCTTTTGGGAACCCT

Table 5.7: LZ77 compression.



5.5. LZ77/LZ78 and LZW 22

The beginning is straightforward, in steps 1 through 5 we output an A, a C, a T, a G

and an A. The first repetition is step 6 AC, it can be found in the history buffer 5 places
back (begin to count at the right and count toward the left) and has length 2. In step 7 a
normal C is sent to output. Step 8 brings us to the second match; CT, 7 places back in the
history buffer, also length 2. Step 9; a normal T, step 10; the third match TT and finally
step 11; the fourth match is GAACCCT 10 places back in the history buffer with length 7,
this gives us following compressed string:

A C T G A 2,5 C 2,7 T 2,2 7,10

Decompressing is straightforward, we only need the history buffer there is need to set
up special data structures. Also notice there is no need to transfer a dictionary: it is made
as we go. If the decompress algorithm encounters a normal character it is sent to output,
in case of a copy command the sequence is searched for in the history buffer and sent to
output. We illustrate the decompression process with Table 5.8:

Step Input History Output
1 A A

2 C A C

3 T AC T

4 G ACT G

5 A ACTG A

6 5,2 ACTGA AC

7 C ACTGAAC C

8 7,2 ACTGAACC CT

9 T ACTGAACCCT T

10 2,2 ACTGAACCCTT TT

11 10,7 ACTGAACCCTTTT GAACCT

Table 5.8: LZ77 Decompression.

Steps 1 through 4 are straightforward, and we build up the history buffer. In step 5
the first lookup takes place.

LZ77 also has some shortcomings: the size of the history and lookahead buffer deter-
mines the compression efficiency. If for example the history buffer is too small, a repetition
will not be seen, if the lookahead buffer is too small, the repetition could have been larger.
The bigger the buffers get, the harder it gets to find a match.

LZ77 is used quite often, popular archivers like arj, lha and zip use variations of the
LZ77 algorithm.

LZ78 builds a dictionary of all previously seen phrases. The phrases can occur long
before the first repetition, in which case LZ77 would have missed it. Another benefit is
that the size of the phrase is encoded in the dictionary, so there is no need to store it
in the compressed string. A very popular variant of LZ78 is LZW [22]. The algorithm of
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LZ78 and LZW differs slightly. The main difference is the manner in which the dictionary
is used. LZW starts the standard ASCII set as initial dictionary, while LZ78 starts with
nothing. So with LZW we have all the single characters with indexes from 0 to 255 in the
initial dictionary. LZW has a fixed length dictionary (mostly 4096), LZ78 has no fixed
length and uses (index, next symbol) notation. LZW starts to expand the dictionary as it
processes the text, using the entries 256 to 4095 to refer to sub-strings. As a new string is
parsed, a new code is generated. Strings for parsing are formed by appending the current
character K to an existing string w. The algorithm for LZW compression is shown below:

1 w = Nil

2 while not empty input

3 read a character K

4 i f wK exists in the dictionary

5 w = wK

6 else

7 output the code for w

8 add wK to dictionary

9 w = K

10 endwhile

11 output the code for w

As the dictionary grows, redundant strings will be coded as a single 2-byte number,
resulting in a compressed file.

We will illustrate LZW compression in Table 5.9 with an example which uses the string
from previous examples:

ACTGAACCCTTTTGAACCCT

Decompression has the following pseudo code:

1 read a code C

2 output lookup (C )
3 w=C
4 while not empty input

5 read a code C

6 i f C is in dictionary

7 output lookup (C )
8 add to dictionary ( lookup (w)+firstchar ( lookup (C ) ) )
9 w = C

10 else

11 os = lookup (w ) + firstchar ( lookup (w ) )
12 output os

13 add to dictionary (os )
14 w = C

15 }
16 endwhile
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In Table 5.10 we show the steps the LZW decompression algorithm performs. Iteration
9 is somewhat interesting, the code is not yet present in the dictionary, the else comes
into action to create the output string and add the code to the dictionary.

LZW is patented and well know for its use in GIF images.

Iteration w K wk exists w Output Dictionary
1 Nil A yes A

2 A C no C A 256=AC

3 C T no T C 257=CT

4 T G no G T 258=TG

5 G A no A G 259=GA

6 A A no A A 260=AA

7 A C yes AC

8 AC C no C 256 261=ACC

9 C C no C C 262=CC

10 C T yes CT

11 CT T no T 257 263=CTT

12 T T no T T 264=TT

13 T T yes TT

14 TT G no G 264 265=TTG

15 G A yes GA

16 GA A no A 259 266=GAA

17 A C yes AC

18 AC C yes ACC

19 ACC C no C 261 267=ACCC

20 C T yes CT

21 CT 257

Table 5.9: LZW Compression.

Iteration lookup(w) C Output Dictionary
0 A A

1 A C C 256=AC

2 C T T 257=CT

3 T G G 258=TG

4 G A A 259=GA

5 A 256 AC 260=AA

6 AC C C 261=ACC

7 C 257 CT 262=CC

8 CT T T 263=CTT

9 T 264 TT 264=TT

10 TT 259 GA 265=TTG

11 GA 261 ACC 266=GAA

12 ACC 257 CT 267=ACCC

Table 5.10: LZW Decompression.

5.6 The counting theorem

Although compression seems great, not all strings will get smaller when run through a
compression algorithm. Solomonoff (1964), Kolmogorov (1965) and Chaitin (1966) were
the pioneers in descriptive complexity, in a sense they all were aware that given a lan-
guage certain strings already had “high information density” and could not be written
down shorter.

Simply by counting one can see there is no universal lossless compression algorithm
which will compress all possible strings. [19]

– Theorem: No program can compress (i.e., store with less bits than the original)
without loss all strings of size ≥ N bits, for any given integer N ≥ 1.

– Proof: Assume that the program can compress without loss all strings of size ≥ N
bits. Compress with this program all the 2N strings which have exactly N bits. All
compressed strings have at most N − 1 bits, so there are at most 2N − 1 different
compressed strings (2(N−1) strings of size N − 1, 2(N−2) of size N − 2, and so on,
down to 1 string of size 0). So at least two different input strings must compress to
the same output string. Hence the compression program cannot be lossless.
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– For example: N = 8. So we have 28 = 256 original strings of 8 bits ranging from
00000000 to 11111111. Our compression program must make compressed strings
which are smaller than 8 bits. We can make at most 27 = 128 different strings with
a size of 7 bits, 26 = 64 different strings with a size of 6 bits, . . . , . . . , 21 = 2
different strings with a size of 1 bits, 20 = 1 string with a size of 0 bits. This gives
128+64+32+16+8+4+2+1 = 255 different compressed strings. This means that
at least two original strings must compress to the same compressed string, hence
the compression algorithm is not lossless! Decompressing this one compressed string
can never give two different decompressed strings.

5.7 Further reading on compression algorithms

The number of articles on compression are vast, we only discussed a few notable ones. One
more notable article to read is: “A Block-soring Lossless Data Compression Algorithm” by
M. Burrows and D.J. Wheeler [2] which describes a block-sorting, lossless data compres-
sion algorithm. The popular name for this algorithm is the Burrows-Wheeler transform
and introduces a few novell ideas which we have not discussed in this chapter.



Chapter 6

Implementation

6.1 Implementation of software

In this chapter we get into the details on how the experiments were done. The software
we used to run our experiments is ECJ 18, a Java-based Evolutionary Computation Re-
search System [17]. ECJ is feature rich, well documented and easy to expand. Java has
the advantage of being machine independent, class based and object oriented. So our
work can be extended by others without a total rewrite of code and experiments can be
run on any machine without difficult porting problems. The basic required features were
available: ECJ had good build-in support for GP, several tree creation algorithms (even
multiple tree forest support) and several GP breeding operators. More advanced topics
made the decision to use ECJ very easy: Master/slave evaluation support over multiple
processors, if needed we can use this to scale up and to speed up run times. Multiple
subpopulations with optional exchange and island models are also supported, should we
encounter problems with global convergence then these facilities provide ways to counter
such problems. Experimenting with the examples provided with ECJ made it easy to get
used to parameter files, the Java classes involved and how they were related. We started
to write our own GPcompression class files and run some initial tests, this chapter will
describe several choices we made. In particular we define our fitness function.

6.2 Representation of individuals

The binary tree is the first and most logical representation which comes to mind. Using
this idea seemed like a good place to start. One benefit of complete binary trees is that
they can be stored in a linear datastructure such as an array, so simple and short storage is
possible. A binary tree is complete when every level, except possibly the last, is completely
filled, and all nodes are as far left as possible. Let us look at a example of a binary tree
with 7 internal nodes N1, N2, . . . , N7 and 8 leaves L1, L2, . . . , L8:

26
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Figure 6.1: Binary tree.

Our tree had to be able to generate a string and we needed a representation which
would make the tree capable of generating output with some form of repetition. We
decided to store a number in the nodes, which represents the number of times a subtree
should be executed. The leaves are used store symbols, which are written to the output.
We also define a “null”-symbol (denoted as x), meaning “no output”. To create the string,
the tree is traversed in pre-order (root-left-right) order, where the number in the internal
nodes determine how often the left subtree is executed, i.e., its output is concatenated to
the final output this number of times.

Optionally we could make the tree always output a string of the desired length, e.g.,
if the output is too short, we restart the tree again and stop as soon as we have reached
the desired length. In the case the output is too long we simply discard the excess output.
Soon we realized restarting the tree was a good idea but it made the benchmark problems
to easy to solve, so we didn’t implement this feature.

To summarize everything mentioned earlier, consider the following example, a tree
which will output AACAACAACTC:

�

�

�

�
A

�

�

�

�
C

�

�

�

�
2

�

�

�

�
T

�

�

�

�
3

�

�

�

�
G

�

�

�

�
C

�

�

�

�
0

�

�

�

�
x

�

�

�

�
1

�

�

�

�
1

Figure 6.2: Example tree.
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6.3 Fitness function

In Section 3.7 we described the important role of a fitness function in the evolutionary
process. Even before a single test run was started several ideas on how to define the
fitness function came to mind. Several elements we could use in the fitness function, in
no particular order, are:

– Count the symbols in the candidate and the desired string and use the number of
differences as a penalty.

– The length of the desired string minus the length of the LCSeq between the candidate
and the desired string.

– The length of the desired string minus the length of the LCStr between the candidate
and the desired string.

– Use diff on the candidate en desired string and count the number of insertions and
deletions in the edit script.

– Levenshtein edit distance.

– Hamming distance.

During the first test runs (see Section 6.4) it became clear that using diff in the fitness
function worked very well. If we would set our goals on achieving lossless compression
we could use the edit script produced by the diff algorithm to transform the candidate
string to the desired string. Using diff as main component meant that all candidate strings
which were longer than the desired string automatically got a large penalty for the extra
length. The extra length was not necessarily a bad thing and we thought it would be
advantageous if the evolution process had some place to store useful information which
would not be given a fitness penalty. Hence we allowed the candidate string to be longer
than the desired string (excess length can be discarded easily). On the other hand the
individual trees should not become too large, observed behavior of uncontrolled growth
is not wanted as we will see in Section 6.4. We found that an elegant and simple solution
was using the number of nodes in the tree as penalty in the fitness function and only
give a penalty if the length of the candidate string became twice the length of the desired
string.

After several test runs we found the following fitness founction worked best: The fitness
function fitness(x) used in this thesis for an individual x with a fixed desired string d is
defined as:

fitness(x) = 50 × Diff (Gen(x), d) + NodesPenalty(x)

+

{

|Gen(x) − d| if |Gen(x)| > 2 × |d|
0 otherwise

(6.1)

where Gen(x) is the string generated by the tree x, according to the mechanism de-
scribed in Section 6.2; |s| is the length of string s. Furthermore NodesPenalty(x) =
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Max (0,NumberOfNodes(x) − AllowedNumberOfNodes) where NumberOfNodes(x) is the
number of Nodes in tree x, AllowedNumberOfNodes is the number of nodes we allow the
tree to contain in order to be able to produce the desired string. This is a number we
choose. In simple cases we are able to determine the ideal number of nodes as can be seen
in Figure 6.6 and described in Section 6.5.

6.4 First test runs

In this section we show some examples of individuals which appeared while running the
first test run and which were used to make some kind of change to the GP.

After running some experiments on the small benchmark problems it became clear the
trees grew very large, which is a common problem with GP. Using the number of nodes
in the tree as a small penalty in the fitness function solved this problem very well. For
example this tree was generated while running experiments with the small benchmark
problem 2 from Section 2.2. Keep in mind the desired string is ACGT concatenated 25
times. The following tree indeed produces the desired string.
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Figure 6.3: Large tree.

When we prune the “not run part” from the tree, i.e., the two marked subtrees with
a 0 in their parent node, then one can see that there are still unnecessary doubles in the
tree. We also removed unnecessary “null” symbols: four x-es are replaced with one.
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Figure 6.4: Pruned tree.

This pruned tree also raises the question how it could improve. It would for example be
much better if the value 8 was replaced with 9, and the right subtree of the root replaced
with “null”. Mutation until now has been: Select a node and grow a random subtree. This
makes it almost impossible to improve the above tree. Point mutation of for example the
root and deletion of the right side subtree is needed. This could certainly happen over
several generations of evolution provided:

– No (or a small) fitness penalty is imposed for trees that produce excess output.

– Point mutation is possible in nodes.

After these adjustments a better tree was found: It is a perfect match with only 11
nodes, but this tree produces some excess output:
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Figure 6.5: Improved tree.
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And after some more runs a perfect match with only 11 nodes and exact length was
found:
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Figure 6.6: Perfect tree.

As another similar example why point mutation in the nodes is needed, consider the
following tree: two exact copies of the same subtree are seen here. An increment of one in
the root node, and removal of the right subtree, produces the same string.
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Figure 6.7: Tree with two copied subtrees.

We were curious how the GP would react if the repetition was disturbed on purpose.
For a first try we took small benchmark problem 2 and made two modifications. The input
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string was changed to 11 times ACGT followed by AAAT and 13 times ACGT. The GP came
with a solution which in essence was still the same as the solution found earlier for small
benchmark problem 2. The solution is small, but its output is very near to the desired
string. This gave us confidence the GP was still able to detect repetition even if there was
“fuzziness”.
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Figure 6.8: Fuzzy tree.

6.5 Stopping criteria

During the initial test runs the GP stopped when it found an individual which had a
fitness of zero or reached the maximum number of generations. Introducing the node
penalty in the fitness function helped in creating smaller individuals but consequently the
fitness function never reached zero. So the GP had lost a stopping criterium, and kept
running until the maximum number of generations was reached. One way to repair this
is changing the fitness function again and only give a penalty for too many nodes. This
meant we had to know the ideal length for the individual, or choose it as best we can,
and incorporate this in the fitness function so the fitness could reach zero again.

To determine the absolute minimum number of nodes or length of an individual, we
analyze the first benchmark problem which is 100 A’s. Consider this tree, which will output
10 A’s:
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Figure 6.9: 10 A’s.

The best way to improve the output is to add another 9 node in the root and a A,
which will output 10 ∗ 9 + 1 = 91 A’s:

�

�

�

�
A

�

�

�

�
A

�

�

�

�
9

�

�

�

�
A

�

�

�

�
9

Figure 6.10: 91 A’s.

So with 5 nodes we can generate an output of 91 A’s, add two nodes and it should be
capable to reach the desired length of 100 A’s.

The same analysis on the second benchmark problem results in an ideal length of 11
nodes, the third has an ideal length of 15 nodes. With the fourth benchmark problem we
observed a minimal length of 37 nodes. An other solution, which we didn’t implement,
is to monitor improvement and when this is absent for a large number of generations to
stop the run.



Chapter 7

Results

In this chapter we describe the results of our experiments. First we present and discuss
the solutions our GP found for the benchmark problems we introduced in Section 2.2.
Next we present solutions to other bigger problems.

7.1 Solutions for the benchmark problems

For small benchmark problem 1 the GP found following trees:
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Figure 7.1: Excess output: 113 A’s.
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Figure 7.2: Perfect output: 100 A’s.

Note that output of the tree seen in Figure 7.1 is too long, but this is not penalized:
we tolerate a small amount of excess output, see the fitness function in Section 6.3. The
current fitness function scores the two trees with the same value. Also note that these trees
are the best possible. The value in the nodes is at most 9, which restricts the possibilities
for further improvement. Finally, if we would have allowed repetition, a tree consisting of
a single A would do the trick.

Benchmark problem 2 was solved very well also, the tree seen in Figure 7.3 creates the
string ACTG and repeats that string 4 ∗ 7 = 28 times and appends a C. We only needed
25 repetitions, so there is some extra length (28− 25) ∗ 4 = 12 and the single C makes 13
characters which are thrown away and will not be given a penalty by the fitness function.

34
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Figure 7.3: Benchmark problem 2 example.

Benchmark problem 3 also posed little of a challenge, the string AACCGTT is created
quite efficiently and repeated 8 ∗ 2 = 16 times and followed by a single T. Again there is
some extra length of 16 ∗ 8 − 100 + 1 = 29 characters and the single T has no ill effect.
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Figure 7.4: Benchmark problem 3 example.

Trying to disturb the GP by replacing the 24’th character with an A instead of an T

had little effect. Still a nice repetition of 3 ∗ 7 = 21 repetitions of AACCGGTT was found in
the very straight forward tree which can be seen in Figure 7.5.
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Figure 7.5: Benchmark 3 problem with 1 edit example.

Benchmark problem 4 offered the real first challenge for the GP. A solution was not
always found and runtimes increased as can be seen in Section 7.2.

The first solution which looked promising can be seen in Figure 7.6. At that moment
the fitness function was still experimented with and looked like this:

1 fitness=50∗gp_ind . diff ;
2 fitness+=gp_ind . numNodespenalty ;
3 fitness+=5∗(expected . length()−gp_ind . lcstr ) ;
4 fitness+=2∗(expected . length()−gp_ind . lcseq ) ;
5 i f ( expected . length ()∗2<gp_ind . length_generated_string_tree )
6 fitness+=gp_ind . length_generated_string_tree−expected . length ( ) ;

The candidate string had a diff of 2 a LCSeq of 95 with 103 nodes in the tree.
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Figure 7.6: Benchmark problem 4 with alternative fitness function.

After several generations the tree improved a lot, the same diff and LCSeq with fewer
nodes, as can be seen in Figure 7.7:
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Figure 7.7: After several generations.

After 28,084 generations with a population size of 100 and after several runs, a very
good solution was found. The diff is 0, the generated length is 96, which is exact the
length we desire. The number of nodes is 37. The question we ask: “Could this solution
improve?” After a careful study of the tree and trying several alternatives, we could not
create a better solution. Also numerious reruns of the GP yielded no better result. So this
indeed seems to be a perfect solution.
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Figure 7.8: Perfect solution for benchmark problem 4.

7.2 Benchmark problem results

The evolutionary framework was run 100 times for each problem using the fitness function
defined in Section 6.3. The tables in this section describe the results. In the first column we
see the percentage of runs which yielded a diff edit script of length zero, the compression
was not lossy. The second column is the percentage of runs which yielded ideal solutions:
a diff of zero and the number of nodes in the tree was less than the number we had
choosen. Also listed are the lowest, average and highest number of generations to find a
ideal solution. Runtimes are based on a Intel(R) Core(TM)2 Duo CPU E6750 @ 2.66GHz
with 2048Mb of memory. The runs were single threaded.

Problem Diff=0 Ideal solution Generations Time
Percentage Percentage Minimum Maximum Average

1 100% 100% 1 42 7.74 00:01:19
2 92% 45% 24 49,526 5,127.31 11:04:09
3 94% 49% 40 44,896 10,503.61 11:45:24
4 3% 1% 19,888 19,888 19,888.00 22:09:38

Table 7.1: 100 population size, maximum 50,000 generations, elite 5.

Problem Diff=0 Ideal solution Generations Time
Percentage Percentage Minimum Maximum Average

1 100% 100% 1 56 8.24 00:01:17
2 98% 55% 12 93,199 14,602.69 19:32:45
3 99% 42% 34 80,056 11,364.05 24:03:39
4 1% 0% 43:40:02

Table 7.2: 100 population size, maximum 100,000 generations, elite 5.
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As expected, when an ideal solution is not found the number of generation scales
almost linear with the time, which can be seen in Table 7.1 and Table 7.2 by looking at
benchmark problem 4. It seems though we had a “lucky” high percentage on benchmark
problem 4, Table 7.1 scores much better than Table 7.2. With 1,000 we expect such luck
is unlikely to occur, results can be seen in Table 7.3.

Problem Diff=0 Ideal solution Generations Time
Percentage Percentage Minimum Maximum Average

1 100% 100% 1 154 9.55 00:03:14
2 93.1% 48.5% 12 49,735 4,763.36 100:04:55
3 93.8% 46.6% 19 49,296 9,771.55 113:48:29
4 0.9% 0.2% 8,366 16,660 12,513.00 214:38:21

Table 7.3: 100 population size, maximum 50,000 generations, elite 5, 1,000 runs.

Choosing a larger population and fewer generations can be interesting, the runtime
is much better than those in Table 7.1. The percentages to solve the problem are still
quite good and ideal solutions can be found in very few generations as can be seen in
Table 7.5. With such a big population one would expect no elitism also reduces runtime
considerably (compare Table 7.4 and Table 7.5), but this doesn’t seem to be the case.
Elitism improves the results and doesn’t hurt the time to run much, so we will keep this
parameter setting at 5.

Problem Diff=0 Ideal solution Generations Time
Percentage Percentage Minimum Maximum Average

1 100% 100% 2 10 4.74 0:02:06
2 72% 24% 13 1,936 299.38 2:58:39
3 66% 29% 19 1,970 773.00 3:19:56
4 0% 0% 4:46:36

Table 7.4: 500 population size, maximum 2,000 generations, elite 0.

Problem Diff=0 Ideal solution Generations Time
Percentage Percentage Minimum Maximum Average

1 100% 100% 1 19 4.77 0:02:27
2 78% 32% 13 1,596 297.53 2:55:33
3 65% 32% 19 1,937 460.81 3:04:44
4 0% 0% 5:08:08

Table 7.5: 500 population size, maximum 2,000 generations, elite 5.

If we compare Table 7.2 and Table 7.6 runtimes and results are in the same order of
magnitude, so it seems population size and maximum number of generations scale linear
with the amount of time and quality of results.
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Problem Diff=0 Ideal solution Generations Time
Percentage Percentage Minimum Maximum Average

1 100% 100% 1 10 4.48 00:02:07
2 100% 55% 19 19,189 2,922.38 21:02:24
3 96% 44% 18 17,907 1,999.05 21:38:28
4 1% 1% 17,486 17,486 17,486.00 47:15:17

Table 7.6: 500 population size, maximum 20,000 generations, elite 5.

Since benchmark problem 4 is not so easy to solve, we look a bit closer and try
to determine which parameter settings are the most effective. The first number is the
population size, the second the maximum number of generations. A Q denotes the runs
were done an a different processor: an Intel Q9450@3.2GHz with 4096Mb of memory, which
is a little faster per core than the E6750@2.66GHz. Diffc means a change is counted as 1
for the diff penalty, not as a deletion and insertion which would be 2.

Problem Diff LCSeq LCStr
min max avg min max avg min max avg

100.50000-Q 6 49 22.22 55 93 80.56 5 60 23.95
100.50000-Q-Diffc 0 42 21.24 58 96 79.75 3 96 18.81
500.2000 0 48 23.12 52 96 80.63 5 96 20.75
500.2000-Q-Diffc 7 46 26.36 56 92 75.49 3 48 12.43
Problem Nodes Length Runs Time

min max avg min max avg perfect
100.50000-Q 15 57 35.88 61 181 98.57 2 100 16:18:21
100.50000-Q-Diffc 15 55 33.74 71 181 108.18 5 100 18:42:14
500.2000 21 55 35.02 56 189 97.81 4 100 04:16:55
500.2000-Q-Diffc 13 55 30.96 70 182 105.58 5 100 03:50:57

Table 7.7: Comparison of several benchmark problem 4 runs.

The two methods to calculate the penalty do not impact the results of the GP signif-
icantly, so we conclude it doesn’t matter if you give a change a penalty of two or one in
the fitness evaluation.

7.3 A bigger challenge

We have seen the GP can solve our benchmark problems, but these were small and simple
problems. Could the GP cope with a bigger problem? In order to test the GP capabilities
we concatenated the four benchmark problems to one big string, thus creating a bigger
challenge. We will call this desired string benchmark poblem 5. We started the GP with
a population size of 500 and allowed 10,000 generations as a maximum per run. Results
can be seen in Table 7.8.
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Problem Diff LCSeq LCStr
min max avg min max avg min max avg

Bench5 8 96 63.50 310 392 343.08 99 300 130.96
Problem Nodes Length Runs Time

min max avg min max avg perfect
Bench5 25 109 44.52 314 449 357.31 3 101 245:31:18

Table 7.8: Benchmark problem 5 run overview.

In run 24, after about 2 hours and 25 minutes, generation 8,274 presented a solution
with a diff of 8 and a LCSeq of 392. The solution has 107 nodes and generates only 1
extra character; it can be seen in Figure 7.9.
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Figure 7.9: Solution for benchmark problem 5, diff=8.

The change script looks like this:

101,102d

202,203d

301a ACCA

Thus only 4 characters are deleted at position 101 and 102, and again at position 202 and
203. Finally ACCA is added at position 301. It is remarkable to see that the diff change
script entries operate at the concatenation points of the smaller benchmark problems.
These are the points where a new form of repetition starts, the solution the GP found
was not perfect but very acceptable. The desired string can be seen in Table 7.9, the
output from the tree can be seen in Table 7.10. Characters which are deleted or inserted
by diff are underlined, the C which is not used in the diff is also made lower case.
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTAC

GTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGT

AACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAA

CCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACC

ACGTAACCGGTTACGTAACCGGTTACGTAACCGGTTACGTAACCGGTTTG

CATTGGCCAATGCATTGGCCAATGCATTGGCCAATGCATTGGCCAA

Table 7.9: Desired string for benchmark problem 5.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGT

ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTAC

GTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGGTT

AACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAA

CCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAACCGGTTAAAC

ACGTAACCGGTTACGTAACCGGTTACGTAACCGGTTACGTAACCGGTTTG

CATTGGCCAATGCATTGGCCAATGCATTGGCCAATGCATTGGCCAAc

Table 7.10: String generated by the tree.

Our analysis of run 24 continues, by asking ourselves how many successful steps the
evolution took to reach the result. This can be seen in Table 7.11. The first 302 generations
the fitness increases fast, we see a steady grow in the number of nodes and a steady decline
in the diff. Then there is no improvement for 446 generations, we call this the first stall
of the run. These 446 generations were needed to reduce the number of nodes by 2.
The second big stall of 1,361 generations, which are needed to lower the diff by 3. The
GP enters a fruitful period at generation 3,027, a lot of quick improvements are made,
followed by a big stall to lower the diff from 12 to 10. Finally the diff 8 solution is found
at generation 8,172. The GP manages to reduce the number of nodes from 111 to 103
over 695 generations. The last 1,141 generations offer no useful changes.
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Generation Fitness Length Diff LCSeq LCStr Nodes
1 12028.0 222 240 189 9 27
2 11916.0 246 238 202 6 15
3 11616.0 170 232 167 25 15
4 11314.0 170 226 170 101 13
6 11164.0 173 223 173 101 13
7 10914.0 178 218 178 101 13
9 10216.0 224 204 208 101 15
11 10166.0 225 203 209 17 15
12 8168.0 273 163 253 101 17
14 8068.0 273 161 254 16 17
15 7768.0 245 155 243 91 17
16 7318.0 254 146 252 100 17
17 7172.0 257 143 255 100 21
23 7124.0 260 142 257 100 23
24 7122.0 258 142 256 100 21
27 7074.0 261 141 258 100 23
40 7072.0 261 141 258 100 21
41 7024.0 262 140 259 100 23
48 6980.0 269 139 263 100 29
50 6930.0 270 138 264 100 29
55 6836.0 278 136 269 100 35
58 6786.0 277 135 269 100 35
61 6690.0 305 133 284 100 39
62 6640.0 304 132 284 100 39
63 6436.0 302 128 285 100 35
66 6236.0 294 124 283 100 35
68 6234.0 298 124 285 100 33
69 6136.0 294 122 284 100 35
71 6086.0 295 121 285 100 35
73 6044.0 318 120 297 100 43
74 6038.0 298 120 287 100 37
76 6036.0 294 120 285 100 35
78 5994.0 317 119 297 100 43
79 5990.0 309 119 293 100 39
81 5840.0 306 116 293 100 39
85 5790.0 305 115 293 100 39
90 5640.0 302 112 293 100 39
93 5590.0 301 111 293 100 39
100 5588.0 301 111 293 100 37
105 5392.0 305 107 297 100 41
111 5390.0 305 107 297 100 39
131 3742.0 354 74 338 100 41
137 3692.0 327 73 325 100 41
143 3642.0 326 72 325 100 41
168 3598.0 333 71 329 100 47
177 3550.0 334 70 330 100 49
180 3548.0 326 70 326 100 47
215 3500.0 333 69 330 100 49

Table 7.11: Progress report Part 1.

Generation Fitness Length Diff LCSeq LCStr Nodes
253 3452.0 336 68 332 100 51
258 3402.0 335 67 332 100 51
291 3356.0 338 66 334 100 55
302 3354.0 338 66 334 100 53
748 3352.0 338 66 334 100 51
2109 3212.0 353 63 343 100 61
2114 3062.0 356 60 346 100 61
3027 3038.0 357 59 347 100 87
3029 2888.0 354 56 347 100 87
3034 2886.0 354 56 347 100 85
3037 2788.0 352 54 347 100 87
3038 2746.0 355 53 349 100 95
3040 2742.0 355 53 349 100 91
3041 2734.0 355 53 349 100 83
3042 2652.0 391 51 368 100 101
3044 2646.0 391 51 368 100 95
3045 2514.0 394 48 371 100 113
3046 2504.0 394 48 371 100 103
3047 2496.0 394 48 371 100 95
3048 2378.0 358 46 354 100 77
3050 1904.0 370 36 365 100 103
3054 1902.0 370 36 365 100 101
3055 1754.0 373 33 368 100 103
3057 1748.0 373 33 368 100 97
3059 1728.0 394 32 379 100 127
3061 1576.0 389 29 378 100 125
3063 1574.0 389 29 378 100 123
3064 1570.0 389 29 378 100 119
3067 1566.0 389 29 378 100 115
3069 1424.0 392 26 381 100 123
3073 1422.0 392 26 381 100 121
3075 1418.0 392 26 381 100 117
3076 1414.0 392 26 381 100 113
3079 1412.0 392 26 381 100 111
3081 1408.0 392 26 381 100 107
3082 1310.0 372 24 372 100 109
3086 910.0 380 16 380 100 109
3100 908.0 380 16 380 100 107
3101 906.0 380 16 380 100 105
3108 902.0 380 16 380 100 101
3151 900.0 396 16 388 100 99
3165 700.0 384 12 384 100 99
8164 612.0 557 10 391 100 111
8172 512.0 557 8 392 100 111
8235 510.0 557 8 392 100 109
8255 508.0 397 8 392 100 107
8547 506.0 433 8 392 100 105
8859 504.0 433 8 392 100 103

Table 7.12: Progress report Part 2.

7.4 Real life example: E.Coli

We used the sequence cutter from http://www.shigen.nig.ac.jp/ecoli/pec/tools.jsp

to get a piece of a DNA sequence from the E.Coli bacteria. First we did a run on the first
500 characters, results can be seen in Figure 7.10 and Table 7.13.

Surprisingly there are a lot of high numbers in the tree, which suggests a lot of repe-
tition in the DNA sequence. But when we look closer at the fitness we see that the diff is
very big, 260. And the LCSeq is no where near the 500. It seems the GP is more tuned
to deliver a small sized tree than a tree which delivers an accurate output.
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Figure 7.10: 1st 500 characters E.Coli.

Length Generated Length Diff LCSeq LCStr Nodes
500 324 260 282 14 61

Table 7.13: First 500 characters E.Coli.

We were curious what would happen when the length was increased, we ran another
test on first 5,000 characters, results can be seen in Figure 7.11 and Table 7.14.

Even a smaller tree, and again a big diff. This is more a general pattern recognition
than it is compression.
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Figure 7.11: First 5,000 characters E.Coli.

Length Generated Length Diff LCSeq LCStr Nodes
5,000 3,241 2,935 2,653 10 45

Table 7.14: First 5,000 characters E.Coli.
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In order to compare results with the benchmark problems, we analyze the results of
100 runs on the first 100 characters of the sequence of the E.Coli. A population size of
100, and maximal 50,000 generations with elitism of 5 was used. The best individual had
a diff of 30 and can been seen in Figure 7.12.

�

�

�

�
T

�

�

�

�
C

�

�

�

�
T

�

�

�

�
G

�

�

�

�
A

�

�

�

�
1

�

�

�

�
C

�

�

�

�
T

�

�

�

�
G

�

�

�

�
C

�

�

�

�
A

�

�

�

�
G

�

�

�

�
C

�

�

�

�
A

�

�

�

�
T

�

�

�

�
A

�

�

�

�
1

�

�

�

�
2

�

�

�

�
1

�

�

�

�
3

�

�

�

�
2

�

�

�

�
1

�

�

�

�
1

�

�

�

�
1

�

�

�

�
1

�

�

�

�
1

�

�

�

�
1

�

�

�

�
1

�

�

�

�
6

�

�

�

�
T

�

�

�

�
A

�

�

�

�
G

�

�

�

�
T

�

�

�

�
1

�

�

�

�
A

�

�

�

�
G

�

�

�

�
2

�

�

�

�
3

�

�

�

�
8

�

�

�

�
8

�

�

�

�
1

�

�

�

�
C

�

�

�

�
T

�

�

�

�
G

�

�

�

�
T

�

�

�

�
2

�

�

�

�
A

�

�

�

�
2

�

�

�

�
1

�

�

�

�
2

�

�

�

�
A

�

�

�

�
T

�

�

�

�
2

�

�

�

�
2

�

�

�

�
1

Figure 7.12: First 100 characters E.Coli, best individual of 100 runs.

Problem Diff LCSeq LCStr
min max avg min max avg min max avg

sequence100 30 56 44.21 49 76 60.98 4 20 8.66
Problem Nodes Length Runs Time

min max avg min max avg perfect
sequence100 13 55 29.74 50 83 66.17 0 100 20:30:31

Table 7.15: First 100 characters E.Coli, results 100 runs.

Looking at Figure 7.12 we suspect that the end of the candidate string matches the
desired string very well. This should also be seen in the diff edit script. We analyze the
diff edit script further, which has 29 insertions and 1 deletion:
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The diff edit scipt:

66a A <- append an A at position 66

63a CC

58a T

54c AAC <- c means change, so the G is deleted at position 54

50a TT

47a GC

45a A

44a CT

39a G

30a GGA

29a G

28a G

27a C

26a C

25a G

16a C

4a CA

0a AGC

We apply this diff edit script to the candidate string in order to visualize the transfor-
mation of the candidate string to desired string. Line 1 (CS) show the unaltered candidate
string, line 2 (DS) the desired string. First we position the characters of the candidate
string to match those of the desired string by adding spaces, resulting in line 3 (PS). The
character postitions have also been numbered, which can be seen in the lines 5 and 6. As
the last step the diff edit script is executed, which results in the line 4 (Ed)

CS :TTTTTTCTGACTGCAAGGGCAATATTTTTTTTAAAAAAAAGTGTGTAAGCCTGGTGGTACCTGGTGGTAAAT

DS :AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAAT

PS : TTTT TTCTGACTGCAA GGGCAATAT T T T T T TTAAAAAAA AGTGT G TA AGC CTG GTGGT ACCTG GTG GTAAAT

Ed :AGC CA C G C C G G GGA G CT A GC TT AAC T CC A

10 : 0000 000001111111 111222222 2 2 2 2 3 333333333 44444 4 44 445 555 55555 56666 666 666777

01 : 1234 567890123456 789012345 6 7 8 9 0 123456789 01234 5 67 890 123 45678 90123 456 789012

Figure 7.12 shows onlytwo subtrees which are repeated, all the other repetitions are single
characters. GT is repeated 3 times at position 43. (after the 8 A’s.) and CCTGGTGGTA is
repeated 2 times at position 50. The diff edit script makes changes throughout the string,
even these two found repetions are in need of some repairs. The GP simply can’t detect
enough repetition.

7.5 Speed optimization

The time needed to get usable results is very long. In this section we try some simple
speed optimizations in order to see how we could improve the runtime. First we do a run
without speed optimization; results can be seen in Table 7.16.
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Problem Diff LCSeq LCStr Nodes Length Runs Time
min max avg min max avg min max avg min max avg min max avg perfect

1 0 0 0 100 100 100 100 100 100 7 7 7 100 199 139.82 5 100 0:01:19
2 0 25 2.73 75 100 97.52 3 100 89.3 9 27 12.82 88 195 129.43 4 100 0:35:22
3 0 36 6.16 64 100 94.41 3 100 66.59 11 29 18.24 82 196 122.43 6 100 0:47:39
4 15 46 30.12 52 86 71.44 2 46 8.97 11 47 31.02 59 183 99.13 4 100 0:57:53

Table 7.16: Run with pop.size 100, 2,000 generations, no speed optimization.

The subroutines which calculate the diff, LCSeq and LCStr are executed for every
individual at every generation in order to provide statistics and provide information to
calculate the fitness. Currently the diff subroutine is not multithread safe, so we are unable
to utilize the multithread evaluation option of ECJ. If the fitness function will be based
only on the LCSeq or LCStr, multithreading of ECJ could be enabled. Furthermore if
we choose not to calculate the diff and LCSeq and LCStr but only the one we need to
determine the fitness a lot of unnecessary calculations are not performed.

We change the fitness function and substitute the diff penalty for a LCSeq penalty.
Now only the LCSeq needs to be calculated and the ECJ multithread evaluation parameter
can be turned on; results can be seen in Table 7.17.

Problem Diff LCSeq LCStr Nodes Length Runs Time
min max avg min max avg min max avg min max avg min max avg perfect

1Q 100 100 100 7 7 7 100 199 140.49 5 100 0:00:31
2Q 98 100 99.29 11 29 12.46 101 196 134.86 0 100 0:11:21
3Q 92 100 99.04 13 31 17.8 99 197 136.88 3 100 0:12:39
4Q 64 93 78.65 13 47 32.48 95 192 126.05 5 100 0:17:54

Table 7.17: Run with pop.size 100, 2,000 generations, with speed optimization, LCSeq.

The fitness function is changed again and we use the LCStr as main penalty; results
can be seen in Table 7.18.

Problem Diff LCSeq LCStr Nodes Length Runs Time
min max avg min max avg min max avg min max avg min max avg perfect

1Q 100 100 100 7 7 7 100 200 131.14 11 100 0:00:28
2Q 97 100 99.3 11 31 16.28 100 197 131.08 6 100 0:06:40
3Q 96 100 99.09 13 35 21.44 99 195 128.16 1 100 0:07:43
4Q 13 96 46.72 19 119 41.44 39 184 104.06 2 100 0:11:58

Table 7.18: Run with pop.size 100, 2,000 generations, with speed optimization, LCStr.

If we compare Table 7.16 with Table 7.17 and Table 7.18 we see improved runtimes
and better results.



Chapter 8

Conclusions

8.1 Conclusions

In this thesis we examined how Genetic Programming (GP) can be used for the com-
pression of relatively small DNA strings. GP will work as long as a representation of the
individuals allows to recreate the original. Choosing a good representation is hard. The
current one is loosely inspired by run length encoding, a more sophisticated representation
will likely perform better.

When choosing a fitness function one must consider the computational cost very care-
fully. A sophisticated fitness function which seems much better but takes far more com-
putations than a simple fitness function, could increase the total runtime to find good
results.

Although it is possible to achieve compression on simple strings with GP the current
implementation is not applicable for full length DNA strings found in real organisms. The
amount of time it takes to get results is bad compared to the traditional compression
algorithms. As expected the GP will find repetition of patterns even if we disturb them
on purpose, but current representation of the individuals can not handle large strings and
one can say, based on our results, the GP is better at fuzzy repetition pattern recognition
than compression.

8.2 Future research

There are many ideas for further research:

– Split the input string into chunks and use a forest of trees, one tree per chunk,
perhaps with crossover between different trees.

– Implement some kind of goto operator. Perhaps combine with forests.

– Use the block moves instead of the classic diff edit script length in the fitness func-
tion.
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– Create genetic operators which are based on block moves like a swap subtree muta-
tion operator.

– Add a new stop criterium: if no improvement for x generations, then stop this run.

– Speed up the runs by using further multithreading or island models over TCP/IP.

– Optimize source code and calculate less statistics.

One other possible use for GP on DNA strings would be to try to simulate how the
DNA strings were formed. If all the genetic operators would perform like in real nature
likely ancestors of certain DNA strings could be identified.
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