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Abstract

Global optimization methods tend to focus on exploitation of known optima,

often getting stuck in local optima. For problems with costly evaluations,

it is more effective to initially identify the high-performance regions. This

thesis proposes an algorithm designed to provide good coverage of the high-

performance regions of an objective function using few objective function

evaluations. The algorithm performs consecutive Metropolis-Hastings ran-

dom walks on an RBFN meta-model of the objective function. After each

walk, it adds the endpoint to the training set, then retrains the RBFN. Exper-

iments show that the algorithm explores good solutions in significantly fewer

objective function evaluations than state of the art algorithms, such Niching

ES. The efficiency of the algorithm can be significantly increased by raising

the acceptance function to some power. The map of the high-performance re-

gions obtained can be used to initialize a more greedy optimization method.

Moreover, the MIMH algorithm can be readily used to sample efficiently

from a distribution the shape of which is determined by a costly evaluation

function.
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Chapter 1

Introduction

The focus of this thesis is in conceiving a sampling method that emphasizes

sampling from high-performance regions without performing a large number

of objective function evaluations. This should be of particular interest to

those interested in discovering the rough optima of an extremely costly ob-

jective function. The algorithm that is designed in this thesis is intended as a

means of obtaining good starting points for more greedy and precise search.

This shall be accomplished by performing Metropolis-Hastings walks on

a gradually improving model of the objective function. Each sampled point

is added to the training set, which is then used to enhance the model. As a

generic type of model, the radial basis function network (RBFN) is employed.

The algorithm shall be referred to as Model Induced Metropolis-Hastings

(MIMH).

In order to be successful, the conceived method must satisfy these three

criteria:

• The algorithm emphasizes sampling from high-performance regions.

• The algorithm minimizes the number of objective function evaluations

to be performed.
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• The algorithm must be capable of finding all global optima of the ob-

jective function with some predefined accuracy ǫ.

It has been proven by [Has70] that the Metropolis-Hastings algorithm

can be used to mimic sampling from an arbitrary distribution function. In

this paper, it will be shown that MIMH converges on the same sampling

distribution after a reasonable number of objective function evaluations.

1.1 Overview

Chapter 2 begins by describing the problem of global optimization. The

remainder of the chapter is devoted to introducing the basic techniques on

which the MIMH algorithm builds: the Metropolis-Hastings algorithm, and

Radial Basis Function networks.

Chapter 3 introduces the MIMH algorithm and details the parameters of

the algorithm and how they affect the behavior of the algorithm. Afterwards,

it is proven that the sample set will converge on the target distribution. The

computational cost of the algorithm is offset against the cost of objective

function evaluations.

Experiments to test the convergence of the algorithm, to find the ideal

value of one of the parameters, and to compare the algorithm to other ap-

proaches are described in Chapter 4. The results of these experiments are

analyzed in Chapter 5.

Chapter 6 concludes this thesis by examining the niche the MIMH algo-

rithm can occupy in the global optimization, and provides pointers for future

research.
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Chapter 2

Preliminaries and Basic

Techniques

2.1 Global Optimization

Optimization algorithms typically have to choose between either exploring

much of the landscape or having a good resolution on one or some local

optima, which may not include the global optima. The former quality is

often referred to as exploration, the latter quality as exploitation.

Most popular optimization algorithms use a method akin to local iterative

optimization, and boast high performance on the exploitative scale. The

drawback of this is that they can easily get trapped in local optima. Many

such algorithms deal with this problem by means of a restart mechanism.

The MH algorithm, while not strictly an optimization algorithm, can be

viewed as one extreme of the exploration vs. exploitation dimension. It is

highly explorative, and offers little exploitation of known good areas.

The main drawback of MH as an optimization algorithm is the number

of objective function evaluations required to obtain a proper sample. MIMH

attempts to offset this drawback by using a model to estimate the value of
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the objective function for all points in the burn-in phase of the walk.

In many engineering problems, the cost of objective function evaluation is

prohibitively high. MIMH allows these problems to be approached with the

explorative qualities of the MH algorithm, offering a more divergent range of

potential solutions.

Two other approaches to global optimization are:

• Evolutionary Strategies (ES) [BFM97] are a popular class of population-

based optimization algorithms. Niching methods [Shi08] are an exten-

sion of ES, which offer parallel exploitation of optima by maintaining

greater diversity in the population.

• Simulated Annealing (SA) [KGV83] is an adaptation of the MH algo-

rithm, inspired by annealing in metallurgy. It employs a global param-

eter T , which is steadily decreased during the algorithm, and which

controls the explorativity of the algorithm. Thus, SA can be highly

explorative initially, and gradually become more exploitative.

2.2 High-Performance Regions

To measure the effectiveness of global optimization algorithm, usually a met-

ric is used that focuses on the fitness function value of the best solution en-

countered so far, or on the distance to the nearest global optimum. Some

metrics, such as the Mean Peak Ratio (Section 4.1.2), consider the possibility

of multiple optima of interest.

In addition to the MPR metric, this thesis suggests examining the thor-

oughness of an algorithm in exploring the regions of the sample domain with

low fitness value. These regions are dubbed the high-performance regions,

and are defined as any regions of the sample domain with f(·) ≤ fthreshold for

and arbitrary fthreshold.
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The High-Performance Region Coverage (Section 4.1.1) metric measures

how well the set of points sampled by an algorithm cover the these regions.

2.3 Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) is a Markov Chain Monte-Carlo algorithm. This

class of algorithms can be used to sample from an arbitrary distribution π(·)
that cannot be sampled from using a simpler distribution-specific method.

The MH algorithm only requires that an unnormalized density function g(·)
is known.

π(x) = k · g(x) (2.1)

where k is a normalizing constant. Since π(x) is a probability distribution,

the volume of the integral over the whole sample space S must be 1. There-

fore:

k =

(∫

x∈S

g(x)dx

)−1

(2.2)

Given g(·), the MH algorithm provides samples from the target density with-

out requiring the value of k.

The Metropolis-Hastings algorithm was developed by Metropolis et al.

[MRR+53] and generalized by Hastings [Has70]. It was used extensively

in physics, but did not gain popularity under statisticians until the last

decade of the century. The works of Gelfand & Smith [GS90] and Tier-

ney [Tie94] stimulated interest under statisticians. Despite the late bloom,

MH has evolved to one of the most influential algorithms introduced in the

past century.

Given an d-dimensional sample space R
d, the MH algorithm performs a

random walk of length l through the sample space from a random starting

point x0 to arrive at a final point xl which is a proper sample of π(·). At each
step t ∈ {1, . . . , l}, a candidate point y is generated from the neighborhood of
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xt by some proposal density function Q(x), usually a Gaussian distribution

around xt, see Section 2.3.2.

y ∼ Q(xt) (2.3)

The candidate point is then accepted or rejected based on the relative density

function values:

xt+1 =




y, if α(xt,y) ≥ U(0, 1)

xt, otherwise
(2.4)

with

α(xt,y) =
g(y) ∗ q(y,xt)

g(xt) ∗ q(xt,y)
(2.5)

where q(x,y) is defined as the chance that the proposal density function will

step from x to y. If q(x,y) is symmetrical (as is assumed in the original

Metropolis algorithm [MRR+53]), the two factors can be eliminated from

the equation, yielding the simpler formula:

α(xt,y) =
g(y)

g(xt)
(2.6)

Initially, the value of xt will be largely dependent on the starting point x0.

Over many iterations, however, the effect of initial state will be forgotten.

The initial states are called the burn-in period and are discarded. It has

been proven [Tie94, 1702] for a sufficiently long MH walk, that the stationary

distribution converges to the target distribution π(·).

2.3.1 Limitations

In this section a method is described for transforming an arbitrary objective

function f(x) into an unnormalized density function g(x) that can be used

by the MH algorithm.

A requirement of the MH algorithm is that the integral of the density
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function is Lebesgue measurable. That is, the integral over the whole sample

domain must have a finite value. Many objective functions do not meet this

requirement, including those used in Section 4.2.

However, if the sample domain is limited to some finite interval S, for

example a hypercube, and if it is assumed that f(x) is locally Lipschitz

continuous, then the integral of f(x) over S will always have a finite value.

In this thesis, S is the hypercube defined by:

S = [xmin, xmax]
d (2.7)

where both xmin and xmax are chosen to define the interval of interest for a

specific objective function. Most of the equations can easily be adapted to

accept a differently shaped bounded sample domain.

As an alternative approach to ensure that the integral of f(x) over S is

finite, the objective function can be altered to have zero value outside some

bounded domain of interest, e.g.:

f ′(x) =




f(x), if x ∈ S

0, otherwise
(2.8)

This approach is further examined and rejected in Section 3.3.1.

Since f(x) is locally Lipschitz continuous, it will have finite value for all

x ∈ S, including:

fmin = min
x∈S

f(x), (2.9)

fmax = max
x∈S

f(x) (2.10)

An additional requirement of the MH algorithm is that:

∀x ∈ S : g(x) > 0 (2.11)
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From Equation 2.6, it can be observed that if at any time g(xt) = 0, the

acceptance chance is undefined, and if either g(xt) < 0 or g(y) < 0, the

acceptance chance is smaller than zero, resulting in unreachable regions of

the sample space.

Also, since the focus of the MIMH algorithm is on minimization, rather

than maximization, it should have a higher chance of sampling from an area

with low f(x) and a lower chance of sampling from an area with high f(x).

An unnormalized density function that meets both requirements can be

obtained by applying a simple transformative function to the objective func-

tion:

g(x) =




η, if fmax − f(x) ≤ η

fmax − f(x), otherwise
(2.12)

where η is some very small positive constant.

The resulting probability density is simply the normalized version hereof:

π(x) = k · g(x) (2.13)

where k is an unknown normalizing constant.

2.3.2 Generate candidate point

The Metropolis-Hastings algorithm generates a candidate point y by tak-

ing a random step from starting point x. There are some possible methods

of generating a random step. In this document, a hyperspherical direction

generator [Zab03, 131] is used. It has the advantage of generating an in-

dependent random direction even in higher dimensions, which can easily be

scaled to a random length by an independent random variable.

The hyperspherical direction generator provides vector with a random
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direction:

d =




d1

d2
...

dd




, di ∼ N(0, 1) (2.14)

This vector can subsequently be scaled to a random length with mean

value 0 and variation σ:

x′ = x+ d · l

|d| (2.15)

with:

l ∼ N(0, σ) (2.16)

Since the sample domain is bounded, as explained in Section 2.3.1, the

proposal density function must be limited to the sample domain. A simple

method to achieve this is to wrap x′ around the edges of the domain

y =




y1

y2

. . .

yn




, yi = xmin + [(x′
i − xmin) mod (xmax − xmin)] (2.17)

2.4 Radial Basis Function Networks

2.4.1 Introduction

Radial basis function networks (RBFN) are a class of neural network models.

Specific to RBFN is that the activation of the hidden units is determined by

the distance between the input vector x and some center vectors.

The hidden units in RBFN are represented by basis functions φ(xn) with

xn = |x − cn| being the Euclidean distance between the input vector and

the center of the n-th basis function cn. φ(x) is some non-linear function,
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usually the Gaussian:

φ(x) = exp(− x2

2r2
) (2.18)

where r is a parameter which controls the smoothness properties of the in-

terpolating function, often referred to as the radius. In this thesis, a single

value of r will be used for all basis functions in the network.

The output of the RBFN is the sum of the radial basis function activa-

tions, with each basis function’s contribution augmented by a weight value

wn:

h(x) =
∑

n

wnφ(|x− cn|) + ŵ (2.19)

where ŵ is an additional global bias value.

Training in an RBFN consists of two steps. First, the center vectors and

spread values of the hidden units are chosen. Second, the weights of the final

layer are determined. More detail on this will be provided in Section 2.4.2.

2.4.2 Forward Selection

To train an RBFN involves a trade-off between perfectly mapping the train-

ing set and providing good interpolation for unknown points. It is easy to

construct a network that perfectly maps all the points in the training set, but

often, such a network will perform poorly on points outside the training set.

Whenever the number of radial basis functions is limited, the interpolation

of the target function will be enhanced.

The problem of finding the best subset of centers in a set of size N is

usually intractable [Raw88]. There are 2N − 1 such subsets. However, there

are a number of methods capable of finding a near-optimal subset. One such

method is called forward selection.

The forward selection method [Orr96] starts with an empty subset, then

iteratively grows the subset with a single basis function at a time. The centers
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of the basis functions are chosen from the training set X , and r is a single

radius for all basis functions, given by:

r = ζ · (r1, . . . , rd)T (2.20)

ri = maxxi −min xi | x ∈ X (2.21)

with d being the dimensionality of the input vectors and ζ some constant

scaling factor. At each step, the basis function is chosen that would most

reduce the sum-squared error. That basis function is added to the subset.

This process is repeated until some chosen criterion stops decreasing, usu-

ally the generalized cross-validation (GCV). The GCV is an error prediction

metric that penalizes adding more than an effective number of parameters

to the network. Although the sum-squared error will never increase as basis

functions are added, the GCV begins to increase at some point.

The hidden-to-output weights are not selected. They are determined by

solving a set of linear equations after the centers have been selected.

The forward selection method will produce different networks for different

values of the scaling factor ζ . Higher values of ζ will result in larger radii for

the basis functions and a smoother landscape. Lower values of ζ will result in

narrower peaks and more often overfitting of the training data. Orr [Orr96]

recommends that a number of possible values for ζ are used. For each value

of ζ , an RBFN is constructed by the forward selection method. Finally, the

network that minimizes the chosen criterion is chosen.

In the experiments in Chapter 4, the scaling factor ζ is chosen from:

Z =

{
d

20
,
d

21
, . . . ,

d

25

}
(2.22)

Forward selection is a non-linear algorithm, but it has the following ad-

vantages:
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• There is no need to specify the number of basis functions in advance.

• The model selection criteria are tractable.

• The computational requirements are relatively low.

The implementation of RBFN and the forward selection method used in

this document can be found at http://www.anc.ed.ac.uk/rbf/rbf.html

(August 15th, 2009).

2.4.3 Benefits and Drawbacks

In this section, the benefits and drawbacks of RBFN as a model in the algo-

rithm will be discussed.

Girosi & Poggio [GP89] prove that the set of functions that can be repre-

sented by an RBFN with a Gaussian basis function is dense in the space of

Lipschitz continuous functions. This means that any continuous function can

be approximated arbitrarily well by an RBFN. However, it requires that the

training set is a representative subset of the input space. It will be shown in

Section 3.4 that the training set provided by the MIMH algorithm converges

on a dense subset of the input space.

Also, with supervised learning, the RBFN can be modeled without user

intervention, solely based on the points sampled by the algorithm.

Radial basis functions have a local impact. A benefit of this locality is

that the global bias value of the network determines the estimate fitness value

for points outside the explored regions. Thus, this global bias value can be

leveraged to affect the explorativity of the algorithm, as shown in Section

3.2.3.

The information stored in the RBFN can very easily be used to obtain

predictions of the probable location of local and global optima.
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A common problem to all kernel estimation and machine learning meth-

ods is affectionately known as the curse of dimensionality. This refers to the

exponential growth of the number of data points required to model the target

density as the dimensionality of the sample space increases. In [Sil86], the

author reports that the sample size required to estimate the target density

with a given accuracy is 4 for a 1-dimensional space, 19 for a 2-dimensional

space and 842, 000 for a 10-dimensional space.

Coupled with the O(n3) cost of training the RBFN, it should be evident

that the MIMH algorithm does not lend itself well to finding the minima of

high-dimensional problems.

2.5 Generalized Least Squares Estimate

The generalized least squares method of [KO96] can be used to estimate

the mean of a set of correlated values. In this case, the fitness values

y = [y1 . . . yN ]
T are spatially correlated, with the correlation between fit-

ness values yi and yj defined as a function of the Euclidean distance between

the corresponding points xi and xj :

cθ(xi,xj) = exp(−θ · |xi − xj |) (2.23)

where θ is the correlation strength. When θ = 0, the field is perfectly corre-

lated. When θ →∞, the data points will be assumed to be uncorrelated.

The process of finding a good value of θ for the calculation of the mean

estimate is called the calibration phase. This is an expensive process, and

it is outside the scope of this thesis to explore the calibration of θ in detail.

In Section 3.2.3, where the generalized least-squares mean estimate of the

training set is calculated, a best-guess value for θ is used.

Given N points [x1 . . .xN ] with the respective fitness values . The gener-
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alized least squares estimate β̃ is defined by:

β̃ =
1T ·C−1 · y
1T ·C−1 · 1 (2.24)

with

C =




cθ(x1,x1) · · · cθ(x1,xN)
...

. . .
...

cθ(xN ,x1) · · · cθ(xN ,xN)


 , 1 =




1
...

1


 (2.25)
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Chapter 3

Approach

3.1 Model Induced Metropolis-Hastings

The Model Induced Metropolis-Hastings (MIMH) algorithm follows these

steps:

1. Construct an initial model of the objective function;

2. Use Metropolis-Hastings to sample from the model;

3. Refine the model using the new samples;

4. Repeat step 2 and 3.

Each iteration of the algorithm, the training set used to update the model

is expanded. The effectiveness of the algorithm hinges on two qualities:

• The model is able to learn the objective function well, and provide good

interpolation.

• Samples drawn from the model provide new training data that increases

the accuracy of the model, both in known good areas and in unexplored

regions.
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In Section 3.4 it is shown that, in the limit, the training set is a dense

subset of the sample space. This provides an RBFN with more than sufficient

well distributed points to learn the objective function. Clearly, obtaining a

dense subset is undesirable in any real-world case. However, the experiment

in Section 4.3.1 demonstrates that a good approximation of the objective

function can be obtained in few iterations.

The outline of the algorithm is given in Algorithm 1.

Algorithm 1 Model Induced Metropolis-Hastings

for i = 1 to µ0 do

x← U(xmin, xmax)
n

X ← X ∪ {(x, f(x))}
end for

repeat

/* NB: f̄(x) is the scaled objective function value of x, defined in Equa-
tion 3.6. */
train RBFN on (X, f̄(X))
x0 ← U(xmin, xmax)

n

for i = 1 to l do
y ← Q(xi−1)
/* NB: g̃(x) is an estimate of the unnormalized target density function
value of x, defined in Equation 3.4. */
if g̃(y)/g̃(xi−1) > U(0, 1) then
xi ← y

else

xi ← xi−1

end if

end for

X ← X ∪ (xl, f(xl))
until termination criterion is met
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3.2 Step by Step Description

3.2.1 Initial Modeling

The initial model of the objective function is obtained by training an RBFN

on µ0 > 2 random points from the sample space. Obviously, the objective

function must be evaluated for these points. In addition, any known points

can be added to the training set, perhaps known from previous optimization

attempts or other outside sources.

3.2.2 Sampling

Each iteration a point is sampled and added to the training set. This sam-

ple is obtained by performing a Metropolis-Hastings walk of length l. This

would cost l objective function evaluations. To limit the number of actual

evaluations that are made, the RBFN is used to estimate the fitness value of

each point evaluated during the walk, given by the estimate function f̃(x).

The actual fitness value is only calculated for the end point of the random

walk.

Calculating the output of the meta-model for some point x costs only

O(m · d) time, where m is the number of basis functions in the meta-model.

The cost of the algorithm is further explored in Section 3.5.

As described in Section 2.3.1, the objective function, or in this case,

the estimate objective function, must be normalized in order to obtain a

usable density function. The density function used is an estimate of g(x)

(see Equation 2.12), defined by:

g̃(x) =




η, if fmax − f̃(x) ≤ η

fmax − f̃(x), otherwise
(3.1)
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where f̃(x) is an estimate of the objective function provided by the RBFN.

Thus, the acceptance probability formula is changed to:

α(xt,y) =
g̃(y)

g̃(xt)
(3.2)

Usually, the real value of fmax is not known beforehand. This, too, can

be estimated by using the observed maximum fitness value:

f̃max = max
x∈X

f(x) (3.3)

By extension, Equation 3.1 is rewritten to include the observed maximum

fitness:

g̃(x) =




η, if f̃max − f̃(x) ≤ η

f̃max − f̃(x), otherwise
(3.4)

In Section 3.4, the convergence of f̃max to fmax and the drawbacks of using

an estimate for fmax shall be explored.

When each MH walk is completed, the final point of the walk is evaluated

using the objective function f(x). Thereafter that point is added to the

training set X .

3.2.3 Scaling

It is possible to leverage the effect of the global bias value, or rather the

absence of one, to control the explorativity of the algorithm.

For points in unexplored regions, the effect of the radial basis functions

is negligible and h(x) is dominated by the global bias value. Therefore, the

global bias value determines how explorative the algorithm will be. If the

weight is near f̃max, the chance of sampling from unexplored regions will be

near zero. If the weight is near f̃min (see Equation 3.5), unexplored regions
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will be treated as high-performance regions.

f̃min = min
x∈X

f(x) (3.5)

Assuming no global bias value is added to the network, h(x) ≈ 0 for

points in unexplored regions. If, before training, the fitness values of the

points in the training set are scaled to an interval around 0, such as [−λ; 1]
for some positive constant λ, the position of 0 in that interval determines the

relative position of the fitness value estimate for unexplored regions.

If f(x) is the fitness value of the x ∈ X , then the scaled fitness value of

that element is defined by:

f̄(x) = −λ+

(
f(x)− f̃min

f̃max − f̃min

)
· (1 + λ) (3.6)

This equation ensures that

∀x ∈ X : f(x) = f̃min ⇒ f̄(x) = −λ (3.7)

and

∀x ∈ X : f(x) = f̃max ⇒ f̄(x) = 1 (3.8)

with all intermediate values linearly scaled in the defined interval.

The RBFN is trained on all points x ∈ X and the respective scaled fitness

values f̄(x).

It is easy to scale the output values of the RBFN back to the original

interval of [f̃min, f̃max]:

f̃(x) = f̃min +

(
h(x) + λ

1 + λ

)
· (f̃max − f̃min) (3.9)

In order to provide reasonable interpolation, λ is set to ensure that for
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unexplored regions f̃(x) will be near an estimate of the mean fitness value for

the whole landscape. This estimate is obtained by calculating the generalized

least-squares mean estimate β̃ (Section 2.5) of the training set.

The calibration of the correlation strength θ used in calculating the gen-

eralized least-squares mean estimate can be very expensive. In this thesis, a

best guess is used for θ. It is set to the radius of the radial basis functions

in the previous training step:

θt =




1, if t = 0

|rt−1| , if t > 0
(3.10)

For Equation 3.9 to yield f̃(x) = β̃ when h(x) = 0, it is possible to

determine the value of λ by simply solving a linear equation. The resulting

value for λ is given by:

λ =
β̃ − f̃min

β̃ + f̃max − 2 · f̃min

(3.11)

3.2.4 Training RBFN

The RBF network is retrained on the now-expanded training set. The exact

training method, target criteria, and values for parameters of the training

can be chosen specifically for the objective function. In this document, the

forward selection training method [Orr96] is used, as described in Section

2.4.2.

Specifically, the RBFN is trained using the mapping of the points in the

training set to the scaled fitness values, f̄ : X→ ȳ. As a result, h(x) will be

similarly scaled. The output values of the RBFN can be scaled back to the

original interval [f̃min, f̃max] using Equation 3.9.
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3.3 Parameters of the Algorithm

3.3.1 Step Variation

The step variation σ, encountered in Equation 2.15, determines the size of

the steps in a MH walk.

If σ is small, most steps generated will be local, and will most likely

be accepted. On the other hand, if σ is too large, more candidate points

are generated in far-off low probability areas, and the algorithm will end up

rejecting more steps. In either case, the autocorrelation in the points in the

MH walk will be high.

Much research has been done to the ideal acceptance rate; that is, the rate

of accepted samples to rejected samples that offers the best mixture. [RR01]

find that the optimal acceptance rate is approximately 0.35 when d = 2 and

converges to 0.234 when d→∞. Also, they conclude that acceptance rates

between 0.15 and 0.5 do not decrease efficiency significantly.

It should be noted that these conclusions apply to an infinite sample do-

main with a Lebesgue measurable integral over g(·). In contrast, the focus

of this thesis is on bounded domains and all of the test objective functions

described in Section 4.2 would have an infinite integral over an infinite do-

main.

If the proposal density function Q(x) is modified to allow steps outside

the bounds of the domain, g(·) can easily be altered to accept an infinite

domain:

∀x /∈ [xmin . . . xmax]
d : g(x) = 0 (3.12)

This modification does not alter the stationary distribution of the algorithm,

since it does not affect the acceptance function α(x,y) for any x that can be

reached by the random walk. It can only provide additional rejected samples,

when the proposal function reaches outside the bounds of the domain.
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Figure 3.1: Average acceptance rate for different values of σ on both a
bounded domain and an infinite domain.

To illustrate the difference of using an infinite or a bounded sample do-

main, the MIMH algorithm is run on the Moonface function [Jac97], which

is defined as:

f(x) = d1 −
50 · sin(d1)

d1
+ d2 −

50 · sin(d2)
d2

+ d3 −
50 · sin(d3)

d3
− 100

with:

d1 =

∣∣∣∣∣x−
(

11

9

)∣∣∣∣∣ , d2 =
∣∣∣∣∣x−

(
−11
−3

)∣∣∣∣∣ , d3 =
∣∣∣∣∣x−

(
6

−9

)∣∣∣∣∣

for a 2-dimensional x bounded by −20 ≤ x1, x2 ≤ 20. For the sake of

completeness, this function is repeated in Section 4.2.2. The algorithm is

run for 100 iterations with different values of σ and a fixed walk length of

l = 100. In Figure 3.1 the average acceptance rate is plotted against σ.

It is clear from Figure 3.1 that on a bounded domain the average accep-
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tance rate is high for all practical values of σ. On an infinite domain, the

acceptance rate drops off at high values of σ. However, all the additionally

rejected samples are located outside the bounds of the input domain. This

does not imply better mixture of the points in the random walk, since the

accepted points are drawn from the same distribution as the bounded domain

variant.

Unfortunately, this exercise provides no clues to a proper value for σ. In

this thesis, σ is set to a fraction of the diagonal of the sample space:

σ =
1

m
· (xmax − xmin) ·

√
d (3.13)

where m is an arbitrary number. Also, in this thesis, m = 100 is used.

3.3.2 Walk Length

The length of the Metropolis-Hastings walk l should be large enough that

the final point is a sufficiently randomized sample. If l is too low, the final

point will be biased toward the start point of the walk. If l is too high, it

adds to the cost of the algorithm with little added value.

For the experiments in this document, l is set to the average number

of steps needed to move across the sample domain from one corner of the

hyperrectangle to its opposite corner. The step variation σ determines the

mean size of the steps in a MH walk. The mean step size is equal to the

absolute mean deviation of the factor N(0, σ). It can be deduced that the

mean step size is σ
√

2

π
.

Thus, the intended walk length is defined by:

l =

⌊
(xmax − xmin) ·

1

σ
·
√

πd

2

⌋
(3.14)

This formula can easily be adapted to account for problems where not all
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dimensions have equal bounds.

If σ is chosen according to Equation 3.13, then Equation 3.14 can be

simplified to:

l = m ·
√

π

2
(3.15)

3.3.3 Probability Exponent

A variant on the standard MIMH algorithm is presented that uses an expo-

nent parameter κ to adjust the shape of the unnormalized density estimate.

This approach simply replaces the unnormalized density estimate function

g̃(x) used in the MH walks with:

ḡ(x) = g̃(x)κ (3.16)

The standard MIMH algorithm can be seen as a specific case of this variant

with κ = 1.

By choosing a value of κ > 1, the differences in density function values

are emphasized, as shown in Figure 3.2, and by choosing a value of κ < 1,

the differences in the density function values are reduced. By looking at

the acceptance function in Equation 3.2, it is possible to see that if, for some

point x and a candidate point y, the probability density estimates are related

as g̃(y) = β · g̃(x), then the chance of accepting y is simply:

α(x,y) =
g̃(y)

g̃(x)
= β (3.17)

or, if the density function ḡ(x) is substituted:

α(x,y) =
ḡ(y)

ḡ(x)
= βκ (3.18)

Thus, the κ parameter can be used to make the algorithm more or less
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Figure 3.2: Adjusted unnormalized density function ḡ(x) for objective func-
tion used is f(x) = sin(x) using different values of κ.

greedy. The effects of this parameter on the discovery of the minima and

coverage of the high-performance regions are explored in an experiment in

Section 4.3.2.

3.4 Convergence

Although the main intention was to design of the MIMH algorithm as an

explorative global optimization method, it is also a method of sampling from

an arbitrary distribution, the shape of which is defined by a cost expensive
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evaluation function. Assuming the f(x) is Lipschitz continuous with some

constant L < ∞ and assuming S is a compact sample space, the samples

drawn by the MIMH algorithm will eventually converge on the target distri-

bution. However, there are obstacles that slow down convergence to π(·), and
until the training set is a dense subset of the sample space, the distribution

of the samples drawn will be skewed.

The estimate probability density can be obtained from Equation 3.4 as:

π̃(x) = k̃ · g̃(x) (3.19)

where k̃ is a normalizing constant. More specifically, to refer to the estimate

probability density at iteration t:

π̃t(x) = k̃t · g̃t(x) (3.20)

with

g̃t(x) =




η, if f̃t,max − f̃t(x) ≤ η

f̃t,max − f̃t(x), otherwise
(3.21)

In order to prove convergence, it must be shown that:

∀x ∈ S : lim
t→∞

π̃t(x) = π(x) (3.22)

This criterion is satisfied if:

∀x ∈ S : lim
t→∞

g̃t(x) = g(x) (3.23)

and

lim
t→∞

k̃t = k (3.24)

29



Equation 3.24 can be expanded using Equation 2.2 to:

lim
t→∞

(∫

x∈S

g̃t(x)dx

)−1

=

(∫

x∈S

g(x)dx

)−1

(3.25)

Clearly, this is a weaker form of the criterion in Equation 3.23.

Equation 3.23 is met if:

∀x ∈ S : lim
t→∞

f̃t(x) = f(x) (3.26)

and

lim
t→∞

f̃t,max = fmax (3.27)

Since f̃t,max is the maximum value of f̃t(x) for all x ∈ Xt and fmax is the

maximum value of f(x) for all x ∈ S, the criterion given in Equation 3.27 is

covered by the criterion given in Equation 3.26 if additionally:

lim
t→∞

Xt = S (3.28)

In other words, it requires that in the limit the training set is a dense subset

of the sample space.

It has been proven by Girosi & Poggio [GP89] that an RBFN can ap-

proximate any Lipschitz continuous function with arbitrary accuracy when

given a training set that is a dense subset of the sample space. Therefore,

the requirement in Equation 3.26 is met if Equation 3.28 is true.

The training set converges on a dense subset of the sample space, because,

for any ǫ-ball Bǫ ∈ S with ǫ > 0, the chance of sampling in that ǫ-ball is

always greater than 0, or:

∀Bǫ ⊂ S : ǫ > 0⇒ π(Bǫ) > 0 (3.29)
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From Equations 3.21 and 2.2 can be derived that the minimum chance of

sampling in Bǫ is:

π̃t(Bǫ) ≥
η · Λ(Bǫ)∫
x∈S

g̃t(x)dx
(3.30)

Since η is defined as a small positive value and ǫ > 0, η · Λ(Bǫ) > 0. The

integral of g̃t(x) over S has a finite positive value, delimited by the minimum

possible volume η ·Λ(S) and the maximum possible volume
(
f̃t,max − f̃t,min

)
·

Λ(S).

Because S has been assumed to be a finite sample space and f(x) to be a

Lipschitz continuous function, both Λ(S) and
(
f̃t,max − f̃t,min

)
cannot have

an infinite value.

The chance of drawing a sample x ∈ Bǫ is always greater than 0. There-

fore, the chance that the training set will contain an element x ∈ Bǫ converges

on 1 as t→∞. If the training set is a dense subset of the sample space, the

RBFN is able to accurately approximate the objective function. By exten-

sion, the estimate probability density converges on the target density.

3.5 Cost

The benefit of MIMH is that it decreases the number of objective function

evaluations that are required to obtain a good high-performance region sam-

pling of the objective function. However, this benefit comes at a cost: the

time spent running the algorithm.

The cost of the algorithm can be subdivided in two parts, expressed in

terms of the time cost T (n) of sampling the n-th point:

• The cost of Metropolis-Hastings walks on the objective function esti-

mate.

• The cost of retraining the RBFN.
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Even though most parameters of the algorithm are constant, they are kept

as part of the equations below to illustrate the effect they have on the time

cost of the algorithm.

3.5.1 Cost of Sampling

To sample a single point, the MIMH algorithm performs a walk of length l.

At each step of the walk, a candidate point is generated and the objective

function value is estimated. The cost of generating a candidate point is

constant; the cost of estimating an objective function value is in the order of

O(M · d), where M is the number of radial basis functions in the network.

By extension, the cost of a single MH walk is in the order of O(l ·M · d).
There is no clear relationship between M and the size of the training set.

The number of radial basis functions used to model the objective function

depends on many factors, including the complexity of the objective function,

the parameters of the training method and the distribution of the points in

the training set. If the worst case scenario is assumed, the number of radial

basis functions is equal to the size of the training set, or M = n− 1. In this

case, the cost of an MH walk in terms of n is in the order of:

T1(n) ∈ O(l · n · d) (3.31)

3.5.2 Cost of Training

Forward selection, while one of the cheaper methods of training an RBFN,

comes at a cost in the order of O(N3 · d), where N is the size of the training

set. For MIMH, N = n− 1, thus:

T2(n) ∈ O(n3 · d) (3.32)

Clearly, as n→∞, the cost of training the RBFN outweighs the cost of
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the MH walks.

3.5.3 Comparison

If the algorithm were to sample points from the actual objective function,

rather than a model thereof, it would require a MH walk of length l for each

sampled point. Given that a single objective function evaluation has a fixed

cost of tobj , the time saved by using a model is equal to:

T3 ∈ O(l · tobj) (3.33)

Thus, the MIMH algorithm saves time if:

T3 > T1(n) + T2(n) (3.34)

Because T3 is invariant to n and both T1(n) and T2(n) are dependent on n,

at some point the cost of estimating the objective function will exceed the

cost of actually evaluating the objective function.
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Chapter 4

Experimental Setup

In this chapter, the setup of 3 experiments is described. In these experiments,

the convergence to a target distribution (Section 4.3.1) and the effect of the κ

parameter (Section 4.3.2) are examined, and the performance of the MIMH

algorithm is compared to that of a Niching CMA-ES and uniform random

sampling (Section 4.3.3). First, however, the performance metrics and the

objective functions used in these experiments are introduced.

4.1 Performance Metrics

4.1.1 High-Performance Region Coverage

The High-Performance Region Coverage (HPRC) is a new metric proposed

to measure how well a sample set X covers the high-performance regions of

the sample domain. The set T consists of the points in high-performance

regions of the sample domain:

T = {x ∈ S|f(x) ≤ fthreshold} (4.1)
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for some threshold fitness value fthreshold. In the experiments in Section 4.3,

the threshold fitness value is set at:

fthreshold = fmin + 0.1 · (fmax − fmin) (4.2)

The HPRC is defined as the integral over all x ∈ T of the distance to the

nearest neighbor in X , weighted by the unnormalized density function:

υ(X) =
1

Λ(T )
·
∫

x∈T

(fmax − f(x)) · d(x, X)dx (4.3)

where d(x, X) is the Euclidean distance between x and the nearest neighbor

in X :

d(x, X) =

∣∣∣∣x− argmin
x′∈X

|x− x′|
∣∣∣∣ (4.4)

and Λ(T ) is the Lebesgue measure of the set T . An example of the HPRC

calculation is shown in Figure 4.1.

In Equation 4.3 the points with lower fitness value will have more impact

on the value of υ(X), and similarly points with a greater distance to the

nearest point in X . As the sample set provides better coverage of the high-

performance regions, the HPRC value decreases.

Since the value of the integral and the Lebesgue measure of T cannot be

calculated, except for some simple objective functions, an approximation of

the υ(X) is obtained by means of a Monte Carlo integration method.

It employs a finite comparison set Υ ⊂ T . The size N of the comparison

set is a sufficiently large number that Υ can be considered a well distributed

subset of the sample space with high density. The comparison set and an

approximation Λ̂(T ) of the Lebesgue measure of T are obtained by means of

Algorithm 2.

The HRPC is approximated by the sum of the weighted distances of each
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Figure 4.1: Example of HPRC calculation for a 1-dimensional sample space
with f(x) = cos(x), fthreshold = 0 and X = {2, 3, 6}. The high-performance
set T consists of the areas in the red boxes in Figure 4.1(a). The HPRC value
υ(X) is defined as the volume under Figure 4.1(d) divided by the Lebesque
measure of T .

point u ∈ Υ to the nearest point in X .

υ̂(X) =
1

Λ̂(T )
·
∑

u∈Υ

(fmax − f(u)) · d(u, X) (4.5)

In effect, υ̂(X) is minimized by spreading out the points in X over the

high-performance regions.
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Algorithm 2 Select Υ
s← 0
for i = 1 to N do

repeat

x← U(xmin, xmax)
n

s← s+ 1
until x ∈ T
Υ← Υ ∪ x

end for

Λ̂(T )← Λ(S) ·N/s

4.1.2 Mean Peak Ratio

The Mean Peak Ratio (MPR) is a metric to score a search method based

on its ability to find not only the global optimum, but any number of local

optima. It was first suggested by [MS96], and also employed by [Shi08].

In [MS96], the optima are defined as the maxima of the objective function.

Since the MIMH algorithm focuses on finding the minima, this document

shall employ an altered version of the MPR calculation where the fitness

value f(x) is replaced by fmax − f(x).

Another restriction of the MPR metric is that it requires all fitness values

to be positive values. This criterion is met, because ∀x ∈ X : fmax ≥ f(x).

The MPR metric looks for the point in the population with the highest

fitness value near each optimum. It considers only points that are no further

from the optimum than a certain distance, known as the niche radius or ρ.

Additionally, the point must have a fitness value that is at least 80% of the

fitness value of the optimum.

In other words, for each optimum yi ∈ Y , X̂i is the subset of points in X

that meet these two criteria:

• fmax − f(x) ≥ 0.8 · (fmax − f(yi))

• |x− yi| < ρ
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The MPR value is defined as:

MPR =

∑N
i=1




0, if X̂i = ∅
max

x∈X̂i
(fmax − f(x)) otherwise

∑N
i=1

fmax − f(yi)
(4.6)

The main drawback of the MPR as a metric is that it can only be cal-

culated properly if the true optima are known in advance, either by direct

calculation or numerical approximation. For the test problems employed in

this document, this is not a problem. For real-world problems, where neither

the location, nor the fitness of the actual optima are known, another metric

for the performance of the algorithm should be chosen.

4.1.3 Pearson’s Chi-Square Test

In addition to a global optimization method, the MIMH algorithm also serves

as a method for sampling from an arbitrary distribution. The convergence

of the distribution of the sampled points to the target distribution can be

measured using Pearson’s chi-square test.

Pearson’s chi-square test [Pea92] is used to test the goodness of fit of

observed data against an expected distribution. The observed data is a set

of samples obtained by the algorithm. For some problems, the expected

distribution can be directly calculated from the integral of the target density

function; in other cases, it must be estimated by drawing a very large sample

set from the target distribution. The null hypothesis is that the observed

data matches the expected distribution.

Pearson’s chi-square test divides the sample space into a finite number n

of non-overlapping cells. For the i-th cell, Oi denotes the number of samples

in the observed data in that cell, and Ei is the expected number of samples.
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The degree of freedom k is equal to the number of cells minus 1:

k = n− 1 (4.7)

The chi-square value is given by:

χ2 =
n∑

i=1

(Oi −Ei)
2

Ei

(4.8)

The higher the chi-square value, the greater the discrepancy between the

observed data and the expected distribution. The null hypothesis is rejected

if p ≥ 1− ǫ for some significance ǫ, where:

p = F (χ2; k) (4.9)

where F (x; k) is the cumulative distribution function of the chi-square dis-

tribution with k degrees of freedom, defined by:

F (x; k) =
γ(k/2, x/2)

Γ(k/2)
(4.10)

In this thesis, ǫ = 0.05 will be used.

4.2 Objective Functions

Four different objective functions have been chosen for the evaluation of the

MIMH algorithm.

4.2.1 Himmelblau’s Function

Himmelblau’s function [RRR83] is a two-dimensional multi-modal objective

function with three local optima and one global optimum. The function
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Figure 4.2: Himmelblau’s Function

landscape is shown in Figure 4.2. The function is defined by:

f(x) = (x1
2 + x2 − 11)2 + (x1 + x2

2 − 7)2 (4.11)

Usually, the input vector x is constrained by requiring that:

−6 ≤ x1, x2 ≤ 6 (4.12)

The global optimum is located at x = (3, 2)T.

The landscape defined by Himmelblau’s function is largely flat, with

ridges at the edges of the defined range (x1 = −6∨x1 = 6∨x2 = −6∨x2 = 6)

that have very high values. Because the probability density function π(x) is

obtained by inverting and linearly scaling the objective function, this trans-

lates into a large area with very high probability value. In fact, ∼ 60% of

the area has a probability value π(x) > 0.9, and ∼ 99% of the area has a

probability value π(x) > 0.5
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This property of Himmelblau’s function makes it very hard to approxi-

mate the global optima of the function by means of importance sampling.

The results of the second experiment shall demonstrate that this problem

can be overcome by throttling the value of κ.

4.2.2 The Moonface Function
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Figure 4.3: The Moonface Function

Jacobs [Jac97] suggested a two-dimensional multi-modal objective func-

tion with many local optima. Due to its visual appearance, it will be dubbed

the Moonface function in this thesis. Three of the local optima stand out as

sharply defined peaks, one of those is the global optimum. The function is

defined by:

d1 =

∣∣∣∣∣x−
(

11

9

)∣∣∣∣∣ , d2 =
∣∣∣∣∣x−

(
−11
−3

)∣∣∣∣∣ , d3 =
∣∣∣∣∣x−

(
6

−9

)∣∣∣∣∣ (4.13)
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f(x) = d1 −
50 · sin(d1)

d1
+ d2 −

50 · sin(d2)
d2

+ d3 −
50 · sin(d3)

d3
− 100 (4.14)

The input vector x is often constrained by:

−20 ≤ x1, x2 ≤ 20 (4.15)

At the exact positions (11, 9)T, (−11,−3)T, and (6,−9)T the value of the

Moonface function is undefined by grace of division by zero. However, the

function value of the neighborhood of these points can be calculated and is

Lebesgue measurable to an arbitrarily small distance from these three points.

Therefore, these points can be considered to represent the three strongest

local optima, and (6,−9)T can be considered the global optimum.

4.2.3 Multisphere Functions

A Multisphere function is an n-dimensional multi-modal objective function,

defined by:

f(x) = argmin
y∈Y

|x− y| (4.16)

where Y is the set of global optima.

There are no local optima in a Multisphere function that are not a part

of Y .

The input vector x will be constrained by:

∀xi : −10 ≤ xi ≤ 10 (4.17)

The number of global optima and the exact locations of those optima can

be chosen randomly or pre-selected. In the experiments in Sections 4.3.2 and

4.3.3, a 2-dimensional and a 4-dimensional Multisphere function are used.

For both functions, a fixed set of optima is used, so that the results of this

experiment are more easily reproduced.
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Figure 4.4: A 2-dimensional Multisphere function

These optima were generated by drawing from a uniform random distri-

bution over the domain of the objective function. The optima were re-rolled if

the distance between any two optima is less than ρ = 1 for the 2-dimensional

Multisphere function and ρ = 3 for the 4-dimensional Multisphere function,

to ensure that the optima are distinguishable from each other to any evalu-

ation metric, specifically the MPR metric.

The optima selected for the 2-dimensional Multisphere function are:

Y =

{(
−3
8

)(
−5
−7

)(
−7
8

)(
5

4

)(
9

7

)(
−7
3

)(
−3
0

)(
7

−8

)}
(4.18)

43



The optima selected for the 4-dimensional Multisphere function are:

Y =
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(4.19)

An example of a 2-dimensional Multisphere function that uses the optima

from Equation 4.18 is shown in Figure 4.4.

4.3 Test Setup

In this section, three experiments will be described that are designed to test

the effectiveness of the MIMH algorithm, the effect of the κ parameter, and

how the algorithm compares to similar search algorithms.

In the first experiment (Section 4.3.1), it is shown that the distribution

of the points sampled by the MIMH algorithm converges to the target dis-

tribution. This is done by running the algorithm a large number of times

in parallel, and comparing the distribution of the points sampled in each

iteration to the calculated distribution of the objective function. Pearson’s

chi-square test provides an effective means of comparing these distributions.

In the second experiment (Section 4.3.2), the value of κ is used to adjust

the greediness of the algorithm, and a self-adaptive scheme for controlling

the value of κ is explored. Success is measured in terms of the sum of the

distance between each optimum and the nearest sampled point.

In third and final experiment (Section 4.3.3), the MIMH algorithm is

compared to an Evolutionary Strategy with Niching [Shi08] and plain uniform

random sampling.

These experiments were implemented in MATLAB. The source code of
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the algorithm and the experiments can be found at:

http://www.liacs.nl/∼jvisser2/ (May 4th, 2010).

4.3.1 Test Convergence to Target Distribution

This experiment serves to explore the relation between the target density

π(·), and the probability density π̃(·) obtained by sampling from an estimate

of the objective function. The MIMH algorithm formulates a probability

density π̃t(·) that converges toward π(·) as more points are added to the

training set.

To measure how quickly the probability distribution of the sampled points

π̃t(·) converges towards that predicted by the actual objective function π(·),
it is possible to use Pearson’s Chi-Square Test. The values of π̃t(·) can

be obtained by running the algorithm many times. For selected objective

functions π(·) can be calculated.

A simple 1-dimensional Sine objective function (see Equation 4.20) will

be used, because it is easy to calculate the value of the integral of π(·) for

that function for any interval.

f(x) = 1 + sin(x) (4.20)

The value of x will be limited to 0 ≤ x ≤ 4π. Pearson’s Chi-Square Test

requires that the data be divided among cells. In this experiment, the data

is divided into 30 cells, with the i-th, cell corresponding to the interval:

ai−1 ≤ x < ai (4.21)

ai = i · 4π/30 (4.22)

The unnormalized target density associated with this objective function
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is:

g(x) = fmax − f(x) = 1− sin(x) (4.23)

Therefore, the expected distribution of N sampled points among them inter-

vals is given by simple integration of the target density:

Ei = c · (ai + cos(ai)− ai−1 − cos(ai−1)) (4.24)

where i ∈ [1, 2 . . . 30] and c is a normalizing constant defined by the number

of sampled points over all cells divided by the integral of the whole interval:

c =
N

(4π + cos(4π) + 1)
(4.25)

The MIMH algorithm is run N = 1000 times, each run with tmax = 200.

For each iteration t, the sampled points from the N runs are aggregated into

a set Xt. In effect, X1 is composed of the first sampled points from all N

runs, and Xtmax
is composed of the last sampled points from all runs.

For this experiment, the parameter κ is kept at the default value of 1,

since any other value would skew the observed distribution. Both σ and l

are also set at the default values suggested in Sections 3.3.1 and 3.3.2.

For each iteration t, the observed distribution Ot,i is the number of sam-

pled points x ∈ Xt where ai−1 ≤ x < ai. The distribution among cells found

in Ot is compared to the expected distribution E for goodness-of-fit using

Pearson’s Chi-Square Test. The result is a p-value for each iteration that

reflects the chance that the observed distribution meets the null-hypothesis,

i.e. the expected distribution.

In Section 5.1 these p-values are plotted.
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4.3.2 Test Effect of Probability Exponent

This experiment is intended to explore the effect of the value of κ on the

speed at which the algorithm converges on the optima. As discussed in

Section 3.3.3, the default value for κ in the MH algorithm is 1. A higher

value should make the algorithm more greedy, because it increases the factor

difference between any two fitness values.

The MIMH algorithm is run on four objective functions: Himmelblau’s

function, the Moonface function, a 2-dimensional Multisphere function with

the optima given in Equation 4.18 and a 4-dimensional Multisphere function

with the optima given in Equation 4.19. These represent three very specific

cases, where the value of κ could have a distinct effect on the performance

of the algorithm.

• Himmelblau’s function has a largely flat landscape with relatively very

high ridges at the edges. Since the PDF is a linearly scaled inversion

of the objective function, this translates into an almost uniformly high

distribution function. A higher value of κ should help accentuate the

minima.

• The Moonface function features three sharp valleys with extreme fitness

values, and many local minima. Increasing κ will increase the chance

of an MH walk stranding in one of the local minima.

• The Multisphere functions have no such extreme features as the pre-

vious two objective functions. They consist of very smooth transitions

from low to high fitness values. All minima in the Multisphere func-

tions are global optima; therefore an increase in κ should make the

algorithm more exploitative, less explorative.
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The values of κ that are explored shall be limited to κ ∈ K with:

K = (1, 2, . . . , 100) (4.26)

Both σ and l are also set at the default values suggested in Sections 3.3.1

and 3.3.2.

For each κ ∈ K, the objective function is exposed to the MIMH algorithm

for tmax = 100 iterations. At the end of each run, the HRPC and MPR

values are calculated for the sample set. The former value shall serve as an

indicator of how well the algorithm explores the high-performance regions of

the objective function, the latter as an indicator of the effectiveness of the

algorithm to find the global minima.

The niche radius required by the MPR calculation is set at 0.5 for Him-

melblau’s function, 1.0 for the Moonface and the 2-dimensional Multisphere

function, and 3.0 for the 4-dimensional Multisphere function.

The results are plotted in Section 5.2.

4.3.3 Comparison to Other Approaches

Here the performance of the MIMH algorithm is compared to that of a Nich-

ing CMA-ES algorithm and plain uniform random sampling. The algorithms

are applied to three objective functions, Himmelblau’s function, the Moon-

face function and the 4-dimensional Multisphere function with the optima

given in Equation 4.19.

Each is allowed tmax = 200 objective function evaluations. As an illustra-

tion of the effect of the κ parameter, the MIMH algorithm is included with

the default value of κ = 1, as well as the ideal value of κ obtained in Section

5.2.

The four algorithms applied are:

1. The Niching CMA-ES using a (1 + 10) approach with q = 4 expected

48



number of peaks and q + p = 8 D-sets; the individuals in the (q + 1)-

th . . . (q + p)-th D-set are randomly regenerated every κ-th generation

with κ = 10. The specific implementation of the algorithm used is that

of Shir [Shi08], which can be found at:

http://www.liacs.nl/∼oshir/code/ (February 28th, 2010).

Shir [Shi08] recommends using a niche radius ρ such that the combined

volume of q hyperspheres of radius ρ is equal to the volume of the

hypersphere that contains the sample space, or:

ρ =

√
d

2
· (xmax − xmin) · q−1/d (4.27)

with the caveat that the minimum distance between two minima must

be at least 2ρ.

For all objective functions used, this caveat is more restrictive than

the recommended value for ρ. Thus, ρ = 3.8 is used for the Moonface

function, ρ = 1.9 is used for Himmelblau’s function, and ρ = 2.6 is

used for the 4-dimensional Multisphere function.

2. Uniform random samples obtained by independent draws from:

x = U(xmin, xmax)
d (4.28)

3. The MIMH algorithm using the standard value of κ = 1. Both σ and l

are also set at the default values suggested in Sections 3.3.1 and 3.3.2.

4. The MIMH algorithm using the ideal value of κ obtained from the

results in Section 5.2. The ideal value of κ is specific both to the

objective function and to the metric used. Both σ and l are set at the

default values suggested in Sections 3.3.1 and 3.3.2.
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Each algorithm is run independently N = 200 times until it has sampled

tmax = 200 samples. Xi,t is the result set of the i-th run after sampling

exactly t points. The MPR and HPRC values are calculated for all Xi,t and

the average over all runs is obtained by:

¯MPRt =
1

N

∑

i≤N

MPR(Xi,t) (4.29)

¯HPRCt =
1

N

∑

i≤N

HPRC(Xi,t) (4.30)

These results are plotted in Section 5.3.
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Chapter 5

Results

5.1 Test Convergence to Target Distribution

Figures 5.1(a) through 5.1(d) illustrate the evolution of the distribution of

sampled points over 100 iterations. It is evident from the figures that the

distribution shifts from a largely uniform distribution to the target sinusöıd

distribution.

This shift can be explained by the increase in information that the model

contains about the shape of the objective function. At t = 1, the model

will have been trained on an initial population of µ0 = 2 randomly selected

points. As more points are added to the training set, the shape of the estimate

distribution will converge on the target distribution.

Figure 5.2 further illustrates this convergence. It shows the χ2 value for

the points sampled at t = [1 . . . 200], when compared to the target distri-

bution. There is a clear downward trend in the χ2 values, despite the large

fluctuations. This trend indicates a convergence to the target distribution.

For a test with k = 29 degrees of freedom, the χ2-value that corresponds

with p ≤ 0.95 can be numerically approximated to χ2
threshold ≈ 42.5570. This

value is represented in Figure 5.2 as a threshold line. The null hypothesis
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Figure 5.1: Observed and expected distributions of sampled points at itera-
tions t = [1, 5, 10, 100]. The yellow bars represent the observed distributions;
the green bars represent the expected distributions.

52



0 50 100 150 200
10

1

10
2

10
3

10
4

t

χ2

Figure 5.2: χ2 value for observed points sampled at each iteration, when
compared to the expected distribution. The red line indicates χ2

threshold.

that the observed data Xt is consistent with the expected distribution is

accepted only when χ2 ≤ χ2
threshold.

Figure 5.2 reveals a downward trend in the χ2-value. In the first 100 itera-

tions, all but 2 observed distributions are rejected; in the next 100 iterations,

37 observed distributions are accepted.
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Figure 5.3: Average MPR & HPRC value of 100 points sampled from the
Moonface function by the MIMH algorithm using different values of κ.

5.2 Test Effect of Probability Exponent

The MIMH algorithm was run on the Moonface function, Himmelblau’s func-

tion and two Multisphere functions with κ ∈ [1 . . . 100], all other parameters

being equal. This was repeated 100 times. The average resulting HPRC and

MPR values are plotted in Figures 5.3, 5.4, 5.5, and 5.6.

Despite the large fluctuations inherent in small samples, it is clear that

there is a peak in the average MPR value after 100 iterations at κ ≈ 9

for the Moonface function, κ ≈ 15 for Himmelblau’s function, κ ≈ 4 for

the 2-dimensional Multisphere function, and κ ≈ 5 for the 4-dimensional

Multisphere function. Higher values of κ inhibit the algorithm from exploring

the sample space and finding the optima, whereas at lower values of κ the

algorithm is not greedy enough.

Similarly, the average HPRC value is minimized at κ ≈ 12 for the Moon-

face function, κ ≈ 9 for Himmelblau’s function κ ≈ 6 for the 2-dimensional

Multisphere function, and κ ≈ 5 for the 4-dimensional Multisphere function.

However, lower values of κ do not cost much high-performance region cov-

erage on Himmelblau’s function. Since a very large part of Himmelblau’s
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Figure 5.6: Average MPR & HPRC value of 100 points sampled from the
4-dimensional Multisphere function by the MIMH algorithm using different
values of κ.

function consists of high-performance regions, any explorative approach will

perform well on the HPRC.

There is an optimal region of κ for sampling 100 points from the objective

functions used in this experiment, which is specific to that objective function

and the metric to be optimized.
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5.3 Comparison to Other Approaches

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t →

¯
M

P
R
→

 

 
A) MIMH, κ = 9
B) MIMH, κ = 1
C) Niching CMA−ES
D) Uniform random

A B C D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

¯
M

P
R

2
0
0
→

Figure 5.7: ¯MPRt value of the first 200 points sampled from the Moonface
function and the distribution of ¯MPR200 using 4 different approaches.

Figures 5.7, 5.9 and 5.11 show the evolution of the average MPR value as

more points are sampled from the Moonface function, Himmelblau’s function

and the 4-dimensional Multisphere function using 4 different approaches.

It is clear from these figures that the MIMH algorithm approaches the

minima of the objective functions significantly faster than either uniform ran-

dom sampling or a Niching CMA-ES. If the ideal value of the κ parameter is

used, the performance of the algorithm is enhanced greatly. However, deter-

mining the ideal value of κ may be a problem that requires much more com-

putational power and more objective function evaluations than the MIMH

algorithm itself.

The (1 + 10) Niching CMA-ES with (q + p) = 8 D-sets that was used

generates 10 initial parents and 80 offspring per generation. Therefore, less
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Figure 5.8: ¯HPRCt value of the first 200 points sampled from the Moonface
function and the distribution of ¯HPRC200 using 4 different approaches.

than 3 full generations of offspring can be created in this experiment to satisfy

the maximum number of 200 objective function evaluations.

Similarly, Figures 5.8, 5.10 and 5.12 show the evolution of the average

HPRC value as points are sampled from the Moonface and Himmelblau’s

function.

Here the MIMH algorithm performs only slightly better than uniform

random sampling. On the Moonface function, only the approach with the

ideal value of κ gives a significantly better coverage of the high-performance

regions than the other three approaches. On the other two objective function,

uniform random sampling and the MIMH algorithm perform roughly equal,

while the Niching CMA-ES lags behind.

The average execution time of these approaches is measured and shown

in table 5.1.

Even for as few as 200 samples, the MIMH algorithm is roughly 4000
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Figure 5.9: ¯MPRt value of the first 200 points sampled from Himmelblau’s
function and the distribution of ¯MPR200 using 4 different approaches.

times more expensive than a Niching CMA-ES. However, this is offset by the

faster convergence to the minima of the objective function and the greater

coverage of the high-performance regions.

At t = 200 on the Moonface function, the MIMH algorithm achieves

¯MPR ≈ 0.7014 if κ = 1 and ¯MPR ≈ 0.9072 if κ = 9. When the experiment

is extended to tmax = 1000, it is possible to observe the number of iterations

until the Niching CMA-ES or uniform random sampling to arrive at similar

¯MPR values.

If, for a given algorithm and objective function,

t(x) = argmin
t>0

| ¯MPRt ≥ x (5.1)

then t(0.7014) and t(0.9072) for the Niching CMA-ES and for uniform ran-

dom sampling are shown in Table 5.2.
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Figure 5.10: ¯HPRCt value of the first 200 points sampled from Himmelblau’s
function and the distribution of ¯HPRC200 using 4 different approaches.

Similarly, at t = 200 on Himmelblau’s function, the MIMH algorithm

achieves ¯MPR ≈ 0.7687 if κ = 1 and ¯MPR ≈ 0.9556 if κ = 15. Table 5.3

shows the number of iterations required by the other approaches to arrive at

the same ¯MPR value.

Finally, at t = 200 on the 4-dimensional Multisphere function, the MIMH

algorithm achieves ¯MPR ≈ 0.3586 if κ = 1 and ¯MPR ≈ 0.3731 if κ = 5.

Table 5.4 shows the number of iterations required by the other approaches

to arrive at the same ¯MPR value.

Using the MIMH algorithm may be worthwhile if the cost of the additional

objective function evaluations is greater than the execution cost of the MIMH

algorithm.
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Figure 5.11: ¯MPRt value of the first 200 points sampled from the 4-
dimensional Multisphere function and the distribution of ¯MPR200 using 4
different approaches.

Moonface Himmelblau Multisphere 4d
MIMH, κ = 1 107.2 s 116.9 s
MIMH, κ = 5 133.1 s
MIMH, κ = 9 114.4 s 120.7 s
MIMH, κ = 12 113.4 s
MIMH, κ = 15 116.9 s
Niching CMA-ES 0.029 s 0.028 s 0.038 s
Uniform random sampling 0.001 s 0.001 s 0.001 s

Table 5.1: Average execution time of the algorithms used

x t(x) for Niching CMA-ES t(x) for Uniform Random
0.7014 320 309
0.9072 743 574

Table 5.2: Number of iterations required to arrive at a given average MPR
value on the Moonface function.
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Figure 5.12: ¯HPRCt value of the first 200 points sampled from 4-dimensional
Multisphere function and the distribution of ¯HPRC200 using 4 different ap-
proaches.

x t(x) for Niching CMA-ES t(x) for Uniform Random
0.7687 270 244
0.9556 634 626

Table 5.3: Number of iterations required to arrive at a given average MPR
value on Himmelblau’s function.

x t(x) for Niching CMA-ES t(x) for Uniform Random
0.3586 377 238
0.3731 398 261

Table 5.4: Number of iterations required to arrive at a given average MPR
value on the 4-dimensional Multisphere function.
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Chapter 6

Main Conclusion and Outlook

The MIMH algorithm can be an efficient method for obtaining a small sample

set that provides good coverage of the high-performance regions of the sample

space, and offers good starting points for more greedy local searches for the

optima of an objective function. The experiment in Section 5.3 shows that

the MIMH algorithm performs significantly better in these respects than a

standard Niching CMA-ES or plain uniform random sampling on three test

cases.

The efficiency of the MIMH algorithm is compounded by choosing the

optimal value of the probability exponent parameter κ. Section 5.2 reveals

that there is an optimal region of values for κ, which is specific to the objective

function and the target metric. However, finding this optimal region by trial-

and-error is a very costly process. Future research might be able to discover

a cheap method for estimating the optimal value of κ.

The execution time of the MIMH algorithm is high, and scales to the

order of O(n3) where n is the number of data points sampled. This restricts

it usefulness to costly objective functions, where the cost of the objective

function evaluations saved outweighs the cost of the algorithm.

In addition to global optimization, the MIMH algorithm can also serve
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as a method for sampling from an arbitrary distribution, similar to the MH

algorithm. Section 3.4 proves that the samples drawn from the estimate

probability density converge on the target density. Section 5.1 demonstrates

that convergence can occur in relatively few iterations.

It would be interesting to further examine the coverage of high-perfor-

mance regions as an alternate goal for global optimization methods, providing

a different perspective than other, more optimum-centric metrics. There are

many other ways to define the concept of high-performance regions than the

one employed in this thesis. Ultimately, the definition of high-performance

regions for a given problem would have to closely follow the preference of the

experts in its field.

As an alternative approach, rather than employing a global meta-model

of the objective function, the MIMH algorithm can be adapted to use a

meta-model local to each sample for which the objective function value is

estimated. This approach could significantly reduce the cost of training the

RBFN at higher iterations.
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Nomenclature

Λ(S) Lebesgue measure of set S, page 33

N(µ, σ) Normal distribution with mean µ and variance σ2, page 10

U(a, b)d Sample from uniform random distribution over [a . . . b]d;

d = 1 unless otherwise specified, page 7

σ Step variation, page 10

β̃ Generalized least squares estimate, page 15

d Dimensionality of the sample space, page 6

fmax Maximum objective function value, page 8

fmin Minimum objective function value, page 8

S Sample domain, page 8

xmax Upper bound of sample domain, page 8

xmin Lower bound of sample domain, page 8

Metropolis-Hastings Algorithm

α(xt,y) Proposal acceptance function, page 7

x0 Starting point for MH walk, page 6

xt t-th point in MH walk, page 6

y Candidate point, page 6

π Target distribution, page 6

g(x) Unnormalized target density function, page 6

k Normalizing constant, page 6

l Length of MH walk, page 6
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Q(xt) Proposal density function, page 6

Radial Basis Function Network

cn Center of the n-th basis function, page 10

r Radius of basis functions, page 12

φ(x) Basis function, page 10

ŵ Global bias value, page 11

h(x) Output of the RBFN, page 11

wn Weight value for the n-th basis function, page 11

MIMH Algorithm

f̄(x) Scaled fitness value, page 20

κ Probability exponent, page 25

µ0 Size of initial training set, page 18

f̃(x) Objective function estimate, page 18

f̃max Observed maximum fitness, page 19

f̃min Observed minimum fitness, page 20

g̃(x) Unnormalized density function estimate, page 18

High-Performance Region Coverage

Υ Comparison set, page 33

υ(X) High-performance region coverage, page 33

Λ̂(S) Approximated Lebesgue measure of S, page 33

υ̂(X) Approximated high-performance region coverage, page 34

d(x, X) Euclidean distance to nearest neighbor in X , page 33

fthreshold Threshold fitness value, page 33

T High-performance set, page 32

Pearson’s Chi-Square Test

χ2 Chi-square value, page 37

E Expected distribution, page 44
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Ei Expected number of samples in i-th cell, page 36

F (x; k) Cumulative chi-square distribution function, page 37

k Degrees of freedom, page 37

O Observed distribution, page 44

Oi Observed number of samples in i-th cell, page 36

p Chance that null hypothesis is correct, page 37

Xt Aggregated sampled point for iteration t, page 44
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