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Preface

Motivation

This is the Master Thesis of my Computer Science Master studies at Leiden University. I
wanted a subject that I found interesting, in line with previous projects, and with a real-life
application for my final Master Project, which resulted in this Master Thesis. Before this I
have been working on Sokoban and SameGame, two games/puzzles with related NP-complete
optimization problems. During these projects I have learned a lot about optimization techniques,
solving methods and complexity issues. For my final project I wanted to extend my knowledge
about these subjects to a more real-life problem, and while browsing the internet I came across
the Vehicle Routing Problem.

Compared to the previous two subjects from Combinatorial Game Theory that I studied, the
amount of research done on the Vehicle Routing Problem is huge. I found it an interesting and
worthy challenge to study the previous work and extract the relevant pieces for this thesis. After
this process, I tried to apply my knowledge from previous projects and studies to the Vehicle
Routing Problem, and I wanted to see if I could apply new techniques such as Monte Carlo
Simulation to the Vehicle Routing Problem.

During my studies and even more during this project I discovered that Monte Carlo Techniques
intrigued me a lot. Specifically, I found it interesting to see how a method as simple as Monte
Carlo Simulation could solve or optimize extremely difficult problems that we cannot seem to
solve any further by applying traditional techniques. The technique often shows the so-called
“emerging behavior”, or “emerging intelligence”, one might say. There is still a lot to discover
on this subject and I expect Monte Carlo Techniques to play a significant if not great role in
the development of the whole field of Artificial Intelligence.

As said before, I choose this subject partly because it has a very clear real-life application.
Attempting to seek for real-life testing data and algorithms that were doing the vehicle routing
job, I contacted multiple national and local package transporting companies. Unfortunately
none of them responded positively to my request for an information exchange. Nevertheless I
was able to find an excellent test set for my project, so the lack of practical data and information
was not a problem at all.
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Introduction

Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a widely studied combinatorial optimization problem
that was introduced — by now half a century ago — in 1959 by Dantzig and Ramser in [11].
The Vehicle Routing Problem is defined in [41] as the problem of serving a number of customers
with a fleet of vehicles, minimizing the cost of distributing the goods. We will see in Chapter 1
that because of the many variants of the Vehicle Routing Problem, this definition is acceptable
but actually does not cover the entire problem.

Other than it being a very interesting problem to study for computer scientists, the problem is
also important to the industry sector, where it has applications in the fields of transportation,
distribution and logistics. Large package shipping companies benefit greatly from implementing
the Vehicle Routing Problem as efficiently as possible: every percentage saved on transportation
costs means saving tremendous amounts of money.

Monte Carlo Techniques

The term “Monte Carlo Techniques” is used to describe a class of algorithms that relies on some
use of random sampling to finally acquire a solution to a given problem. For example in Monte
Carlo Simulation, the decisions made when traversing through the search space are based on
performing random simulations for the possible successor states. Monte Carlo Techniques are
often used when traditional heuristic methods fail, most often because it is hard to derive an
admissible evaluation function to determine which of the candidate successors is to be selected
next. These techniques are nowadays widely used in all kinds of optimization algorithms, and,
as we will see, can also be applied to the Vehicle Routing Problem.

Organization

Chapter 1 starts with a description of the Vehicle Routing Problem and gives an overview of
its variants. Several solution methods are presented in Chapter 2. Monte Carlo Techniques are
introduced in Chapter 3, and Chapter 4 describes how these techniques can be applied to the
Vehicle Routing Problem. We will also propose a new Monte Carlo based algorithm and give
an outline of how it performs compared to existing techniques. Chapter 5 concludes the thesis.

9



10



Chapter 1

The Vehicle Routing Problem

1.1 Introduction

This first chapter describes the Vehicle Routing Problem in detail, starting with a formal defi-
nition of the concepts, various notations, and a description of how the problem is related to the
Traveling Salesman Problem. Next, the main variants of the problem are outlined in various
subsections. The chapter ends with a section devoted to the complexity of the Vehicle Routing
Problem.

1.2 Problem Definition

Let us start with an introduction to the concepts that are used within the Vehicle Routing
Problem (VRP). A customer is an entity that has a certain demand and therefore requires
the presence of a vehicle, a unit that can move between customers and the depot, a unit
that initially possesses the demands of the customers. The fleet is defined as the total group of
vehicles. Moving a vehicle between the depot and the customers comes with a certain cost. A
route is a sequence of visited customers by a certain vehicle, starting and ending at a depot.
The goal of the Vehicle Routing Problem is to serve all customers, minimizing the total cost of
the routes of all vehicles. A visual example is given in Figure 1.1 (to keep visualization simple,
the graph in this figure is not complete).

The underlying structure of the VRP is a complete graph G(V,E) with cost matrix C:

• V = {v0, v1, v2, . . . , vn} is a set of n+1 (n ≥ 1) vertices. We distinguish the depot v0 and
exactly n customers {v1, v2, . . . , vn}.

• E = {(vi, vj) | 0 ≤ i, j ≤ n, i 6= j} is the set of |V | ∗ (|V | − 1) (directed) edges (arcs)
between the vertices, called the roads. If the distance between two vertices is identical in
both directions, the restriction i < j is added, and we talk about the symmetric variant
of the problem.
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• C = (cij) is a matrix, where cij ≥ 0 is the distance corresponding to edge (vi, vj); cii is
always equal to 0. We will also denote cij = c(vi, vj). Depending on whether or not the
VRP is symmetric (see Section 1.3), cij = cji. Also, the triangle inequality is generally
assumed to hold here: cij ≤ cik + ckj (0 ≤ i, j, k ≤ n).

In essence, an (extremely) simplified variant of the Vehicle Routing Problem is the Traveling
Salesman Problem (TSP). The goal in the TSP is to find the shortest possible tour (in terms
of total distance) that visits each of the cities exactly once. This corresponds to the instance of
the VRP where the cost is only dependent on and directly proportional to the distance, there
is only one vehicle, and no further (capacity) restrictions apply. In that case we could define
a route as a vector R = (v0, v1, . . . , vk+1), with v0 = vk+1, 0 ≤ k ≤ n. The first restriction,
v0 = vk+1, is to ensure that the route starts and ends at the depot. The goal would be to
minimize the function

∑k
j=0 cj,j+1.

Figure 1.1: A solution for an instance of a VRP with 13 customers and 3 vehicles.

The instance of the Vehicle Routing Problem that accommodates multiple vehicles is the Mul-
tiple Traveling Salesmen Problem (MTSP), the variant of the TSP in which there are
multiple salesmen walking around. We extend the previous itemized list with the following
definitions to work towards a definition of the VRP:

• m, with m ≥ 1, is defined as the number of vehicles, or the fleet size.

• Ri = (vi0, v
i
1, . . . , v

i
ki
, viki+1

) is the vector of the route of vehicle i (with vi0 = viki+1
= v0,

vij 6= viℓ, 0 ≤ j < ℓ ≤ ki), starting and ending at the depot. Here ki is the length of route
Ri.

• S = {R1, R2, . . . , Rm} is a set of routes representing the solution of a VRP/MTSP
instance.

• C(Ri) =
∑ki

j=0 c(v
i
j , v

i
j+1) is defined as the cost of route Ri.
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• C(S) =
∑m

i=1C(Ri) is defined as the total cost of solution S, satisfying Ri ∩ Rj = {v0}
for all routes Ri and Rj (1 ≤ i, j ≤ m, i 6= j), and ∪mi=1Ri = V , so that each customer is
served exactly once. Here we treat the route vectors as sets.

• C(S)→ min is the minimization task at hand in the VRP/MTSP.

We have now defined the Vehicle Routing Problem that we introduced in the beginning of
this section in terms of a minimization problem. However, there is more to these customer
demands than simply vehicles “visiting” the customers. These additional customer’s demands
are specified in more detail in the following definitions:

• d = (d0, d1, . . . , dn) with all di > 0 (1 ≤ i ≤ n), where n is again the number of customers,
is a vector of the customer demands; d0, the demand of the depot, is always equal to 0.

• δi is defined as a function for the service time: the time to unload all goods at customer
vi (1 ≤ i ≤ n). This function δ is often dependent on the size of the demand of that
customer. We will also denote δi = δ(vi).

• C(Ri) =
∑ki

j=0 c(v
i
j , v

i
j+1) +

∑ki
j=1 δ(v

i
j) is now (re)defined as the cost of route Ri.

1.3 Variants

There are many variants of the Vehicle Routing Problem that require a modification of the
definitions given in the previous section. This section gives an overview of the the most common
simplifications of, and extensions to, the VRP. Note that these variants do not necessarily
exclude each other, combinations of two or more of these variants can be made to form more
complex variants of the VRP. We will first consider some “small” variants of the Vehicle Routing
Problem, before we dive into various subsections that each describes a variant.

Variants of the Vehicle Routing Problem with multiple depots are referenced to as Multiple
Depot VRP’s. A VRP is considered to be a Periodic VRP (PVRP) if the planning is not done
in one day, but spread over multiple days. A variant of the VRP that has a certain bound T
on the maximum distance a vehicle travels each day is called a distance constrained version
of the Vehicle Routing Problem. The total distance traveled often has influence on the total
time (along with the service time). When a maximum allowed time per vehicle or for the entire
routing is specified, we talk about the time constrained VRP.

We talk about the Symmetric Vehicle Routing Problem (SVRP) if the direction in which we
travel from customer i to j does not matter, so cij = cji for all customers i and j. If this is not
the case and there exist customers i and j for which cij 6= cji, we talk about the Asymmetric
Vehicle Routing Problem (AVRP).

1.3.1 Capacitated Vehicle Routing Problem (CVRP)

The Capacitated Vehicle Routing Problem (CVRP) is the most common and basic variant
of the Vehicle Routing Problem. In this variant, a fixed fleet of m (m ≥ 1) delivery vehicles
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must service the customer demands, with the additional restriction that these vehicles are
capacitated: they can contain goods (the customer’s demands) up to a certain maximum
capacity.

In the Homogeneous CVRP (or Uniform Fleet CVRP) each vehicle in the fleet has the same
capacity Q. The only difference in the formal definition is that a route is considered feasible
if the total demand of all customers on a route R does not exceed the vehicle capacity Q:
(
∑k

j=1 dj) ≤ Q (where dj is the demand of customer vj). Of course, to ensure that vehicles are
always big enough, the demand of a customer is never greater than the capacity of a vehicle:
dj ≤ Q (1 ≤ j ≤ n). Also, the total demand of all customers can not be greater than the total
capacity of all vehicles: (

∑n
j=1 dj) ≤ m ∗Q.

Figure 1.2: An example of a solution of the Capacitated Vehicle Routing Problem with with
1 depot, 15 customers, 3 vehicles, customer demands (given inside the nodes) and a vehicle
capacity Q = 18. The three vehicles 1, 2 and 3 used capacity 17, 17 and 14, respectively.

In the Heterogeneous CVRP (or Mixed Fleet CVRP) the fleet is composed of different
vehicle types, each with its own capacity Qf (1 ≤ f ≤ m). A route is now defined by a tuple
(R, f), where R is the route vector and f the vehicle type. Restrictions similar to the ones
we defined for the homogeneous CVRP apply for the maximum demand per route and the
maximum total demand in relation to the capacity of the vehicles(s).

In some variants a type of vehicle also comes with its own fixed cost Fk, for example rental
costs. Even the cost matrix C can be specific for each vehicle, so that we speak about a routing

14



cost of ckij for getting from customer vi to customer vj with vehicle k.

The Capacitated Vehicle Routing Problem is a problem which, beautifully formulated by [16],
“lies at the intersection” of the earlier mentioned TSP and the Bin Packing Problem (BPP).
This problem is about objects of different volumes that must be packed into a finite number of
bins of a certain capacity, minimizing the number of bins used. The BPP is actually an instance
of the VRP with one depot, a homogeneous fleet and a cost matrix that has cij = 0 for all
customers i and j. We refer the reader to [38] for more details on the Capacitated VRP.

1.3.2 Vehicle Routing Problem with Time Windows (VRPTW)

In the Vehicle Routing Problem with Time Windows (VRPTW), there is an additional
restriction that states that customer vi has to be served within a specific time window [evi , ℓvi ].
This interval is always within the scheduling horizon: the bounds of the time window of the
depot: [ev0 , ℓv0 ]. The definition of the feasibility constraints of the VRP is extended with the
notion that each customer should be served within the bounds of its defined time window.

We have seen how the Vehicle Routing Problem is related to the TSP and the BPP. Adding
time windows to the VRP introduces a third subproblem into the VRP, the Job Scheduling
Problem. For this variant the goal is to schedule multiple jobs of different length onto one or
more machines, attempting to minimize the length of the total schedule. An excellent overview
of the difference between the VRP and the Job Scheduling Problem is given in [4].

1.3.3 Vehicle Routing Problem with Pickup and Delivery (VRPPD)

The Vehicle Routing Problem with Pickup and Delivery (VRPPD) is a variant in which
the possibility that customers return some commodities is contemplated, so it is necessary to
take into account that the goods that customers return to the delivering vehicle must actually
fit into that vehicle. Again several variants have been proposed. For example, there could be a
restriction that all picked up goods are returned to the depot, and there is no interchanging of
goods between the customers. However, a rental company (for example where you could rent
a printer) could remove this restriction. This is sometimes referred to as the Vehicle Routing
Problem with Mixed Service (VRPMS).

A very similar variant is the Vehicle Routing Problem with Backhauls (VRPB), which is
in essence the same as the VRPPD, but with the critical restriction that all goods must be
delivered before any goods can be picked up, because the vehicle is filled “Last-In, First-Out”
(LIFO). We refer the reader to [14] for more information about this version of the VRP.

1.3.4 Split Delivery Vehicle Routing Problem (SDVRP)

In the Split Delivery Vehicle Routing Problem (SDVRP), the restriction that each customer
is served at most once is removed. For some instances of the VRP, this relaxation can introduce
interesting savings in terms of total cost. This variant also allows the customer to demand
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more of a good than the capacity of one vehicle, a situation that is not unrealistic in real
life. Finding a solution to an instance of this variant of the VRP is much more complex, and
could theoretically make it a continuous optimization problem instead of a discrete optimization
problem. The SDVRP is studied in great detail in [1].

1.3.5 Stochastic Vehicle Routing Problem (SVRP)

The Stochastic Vehicle Routing Problem (SVRP) covers all the variants of the VRP in which
one or more properties of the VRP are random. For example, the customer can be present only
with a certain probability (think of an ice-cream car looking for children to serve). It can also
happen that customers have a certain random demand (for example depending on whether or
not the children are hungry). A random factor could also be incorporated in the service time
(i.e., is it raining while goods are unloaded, slowing down the process?). Even more dynamic is
the variant where the distance matrix is not static and has random factors influencing it. The
latter version is interesting, as it has a nowadays more and more important practical application:
traffic congestion situations. A good view on this variant of the VRP is given in [39].

Figure 1.3: Left: Site-Depencendy: big trucks cannot enter small streets (SDVRP, Section 1.3.6).
Right: Traffic congestion, an issue in the Stochastic VRP (SVRP, Section 1.3.5).

1.3.6 Site-Dependent Vehicle Routing Problem (SDVRP)

The Site-Dependent Vehicle Routing Problem (SDVRP) is a variant of the Heterogeneous
Capacitated VRP where there exists a dependency between the type of vehicle and the cus-
tomer, meaning that not every type of vehicle can serve every type of customer because of
site-dependent restrictions. For example, customers located in very narrow streets cannot be
served by a very big truck, and customers with very high demands require large vehicles. So as-
sociated with each customer is a set of feasible vehicles. This variant is discussed in, for example,
[23].

1.3.7 Arc Routing Problem (ARP)

An item that strictly does not fit in the list of variants given in the previous subsections is
the variant in which customers are located at arcs of the graph instead of at the vertices. This
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problem is called the Arc Routing Problem (ARP) and is addressed in great detail in [17].
Interesting to notice is that is has been shown by [32] that any Arc Routing Problem with n
vertices can be converted into an equivalent Vehicle Routing Problem with 3n+1 vertices (with
some additional quite common requirements even into an equivalent VRP with 2n+1 vertices,
as shown by [28]). A very good survey of this problem is given in [42].

1.4 Complexity and Hardness

As mentioned before, the Vehicle Routing Problem definition lies somewhere at the intersection
of the definition of the Traveling Salesman Problem (TSP) and the Bin Packing Problem (BPP).
Both of these problems are NP-hard, which does not make it hard to believe that the VRP is
also NP-hard. We have seen that we can easily reduce the TSP to the VRP: just take an instance
of the VRP with one depot, one vehicle with an unlimited capacity (or set all demands to zero),
a cost function proportional to only the distance, and an arbitrary number of customers (cities).
We can even remove the restriction of one vehicle, which reduces the problem to the Multiple
TSP which is also NP-hard. Similarly we can reduce the BPP to the VRP by considering the
variant of the VRP with one depot and a cost matrix of all zero’s.

So we know that the VRP lies roughly at the intersection of these two other problems, but how
much harder does that make the VRP? Let us look at some numbers. The smallest unsolved
VRP instance (“unsolved” means that the best set of routes has not yet been found) has 50
customers and 8 vehicles (B-n50-k8 from [16]). Solving this instance, ignoring the capacity
constraints and thus treating it as a Multiple Traveling Salesman Problem, takes less than a
second. Finding a valid Bin Packing Problem solution also does not take more than a second.
However, the optimal VRP solution has not yet been found. Experiments suggest that the VRP
is not just two times harder than the other two problems, it is at least polynomially or maybe
even exponentially harder than the two problems on which it is based.

We will not go into further detail on the complexity of the VRP, but this section shows us that
we have an extremely difficult yet challenging task at hand. For more information about the
complexity of the Vehicle Routing Problem, see [24].
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Chapter 2

Solving Methods

2.1 Introduction

Many solving methods have been proposed for the CVRP.We distinguish betweenExact Meth-
ods, methods based on Heuristics, and those based on Meta-heuristics. In this chapter, we
will give examples of these approaches and explain several algorithms that have been developed
for the Vehicle Routing Problem over the past five decades.

The rest of this thesis focuses on the Symmetric Homogeneous Capacitated Vehicle Routing
Problem with one depot, in the future addressed as the Capacitated Vehicle Routing Problem
(CVRP), or even shorter for reader convenience, “the VRP”.

2.2 Exact Methods

There are no exact algorithms that work well enough to solve every instance of the VRP (hence
studying the VRP is still very interesting!). So why does this section exist? There are some
methods that work well up to a certain amount of customers and vehicles. Of course there are
also particular situations in which finding a good solution is easy even for larger numbers of
customers and vehicles. We will however focus on the general case in which the customers are
more or less randomly distributed over some geometric space. We assume that extremely easy
(or extremely hard) situations do not occur more frequently than one would expect from a
random distribution.

The easiest exact method that one could think of is a simple brute-force approach. The most
simple constructive approach would start with all empty routes and repeatedly extend the
current route, at each node of the search tree either finishing the current route and proceeding
with the next one, or selecting some customer to be visited next. In essence we are listing our
n customers in some order (which can be done in exactly n! ways), and we then place m − 1
delimiters that determine when a route has ended after m− 1 out of the n− 1 (placing it after
the last customer creates an empty vehicle) customers, which can be done in exactly

(

n−1

m−1

)
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ways, creating a total of
n!(n−1

m−1
)

m!
possible solutions (we divide by m! because the order of the

vehicles is irrelevant). One can imagine that with more than 10 customers and 3 vehicles, this
method will soon be way too complex. Even though there are smarter ways of implementing
a solver for the VRP with a brute-force strategy, because the problem is NP-hard, it is highly
unlikely that we will ever find the optimal solution with a brute-force approach. We will have
to try to be a little smarter.

Branch-and-bound is a search algorithm that at each node of the search tree evaluates the
child nodes, assigns some bound to each node, and repeatedly selects the node with the best
bound found so far for expansion. When we deal with a maximization problem, we use an upper
bound, and analogously when handling a minimization problem such as the Vehicle Routing
Problem, we talk about a lower bound. The process is often implemented using a priority queue,
that initially contains the root node of the search tree. Then the first node in the priority queue
is expanded, after which its children are evaluated, and added to the queue. We repeat this
process until the next node in the queue has a worse bound than the best actual solution found
so far, and thus we have found the best solution, as all the remaining nodes will ultimately
result in a worse solution.

A branch-and-bound algorithm for the VRP clearly requires a lower bound, because we are
trying to minimize the total cost. Over the past 50 years, many lower bounds have been suggested
for the Vehicle Routing Problem. An excellent survey of lower bounds is given in [3]. In [22], a
description of a branch-and-bound algorithm for the VRP is given. This algorithm converts the
Vehicle Routing Problem into a so-called “K-tree”, a structure for which a polynomial algorithm
exists to find shortest paths. Amongst other smart things, this algorithm partitions the problem
by fixing the edges between certain clustered customers. Some side constraints that take care of
the vehicle capacity and the fact that each customer is visited at most once are also added. This
algorithm has produced proven optimal solutions for a number of difficult problems, including a
well-known problem with 100 customers. However, it still leaves certain 50-customer problems
unsolved. No exact algorithms performing better than this one have been found in literature.

Many other exact methods have been proposed in literature. Because these exact methods are
rather limited in performance compared to the heuristic methods, and this thesis focuses mostly
on the application of Monte Carlo Techniques with which bigger instances can be solved, we will
not give an extensive overview of all the other existing exact algorithms. We refer the reader to
[26] and [8] for an excellent overview of exact algorithms for the VRP.

2.3 Heuristic Methods

In this section we will describe several heuristic methods, of which many exist. We will focus
on the more AI-oriented methods, that can be roughly categorized into:

1. Construction algorithms: start with an empty route and extend it gradually, keeping
the total cost as low as possible.

2. Savings-based algorithms: start with a lot of small routes and combine them as long
as this improves the solution (“combine and conquer”).
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3. Tour Splitting Algorithms: start with one big tour and split it into capacity-feasible
subtours.

In the next three subsections we will give examples of each of these algorithms.

2.3.1 Nearest Neighbor Insertion (NNI)

The Nearest Neighbor Insertion (NNI) approach is relatively simple and was introduced
in 1983 in [5]. It perhaps is the most straightforward (and greedy) construction algorithm
for the VRP one can think of, and works as follows. Initially all of the to be generated routes are
empty. Starting with the first route/vehicle, until this current vehicle is full, we keep inserting
the nearest unvisited customer as long adding this customer does not exceed the capacity of
this vehicle. Then we select the next vehicle, and repeat the above, until either all the vehicles
are full or until all customers have been served. When the algorithm has ended, we have either
served all the customers, or there are still some customers left that have not been served. The
latter can happen more frequently if the tightness of the problem is very high.

The tightness T of a VRP is defined as the relation between the sum of the demands of all
customers and the total capacity of all the vehicles,

T =

∑n
i=1 di

Q ∗m

If this value is close to 1, there is a big chance that the NNI method does not give a satisfying
result. A formal outline of the NNI method is given in Algorithm 1. This algorithm returns an
array of routes that start and end at the depot. The function addToRoute(i) that can be called
on a route adds customer i to the end of that route, whereas the function nearestUnvisitedCus-
tomer(i) returns, trivially, the unvisited customer closest to customer i. The returned solution
routes[m] may not have visited all customers because of the earlier stated problem with a high
tightness value.

Sometimes the problem of not having served all customers can be solved by not proceeding to
the next vehicle when the nearest unvisited customer has a too large demand for the current
vehicle, but to consider the entire list of unvisited customers. This may result in a feasible
solution, but will often greatly reduce the solution quality. It could happen that the only capacity
feasible unvisited customer is on the other side of the map, introducing a very long route length,
whereas this customer could easily have been served later on by another vehicle that was in the
neighborhood anyway. Another option to solve this problem is to perform a quick search when
the algorithm has finished to try and insert the (often very few) unvisited customers into routes
of vehicles that have some space left.

Let us look at an example of a VRP instance that we are going to solve with the NNI method.
Suppose we have two vehicles (m = 2) of capacity 10 (Q = 10), 4 customers (n = 4), so we
have v1, v2, v3 and v4 and of course the depot v0. The four customers have demands d1 = 1,
d2 = 1, d3 = 9 and d4 = 9. Suppose customers v1 and v2 both have a very small distance to
each other and to the depot, and v3 and v4 a very large distance. The NNI method will first
choose v1 and then v2 to be served by the first vehicle. Now we have route vectors R1 = (v1, v2)
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Algorithm 1 Nearest Neighbor Insertion (NNI)

Require: n, m, distance[n][n], demand[n], Q
Ensure: routes[m]

1: capacity[m]← array();
2: routes[m]← array();
3: j ← 0;
4: while j < m do
5: current← nearestUnvisitedCustomer(0);
6: while capacity[j] + demand[current] ≤ Q do
7: routes[j].addToRoute(current);
8: capacity[j]← capacity[j] + demand[current];
9: current← nearestUnvisitedCustomer(current);

10: end while
11: j ← j + 1;
12: end while
13: return routes[m];

and R2 = (), leaving a capacity of 10 − 1 − 1 = 2 for the first vehicle and 10 for the second.
However, the customers still to be served, v3 and v4, both have a demand of 9, but we no longer
have two vehicles available with a remaining capacity of 9, and the definition of the CVRP (see
Section 1.3.1) does not allow split delivery (see Section 1.3.4). If split delivery were allowed,
the NNI algorithm would always solve the problem regardless of the amount of customers, their
demands and vehicle size, even if the tightness is exactly 1. The main problem here is that the
NNI method in all its greediness tends to forget about the Bin Packing Problem component of
the Vehicle Routing Problem, but only relies on the distance between the customers. Another
problem is, again as a result of this greedy approach, that the way that is traveled back to the
depot is not taken into account. When a vehicle is at its capacity, the last visited customer But
as long as the tightness is not too high, the NNI method can give a feasible and quite reasonable
solution of a CVRP instance (see Chapter 4 for results).

2.3.2 Clarke & Wright’s Savings Algorithm (CWS)

The Clarke & Wright’s Savings (CWS) algorithm is older than the previous one and dates
back to 1964 when it was introduced in [9] as the first savings-based algorithm (sometimes
also refered to as merging-algorithm). This method initially assumes that each customer is
served by its own vehicle. Next, two customers are to be served by the same vehicle as long
as their capacity constraints are not violated. Determining the order in which customers are
combined into a certain vehicle route is done by calculating the savings for a pair of customers:

The savings sij for a pair of customers vi and vj is defined as the savings in terms of distance
that would be realized if these two customers would be served right after each other by the
same vehicle instead of each by their own vehicle.

sij = c0i + c0j − cij

Note that, due to the triangle inequality, this quantity sij is larger than or equal to 0. An outline
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of the CWS algorithm is given in Algorithm 2. The algorithm takes the savings list, sorted in
descending order, and processes the customer pairs on the savings list if they satisfy conditions
a, b or c, assuming that operation does not violate capacity constraints.

The algorithm has a parallel and a sequential variant. The difference between the two is that
the parallel version builds multiple routes at a time (this variant is outlined in Algorithm 2),
whereas the sequential version builds one route at a time. In the parallel version it can happen
that, when the savings list has been processed, unassigned customers are assigned to their own
vehicle, exceeding the total amount of available vehicles m. In that case again, just like with
the NNI method, a local search could be performed to serve these customers by one of the other
vehicles.

Algorithm 2 Clarke & Wright’s Savings (CWS)

1. Calculate the savings for every pair of customers.

2. List the previously calculated savings in descending order of magnitude, creating the
“savings list.”

3. Then for each savings pair sij on the savings list, include path (i, j) in a route if no
capacity constraints will be violated through the inclusion of i− j in a route, and if either
one of the following statements holds:

(a) Neither i nor j have already been assigned to a route, in which case a new route is
initiated including both i and j.

(b) Exactly one of the two points (i or j) has already been included in an existing route
and that point is not interior to that route (a point is interior to a route if it is not
adjacent to the depot in the order of traversal of points), in which case the link (i, j)
is added to that same route.

(c) Both i and j have already been included in two different existing routes and neither
point is interior to its route, in which case the two routes are merged.

4. If the savings list has not been exhausted, return to step 3. Otherwise the algorithm
terminates and the solution to the VRP consists of the routes created so far. If any
unassigned customers remain, they must be served by their own vehicle.

Let us look at an example. Consider the symmetric distance matrix in Table 2.1 for 5 customers
(n = 5) and demand vector given in Table 2.2. Assume that we have 2 vehicles available (m = 2)
and the capacity Q is equal to 100. We will outline how both the sequential and the parallel
version processes this example.

We first compute the savings of all the customer pairs vi and vj by applying the previously
mentioned formula to the distance matrix. The result is shown in Table 2.3.
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cij v0 v1 v2 v3 v4 v5

v0 0 28 31 20 25 34
v1 0 21 29 26 20
v2 0 38 20 32
v3 0 30 27
v4 0 25
v5 0

Table 2.1: Symmetric distance matrix for a VRP with 5 customers (n = 5).

Customer Demand

1 37
2 35
3 30
4 25
5 32

Table 2.2: Demand vector for the 5 customers from the VRP in Table 2.1.

sij v1 v2 v3 v4 v5

v1 0 38 19 27 42
v2 0 13 36 33
v3 0 15 27
v4 0 34
v5 0

Table 2.3: Calculated savings based on distance values of Table 2.1.

For convenience we sort the pairs of customers of Table 2.3 by savings, in descending order,
creating the savings list:

1− 5
1− 2
2− 4
4− 5
2− 5
1− 4
3− 5
1− 3
3− 4
2− 3

Let us start with the sequential variant. Customers 1 and 5 are considered first. They can be
assigned to the same route since their joined demand for 69 units does not exceed the vehicle
capacity of 100. Now we establish the connection 1 − 5, and thereby points 1 and 5 will be
neighbors on a route in the final solution. Next we consider customers 1 and 2. If customers
1 and 2 should be neighbors on a route, this would require the customer sequence 2 − 1 − 5
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(or 5− 1− 2) on a route, because we have established already that 1 and 5 must be visited in
immediate succession on the same route. The total demand (104) on this route would exceed
the vehicle capacity (100). Therefore, customers 1 and 2 are not connected. If points 2 and 4,
which is the next pair in the list, were connected at this stage, we would be building more than
one route (1− 5 and 2− 4). Since the sequential version of the algorithm is limited to making
only one route at a time, we disregard 2− 4. The combination of the next pair of points, 4 and
5, results in the route 1 − 5 − 4 with a total demand of 94. This combination is feasible, and
we establish the connection between 4 and 5 as a part of the solution. Running through the list
we find that due to the capacity restriction no more points can be added to the route. Thereby
we have formed the route 0− 1− 5− 4− 0. In the next pass of the savings list we only find the
point pair 2 and 3. These two points can be visited on the same route, and we make the route
0 − 2 − 3 − 0. The sequential algorithm has constructed a solution with two routes. The total
cost for the route 0− 1− 5− 4− 0 is 98, and for the route 40− 2− 3− 0 the total cost is 89,
which makes a total cost of 187.

Now consider the parallel version of the algorithm which may build more than one route at
a time. In this version 1 and 5 are also combined first because they have the highest savings.
Points 2 and 4 are now also combined in the second route. We now have routes 0 − 1 − 5 − 0
and 0− 2− 4− 0. Only Customer 3 is now left and gives the highest savings with customer 5,
so it is added to the first route. In this way the algorithm constructs the routes 0− 1− 5− 3− 0
and 0−2−4−0 with a total cost of 171. In this case the parallel version performed better (171
compared to 187).

The advantage of the parallel method is that the savings list has to be processed only once,
and the result is on average better than that of the sequential variant. Therefore, in the future,
when we mention the CWS method, we refer to the parallel variant.

The CWS algorithm has very often been adjusted, improved and tuned, for example in [21]. As
we will see later in this thesis, the algorithm is a very good basis for many other algorithms,
because of its nice complexity of O(n2 · log n) with n ≥ 1 customers (when implemented as a
heap with n2 elements and extraction from the heap takes log n time).

2.3.3 Tour Splitting Algorithms (TSA)

Tour Splitting Algorithms (TSA) for the CVRP start by building one giant tour visiting all
customers. This tour is then split into capacity-feasible vehicle routes. This method is seldom
used alone because of a reputation of limited performance. However, [33] has successfully im-
plemented an algorithm of this kind that can efficiently solve instances of the Vehicle Routing
Problem. The problem lies not only in the splitting of the giant route, but just as much in
finding a good giant route. As one might expect, the TSP-optimal giant route is often not the
best route to go with, because there is also the BPP element to take into account.

In [33] several methods to generate a route are mentioned. We will outline one of these methods
called RTF (Random Task Flower), named after the visual pattern of a flower (see Figure
2.1 than arises when the giant tour has been generated. Important are two lists into which the
candidates are partitioned after each step, L1 and L2. L1 gathers the unvisited customers which
drive the vehicle away from the depot, and the other unvisited customers are stored in L2. The
total cost is kept in a variable r, initialized at 0. If the current route is empty, RTF selects one
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customer at random. If the route is not empty, RTF randomly draws the next customer from
L1 if (r mod Q) < Q/2 and from L2 otherwise. The emerging behavior here is that the giant
tour tends to go away from the depot if it is less than half full, otherwise it gets closer to the
depot. A splitting algorithm is more likely to cut the sequence when the vehicle is close to the
depot, so this helps the splitting.

Figure 2.1: Flower pattern by “Random Task Flower”-algorithm.

After the giant tour has been generated, for example by the method described above, it is split
using a splitting algorithm. In the end a local search has to be performed to improve the final
solution. The results of this Tour Splitting approach are comparable to those of meta-heuristics,
but this method is claimed to be faster and simpler. We refer the reader to [33] for an an excellent
overview.

2.4 Meta-heuristics

In this section we describe general meta-heuristics that can and have been applied successfully
to the Vehicle Routing Problem.

2.4.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a class of optimization techniques belonging to the field
of Natural Computing. It was introduced roughly 20 years ago by [15] and uses a solution method
that resembles the way in which real ants behave when searching for food in an environment.
During their search they mark the trails they are using by laying down pheromones. The
amount of pheromone on a certain path lets other ants know whether or not it is a promising
path. The general algorithm works as follows.

Each iteration of the ant colony algorithm consists of all ants building (part of) a solution of the
problem step by step. Which steps are made by the ants depend on the amount of pheromone
on that trail, as well as on the attractiveness of that particular move. This attractiveness is
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a domain-specific property. After the solution has been built, the amount of pheromone on
each trail is updated according to some update rule, and the process is repeated. When tuned
properly, in the end, all ants should be walking along the optimal path.

In [29] several components of an ACO algorithm for the CVRP are outlined. The first component
is the routes building which determines how each ant builds the solution. In the parallel
version, each ant designs the route for all vehicles at the same time. At each iteration of the
algorithm only one client is chosen. The best tour is then extended. When each ant builds an
entire solution composed of multiple routes we talk about the sequential version. The steps of the
ant towards a customer are of course based on the amount of pheromone on that trail, and on the
attractiveness, which is a function that depends on the length of the path between the current
and candidate customer. A tabu list of the already visited customers is also kept. The second
component of the ACO algorithm is the transition rule: the rule that defines which customer
is chosen next by a certain ant. A choice can be made between “exploration” (select a random
customer, or perhaps a random customer proportional to the distance to that customer) and
“exploitation” (select the customer on the path with the highest level of pheromone). The third
important component is the pheromone actualization, which can be done while a solution
is built, or after the solution has been built. A frequently used actualization technique for the
parallel version is the “Elite Ant”-technique, where only the pheromone on the parts of the
route that belong to the best solution are updated. Several more domain-specific components
are also outlined in [29], to which we also refer the reader for more information on the ACO
technique, which performs better than for example the CWS Algorithm.

Figure 2.2: Ant Colony Optimization (ACO) and Genetic Algorithms (GA’s).

2.4.2 Genetic Algorithms

A Genetic Algorithm (GA), for example as described in [18], is a form of reinforcement
learning that, just like ACO, belongs to the field of Natural Computing. The idea behind a
genetic algorithm is that there is a population of candidate solutions (the individuals) that,
by repeatedly applying mutations and crossovers, will evolve to a population with better (and
ultimately optimal) solutions. The quality of an individual is evaluated by a fitness function.
A genetic algorithm works as follows.

First a population of solutions is, for example randomly, initialized. Then, while some stopping
criterion (a fixed number of iterations, or reaching a certain solution quality) is not satisfied,

27



two parents are selected and a crossover is done to create new children. Next, each of these
new children has a certain chance of receiving a mutation. The children are then evaluated as
well. In the last step the new population is determined, where survival of individuals in the
population depends on the fitness value(s). Many variations of GA’s exist. If for example the
new population consists of only the children, we talk about a Generational GA, and when
the new population consists of a selection of the best individuals (so both parents and children),
we talk about a Steady State GA.

In order to use a GA to solve the Vehicle Routing Problem we have to define how we can
express a solution of the VRP as an individual. We could simply use a string that consists
of a concatenation of the customers of all the routes. This representation is however not very
flexible when we want to apply the different genetic operators (see next paragraph). Therefore
[2] suggests representing the solution/individual as a string of length n (n ≥ 1, the number of
customers), where each character in the string has a value x with 1 ≤ x ≤ m (m ≥ 1, the number
of vehicles). This however does not explicitly define the order in which the customers are served.
For that, a TSP solution will have to be found for each vehicle. The fitness of a solution can be
determined by the total cost of the routes, incremented by a huge penalty when the routes are
not capacity-feasible. Several steps are taken to ensure that the GA can do its work as efficiently
as possible. One of them is sorting the customers in the string so that consecutive customers
are likely to be served by the same vehicle. For problems where the customers are randomly
distributed around the depot, they are sorted by their distance to the depot in increasing order.
When customers are located in clusters, they are sorted according to a simple nearest neighbor
TSP structure, starting from the depot and visiting all customers. The representation method
described above has the advantage of never visiting customers more than once after a suitable
crossover has been applied.

The next question is how to generate the initial population. Creating a population with only
near optimal solutions, obtained by for example the CWS method (see Section 2.2) may not
include sufficient diversity, whereas a completely random population will perhaps never converge
towards the good solutions. As one may guess, a combination of the two will often do fine.

According to [36], there are three genetic operators can be used to tune a GA:

• Selection: How are the candidates for reproduction chosen?Roulette-Wheel Selection
is often used. This method selects an individual with with fitness f with probability
f/(n ∗ f̄), where f̄ is the average fitness and n > 0 the size of the population. It is also
possible to just select two parents at random.

• Crossover: How are parents combined? Many crossover strategies exist. For the VRP,
[2] suggests using 2-point-crossover, a method in which two crossover points (borders
between two characters in the individual’s string) are selected, dividing the string into
three parts. The new string consists of the first and third part of one parent, and the
second part of the other parent.

• Mutation: What kind of mutations are applied to the children? The most common muta-
tion method applicable to the VRP is simply switching two randomly selected customers
between vehicles with a certain probability.

In [2] it is shown that genetic algorithms, especially along with some domain-specific methods
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to “cure” unfit solutions, perform comparable to other meta-heuristics for the Vehicle Routing
Problem. The results obtained are very close to optimal solutions and outperform methods such
as CWS, performing comparable to for example Ant Colony Algorithms and Tabu Search.

2.4.3 Tabu Search

Tabu Search is a local search method that explores the solution space by moving from a
certain solution xt to a next solution xt+1 by taking the best solution out of a set of solutions in
the neighborhood N(xt) of xt, assisted by some memory. The initialization of the first solution,
x0, can be done at random, or can for example be the solution obtained by applying the CWS
method from Section 2.3.2. The algorithm stops when it is either out of computation time,
or when no better solutions are found for a certain number of iterations. Because xt+1 is not
necessarily better than xt, a tabu mechanism prevents cycling over the same solutions over and
over again. Exactly implementing this often referred to as “short-term-memory”-mechanism is a
too complex task, so instead certain attributes of past solutions are registered, for example using
a smart hash function. Any new solution that matches one in the memory is not considered for
a certain amount of iterations. Tabu Search is often strengthened by the so-called “long-term-
memory”, which consists of two features, diversification and intensification. Diversification is
the process of ensuring that the search does not get stuck in local optima and intensification
makes sure that the search occasionally focuses on one certain very promising part of the search
space.

Tabu Search is very similar to Simulated Annealing, but differs in a way that Simulated Anneal-
ing has a cooling scheme to analyze the search space as thoroughly as possible and to ultimately
achieve convergence, whereas Tabu Search uses its “long-” and “short-term-memory” to achieve
these two goals.

In order to apply Tabu Search to the VRP, we must define a neighborhood, for which many
suggestions have been done in literature. We will explain the one defined by [31] named λ-
interchanges. This method generates a neighborhood by repeatedly exchanging up to λ cus-
tomers (λ ≥ 1) between two routes in xt. These exchanges can be described by couples (λ1, λ2)
(with λ1, λ1 ≤ λ) that represent an operation where λ1 customers are moved from route 1 to
route 2, and λ2 customers are moved from route 2 to route 1. For example, in 2-exchanges the
following types of moves are possible: (2, 2), (2, 1), (2, 0), (1, 1), (1, 0) and their symmetric
counterparts. Of course only capacity-feasible moves are considered. The swapped customer
is inserted into its new route for example after or before its nearest neighbor already in that
route, but better yet more complex methods have also been proposed. To implement the before
mentioned “short-term-memory”, it is common to prohibit reverse moves for a certain amount
of iterations.

A big problem with these algorithms is complexity. Therefore when applying λ-exchanges, the
value of λ is often restricted to 1 or 2 in order to limit the number of possibilities. One could also
experiment with slightly larger values of λ and limit the size of the neighborhood to a certain
maximum size. Many other methods to define the neighborhood have been suggested. For an
overview of these methods, other neighborhood definitions and more “short-” and “long-term-
memory” algorithms, see [10], an article in which Tabu Search is presented as the best heuristic
method for the Vehicle Routing Problem.
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Chapter 3

Monte Carlo Techniques

3.1 Introduction

Monte Carlo Techniques (or Monte Carlo Methods, or in short Monte Carlo (MC))
are a class of techniques or algorithms that rely on the use of random sampling to finally acquire
a solution to a given problem. The name “Monte Carlo” was given to this class of techniques by
John von Neumann and Stanislaw Ulam somewhere around 1946, when they suggested to some
physicists that their problem could perhaps be solved by modeling the experiment on a computer
using chance. Being secret, their work required a code name. Von Neumann chose the name
“Monte Carlo”. The name is a reference to the Monte Carlo Casino in Monaco where Ulam’s
uncle would often go to gamble. Interesting to see is that nowadays Monte Carlo algorithms
are widely used in algorithms for playing casino games such as poker. Did von Neumann know
back then in the 1940s that his algorithmic approach would find an application in the field from
where he simply picked the name?

Figure 3.1: The Monte Carlo casino and the Formula 1 circuit Monte Carlo in Monaco.

The random sampling used in Monte Carlo Techniques can be used and implemented in many
ways. We will discuss a few uses of it in this chapter. Note that we will only consider the cases
in which discrete (so non-continuous) choices have to be made, and full information is available.
We made this choice not because Monte Carlo does not perform well in continuous and/or
stochastic environments (on the contrary!), but because the problem we are finally going to
apply these techniques to (the Vehicle Routing Problem), has these properties.
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3.2 Random sampling

Exhaustive approaches more or less enumerate all possible solutions, frequently by traversing
the total search space in some way by means of an algorithm. A Depth First Search (DFS) is a
classic example of such an algorithm. However, when the search space is too large, a DFS will
often get stuck in the bottom leftmost part of the search tree, introducing little to no diversity
in the obtained solutions except for perhaps a bit of diversity near the leaf nodes. Very often,
crucial decisions in the search tree that determine the quality of a solution are not made only
close to the leafs, but at various much higher levels of the search tree, that will never be reached
again by the DFS algorithm.

Algorithm 3 Random Sampling

Require: current
Ensure: solutionQuality

1: while !isLeaf(current) do
2: n←numberOfChildren(current);
3: i← rand() % n;
4: current← current.child(i);
5: end while
6: return qualityOf(current);

Plain random sampling is a method that starts at the root node of a search tree and repeatedly
picks a random child as a successor until it reaches a leaf node. This simple algorithm is outlined
in Algorithm 3, which returns only the quality of the solution (but of course the solution itself
could also be saved and returned). The algorithm should be called with current set to root, the
initial state. The process of random sampling can be repeated a number of times to obtain a set
of solutions, or to only keep the best solution after each iteration. The advantage of this method
is that there is maximum diversity in the set of obtained solutions in a reasonable amount of
time, eliminating the previously stated problem of only visiting a small part of the three. Of
course this method still has disadvantages; depending on the domain of the problem, good
solutions are often not randomly distributed over the search tree, but even though scattered
throughout the search tree, often clustered together at some points.

The simple method of random sampling can actually be more effective than heuristic methods
in cases when it is hard to derive a good admissible heuristic for a certain state in the search
tree. In that case, an iteration of a few hundred thousand random samplings can give better
solutions compared to methods such as best-first-search and other greedy methods that rely on
heuristics. The same advantage goes for exact methods such as brand-and-bound algorithms in
the case when the upper bound is a too big over-estimator. In that case the search will resemble
Breadth First Search (BFS) and a good solution will most likely never be found, and random
sampling is again more effective. So we can conclude that even though the method of random
sampling may seem crude and ineffective, in some cases, it can be useful.
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3.3 Monte Carlo Simulation (MCS)

Monte Carlo Simulation (MCS), for example as described in [27], is often used as a heuristic
evaluation method to determine which of the children in the fringe is to be selected next as a
successor node in some derivation. This approach is especially useful when it is hard to judge
the quality of a partial solution before the entire solution has been generated. The process is
explained in Figure 3.2, and works as follows. We start at the root node of the search space which
is marked as the current node. From each of the n ≥ 1 possible successors (children) of this
current node we perform r ≥ 1 (common values are around 1000, but at least a value comparable
to the amount of children of that node is needed for a good average) random simulations until
a leaf node of the search space is reached. So at each step of this algorithm a total of n ∗ r so-
called probes are sent down towards the leaf nodes. The “best” child based on these random
simulations is then selected next for expansion. The “best” node can either be the node with
the highest score out of the r random probes, or it can be the node with the highest average
out of the r probes. Which evaluation method is best depends on the type of problem and the
behavior of the search space. When the current node is a leaf, an actual solution has been found
and the method is terminated. An outline of this algorithm, specifically the variant where the
node with the highest average score is repeatedly selected, can be found in Algorithm 4. This
algorithm again only returns the quality of the obtained solution, but of course the path could
also be saved and returned. Initially the algorithm is again called with current set to root.

Algorithm 4 Monte Carlo Simulation

Require: current, r
Ensure: solutionQuality

1: while !isLeaf(current) do
2: bestSolution← +∞;
3: bestChild← −1;
4: n←numberOfChildren(current);
5: for i = 0 to n− 1 do
6: sum← 0;
7: for k = 1 to r do
8: sum← sum+Random Sampling(current.child(i));
9: if sum/r < bestSolution then

10: bestSolution← sum/r;
11: bestChild← i;
12: end if
13: end for
14: end for
15: current = current.child(bestChild);
16: end while
17: return qualityOf(current);

The MCS method can be improved by performing a full search as soon as the size of the
remaining search space below the current node allows this. Another simple improvement can
be realized by keeping track of the best found solution so far during all the random probes,
as this solution may not be identical to the actual solution that is finally found at the leaf
node. Even better would be to at some point restart the search from the point where a critical
misdecision has been made. This is a decision where in current node w at level i (i ≥ 1, level
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Figure 3.2: Basic Monte Carlo Simulation

0 is the root node) of the search tree node z at level i + 1 is selected next, whereas instead
in the previous current node x at level i − 1 a path w − x − y (with y 6= z) was found as the
best solution. This decision to correct such a misdecision can occur after a number of steps (for
example 5 or so) has been done that no longer improve the current solution, or it can be made
at the end of the algorithm for each recorded misdecision.

The MCS method often performs much better than plain random sampling, because the search
is “guided” towards a better part of the search tree where again better solutions can be found.
Consider the part of a search space in Figure 3.3, regardless of the domain of this problem.
Five optimal (green) solutions are more or less randomly spread over the search tree. A Monte
Carlo Simulation algorithm will perform several random simulations and at some point find
the orange areas which represent a part of the tree filled with better solutions. It will then
focus on such an area, and try to find even “warmer” areas, hoping to ultimately find the green
optimal solution. The performance of this procedure is however highly dependent on the size
(or “width”) of the orange space. If an optimal solution is surrounded by a lot of good (orange)
solutions, the orange and therefore in the end the green solution is likely to be found. However,
if the green solution has only a handful of orange paths around it, these good areas are much
less likely to be found. But, in essence, just like with a brute-force-algorithm, if there is enough
computation time (in this case enough time to perform enough random simulations), the best
solution will ultimately be found.

Other than just doing more random simulations, performance of Monte Carlo algorithms can also
be improved by improving the simulation strategy. Instead of sending random probes down the
search tree, domain-specific knowledge could be used to slightly guide the search. For example,
in case of the Vehicle Routing Problem, it might not be smart to at some point create a path
between two customers with a very large distance in between them, while both customers have
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Figure 3.3: Part of a search space with good (orange) and optimal (green) solutions.

many other closer customers that they can be connected to. Therefore these kinds of decisions
could be frequently avoided, as they are not likely to make the search end up in a good part of
the search tree.

The problem with having a big random factor playing a role in algorithms is that even though
we take an average out of a fixed (perhaps too small) number of random simulations, wrong
choices can still be made. Therefore, one run of a Monte Carlo algorithm is not as efficient as
ten runs. Often described in literature such as [37] as Meta Search, the so-called restarts
can help improve the quality of the final solution. This can be done for example after a certain
amount of time has passed, or when the search appears to be stuck in a local minimum.

3.4 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is a more advanced Monte Carlo Technique and is
described for example in [37]. The process is explained in Figure 3.4. A tree is built in memory,
and the process that builds this tree has four important phases that are repeated until time
runs out:

1. Selection: starting from the root, the algorithm traverses the already stored tree until it
reaches a stored leaf. This is not necessarily a leaf of the full search tree (and therefore
not yet a full solution).

2. Expansion: one or more nodes are added to the tree as child(ren) of the node reached in
the previous step.

3. Simulation: one or more simulations are performed from the newly added node(s), down
to a leaf of the search space. A heuristic can again be built into this, in case of the VRP
we could for example decide to visit nearby customers with a higher probability. Here it
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is important to not restrict the simulations and still allow them to do seemingly “dumb”
transitions in order to keep the balance between exploration and exploitation intact.

4. Backpropagation: during this phase the result of the simulation is propagated back
towards the root.

Figure 3.4: Monte Carlo Tree Search

During the selection phase a choice of which node is going to be expanded next is made. On
the one hand, the task is often to select the move that leads to the best results (the earlier
mentioned exploitation) but on the other hand, the least promising moves still have to be
explored, to ensure exploration). A commonly used method is Upper Bound Confidence Trees
[25], a method that selects the node i with the highest value of:

vi + C ×

√

ln N

ni

Here vi is the value of node i, ni the visit count of i, and N is the visit count of the parent
node of i. C is a coefficient, which has to be tuned experimentally. The value vi of a node is
computed by taking the average of the results of all simulated games made through this node.

Monte Carlo Tree Search is often used in the field of game theory, for example by [37] who used
it in an attempt to solve SameGame puzzles. Several improvements of the existing method have
been introduced, for example Nested Monte Carlo Tree Search which was suggested in [7].

3.5 Parallelization

Parallelization is the process of splitting up a task over multiple CPU’s (or multiple cores)
in order to increase computational power, and is often suggested as a speed-up method for
algorithms. Since the introduction of multi core CPU’s on the consumer market around 2005,
a desktop PC nowadays has two, four six or maybe even eight cores, and this amount will only
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grow in the nearby future. Another recent development is that these days GPU’s often come with
a larger amount of cores (one hundred or more). We can easily conclude from these relatively
recent developments that considering parallelization issues in solution methods becomes more
and more important.

Monte Carlo Techniques can benefit greatly from parallelization. The random sampling of r
samples at some point during for example Monte Carlo Simulation can be divided over c ≥ 1
CPU’s by simply giving each CPU r/c samples to compute. Depending on the type of problem
we can also choose to assign a certain number of children to each CPU, so if we again have
n candidate successors each CPU computes the random samples of n/c candidates. In case of
MCTS, we can simply start the algorithm for each available CPU.
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Chapter 4

Applying Monte Carlo Techniques
to the
Capacitated Vehicle Routing
Problem

4.1 Introduction

This chapter is about the application of Monte Carlo Techniques to the Capacitated Vehicle
Routing Problem. We will first consider some previous work, after which we will describe some
new “Monte Carlo-inspired” derivatives of the search methods described in Chapter 2. We will
compare the performance of these methods with existing work based on tests that we perform
for each of the methods.

The tests are performed on the commonly used test sets from Christofides and Eilon and from
Augerat et al., both found at [34]. The files of this test set are in the convenient TSPLIB
[35] format. The obtained solutions, available in the Appendix, are also in the TSPLIB output
format. For our experiments we used a 3.2GHz Core i7 quad-core machine with 6GB of memory
and no more than 5 minutes of computation time.

4.2 Previous Work

Compared to the huge amount of work done on the Vehicle Routing Problem, relatively little
work seems to have been done on applying Monte Carlo Techniques to the Capacitated VRP.
We will give a brief description of the work found in literature.

Using a form Monte Carlo Techniques to solve the Vehicle Routing Problem was suggested
for the first time in 1979 by [6]. Improvements compared to the CWS method were already
observed at that time, though standard test sets were not yet defined, making comparison
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with current techniques quite hard. Random sampling for the distance constrained VRP was
suggested in 2000 by [13]. A simulation method extremely similar to the NNI method was used,
where customers are selected with a probability proportional to their distance to the last visited
node. We will apply a similar strategy to the NNI method in the next section.

In 2007, the ALGACEA-1 method was introduced in [21] as a Monte Carlo algorithm for the
VRP, based on Clarke & Wrights Savings approach and assisted by an entropy function. The
method indeed performs better than the simple CWS method. SR-1 [19] is another a recent
algorithm very similar to ALGACEA-1, also based on the CWS method, but unfortunately this
algorithm was only tested on randomly distributed search spaces and not the well-known test
sets from [34] or [40].

Monte Carlo Techniques have also been applied to CVRP-related problems. In [30] an algorithm
based on Monte-Carlo-inspired randomization has been suggested for the uncapacitated time-
constrained Vehicle Routing Problem, which is in essence a multiple Traveling Salesman Problem
(MTSP) with a maximum distance per route and no additional capacity constraints. A Monte
Carlo algorithm for the Rural Postman Problem (find the shortest closed route that visits every
edge of a connected undirected graph) has been proposed in [12].

No other literature than the above was found on the application of Monte Carlo Techniques to
the Capacitated Vehicle Routing Problem.

4.3 MCT applied to the NNI method

The Nearest Neighbor Insertion (NNI) method, a constructive method to solve the VRP, is
described in Section 2.3.1. As explained, this method does not always give a feasible let alone
optimal solution, especially when the tightness is very high (near a value of 1). We have applied
several Monte Carlo Techniques, as described in Chapter 3, to the NNI method, and will report
about our methods and results in this section.

Table 4.1 gives an overview of several test instances. The first column represents the name of the
instance, where the two numbers stand for the number of customers (including the depot) and
the number of vehicles, respectively. The second column denotes the tightness of that instance,
followed by the best solution found so far in literature. For some instances, the exact best
solution is not known, but only some very-near-optimal upper bound, denoted by ≤ in front of
the value. A value is denoted between brackets if a capacity-infeasible solution was found for
that instance.

The column (“100k-Random”) gives the best score obtained when performing 100, 000 random
simulations. In each step of this random sampling process a random choice of one customer
out of either all the unvisited capacity-feasible customers is made, after which either or not
the next vehicle is chosen. Selecting the next vehicle is not smart when the current vehicle is
not very full yet, so the chance of selecting the next vehicle is proportional to how full the
current vehicle is, so if the current vehicle is half-full there is a 50% chance of selecting the
next vehicle. The performance of the “100k-Random”-method is, as one could expect, very
bad. For smaller instances the difference with the optimal solution is not that big, but when
the number of customers increases the method performs many times worse compared to the
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optimal solution, most likely because a much smaller part of the search tree is evaluated. Notice
how the “100k-Random”-method often finds a solution that is far from optimal, but at least
feasible. This method could most likely be improved by a smarter simulation strategy than the
one described above, but we only added it to demonstrate how the search space is considerably
larger (and the problem thus considerably more difficult) when the amount of customers and
vehicles increases.

Instance Tightness Best 100k-Random NNI Random-MCS NNI-MCS

E-n13-k4 0.76 247 271 339 259 258
E-n22-k4 0.94 375 515 472 500 411
E-n23-k3 0.75 569 921 (489) 921 785
E-n30-k3 0.94 534 941 598 877 598
E-n31-k7 0.92 379 1004 (422) 945 632
E-n33-k4 0.92 835 1388 (834) 1147 1095
E-n51-k5 0.97 521 1289 (639) 1217 1155
E-n76-k7 0.89 682 2035 869 1976 869
E-n76-k8 0.95 ≤ 735 2084 (874) 1986 1501
E-n76-k10 0.97 830 2351 (842) 2330 1750
E-n76-k14 0.97 1021 (1861) (984) (2390) 2310
E-n101-k8 0.91 ≤ 815 2780 1122 2542 1041
E-n101-k14 0.93 ≤ 1071 2890 1287 2675 1180
G-n262-k25 0.97 ≤ 6119 26745 (6176) 24441 21923

Table 4.1: Solution lengths for various NNI methods.

The NNI method is reported in the fifth column and often does not keep into account the
Bin Packing Problem (BPP) element of the VRP and therefore often does not find a feasible
solution. The column “Random-MCS” performs Monte Carlo Simulation (MCS, see Section 3.3)
with the simple simulation strategy of the “100k-Random” approach. At each node of the search
tree the child with the highest average score based on 1, 000 random simulations (r = 1, 000)
is picked. This already improves the “100k-Random” method but does not yet get close to the
optimal value.

The last column, “NNI-MCS” is similar to the Random-MCS method, but it differs in a way
that the simulation strategy follows the NNI method in a proportional way. So instead of
always selecting the nearest customer (in Algorithm 1 done by the nearestUnvisitedCustomer()
function), the chance pvi of selecting customer vi next is equal to

pvi = 1−
f(vi)

α

n̄α

where f(vi) (1 ≥ f(vi) ≥ n̄) returns the current rank of that customer in the list of nearest
neighbors. So the nearest neighbor has rank 1, the next one rank 2, etc. Furthermore, n̄ is the
number of remaining unvisited customers, whereas α could be used to determine the focus more
on the nearest solutions. A value of 1 for α turns out to work just fine, as n̄ is often a quite
large number. The NNI-MCS clearly improves upon all previously discussed methods, and even
though the difference with the optimal solution is still quite back, at least all solutions are
feasible.

41



Not much further research was done on the NNI method, because this method is clearly out-
performed by the CWS method, which is discussed next. The results in this section do show
that Monte Carlo Techniques can actually be useful for the NNI method for two reasons. Firstly
because feasible solutions are obtained for all instances while the separate methods (MCS and
NNI) could not, and secondly because they improve the quality (minimization of the solution
length) of the obtained solutions.

4.4 MCT applied to the CWS method

Clarke & Wright’s Savings (CWS) algorithm (see Section 2.3.2) is a savings-based algorithm
that produces a list of pairs of customers sorted in descending order by the cost that would be
saved when those two customers would be served after each other by the same vehicle, instead
of by a separate vehicle. We have tested the CWS method on the test set that we also used
for the NNI method in the previous section. The results are outlined in Table 4.2. In this table
the first three columns again represent the name of the test instance, the tightness and the
optimal value or best known value, respectively. The next column lists the results results of the
plain CWS method. As one can see, problems with capacity-infeasible solutions can still occur,
though less frequently than with the NNI method. The brackets mean that too many vehicles
are used. For the feasible solutions, we do observe that the obtained costs are a lot closer to the
optimal value. From this we conclude that the CWS method is likely to be a better heuristic
than the NNI algorithm. We have applied Monte Carlo Simulation (MCS, Section 3.3) to the
CWS method in two ways, as described in the next two subsections.

Instance Tight- Best CWS BestX- Binary- Binary-
ness CWS-MCS Sampling CWS-MCS

E-n13-k4 0.76 247 (287) 247 (0%) 247 (0%) 247 (0%)
E-n22-k4 0.94 375 388 377 (0.53%) 380 (1.33%) 375 (0%)
E-n23-k3 0.75 569 (645) 631 (10.9%) 652 (14.59%) 621 (9.14%)
E-n30-k3 0.94 534 (611) 627 (17.42%) 555 (3.93%) 543 (1.69%)
E-n31-k7 0.92 379 610 470 (24.01%) 473 (24.80%) 454 (19.79%)
E-n33-k4 0.92 835 904 899 (7.66%) 881 (5.51%) 836 (0.12%)
E-n51-k5 0.97 521 595 581 (11.52%) 586 (12.48%) 531 (1.92%)
E-n76-k7 0.89 682 747 747 (9.53%) 737 (8.06%) 701 (2.79%)
E-n76-k8 0.95 ≤ 735 817 808 (9.93%) 804 (9.39%) 761 (3.54%)
E-n76-k10 0.97 830 (893) 971 (16.99%) 891 (7.35%) 858 (3.37%)
E-n76-k14 0.97 1021 (1157) 1201 (17.63%) 1194 (16.94%) 1046 (2.45%)
E-n101-k8 0.91 ≤ 815 955 950 (16.56%) 908 (11.41%) 867 (6.38%)
E-n101-k14 0.93 ≤ 1071 1122 1122 (4.76%) 1119 (4.48%) 1098 (2.52%)
G-n262-k25 0.97 ≤ 6119 (6299) 7006 (14.5%) 6211 (1.50%) 6123 (0.07%)

Total 14733 16637 15638 15061
(12.92%) (6,14%) (2.23%)

Table 4.2: Solution lengths for various CWS methods.
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4.4.1 BestX-CWS

This method is very similar to the methods presented in [6] and [13]. The random simulations
in this Monte Carlo Simulation algorithm follow Clarke & Wright’s Savings list, and repeat-
edly select a savings pair sij for processing from the savings list with probability a pij that is
proportional tot the total savings in the savings list:

pij =
sαij

∑

k,l skl
α

k and l are the indexes of the unvisited customers. α again defines the focus on the best
savings, and can be set to an integer value somewhere between 1 and 5, according to [19]. In our
experiments a value of 1 again turned out to work just fine. We performed experiments with
a Monte Carlo Simulation algorithm with r = 1000 random probes, and correction for each
critical misdecision until the maximum execution time of 5 minutes runs out. The experiments
suggest that adding more time does not significantly improve the solution quality.

The results are outlined in the “BestX-CWS-MCS” column of Table 4.2. The method always
obtains a result equal to or smaller than the solution from the “CWS method”. The average
deviation percentage is 12.92%, and feasible solutions are found for all test instances. We can
conclude that this method always produces a feasible solution, and it produces reasonable
results, at least outperforming the CWS method, in terms of solution distance.

4.4.2 Binary-CWS

This method is again based on Monte Carlo Simulation and makes use of Clarke & Wright’s
Savings (CWS) list as presented in Section 2.3.2. In each simulation of the algorithm, the
savings list, sorted in descending order by the size of the savings, is processed linearly from top
to bottom. However, in the simulation of the Binary-CWS a savings pair is only processed with
a certain probability p (0 < p < 1). This means that occasionally, a savings pair is skipped. The
question is how to set the value of p. Larger values for p will result in too much chaos, we will
still want to process the pairs of “big savers” with high probability (exploitation) to keep the
total solution length as low as possible. But then again, if we do not allow enough deviation
and set p to a value very close to 1, we will not introduce enough of the exploration element of
a Monte Carlo algorithm. We therefore experimented with several values of p on a particular
instance, E-n51-k5. The result is shown in Figure 4.1. Observe how a large value of p gives a
solution equal to that of the CWS method. The optimal value lies somewhere between 0.05 and
0.4. Therefore, in each simulation of our algorithm, p is set to a random value between these
two bounds, so 0.05 ≤ p ≤ 0.4.

The results of the best out of 100, 000 random simulations based on the technique described
above is given in the sixth column of Table 4.2, “Binary-CWS-Sampling”. We immediately notice
that a feasible solution is again always found for all of the instances, and the result is already a
lot closer to the optimal value, for the entire test set the difference is only 15638− 14733 = 905,
which is a deviation of only 6.14%.
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Figure 4.1: Values of p (verticle axis) and their corresponding best found solution (horizontal
axis) for E-n51-k5.

Next we used the simulation scheme we just described in a Monte Carlo Simulation algorithm.
The search tree is now a binary tree that at each node makes a choice of whether or not a certain
savings pair is processed or not. The choice is based on 1, 000 simulations that are performed
for both of the choices. The branch with the highest average score is chosen next. The method
is assisted by a mechanism for the correction of critical misdecisions as described in Section
3.3 for each decision in a certain derivation, until the maximum execution time of 5 minutes
runs out. The results are outlined in the rightmost column of Table 4.2, “Binary-CWS-MCS”.
Notice how using MCS performs almost three times better than using sampling, and reduces
the average deviation from the optimal value from 6.14% to just 2.28%. See Figure 4.2 for a
visualization of the solution generated by our algorithm for E-n22-k4.

To test our method even further, we also tested it on some additional test instances, of which
the results are shown in Table 4.3. The reason for performing these additional tests is that
this larger test set has more diversity in the number of vehicles and customers and the relation
between the two. Also, the M-instances have a large amount of customers and vehicles, allowing
us to test the scalability of our method. The algorithm clearly also performs well for larger
test sets with deviations between 0.22% and 3.61% for instances with 200 customers and 16
or 17 vehicles. See Figure 4.3 as an example of the solution generated by our algorithm for
M-n200-k17, a large instance that only deviated 0.22% from the best found solution. So again,
a deviation of only 2.56% from the optimal or best known value is observed over the entire test
set, in line with the previous results on the E--instances.

4.4.3 ALGACEA-2 vs. Binary-CWS-MCS

To our best knowledge, ALGACEA-2 as described in [20] is currently the best Monte Carlo
algorithm for the VRP. We tested our Binary-CWS-MCS method on the test set of Symmetric
CVRP instances found at [40], the set with which the ALGACEA-2 method was also tested.
We used no more than 5 minutes of computation time, which is an amount roughly equal to
that of ALGACEA-2. The results are shown in Table 4.4.

Our method produces solutions with a difference of 13046−12632 = 414 distance units (3.28%),
whereas ALGACEA-2 has a difference of 1794 (14.20%) from the optimal or best known solution.
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Instance Tightness Best CWS ALGACEA-2 Diff Binary-CWS-MCS Diff

A-n65-k9 0.97 1174 1479 1343 14.40% 1224 4.26%

A-n80-k10 0.96 1764 1945 1927 9.24% 1805 2.32%

E051-05E 0.89 525 637 579 10.29% 538 2.48%

E072-04F 0.97 242 345 310 28.10% 265 9.50%

E076-07S 0.97 691 845 781 13.02% 703 1.74%

E076-10E 0.97 837 999 948 13.26% 860 2.75%

E076-14U 0.91 1029 1160 1122 9.04% 1057 2.72%

E101-08E 0.91 826 1031 970 17.43% 861 4.24%

E101-s10C 0.93 820 940 877 6.95% 844 2.93%

E101-14U 0.93 1091 1306 1258 15.31% 1101 0.92%

E151-12C 0.93 1031 1331 1252 21.44% 1084 5.14%

E200-17B 0.94 1291 1291 1557 20.60% 1346 4.26%

E200-17C 0.94 1311 1557 1502 14.57% 1358 3.59%

Total 12632 14866 14426 14.20% 13046 3.28%

Table 4.3: ALGACEA-2 vs. Binary-MCS-CWS.

Interesting to notice is that the instances that are hard for the ALGACEA-2 algorithm are also
relatively hard for our Binary-CWS-MCS method. This is most likely due to to the limitation
of the applicability of the CWS method to that particular instance.

We think our method performs better because of two reasons. First of all, our method performs
Monte Carlo Simulation instead of random sampling. Second, our method respects the order of
the savings list, whereas the ALGACEA-2 method can and often will change the order in which
the savings are processed. We suspect this ordering to be crucial for obtaining good results.
Another advantage of our method is that it is much simpler than the ALGACEA-2 method.

Figure 4.2: Visualization of the solution of instance E-n22-k4 with length 836.

4.5 Discussion

If we look at the results from this chapter we see that the NNI method is really not a good
basis for a Monte Carlo algorithm if our goal is to compete with existing (meta-)heuristics.
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Figure 4.3: Visualization of the solution of instance M-n200-k17 with length 1376.

The CWS method is a much better method, especially when it is assisted by the Monte Carlo
Techniques from either the BestX-CWS algorithm or the Binary-CWS algorithm, the technique
introduced in this thesis. In essence, we can see the plain CWS method as one path in a very
large search space with a branch for each savings pair (only consider the savings pairs applicable
to the current built solution). The Monte-Carlo derivatives of the CWS method in essence “walk
along” this solution path, making detours from the CWS solution path every now and then with
a certain probability. This making of small “detours” from the CWS path performs well, and if
we introduce enough diversity (exploration) in these detours, we will ultimately at some point
find the optimal solution. But if too much diversity is introduced, the search space will be way
too large and again filled with all the bad solutions.

The problem is that the power of these methods is limited by the performance of the CWS
method. For some instances, the CWS method is simply not the way to go, and no matter
how much we deviate from the CWS solution path, or no matter how many and which savings
pairs we skip, we never find that one optimal solution. We can conclude that the Monte Carlo
methods we described in this section are limited by the applicability of the methods that they
are based on. Nevertheless, the results are good, and on average not more than a few percent
away from the optimal or best known solutions.
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Instance Tightness Best Binary-CWS-MCS Diff

A-n32-k5 0.82 784 853 8.80%
A-n33-k5 0.89 661 661 0.00%
A-n33-k6 0.90 742 758 2.16%
A-n34-k5 0.92 778 794 2.06%
A-n36-k5 0.88 799 805 0.75%
A-n37-k5 0.81 669 679 1.49%
A-n37-k6 0.95 949 968 2.00%
A-n38-k5 0.96 730 786 7.67%
A-n39-k5 0.95 822 823 0.12%
A-n39-k6 0.88 831 841 1.20%
A-n44-k6 0.95 937 947 1.07%
A-n45-k6 0.99 944 992 5.08%
A-n45-k7 0.91 1146 1160 1.22%
A-n46-k7 0.86 914 919 0.55%
A-n48-k7 0.89 1073 1103 2.80%
A-n53-k7 0.95 1010 1057 4.65%
A-n54-k7 0.96 1167 1174 0.60%
A-n55-k9 0.93 1073 1096 2.14%
A-n60-k9 0.92 1354 1366 0.89%
A-n61-k9 0.98 1034 1069 3.38%
A-n62-k8 0.92 1288 1312 1.86%
A-n63-k9 0.97 1616 1646 1.86%
A-n63-k10 0.93 1314 1351 2.82%
A-n64-k9 0.94 1401 1430 2.07%
A-n65-k9 0.97 1174 1224 4.26%
A-n69-k9 0.94 1159 1224 5.61%
A-n80-k10 0.94 1763 1805 2.38%
M-n151-k12 0.93 1053 1090 3.51%
M-n200-k16 1.00 1470 1523 3.61%
M-n200-k17 0.94 1373 1376 0.22%

Total 32028 32832 2.56%

Table 4.4: Solution lengths for Binary-MCS-CWS.
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Chapter 5

Conclusion

The Vehicle Routing Problem (VRP) has been studied for over fifty years. Many variants have
been considered, all with roots in different popular areas of computer science (graph theory, bin
packing, scheduling, stochastic environments). The VRP is and remains interesting in two ways:
it serves as an excellent testing platform for new search methods and (meta-)heuristics, while
at the same time solving the actual problem more optimally does not only have scientific value
but will also always remain beneficial for the industry sector that profits greatly from reducing
transportation costs.

Up until today, a good exact method for solving the Vehicle Routing Problem as we see it appear
in practice has not yet been found for general instances with more than say 60 vehicles (which
is not at all an unusual amount in real-life versions of this problem). We thus have to rely on
heuristic methods that give an as optimal as possible solution. Nearest Neighbor Insertion, Giant
Tour Based Algorithms and Clarke & Wright’s Savings (CWS) algorithm have been suggested
as heuristic methods, of which the latter is especially interesting as input or guidance for other
algorithms. Ant Colony Algorithms, Tabu Search/Simulated Annealing and Genetic algorithms
are all examples of proven metaheuristics for the VRP that currently produce the most optimal
solutions.

Monte Carlo Techniques can be a useful method to traverse search trees where it is hard to
derive an admissible heuristic as guidance for branch-and-bound or other heuristic best-first-
search methods. We have applied Monte Carlo Techniques to the NNI method to illustrate
how these techniques can indeed improve existing methods and make them produce feasible
results. We then turned our attention to the CWS algorithm, tested some existing methods,
and developed a new method called Binary-CWS-MCS which is a Monte Carlo Simulation
algorithm. The key lies in the simulation strategy, that processes the savings list from the CWS
algorithm in descending order just like the original algorithm, but skips a savings pair with a
certain probability. This method produces solutions for instances out of popular test sets with
only a 3.28% deviation from the optimal solutions, outperforming the other Monte Carlo based
methods from literature.

We end this conclusion with a more general remark. In complex environments with associated
NP-hard (or NP-complete) decision or optimization problems (such as the Vehicle Routing
Problem) and no place for exact algorithms, heuristics must be used. These heuristic methods
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often share a common property: they all somehow have to deal with the trade off between
exploration and exploitation. Finding the right balance between the two is and remains one of
the most interesting and hardest tasks for any heuristic algorithm. Optimizing this trade-off is
in essence the biggest problem behind every single algorithm described in this thesis.

Future Work

In our case we have tried to apply Monte Carlo Techniques to various existing solving methods
for the Vehicle Routing Problem. There are many more solving methods for the VRP suggested
in literature which may also benefit from Monte Carlo Techniques, for example the various Tour
Splitting Algorithms. Some work can still be done on our method, Binary-CWS-MCS. It can
most likely be improved by fine-tuning the value of p, for example by making it dynamic and
dependent on some domain-specific property of the VRP (though so far we have been unable
to link it to the right property). Some additional local TSP optimization could also be done to
improve the obtained solution quality. The Binary-CWS simulation strategy can perhaps also be
used in the MCTS algorithm, if a suitable backpropagation strategy can be found. And if one is
not interested in improving existing methods, why not try and find yet another solving method
for the VRP that can compete with, or even outperform the existing VRP solving methods?
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Appendix

Below is an overview of the obtained solutions using the Binary-CWS-MCS method described
in Chapter 4.

E-n13-k4:

Route #1: 3 5 8

Route #2: 11 4 7 2

Route #3: 6 10 12 9

Route #4: 1

Cost 247

E-n23-k3:

Route #1: 6 1 2 5 7 9

Route #2: 10 8 3 4 11 13

Route #3: 16 19 21 14

Route #4: 12 15 18 20 17

Cost 375

E-n30-k3:

Route #1: 21 6 24 25 29 27 28 26

Route #2: 20 3 4 1 5 2 22

Route #3: 19 10 12 14 8 9 17 7 13 16 15 11 23 18

Cost 543

E-n31-k7:

Route #1: 24 3 14 5 6 22 8 2

Route #2: 20 7 12 26

Route #3: 23 29

Route #4: 30

Route #5: 25 21 18 10

Route #6: 16 11 13 9 28 15

Route #7: 19 1 17 4 27

Cost 454

E-n33-k4:

Route #1: 5 6 9 10 18 19 22 21 20 23 24 25 17 13

Route #2: 1 15 26 27 16 28 29

Route #3: 4 7 8 32 11 12 2 3

Route #4: 31 14 30

Cost 836

E-n51-k5:

Route #1: 1 22 20 35 36 3 28 31 26 8 27

Route #2: 4 17 44 42 19 40 41 13 25 14

Route #3: 12 37 15 45 33 39 30 10 49 5

Route #4: 32 2 16 29 21 34 50 9 38 11 46
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Route #5: 6 48 23 7 43 24 18 47

Cost 531

E-n76-k7:

Route #1: 75 30 48 47 36 69 71 60 70 20 37 5 29 45

Route #2: 51 16 63 23 56 41 42 64 43 1 73 33 6

Route #3: 12 72 39 9 25 55 31 10 58 26

Route #4: 7 11 38 65 66 59 14 53 35

Route #5: 17 3 49 24 18 50 32 44 40

Route #6: 68 2 62 28 22 61 21 74 4

Route #7: 67 34 52 27 15 57 13 54 19 8 46

Cost 701

E-n76-k8:

Route #1: 30 48 47 36 69 71 60 70 20 37 5 29

Route #2: 51 33 63 23 56 41 42 64 43 1 73

Route #3: 17 12 72 39 9 25 55 31 10 58

Route #4: 26 38 65 66 11 7 67

Route #5: 16 49 24 18 50 44 3 32 40

Route #6: 35 53 14 59 19 8 46 34

Route #7: 68 2 62 28 22 61 21 74 6

Route #8: 75 4 45 27 15 57 13 54 52

Cost 761

E-n76-k10:

Route #1: 48 47 36 71 60 70 20 37 5

Route #2: 73 1 43 41 42 64 22 62 68

Route #3: 72 10 31 25 55 18 50 32

Route #4: 38 65 66 59 14 19

Route #5: 2 28 61 69 21 74 30

Route #6: 6 33 63 23 56 24 49 16

Route #7: 75 4 45 29 15 57 27

Route #8: 26 12 58 11 53 35 7

Route #9: 51 44 9 39 40 3 17

Route #10: 67 34 52 13 54 8 46

Cost 858

E-n76-k14:

Route #1: 36 69 71 60 70 20 37 27

Route #2: 43 41 42 64 22 61

Route #3: 25 55 31 10 58

Route #4: 38 65 66 59

Route #5: 49 24 18 50 32

Route #6: 29 5 15 57 13 54 19

Route #7: 74 21 47 48 30

Route #8: 11 14 53 35

Route #9: 40 9 39 72 12

Route #10: 68 6 3 44 17 26

Route #11: 33 62 28 2

Route #12: 7 8 46 52 45

Route #13: 75 4 34 67

Route #14: 51 16 63 23 56 1 73

Cost 1046

E-n101-k8:

Route #1: 76 77 3 79 78 34 35 65 71 66 20 30 1 69

Route #2: 84 17 45 46 47 36 49 64 11 19 48 82 8 83

Route #3: 21 73 72 56 23 39 67 25 55 4 54 26

Route #4: 87 42 43 14 38 86 44 16 61 5 60 18

Route #5: 52 7 88 62 10 63 90 32 70 31 27

Route #6: 50 33 81 9 51 24 29 80 68 12 28
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Route #7: 53 58 40 74 75 22 41 15 57 2 13 94

Route #8: 89 6 96 99 59 93 85 91 100 98 37 92 97 95

Cost 867

E-n101-k14:

Route #1: 3 78 34 35 65 71 66 20 70

Route #2: 52 7 19 49 64 11 62 88

Route #3: 18 8 46 36 47 48 82

Route #4: 39 67 23 56 75

Route #5: 92 91 44 14 38 86 16

Route #6: 31 10 63 90 32 30

Route #7: 26 4 25 55 54 12 28

Route #8: 58 2 57 15 43 42 87 97 95

Route #9: 68 80 24 29 79 77 76

Route #10: 21 72 74 22 41 73 40 53

Route #11: 60 5 84 17 45 83 89

Route #12: 93 61 85 100 98 37

Route #13: 13 94 59 99 96 6

Route #14: 50 33 81 9 51 1 69 27

Cost 1098

G-n262-k25:

Route #1: 91 50 88 151 86 149 94 247 77 212

Route #2: 164 259 35 239 119 218 184 192 144 156

Route #3: 165 257 253 117 98 240 107 14 143 174 48 23 118 123

Route #4: 261 79 71 1 229 31 205 221 129 130 49 124 255

Route #5: 207 139 202 231 232 142 68 234 33 72 166

Route #6: 128 179 161 45 187 93 46 216 63 250 126

Route #7: 135 84 181 171 132 41 210 59 162 75 219

Route #8: 67 51 134 159 147 245 201 78 32 226 233 122

Route #9: 158 60 110 109 20 227 29 97

Route #10: 140 172 145 115 154 87 76 155 108 70 99 252

Route #11: 74 7 160 28 182 34 95 188 256 4 81 186 213

Route #12: 6 222 85 92 178 105 169 146 62

Route #13: 254 66 168 47 175 55 17 40 127 24 258 136 176

Route #14: 215 104 141 25 246 208 152 180 200 199 116

Route #15: 237 3 37 111 196 236 120 22 44 8

Route #16: 18 12 61 90 211 133 5 191 30

Route #17: 131 238 10 42 197 194 103 113 80 56 242

Route #18: 195 58 189 106 121 248 9 26 148 114 101

Route #19: 204 54 137 53 228 173 260 27 125 82 163 69

Route #20: 217 170 2 230 153 89 167 13 251

Route #21: 36 183 150 220 65 206 83

Route #22: 96 19 138 209 244 100 21 185

Route #23: 249 157 43 225 241 11 214 57 203 235

Route #24: 16 243 52 15 102 39 38 223 193

Route #25: 64 224 177 190 73 198 112

Cost 6123
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