
Internal Report 09-16 Aug 2009

Universiteit Leiden

Opleiding Informatica

UML Specification of
and UML Tooling for Paradigm

Jasper Stafleu

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

CONTENTS

Contents

1 Introduction 3

2 A description of Paradigm 4
2.1 Detailed Behaviour . 4
2.2 Global Behaviour and Partitions 5
2.3 Subprocesses and Traps . 7
2.4 Management and Consistency Rules 9
2.5 Changeclauses . 10
2.6 Hierarchy of Paradigm . 11

3 UML Modeling of Paradigm without reconfiguration 14
3.1 Detailed behaviour . 14
3.2 Subprocesses . 15
3.3 Partitions and Traps . 17
3.4 Component Interaction . 19

4 Foreseen Model Adaptation 22
4.1 McPal . 22
4.2 A Producer Consumer for Paradigm 24
4.3 Self-adaptation of the Producer-Consumer 26
4.4 Adaptation in UML . 28
4.5 Self-Adapting Producer Consumer in UML 29

5 Unforeseen Adaptation in Paradigm and UML 32
5.1 Scenario . 32
5.2 Shrinking the Buffer . 32
5.3 JIT modeling in UML . 36

6 Conclusion, Related and Future Work 37
6.1 Solution . 37
6.2 Environment . 37
6.3 Related Work . 38
6.4 Future Research . 38

A Program 41
A.1 Technologies Used . 41
A.2 Component Communication . 41
A.3 Making a JavaScript execution thread sleep 43
A.4 Creating a new model . 44
A.5 Adaptation . 46
A.6 Multiple views . 47
A.7 Wrap-up: Possible Improvements in Parallelism 47

B Code 49
B.1 script/Statemachine.js . 49
B.2 script/Paradigm.js . 52
B.3 script/Poll.js . 57
B.4 script/std.js . 57
B.5 script/umlPrint.js . 58

– 1 –

CONTENTS

B.6 script/script.js . 63
B.7 ajaxFiles/sendMessage.php . 64
B.8 ajaxFiles/poll.php . 66
B.9 ajaxFiles/leavePage.php . 66
B.10 ajaxFiles/JITForm.php . 66
B.11 ajaxFiles/uploadResult.php . 66
B.12 ajaxFiles/updateLocation.php . 68
B.13 ajaxFiles/getLocation.php . 68
B.14 ajaxFiles/noCache.php . 68
B.15 script/getComponents.php . 69
B.16 index.php . 71
B.17 query.php . 73
B.18 img/rounded.php . 73
B.19 style.css . 73
B.20 sampleMigrFiles/MigrDetSchedExtWorker.migr 74

– 2 –

1 INTRODUCTION

1 Introduction

UML is a widely recognized modeling standard, used to create abstract models
of a system —software or otherwise—, describing its structure and/or behaviour,
see e.g. [8]. Its diagrams are generally understood by modelers, making UML
the language of choice when documenting systems. A problem with UML mod-
els is the restriction to their as-is behaviours; it is completely unclear how to
reconfigure a model, other than by complete substitution. This restriction forces
modelers to consider in advance which changes to the system might occur in
order for the model to remain compliant with future demands on the system.

Paradigm is a component-coordination language in which the components
can be reconfigured without knowing beforehand what the reconfiguration is go-
ing to be. In addition, by the time the reconfiguration is known, the component
need not be halted in order to achieve the desired change, nor do all compo-
nents need to alter their behaviour simultaneously. This makes Paradigm an
ideal language to describe systems which need to be capable of altering their
behaviour in the future —regardless of what those changes are going to be—
and of modeling long-term multi-step reconfigurations of such systems.

In view of these observations, this Master’s Thesis will investigate to what
extent UML and Paradigm can be brought together. To that aim, Section 2
introduces Paradigm itself, describing each paradigm model constituent both in
theory and through an example based on the Worker-Scheduler model from [3,
2].

Section 3 will handle a translation of these Paradigm constituents into UML
constituents, showing that Paradigm models without reconfiguration can be
translated consistently into UML models, without losing the separation of con-
cerns of the various types of dynamics within the model. It also shows how
the interaction between components can be dealt with without having to halt
the execution of the model as a whole —and specifically of the relevant com-
ponents themselves— while also preventing inconsistent situations. This allows
the various components within the model to run concurrently.

Section 4 will describe how Paradigm handles reconfiguration in more detail
than shown in Section 2 and how this can be translated into UML. This will
be shown using a new example based upon the Producer-Consumer problem
(see [6]) with a variable sized buffer. Without reconfiguration, the buffer size
will be fixed, but when the model ‘recognizes’ the buffer is too small, a migration
can occur which increases the buffer size. The migration itself is foreseen, even
though the moment upon which it is executed is not.

Section 5 will describe a scenario for an unforeseen migration of the Producer-
Consumer model from Section 4, and how the concepts from that Section can
be used to execute such migrations as well, both in Paradigm and in UML.

Together, these sections provide a complete UML description of Paradigm,
and have been used to create a multi-agent environment, specified through UML
2.0, in which Paradigm models can be visualized and both foreseen and unfore-
seen migrations can be executed upon those models. This environment can be
perceived as a proof of concept for the methods used to translate the Paradigm
models into UML models. A short description of the more complex concepts
used in the environment have been described in Appendix A, while the code
itself has been added in Appendix B.

– 3 –

2 A DESCRIPTION OF PARADIGM

2 A description of Paradigm

This section will describe the component based modeling language Paradigm.
To facilitate this description, a Worker-Scheduler model will be used as an ex-
ample. The model shows the behavior of five components:

• Three Workers that need exclusive access to a resource, also named a
critical section

• A Scheduler which issues and revokes the access permissions of the three
Workers,

• A McPal component, which allows the model to change (migrate) to any
other model.

2.1 Detailed Behaviour

For each component in Paradigm, its behaviour can be split up into two types.
The first type is named detailed behaviour and describes the unconstrained,
detailed behaviour of the component. This behaviour is described by a state-
transitions diagram (STD), which is a quadruple 〈S, A, T, st〉 such that

• S 6= ∅ is the set of states

• A is a set of actions or transition labels

• T is the set of transitions such that T ⊆ S × A × S

(sfr, a, sto) ∈ T can also be denoted as sfr
a
→ sto

• st ∈ S is the current state, in a STD’s initial configuration STDt=0 this
can also be named s0

• ‘Taking’ an action a ∈ A and ‘firing’ a transition sfr
a

−→ sto are equivalent
atomic operation which require st = sfr to hold before the operation and
which results in st = sto

For example, the Worker components at t = 0 can be described as

WorkerworkerId =

























{free, nonCrit, pre, crit, post},

{begin, occupy, pickUp, layDown, finish},


















(free, begin, nonCrit),
(nonCrit, occupy, pre),
(pre, pickUp, crit),
(crit, layDown, post),
(post, finish, free)



















,

free

























However, in almost all cases, a graphical representation of the STD will be
used instead. A graphical representation of the Worker and Scheduler models
is given in Figure 2.1. This figure is drawn in a UML-like style, with the states
denoted by the boxes, the transitions as arrows, the actions as labels on the
transitions and s0 pointed at by the black dot.

– 4 –

2.2 Global Behaviour and Partitions

post free nonCrit

crit pre

Detailed Workeri process (i ∈ {0, 1, 2})

begin

occupy

pickUp

layDown

finish

asg0

check0 check1

asg2 check2 asg1

Detailed Scheduler process

allow0

skip0

revoke0

allow1

skip1

revoke1allow2

skip2
revoke2

Figure 2.1: Detailed behaviour of the Workeri and Scheduler components

The Worker component starts in state free, where it does not need the
permission. When the action begin is taken, the Worker readies itself in some
way for the critical section in state nonCrit, after which it enters state pre

where it waits for the permission to use the critical section to arrive. That
eventually occurs and the action pickUp is taken; now the state crit is reached
and the Worker can execute the critical part of its behaviour. It then takes the
action layDown and reset itself for another iteration in state post.

The scheduler uses a round robin strategy to determine whether a Worker
wishes to enter the critical section in state checki, allowing it if it does through
allowi and skipping it using skipi. When permission is given, state asgi is
entered, which can only be left by taking the action revokei after which the
next Worker is checked.

2.2 Global Behaviour and Partitions

The second type of behaviour is named global behaviour, and it presents a
view on the dynamicity of the restrictions on the detailed layer. For example,
the Worker-Scheduler model requires that at any given time, at most one of
the Worker models is allowed to access the critical section. This suggests that
each Worker somehow differentiates between (at least) two phases: having the
permission (InCS) and not having the permission (OutCS). Also, in order for
the Scheduler to consistently determine whether a Worker desires to enter the
critical section, a third phase exists (OutCSBlock) which equals the OutCS
phase, except that the Worker’s “desire” to enter the critical section, as made
public, cannot change during this phase.

Each Worker traverses through these phases as if it were a normal statema-
chine, starting in OutCS, entering OutCSBlock when the Scheduler is checking
it, followed by entering InCS if the model was ready to enter the critical section
and followed by reentering OutCS otherwise. When InCS is reached, the Worker

– 5 –

2.2 Global Behaviour and Partitions

is allowed access to the critical section, and when it is done, permission is once
again withdrawn and the model reenters OutCS.

This global behaviour appears to be very similar to the detailed behaviour,
except that the detailed behaviour does not show how a model is prevented
from entering certain detailed states, i.e. how a Worker model is prevented
from entering the crit state when it does not have permission. The global
behaviour does have such distinctions —during the OutCS and OutCSBlock
phase, a Worker does not have permission to enter the critical section— and
can thus be used to restrict the detailed model to a certain subset of allowed
actions during a certain phase, that is, if an action is not in a phase’s set of
allowed actions, that action can not be taken. In our example, the action pickUp

is not allowed during the OutCS and OutCSBlock phase, thus preventing the
detailed state crit from being entered during those phases. Similarly, during
the OutCSBlock phase, the “desire” as made public of the Worker to enter the
critical section —denoted by being in the state pre— is prevented from changing
by not allowing the action occupy. Finally, not allowing occupy during phase
InCS ensures the permission to enter the critical section will be returned before
a new desire to enter the critical section can be expressed, preventing starvation
of other Worker processes.

Paradigm allows the use of sets of global statemachines and multiple re-
straints with respect to precisely one detailed STD, in order to present a model
with multiple views of its phases. For example, if we would want to extend the
Worker with an on/off switch in order to skip the free and nonCrit states —for

which we add the shortcut action and the post
shortcut
−→ nonCrit transition— we

can create a “view” on the model which has two phases: On and Off, with the
first allowing the action and the second disallowing it. Paradigm calls these
“views” Partitions and the phases Subprocesses. The term current subprocess
of partition π denotes the subprocess currently determining the allowed actions
at the level of that partition; each partition has exactly one current subprocess
at any given time. The set of allowed actions of the detailed statemachine is
then determined by only allowing an action if each current subprocess allows it.

These observations suggest a formal definition for a partition π: a pair
〈STDglobal, AA〉 such that

• STDglobal is a statemachine < Sglobal, Aglobal, Tglobal, st,global > as defined
in Section 2.1, of which its current state corresponds to the partition’s
current subprocess

• AA is the set of allowed detailed actions per state of STDglobal such that

AA = {(s, Aallowed)|s ∈ Sglobal, Aallowed ⊆ Adetailed}

with Adetailed the set of actions in the detailed behaviour.

• The set of allowed detailed actions of STDdetailed as restricted by partitions
1 . . . n is determined by

n
⋂

i=1

πi(AA(st))

In our example, the partition determining the critical section management from
the example is named CSM, and can be described at t = 0 as

– 6 –

2.3 Subprocesses and Traps

CSMworkerId=













































































































{OutCS, OutCSBlock, InCS},

{triv, stay, entering, left},










(OutCS, triv, OutCSBlock),
(OutCSBlock, stay, OutCS),
(OutCSBlock, entering, InCS),
(InCS, left, OutCS)











,

OutCSBlock (iff workerId = 0) or OutCS
(otherwise)



























,







{OutCS, (finish, begin, occupy)},

{OutCSBlock, (finish, begin)},

{InCS, (pickUp, layDown, finish, begin)}

























































































Just as with the detailed behaviour, a global behaviour will almost always be
visualized, but, unlike detailed processes, a global process is often shown in two
figures. The first figure depicts the STDglobal, as shown in Figure 2.2; in this
figure, the starting state is a pseudo-starting state since all Workeri(CSM) will
start in OutCS, except for Worker0(CSM) which starts in OutCSBlock; upon
startup the scheduler will immediately be looking at that worker, see Section 2.3.

The second figure consists of multiple parts; each part representing one sub-
process and showing only the detailed actions it allows and the states that can
occur as st of the detailed STD while being restricted by that subprocess. It also
shows the contents of the traps, all of which will be handled more extensively in
Section 2.3, which will go into more detail on how subprocesses and traps work.
Figure 2.3 shows such a visualization for the subprocesses of CMS.

2.3 Subprocesses and Traps

As mentioned in section 2.2, subprocesses are phases of a model that determine
which actions the detailed process is allowed to take. This is a kind of inclusive
restriction mechanism: in order for an action to be allowed in the detailed
statemachine, it needs to be allowed in each of the current subprocesses, thus if
any current subprocess does not allow an action, that action can not be taken.
This suggests that a subprocess can be visualised like a detailed process, but
showing only the allowed actions. This is done for the three subprocesses of
CSM In Figure 2.3. Detailed states which are impossible to be the current
state during a subprocess have also been omitted from these figures in order
to increase the insight a viewer gets from the figure, even though those states
are not explicitly forbidden by the subprocess. For example, in OutCSBlock,

OutCS OutCSBlock InCS
triv

stay

entering

left

Figure 2.2: Global behaviour of the Workeri process at the level of Partition
CSM, i ∈ {0, 1, 2}

– 7 –

2.3 Subprocesses and Traps

the state crit is omitted, since it can not be reached. The state pre is not
omitted, even though it can not be entered during OutCSBlock, since it can
be the current state of the detailed process when OutCSBlock first becomes
current.

Changing the currently enforced subprocess is done by taking an action in
the STD of the partition, but these changes should not be unconditional. For
example, as long as the state crit has not been left by the detailed statemachine,
we do not want the permission being withdrawn by the scheduler. We therefore
do not want the current subprocess of CSM to be changed from InCS to OutCS;
this restriction is enforced by traps. A trap θ of a subprocess is a set of states
such that:

• θ 6= ∅

• θ ⊆ Sdetailed

• x ∈ θ, a ∈ AA(st) and x
a
→ x′ imply that x′ ∈ θ

These definitions show that when a trap has been entered, it can not be left
again unless the current subprocess —and thus the set of allowed actions AA—
is changed. These traps can therefore be used to signify that a subprocess has
reached a sort of “goal” and the subprocess can be altered. In our example,
we could state that the InCS subprocess has the stated goal of “leaving” the
crit state, and we can thus define a trap left which contains all the states after
crit. Reaching this trap signifies the partition’s readiness to alter its current
subprocess into OutCS. Similarly, the OutCSBlock has two traps, both of which
are reached immediately when OutCSBlock is entered. One trap allows the
subprocess to be changed to InCS; it contains only the detailed state pre, thus

post free nonCrit

pre

OutCS
triv

finish begin

occupy

post free nonCrit

pre

OutCSBlock

stay

entering

finish begin

post free nonCrit

crit pre

InCS

left

pickUp

layDown

finish begin

Figure 2.3: Subprocesses of the partition CSM of the Worker process

– 8 –

2.4 Management and Consistency Rules

signifying the detailed model’s readiness to enter the crit state. The other trap
contains all of the other states, allowing the subprocess to be altered back to
OutCS, since the Worker is not yet ready to enter the critical section.

These same traps can also be found in Figure 2.2, where they are shown
as the actions of the global process. In fact, paradigm allows the alteration of
the global state —and thus the current subprocess— only if the corresponding
trap has been reached. In this way, the detailed process has a certain amount
of control over which constraints are enforced upon itself by the global process.
However, traps do not enforce the taking of a global transition; they only allow
them. The actual changing of the global state is triggered by the manager,
which will be handled in Section 2.4.

2.4 Management and Consistency Rules

The actual change of a subprocess is restricted by the traps it has entered, but
orchestrated by a manager. A model’s managers consist of all the components
which can alter the current subprocess of any partition of the model; for exam-
ple, in the Worker-Scheduler model, we want the Scheduler to be able to alter
the Workers’ current subprocesses of partition CSM, thus granting or revoking
the Workers’ permission to enter the critical section. Therefore, the Scheduler
is the manager of each of the Workers. In a similar fashion the employees of
a model can be determined: the Workers are the Scheduler’s employees, since
they are managed by it.

A manager determines when to alter an employee’s current subprocess through
its own detailed process. For example, when the Scheduler (see Figure 2.1) is
in the detailed state check0, we want the Worker0 to have OutCSBlock as cur-
rent subprocess of the partition CSM. If the scheduler then takes the action
allow0, the current subprocess of partition CSM of Worker0 needs to change
to InCS, while taking skip0 should change the current subprocess to OutCS,
simultaneously altering the current subprocess of Worker1(CSM) from OutCS
to OutCSBlock, since it starts “looking” at that Worker. These changes in
subprocesses are not always allowed though, but this can be determined by in-
specting the trap information of the Worker; i.e. if Worker0 has entered trap
stay, the CSM partition’s STD does not allow the action entering thus the ac-
tion allow0 should not be allowed either. This type of consistency is enforced
by the consistency rules:

• A consistency rule consists of exactly one detailed transition P : s
a
→ s′

with process P , origin state s, resultant state s′ and action a, see the
definition for STDs in section 2.1

• If this transition is a managing transition, the detailed transition is fol-
lowed by an asterix (∗) and a comma-separated list of global transitions

Pi(πi,j) : Si,j

θi,j

−→ S
′

i,j , with Si,j as origin subprocess of partition πi,j of

employee process Pi and resultant subprocess S
′

i,j , as restrained by the
requirement of trap θi,j having been entered

• For a managing detailed transition to fire, the following need to hold:

- a ∈
⋂n

i=1 πi(AA(st))

– 9 –

2.5 Changeclauses

- s = P (st)

- Pi(πi,j)(st) = Si,j for each of the global employee transitions

- Pi(st) ∈ θi,j for each of the detailed employee processes

• If a managing detailed transition fires, each of the employee’s global tran-
sitions are triggered simultaneously

• A consistency rule can also contain a changeclause, which will be handled
in Section 2.5. These changeclauses do not enforce additional restraints
on the consistency rule as a whole

For example, the consistency rules for the Workers are:

Workeri : free nonCrit
begin

Workeri : nonCrit pre
occupy

Workeri : pre crit
pickUp

Workeri : crit post
layDown

Workeri : post free
finish

Since they are all non-managing transitions, they correspond to the Workers’
detailed transitions only. The Scheduler’s consistency rules are:

Scheduler : checki asgi
allowi

∗ Workeri(CSM) : OutCSBlock
entering

InCS

Scheduler : asgi checki+1
revokei

∗ Workeri(CSM) : InCS
left

OutCS,

Workeri+1(CSM) : OutCS triv OutCSBlock

Scheduler : checki checki+1
skipi

∗ Workeri(CSM) : OutCSBlock
stay

OutCS,

Workeri+1(CSM) : OutCS triv OutCSBlock

which are managing rules. They show the coupling of detailed scheduler tran-
sitions to the global worker transitions, as described earlier. It also shows why
Worker0(CSM) needs to have a different starting current subprocess from the
others: if it also started in OutCS, none of the Scheduler transitions could ever
fire.

2.5 Changeclauses

Besides changing the current detailed state and subprocesses of employees,
consistency rules can also change variables that are internal to the models.
Paradigm sets very few restrictions to the form such variables can take, so it
can be used in order to store almost any information. For example, if we want
to “log” the number of times a Worker has had permission to enter the critical
section, we could add a variable to the Worker called Log, a number which is

– 10 –

2.6 Hierarchy of Paradigm

increased by one each time the Scheduler takes action allowi. Paradigm defines
these changeclauses through a new extension to an existing rule, in the format

Pi[var := newV alue]

In order to model the “log” into the consistency rules as given in Section 2.4,
the rule for the allowi action would become

Scheduler : checki asgi
allowi

∗ Workeri(CSM) : OutCSBlock
entering

InCS,

Workeri[Log := Log + 1]

Particularly, in Paradigm models which are capable of self-adaptation, a spe-
cialized component, named McPal (an abbreviation of Managing changing Pro-
cesses at leisure), contains the variable CRS (or Consistency Rule Set), which
holds the current consistency rules. This way, the consistency rules can be
altered using a changeclause and the model’s behaviour can be altered. Sub-
sequently, when a consistency rule contains a state which does not yet exist,
it is implicitly created, therefore changes in the CRS also define new states,
transitions, actions, subprocesses and traps. This constitutes one of Paradigm’s
biggest advantages; not only can separation of concern be utilized in order to
accurately describe parallel models in a simple manner, but specialized compo-
nents can even alter these on-the-fly, keeping the model consistent during these
changes if the migration is properly modeled. How this can be done will be
handled in more detail in Section 4.1.

While changeclauses can alter many variables in the model, not everything
is open for change. The current states and subprocesses can only be changed
by taking an action in the relevant STD, since doing this could otherwise create
inconsistent models. Also, the number of components and partitions in the
model is immutable, since the creation and deletion of information is as yet
insufficiently researched. We speak of Solid Frame Paradigm as opposed to
normal Paradigm in order to highlight this restriction.

2.6 Hierarchy of Paradigm

Paradigm uses separation of concern in order to model concurrent processes.
The concerns are separated into five parts:

• The detailed STD shows how the model would work if no restrictions
would be enforced upon it. The actions in this STD enforce changes in
the set of currently entered traps.

• Traps show which goals have been reached in the current subprocess. A
change in a trap allows global state changes since the current subprocess
has achieved a certain goal.

• Global states show which phase the model is currently in and allows
certain detailed actions. This indirectly forbids all the other detailed
actions. It also shows which goals (traps) need to be reached in order to
continue into another phase.

– 11 –

2.6 Hierarchy of Paradigm

• Detailed manager transitions alter the current global state of an employee
model, but are restricted in their actions by the traps.

• Change clauses are unconditional changes to the state of the model, en-
forced by detailed (manager) transitions. These changes can be used in
order to migrate the complete model.

From this list, we can obtain the hierarchy within Paradigm: detailed actions
enforce trap changes, traps allow global transitions, which in turn restrict the
detailed transitions, which yields a triangular hierarchy within a single compo-
nent (vertical consistency). Meanwhile, external manager transitions are both
restricted by the traps and enforce changes to the global states (horizontal con-
sistency). Finally, change clauses can alter the complete dynamics of the model
(third-dimension consistency). This is all shown in Figure 2.4.

Detailed of
Manager

Trap Global

Detailed

Traps of
Employee

Global of
Employee

restrictsenforces

allows

enforcesrestricts

enforcesrestricts

Component/Process

Model

alters

Figure 2.4: Hierarchy of Paradigm

– 12 –

2.6 Hierarchy of Paradigm

Finally, it needs to be noted that connecting traps (see [3]) are not required
in this view. If each state in a trap is also contained in a subprocess, that trap is
said to be connecting to that subprocess. If a trap is not connecting to a certain
subprocess, but it is used as required trap to change the current subprocess to
that subprocess by a consistency rule, it might occur that upon entering the new
subprocess the current detailed state is not “expected” to occur by the modeler.
This could lead to unforeseen —and thus inconsistent— situations. Therefore,
the connectivity of traps can be used in order to check the model for inconsistent
situations by simply finding out whether the traps in the consistency rules are
connecting to the resultant subprocesses; it does not ensure the model is well-
formed, but does ensure it is not if non-connecting traps are used by consistency
rules.

However, we will assume the models we translate into UML are well-formed,
and thus traps which are not connecting to resultant subprocesses will not be
used in the consistency rules. Since testing for connectivity of traps requires
subprocesses to have information about the states they contain, a piece of in-
formation not otherwise relevant, this explanation simplified this by removing
that information.

– 13 –

3 UML MODELING OF PARADIGM WITHOUT RECONFIGURATION

3 UML Modeling of Paradigm without recon-

figuration

In this section, a UML component will be constructed which can be used to
model reconfigurationless Paradigm models. This will be done by first explain-
ing aspects of Paradigm and then determining a method to handle these inter-
actions in UML and the demands on the model made by each of those aspects.
The UML component will use a package of classes modeling a standard statema-
chine, which has states and transitions. States can have a nested behaviour of
their own (i.e. another statemachine); the transitions have triggers, guards and
activities. The Worker-Scheduler model from [3, 2] will be used both to explain
each Paradigm aspect being handled and to show the complete UML solution.
The example uses 4 instances of components, three Worker components (named
Worker0 through Worker2), each of which desire exclusive access to a critical
section in order to enter the state crit, and a Scheduler component which de-
termines which Worker actually has permission to enter the critical section.

3.1 Detailed behaviour

A Paradigm model has any number of components, each of which contains
exactly one detailed process, describing its behaviour at a detailed level. It
uses the notions of state and transition to describe the component’s behaviour,
ensuring the component is always in exactly one state and allowing the state to
change only by firing a transition. To fire, a transition requires the current state
to be the source-state and, after firing the transition, the component enters the
target-state. In the case of the Worker-Scheduler model, this detailed process
is shown in Figure 3.1. This figure resembles the UML model closely, although
the triggers, guards and activities of the model are not yet determined. In
Paradigm, the method of triggering a detailed transition remains undefined due

post free nonCrit

crit pre

Detailed Workeri process (i ∈ {0, 1, 2})

begin

occupy

pickUp

layDown

finish

asg0

check0 check1

asg2 check2 asg1

Detailed Scheduler process

allow0

skip0

revoke0

allow1

skip1

revoke1allow2

skip2
revoke2

Figure 3.1: Detailed behaviour of the Workeri and Scheduler components

– 14 –

3.2 Subprocesses

free

post nonCrit

crit pre

begin[parG]/parA

occupy[parG]/parA

pickUp[parG]/parA

layDown[parG]/parA

finish[parG]/parA

Figure 3.2: UML Model of the Worker component

to a lack of time in a Paradigm model; a component can not “wait” within a
state unless all transitions of that component are currently forbidden for some
reason. At any time, if any number of transitions are allowed, one of them always
fires, atomically and immediately. Therefore, in Paradigm, all transitions are
considered triggered at all time, and a trigger definition is not required. On the
other hand, the UML STD model is not “timeless”, so a trigger definition is
required. We will use the action of a detailed transition in the Paradigm model
as the trigger of a transition in the UML model. In Figure 3.2 we show a UML
model of the worker component, of which the guards and activities have been
shown as parG and parA, respectively. These will be handled in more detail in
Sections 3.2 through 3.4.

3.2 Subprocesses

The detailed models are relatively simple to translate, since the Paradigm model
and the UML model are nearly the same, but Paradigm does impose a few
additional constraints on the transitions. The first of the constraints to be
modeled are the subprocesses and partitions. Paradigm components have one
or more partitions, each of which has one or more subprocesses and exactly
one current subprocess. Each subprocess has one or more traps, which will
be handled in Section 3.3. A detailed transition can fire only if each current
subprocess contains that particular transition. Using this constraint, we can
prevent certain behaviour from occurring. E.g., in the Worker model, we can
define a partition (named Critical Section Management, or CSM) in such a way
that only one of the subprocesses (InCS) allows the transition from the pre to
the crit state. This partition will then be controlled by the Scheduler in some
way (see Section 3.4) such that InCS is a Worker’s current subprocess of CSM
iff the Scheduler is currently allowing that Worker to enter the critical section.

The subprocesses of the partition CSM are shown in Figure 3.3. The InCS
subprocess allows the Worker to enter the critical section exactly once, so it
needs to return the permission in order to continue. The OutCS subprocess al-
lows all transitions except where it deals with the crit state, and the OutCSBlock
equals the OutCS subprocess, but doesn’t allow the transition from nonCrit to
pre. This allows the Scheduler to determine whether the Worker is ready to
enter the critical section, without requiring the worker to suspend most of it’s
normal behaviour.

These restrictions to our component are handled in UML by the guards on
the transitions. They allow the transition to fire if all of the current subprocesses

– 15 –

3.2 Subprocesses

post free nonCrit

pre

OutCS
triv

finish begin

occupy

post free nonCrit

pre

OutCSBlock

stay

entering

finish begin

post free nonCrit

crit pre

InCS

left

pickUp

layDown

finish begin

Figure 3.3: Subprocesses of the partition CSM of the Worker process

allow it. This requires the component to contain a model of each partition, keep-
ing track of the subprocesses, the current subprocess and the transitions they
allow. These partitions models will themselves be statemachines; the reason for
this choice and how these STDs can be obtained will be shown in Section 3.3.
For now, only the communication between partitions and the detailed STD is
needed, since it shows how the restrictions imposed by the subprocesses are
obtained by the detailed statemachine. Partitions have a separate thread in
the component, which the detailed STD can communicate with through a port.
Figure 3.4 shows the interaction between a detailed process and a partition
port; the detailed process asks the partition whether the transition is allowed in
the current subprocess and acts depending on the reply. This interaction acts

:detailed :partition-port

try

transInCurrSub?

transAllowed!

Figure 3.4: The sequence diagram with respect to a detailed transition

– 16 –

3.3 Partitions and Traps

as a guard on each of the detailed transitions (parG in Figure 3.2), since the
transition should not fire if it is not allowed by the current subprocess of the
partition. If the model has multiple partitions, multiple asynchronous messages
can be sent to all partitions, although the detailed transition needs to wait for
each partition to answer before handling the replies. In later sections, we will
expand on this diagram in order to show the increasing complexity of the guards,
activities and triggers of both detailed and global STD’s.

3.3 Partitions and Traps

As mentioned in Section 3.2, Paradigm allows the currently prescribed set of
constraints on a component, in the form of the current subprocess, to be altered
by another component. The component altering these subprocesses is called the
Manager; the component being changed is named the Employee.

In the Worker-Scheduler model, the Scheduler is the manager of all of the
Workers. It is capable of altering the current subprocess of the partition CSM,
but to do so, it needs to be able to determine whether the current subprocess of
a Worker should actually be altered. For example, if the Worker is in the state
crit and its current subprocess is InCS, the Scheduler should not change the
subprocess to OutCS, since the goal of the InCS subprocess has not yet been
achieved in such a way that the models consistency allows the change. Paradigm
models these goals in the form of traps; a trap is a subset of states which, once
entered, can not be left until the current subprocess changes. This ensures that
the trap information received by the manager doesn’t change due to detailed
transitions of the employee. In Figure 3.3 we can see the InCS subprocess has
one relevant trap: left. Once the process has entered this trap, the Scheduler can
alter the current subprocess to OutCS, since the stated goal of InCS, entering
and leaving the critical section, has been achieved.

In Paradigm, each partition defines a global behaviour, which acts as a
statemachine. The transitions of this global process are labeled with the traps
the subprocess needs to have entered in order to be able to fire that transition.
Figure 3.5 shows this statemachine for the Worker models (the model has pseudo
start states; in the case of Worker0, OutCSBlock is the start state, OutCS is
the start state in the case of the other Workers).

In UML, these partitions can be modeled using another instance of the
statemachine package. The guards and the triggers of the transitions will be
handled in Section 3.4 and the activities can be left empty. These partitions
also need to keep track of the transitions allowed by the subprocesses to handle
the guards of the detailed transitions.

OutCS OutCSBlock InCS
triv

stay

entering

left

Figure 3.5: Global behaviour of the Workeri process at the level of Partition
CMS, i ∈ {0, 1, 2}

– 17 –

3.3 Partitions and Traps

The traps interaction can be considered as a separate behaviour of the sub-
processes, and can thus be handled by a nested statemachine, in which the
traps are the states. Since each subprocess contains at least the trivial trap
(a trap containing all states in the subprocess), we can use this trap as the
start state for each of the trap-statemachines. The UML model for the Worker
component is given in Figure 3.6 (once again with pseudo start states). The
transitions in these statemachines need no activities and the guards require the
current detailed state to be in the trap, meaning each trap-state needs to keep
track of which detailed states are contained within the trap. The triggers of
these trap-transitions are a bit more complicated. Since each detailed transi-
tion could change the trap information, each detailed transition needs to trigger
all of the trap-statemachine transitions. Also, whenever the subprocess is en-
tered, we also enter the triv trap, but this does not need to be the innermost
trap. This means we also need to trigger all transitions whenever the subpro-
cess is altered. To handle either of these cases, we define a use case —cascade—
which recursively attempts to trigger all of the transitions of the current state
of the trap-statemachine. This use case is triggered by the activity part of each
detailed transition, as well as by the entry activity of the subprocess state. Fig-
ure 3.7 shows the extended version of the sequence diagram of Figure 3.4; it
shows the cascade use case is called upon if the transition is allowed.

The only problem with the cascade method arises when considering partially
overlapping traps; if we have entered a trap, we can not “go back” in the STD
to also enter an overlapping trap. But, since the intersection of these two traps
is a trap as well, we can solve this problem by modeling a new trap into the
subprocess. An example of this is modeled in Section 4.5.

OutCS

entry/cascade()

triv

OutCSBlock

entry/cascade()

triv

stay entering

[state ∈ stay]

[state ∈ entering]

InCS

entry/cascade()

triv

left

[state ∈ left]

Figure 3.6: The state machine belonging to the global behaviour of
Workeri(CSM)

– 18 –

3.4 Component Interaction

:detailed :partition-port

opt [allowed]

try

transInCurrSub?

cascade

allowed!

Figure 3.7: The sequence diagram with respect to a detailed transition, with
the cascade function included

3.4 Component Interaction

As mentioned earlier, Paradigm processes are capable of interacting. This inter-
action is modeled in Paradigm by the consistency rules; the rules for the Worker
models are:

Workeri : free nonCrit
begin

Workeri : nonCrit pre
occupy

Workeri : pre crit
pickUp

Workeri : crit post
layDown

Workeri : post free
finish

The rules mention the process, the source state and the target state of each
transition. A second form of consistency rule has the same detailed part, but
is followed by an asterisk, and then one or more global (employee) steps, sepa-
rated by a comma. An employee step shows the component, the partition, the
subprocess which needs to be the current subprocess, the trap that needs to
have been entered and the next current (target) subprocess. The consistency
rules for the Scheduler component (using i + 1 = 0 if i = 2) are:

Scheduler : checki asgi
allowi

∗ Workeri(CSM) : OutCSBlock
entering

InCS

Scheduler : asgi checki+1
revokei

∗ Workeri(CSM) : InCS
left

OutCS,

Workeri+1(CSM) : OutCS triv OutCSBlock

– 19 –

3.4 Component Interaction

Scheduler : checki checki+1
skipi

∗ Workeri(CSM) : OutCSBlock
stay

OutCS,

Workeri+1(CSM) : OutCS triv OutCSBlock

These rules clearly show a connection between a detailed rule (e.g. Scheduler
changing the current state from checki to asgi) and one or more global rules of
any component (e.g. Workeri changing the current subprocess of partition CSM
to subprocess InCS if the current subprocess is OutCSBlock and trap entering
has been entered).

In the UML model, we need to translate these consistency rules into trig-
gers, guards and activities. The guards on the detailed transitions of a manager
component need to have an additional part requiring each of the employees to
have the correct current subprocess in the prescribed partition, as well as having
entered the correct trap of that subprocess. After such conditions have been
verified for each of the employees, the transition is executed and, by execut-
ing, its activity triggers the corresponding global transitions of the employees.
Since the global transitions are only triggered when the traps have already been
determined to be the correct, the global transitions need no guards for this.

We also need to add ports to the UML models in order to handle the inter-
component communication. We need two types; one for each of the partitions
and a mirrored one for the detailed manager statemachines. The sequence dia-
gram of these ports is shown in Figure 3.8; whenever a transition is attempted,
it first determines if all of its own subprocesses allow the transition. If they do,
it requests of all of its employees whether they are in the correct subprocess and
have entered the trap of that subprocess needed to execute the transition. The
employee’s global statemachine port sends back an answer and waits for either
an execute or a cancel message to return from the manager. After the manager
has received all employees’ answers, it determines if all of the employees are in
the correct subprocess and trap and if so, it executes the transition, simultane-
ously sending a trigger to all of the employees. If one of the employees sends
a ”not correct” message, the manager immediately sends a cancel message to
all of the employees and does not fire its own transition. When an employee
receives a cancel message, it knows it can stop waiting and starts accepting
other manager requests.

– 20 –

3.4 Component Interaction

Manager
:detailed

Manager
:partition-port

Employee
:partition-port

opt [allowed]

alt [correct = true]

[else]

try

transInCurrSub?

cascade

trapOfSubprocess?

correct!

allowed!

execute

cancel

Figure 3.8: The communication sequence diagram of a manager transition

– 21 –

4 FORESEEN MODEL ADAPTATION

4 Foreseen Model Adaptation

This section will handle the translation of adaptation in Paradigm into the UML
model given in Section 3. First, the method used by Paradigm to handle adap-
tation will be explained and illustrated through an example. The example used
will be a Paradigm solution to the producer-consumer problem with a variable
buffer size. The size of the buffer will grow when needed through self-adaptation,
while the producer and consumer will be able to continue their behaviour dur-
ing these migrations. After having explained adaptation in Paradigm, the UML
model from Section 3 will be altered in order to include this form of behaviour.

In the discussion of adaptation, often we will use the terms PM-constituents
and UM-constituents, for Paradigm Model constituents and UML Model con-
stituents. These terms encompass the parts of the respective models that can
get added, altered or removed during the adaptation. The PM-constituents
are states, transitions, subprocesses, consistency rules, change clauses and the
contents of partitions (including traps). UM-constituents are states, transition,
triggers, guards, activities and nested statemachines (the trap-statemachines
embedded in the states of the partition statemachines). Components and par-
titions are themselves not constituents because Paradigm does not yet allow
the number of components and partitions in its product space to be altered.
However, if that was allowed, these would be added to the lists.

4.1 McPal

In order to make Paradigm models capable of adaptation, they need to con-
tain at least one component capable of adding and removing PM-constituents.
Paradigm allows any component to do this, but most models contain a spe-
cialized component, McPal (an abbreviation of Managing changing Processes at
leisure), to handle these actions. McPal has a generic form, as seen in Figure 4.1,
and can be split up into four distinct stages; addition, startup, execution and
stabilization. These stages use self-management in order to ensure the consis-
tency of the McPal model throughout the migration. This self management
occurs on the Migr partitions, as shown in Figure 4.2.

In the addition and stabilization stages, the behaviour of the model is
changed. This is done using a change clause; a special Paradigm construct
capable of altering an internal variable of the model. The current behaviour
specification of the model as described by the consistency rules set (CRS) is one
of these internal variables, and can thus be altered using a change clause.

The addition stage occurs between the Observing and NewRuleSet states
from McPal. It first acquires the models constituents during and after the

Observing JITting newRuleSet

Content . . . StartMigr

stabilize

getJIT doneJIT

∗foreseeni

start

Figure 4.1: A generic McPal model allowing JIT-modeling and self-adaptation

– 22 –

4.1 McPal

migration, which it then adds to the model using a change clause. This implicitly
adds the new PM-constituents needed during the migration. In Paradigm, the
acquisition of the new PM-constituents is done either through the addition of
new rules by an outside modeler (JIT-modeling) or through a pre-defined step
(self adaptation). This section will restrict the discussion to the latter type, of
which McPal can have any number (as shown in Figure 4.1 by the asterisk),
each corresponding to a different pre-defined migration.

The transition into NewRuleSet extends the rule set of the model to reflect
the consistency requirements during the migration, which means it should be
able to behave according to the current behaviour, the target behaviour and any
behaviour in between those two. This is done using a change clause, making the
CRS equal to the union of CRS, the target behaviour CrstoBe and the behaviour
needed in order to ensure a consistent migration Crsmigr. This makes all of the
new rules known, while none of them can be used yet; since changeclauses
can not alter the current subprocess(es), the current behaviour as described by
those subprocesses is not altered either and thus the ‘old’ behaviour still holds.
Therefore the changes to the model only influence the components behaviour
after the migration is properly started. The general form of a consistency rule
allowing for this stage is

McPal : Observing NewRuleSet
foreseeni

∗ McPal[CRS := CRS ∪ Crsmigr ∪ CrstoBe]

In the startup stage, from NewRuleSet to StartMigr, the migration is started
by changing the current subprocess of the Migr partition of McPal to a subpro-
cess determined by the Crsmigr. This new subprocess was added to the model
during the addition stage and contains all of the new rules required to propagate
the migration, including the rules which manage the global transitions of other
components into new subprocesses during which the new states and transitions
added in the addition stage can be used. The generic form of this rule is

McPal : NewRuleSet StartMigrstart

∗ McPal(Migr) : StablePhase
ready

?

StablePhase

StablePhase

∗

ready

. . . ?

? McPal(Migr)
migrDone

ready migrDone

Figure 4.2: The generic form of the McPal Migr partition

– 23 –

4.2 A Producer Consumer for Paradigm

where the question mark denotes the new subprocess.
After this, we enter the execution stage, where the actual migration takes

place. During this stage, the behaviour of the components is altered in some
consistent way, as determined by the rules in Crsmigr, towards the new be-
haviour. The rules for this step can be as simple or complex as the modeler
decides; there is no generic form for these other than the usual form of the
consistency rules themselves.

Once the execution stage of the migration is finished, McPal enters the state
Content, starting the stabilization stage, which acts as the reverse of the addition
and startup stages, restricting the CRS to CrstoBe and implicitly removing the
states and transitions no longer needed. This stage is generically determined by
the rule

McPal : Content Observingstabilize

∗ McPal(Migr) : ?
migrDone

StablePhase,

McPal[CRS := CrstoBe]

after which McPal has once again reached its initial state and can execute new
migrations as desired.

4.2 A Producer Consumer for Paradigm

The producer-consumer (or bounded-buffer) problem is a well known problem
(see e.g. [6]), in which a producer produces an item, delivers it into a buffer and
starts producing again. The consumer retrieves an item from the buffer and
consumes it, after which it retrieves another item. In a stable situation, the
buffer has a fixed size, meaning the producer can add items iff the buffer is not
full and the consumer can remove items iff it is not empty.

The example consist of three processes given in Figure 4.3, with a buffer that
allows a maximum of size items. Buffer should not be able to take any actions
unless Producer or Consumer have allowed it to, suggesting a partition (Stable)

Produce Deliver

Producer

Retrieve Consume

Consumer

add

ready

eat

get

Cont0 Cont1 . . . Contsize−1 Contsize

Buffer

add1

rem1

add2

rem2

addsize−1

remsize−1

addsize

remsize

Figure 4.3: Detailed Producer, Consumer and Buffer

– 24 –

4.2 A Producer Consumer for Paradigm

of Buffer with three subprocesses, one in which no transitions are present (Idle),
one for adding (Fill) and one for removing (Empty) an item. The current
subprocess should be altered from Idle to Fill iff the producer delivers an item.
This management occurs when the transition from Deliver to Produce is taken
and the buffer isn’t full, suggesting a trap (notFull, see Figure 4.4) containing
all states except Contsize:

Producer : Deliver Produce
ready

∗ Buffer(Stable) : Idlesize
notFull Fillsize

The model should also ensure only one item is added to the buffer while in
subprocess Fill. This is ensured by delegation: if each transition of the buffer
changes the current subprocess to Idle, the buffer is prevented from continu-
ing to take any more transitions to another state without first having explicit
permission to do so:

Buffer : Conti−1 Conti
addi

∗ Buffer(Stable) : Fillsize
triv Idlesize

The removal of an item from the buffer by the consumer is modeled similarly:

Consumer : Retrieve Consume
get

∗ Buffer(Stable) : Idlesize
notEmpty

Emptysize

Buffer : Conti Conti−1
remi

∗ Buffer(Stable) : Emptysize
triv Idlesize

Add to these the non-managing transitions of Producer and Consumer

. . . Fillsize

Fillsize

triv

. . . Idlesize

Idlesize

notFull
notEmpty

pleaseGrow

. . . Emptysize

Emptysize Buffer(Stable)
triv

trivnotFull

triv notEmpty

Figure 4.4: The generic form of partition Stable of Buffer

– 25 –

4.3 Self-adaptation of the Producer-Consumer

Producer

Buffer

Consumer

Stable

�man�

�man�

�man�

Stable

Figure 4.5: Collaboration of the partition Stable

Producer : Produce Deliverstart

Consumer : Consume Retrieveeat

and the model is complete. Figure 4.4 shows the generic form of the partition
Stable of Buffer with all the relevant traps and Figure 4.5 shows the collabora-
tion shown by the components in the model; Buffer is managed by Producer,
Consumer and by itself, which alter the current subprocesses of the partition
Stable.

4.3 Self-adaptation of the Producer-Consumer

In this section, the producer-consumer model of Section 4.2 will be extended
in order to allow it to add a new state to the buffer using self-adaptation. As
stated in Section 4.1, McPal handles this adaptation through the use of the
transition from Observing to NewRuleSet. That generic transition changes the
CRS variable in order to allow the migration to occur, but does so uncondition-
ally. Starting the migration only if the buffer is actually full requires testing
the Buffer for fullness, which suggests a trap in the Stable partition; the trap
pleaseGrow from Figure 4.4 is used for this purpose. By adding a global transi-
tion to the Stable partition going from Idlesize back to Idlesize we can ensure the
migration is only started if the Buffer is currently in trap pleaseGrow without
actually changing the current behaviour of Buffer. The rule

McPal : Observing NewRuleSet
growBuffer

∗ Buffer(Stable) : Idlesize
pleaseGrow

Idlesize,

McPal[CRS := CRS ∪ Crsgrow

∪Crssize+1]

models the addition stage in such a way. In this rule, Crssize+1 is known; it
is another parametrization of the behaviour as stated in Section 4.2. It is also

– 26 –

4.3 Self-adaptation of the Producer-Consumer

the desired result of the migration and as such takes the place of the CrstoBe

variable in the generic form of the transition. Similarly, the Crsgrow variable
takes the place of Crsmigr. It contains the rules needed in order to ensure a
consistent migration, as determined by the startup, execution and stabilization
stages. The first of these stages changes McPal’s current subprocess of the
partition Migr. For this migration, the unknown subprocess from Figure 4.2
has been named Enlarge, see Figure 4.6, which is the only information we need
in order to determine the rule for the startUp stage. According to its generic
form, this is

McPal : NewRuleSet StartMigrstart

∗ McPal(Migr) : StablePhase
ready

Enlarge

The execution stage of the migration is relatively simple; we merely need to
change the current subprocess of the Stable partition of Buffer to allow for the
larger size. This is done by changing the current subprocess from Idlesize to
Idlesize+1, which was not strictly known prior to the migration, but implicitly
added by the addition stage:

McPal : StartMigr Contentextend

∗ Buffer(Stable) : Idlesize
triv Idlesize+1

Finally, the stabilization stage is similar to the generic form; with the excep-
tion of the increase in the size variable, which is required in order to keep the
model internally consistent:

McPal : Content Observingstabilize

∗ McPal(Migr) : Enlarge
migrDone

StablePhase,

McPal[CRS := Crssize+1],

McPal[size := size + 1]

These 3 rules combined make up the Crsgrow set. The collaboration as
shown with this migration included is shown in Figure 4.7; it shows two different
collaborations; the Stable collaboration allows the normal coordination as shown
in Figure 4.5, while the Self Adaptation collaboration shows the architecture of
the coordination of the migration.

Observing newRuleSet

Content StartMigr

stabilize

extend

start

migrDone

Figure 4.6: Subprocess Enlarge of Migr partition of McPal

– 27 –

4.4 Adaptation in UML

Producer

McPal Buffer

Consumer

StableMigr

�man�

�man�

�man�

�man�

Stable

Self Adaptation

Figure 4.7: Collaboration of the components including the self-adaptation

4.4 Adaptation in UML

To model an adaptation in the McPal component, we need to model each of
the 4 stages. Of these, the startup and execution stages need no additional
modeling; the component as given in Section 3 is already capable of modeling
these stages. However, the addition and stabilization stages use change clauses
to alter internal variables and to notify all components of the states, transitions,
subprocesses and traps to be altered or removed; these change clauses are not
yet present in the UML model.

Since change clauses are unconditional changes of internal variables, it makes
sense to model the change clauses as activities of the detailed transitions to
which they belong, i.e., when, in Paradigm, McPal uses a change clause to
alter the size variable upon taking the Content to Observing transition, the
corresponding transition in the McPal UML component should have the same
alteration to size as part of its activity.

Whereas this is enough for a simple change clause, the addition stage also
implicitly adds the missing PM-constituents. We can model this in UML by
creating a use case in which each of the components that needs to alter its
behaviour is an actor. The key step in this use case is the creation of new
instances of the new UM-constituents. These new UM-constituents will not
yet influence the execution threads since the current subprocesses restrict the
enabled transitions to those contained within their definition, which does not
include them. This also means the order in which the new UM-constituents
are created is irrelevant to the consistency of the model and the component
can continue its normal behaviour during this stage. The change of the current
subprocess towards a subprocess which does allow the newly added behaviour
to occur will not be allowed yet for the same reasons, ultimately depending on
the McPal component to change its own current subprocess during the startup
stage. McPal should therefore wait for the use case to be completely finished,
which ensures the overall model remains consistent.

The stabilization stage works similarly, except instead of creating new UM-
constituents, it removes the obsolete ones. Since this stage will not start until
the model has adopted the new behaviour, the states which are removed do not

– 28 –

4.5 Self-Adapting Producer Consumer in UML

Idlesize

entry/cascade()

notFull

triv Intersection

notEmpty

pleaseGrow

[state ∈ notF ull]

[state ∈ notF ull][state ∈ notEmpty]

[state ∈ notEmpty]

[state ∈ pleaseGrow]

Fillsize

entry/cascade()

triv

Emptysize

entry/cascade()

triv

−− notF ull

−− notEmpty

−− notEmpty

−− pleaseGrow: self adaptation test

Figure 4.8: UML Component of partition Stable of the Producer-Consumer
problem

create an inconsistent model either, assuming the original Paradigm migration
was consistent.

4.5 Self-Adapting Producer Consumer in UML

The UML solution to the Stable partition of the model described in Sections 4.2
and 4.3 is shown in Figure 4.8. The trap Intersection was not included in the
original Paradigm model, but has been added to the UML component in order to
model the partially overlapping notFull and notEmpty traps, using the method
mentioned in Section 3.3. While normally the guards on transitions leading
into traps require that the state is in the trap, it suffices to set the guards
for the transitions into Intersection to determine whether the states are in the
overlapping trap not yet entered.

From Idlesize, four transitions exist that change the current subprocess.
Three of these transitions did not have the trap from which they originate
as the trap required to have been entered in the Paradigm model’s consistency
rule. This is because the traps from which they do originate are nested within
the notFull or notEmpty traps; these transitions model special occurrences of
global transitions constrained by traps, namely those in which the component
has also entered another, smaller trap. Those transitions have been labeled with
−− notFull and −− notEmpty respectively.

The transition leading from pleaseGrow into Idle does not actually alter the
current subprocess. This transition is still present in the model since the self-
adaptation steps in the Paradigm model uses this transition in order to test the
model for its desire to grow, thus the UML model will fire this transitions when
the self adaptation step is started.

The addition stage of a migration can be modeled in the UML McPal com-

– 29 –

4.5 Self-Adapting Producer Consumer in UML

ponent as a use case which distributes the new UM-constituents to the actor
components. Figure 4.9 shows a McPal component in which this stage is added
to the Observing to newRuleSet transition as an activity; it shows the addi-
tion is not finished until McPal is done distributing the new UM-constituents
and has entered the newRuleSet state. The distribution itself is handled by an
additional signal in the sequence diagram of Figure 3.8; it occurs within the
alt-condition, since the transition needs to be allowed, but before McPal sends
the Execute message. After each actor is done, they send a reply in order to
signify to McPal the addition is done. Then, when all actors have send this
message, the McPal thread continues.

In the example, growing the buffer will require a use case that adds the
following UM-constituents:

• a new state in the detailed process: Contsize+1

• three new subprocesses of the Buffer component in the Stable transition:
Idlesize+1, Fillsize+1 and Emptysize+1, as well as their traps and transi-
tions

• a new subprocess of McPal in partition EvolMcPal: Enlarge

• a new detailed transition in McPal going from StartMigr to Content

• new guards on the newRuleSet to StartMigr and Content to Observing
transitions of McPal in order to start and stabilize the migrations

• the stabilization use case itself

Because the new transitions can only be taken after this use case is done, these
steps can be taken in any order. The stabilization use case is not an UM-
constituent, but is nevertheless always defined in the addition use case, since it
can only be determined which UM-constituents are obsolete after the migration
itself is known. The UM-constituents to be removed in the example consists
of all of the McPal parts added by the first use case as well as the Idlesize,
Fillsize and Emptysize subprocess-states in the Stable partition statemachine.
The stabilization use case is enforced upon the actors using the same message
type as the addition stage.

The addition and stabilization use cases allow us to alter the behaviour of
the models in a consistent manner. Through the alternating creation and dele-
tion of UM-constituents, we can create even more complex migrations allowing
complete reconfigurations of any UML model capable of being translated into

Observing JITting newRuleSet

Content StartMigr

/stabilization

JIT Modeler /addition(JIT)

/addition(grow)

Figure 4.9: McPal UML statemachine before the self adaptation

– 30 –

4.5 Self-Adapting Producer Consumer in UML

a Paradigm model. Whereas the method in this Section shows this for fore-
seen migrations, unforeseen migrations are not handled yet. An example of an
unforeseen migration will be handled in Section 5.

– 31 –

5 UNFORESEEN ADAPTATION IN PARADIGM AND UML

5 Unforeseen Adaptation in Paradigm and UML

This section shows that very little additional modeling is required in order to
allow the McPal component presented in Section 4 to alter a model in an un-
foreseen manner. It will do this using the producer-consumer model from that
section as an example. The migration will be based on the scenario described
in Section 5.1, where the buffer will be shrunk to a smaller size.

5.1 Scenario

An outside modeler decides that the buffer size has grown too large, e.g. size
larger than 15, and should be decreased to size 10. This could be done by
creating a migration during which the buffer ignores attempts by the producer to
deliver products, that is, it somehow does not allow the producer to change the
current subprocess of its Stable subprocess. This would last until the consumer
had consumed enough items from the buffer in order to reduce the number
of items in the buffer to 10, after which the excess states of the buffer would
be removed and the migration is done. However, the modeler decides that
the producer should not be completely unable to deliver products during the
migration; in fact, it is more preferable to have the migration last longer in
order to prevent this from occurring. Finally, in order to prevent the Buffer
from growing too large in the future, it is decided that maximum of size 15
needs to be maintained. To accomplish all of this, the following requirements
to the migration have been set:

1. The buffer is not allowed to grow during the migration

2. The buffer will not shrink by more than one state simultaneously, which
will always be Contsize

3. A state can only be removed from the detailed buffer if it contains less
than or equal to size−2 items

4. The execution stage will be done when the buffer reaches size 10

5. After the migration, the buffer is allowed to grow as before, except it can
not grow larger than size 15

Most notably, the combination of requirements 2 and 3 ensures that the state
being removed is never the current state of the buffer and that the producer
can always deliver at least one item after a shrinking step has been undertaken.
The producer can therefore continue delivering products during the migration,
only needing to be delayed during the actual removal of a state or if the buffer
is full.

5.2 Shrinking the Buffer

To model this behaviour, we first need to determine CrstoBe and Crsmigr. The
former is equal to the Crssize from Section 4.2 where size = 10. To determine
Crsmigr, we start by determining the PM-constituents that need to be added to
the Buffer, Producer and Consumer during the addition stage.

The Idlesize subprocesses of Buffer will need to be temporarily changed to
different subprocesses, which we’ll denote as Idlemigr1,size. The generic form

– 32 –

5.2 Shrinking the Buffer

of these subprocesses is shown in Figure 5.1. When compared to Idlesize, it is
evident that a pleaseShrink trap has been added to the subprocesses; it contains
all the states in which shrinking can occur —all but Contsize−1 and Contsize—
and is used in order to test for requirement 3. The pleaseGrow trap however is
not present in the subprocess, since growth is not allowed by requirement 1.

The detailed Buffer needs additional transitions tasked with self-management,
because the existing transitions alter the current subprocess of the Stable parti-
tion to Idlesize, while we need them to alter it to Idlemigr1,size during the migra-
tion. Since these transitions are not present in the Fillsize and Emptysize subpro-
cesses, we also need additional subprocesses Fillmigr1,size and Emptymigr1,size

which allow these new transitions to occur instead of the old ones. Visually,
neither of these new subprocesses nor Buffer seem to differ from Figures 4.3
and 4.4, but the consistency rules do change:

Buffer : Conti−1 Conti
add

∗ Buffer(Stable) : Fillmigr1,size
triv Idlemigr1,size

Buffer : Conti Conti−1
remove

∗ Buffer(Stable) : Emptymigr1,size
triv Idlemigr1,size

Producer and Consumer need similar alterations. Their current subprocesses
of the Migr partition will be changed from Stable to Migr1, which differs from
subprocess Stable only in that the transitions responsible for the management
of Buffer are replaced by transition with these rules:

Producer : Deliver Produce
ready

∗ Buffer(Stable) : Idlemigr1,size
notFull Fillmigr1,size

Consumer : Retrieve Consume
get

∗ Buffer(Stable) : Idlemigr1,size
notEmpty

Emptymigr1,size

These four new rules ensure that the Producer and Consumer can con-
tinue producing/consuming even though the Buffer is currently in subprocess
Idlemigr1,size instead of Idlesize. Together with the new subprocesses, they de-
termine the behaviour shown by Buffer, Producer and Consumer during the
migration when not being shrunk. The new PM-constituents are implicitly dis-
tributed to the various processes by McPal during the addition stage. McPal
also adds PM-constituents to itself in order to model the other three stages.
The second of these, the execution stage, will be begun by McPal when entering
a state Shrinking from the StartMigr state, see Figure 5.2, which also changes
all the subprocesses of the Migr partitions to the new current subprocesses and
the current subprocess of the Stable partition of Buffer to Idlemigr1,size:

Cont0 Cont1 ... Contsize−2 Contsize−1 Contsize

notFull
notEmpty

pleaseShrink

Figure 5.1: Generic form of subprocess Idlemigr1,size

– 33 –

5.2 Shrinking the Buffer

Observing JITting newRuleSet

Content Shrinking StartMigr

growBuffer

getJIT doneJIT

start

phaseOut

doStep

finalize

stabilize

Figure 5.2: McPal during the migration

McPal : StartMigr Shrinking
phaseOut

∗ Producer(Migr) : Stable triv Migr1,

Consumer(Migr) : Stable triv Migr1,

Buffer(Stable) : Idlesize
triv Idlemigr1,size

The transition going from Shrinking to itself will manage a single shrinking
step. It acts like the StartMigr to Content transition in the foreseen migration
from Section 4.3, but in reverse; if Buffer is in trap pleaseShrink, it changes
the current subprocess of the Stable partition of Buffer from Idlemigr1,size to
Idlemigr1,size−1 and reduces the size variable by one, ensuring requirement 2
and 3. To ensure this will not shrink the Buffer beyond size = 10, we need to
restrict this rule to n ≥ 11, and get:

McPal : Shrinking Shrinking
doStep

∗ Buffer(Stable) : Idlemigr1,n
pleaseShrink

Idlemigr1,n−1,

McPal[size := size− 1]

When size 10 has been reached, the migration is done (requirement 4) and
McPal needs to enter state Content to start the stabilization stage. We test
for this situation by including a global transition which changes the current
subprocess of Stable from Idlemigr1,10 to Idle10. In addition to the test for the
size, it also resets the Buffer to its original behaviour, so the Producer and
Consumer need to be reset as well in order to allow the correct consistency
rules. Also, due to requirement 5, McPal needs to change the contents of Crs15
to prevent the foreseen growth migration from occurring when the buffer is at
size 15. The new value of this variable will be Crs15,new:

Crs15,new =

Crs15−











































McPal : Observing NewRuleSet
growBuffer

∗ Buffer(Stable) : Idle15
pleaseGrow

Idle15,

McPal[CRS := CRS ∪ Crsgrow

∪Crs16]











































– 34 –

5.2 Shrinking the Buffer

We can now define the following consistency rule to take care of all this:

McPal : Shrinking Content
finalize

∗ Buffer(Stable) : Idlemigr1,10
triv Idle10,

P roducer(Migr) : Migr1
triv Stable,

Consumer(Migr) : Migr1
triv Stable,

McPal[Crs15 := Crs15,new]

Since we now know the detailed behavior of McPal during the migration, we
can determine the contents of the subprocess Shrink, see Figure 5.3. The rules
for the startup and stabilization stages are responsible for changing the current
subprocess of the Migr partition of McPal to this new subprocess, and can be
determined by the generic forms given in Section 4.1:

McPal : NewRuleSet StartMigrstart

∗ McPal(Migr) : StablePhase
ready

Shrink

McPal : Content Observingstabilize

∗ McPal(Migr) : Shrink
migrDone

StablePhase,

McPal[CRS := CrstoBe]

Finally, we can determine the rule for the addition stage. CrstoBe was already
determined, and Crsmigr contains all of the rules given above. These rules can
now be added to the model by the rule

McPal : JIT ting NewRuleSetdoneJIT

∗ McPal[CRS := CRS ∪ Crsmigr ∪ CrstoBe]

While this rule adds the new PM-constituents by changing the contents
of CRS, it does not state how the contents of these Crsmigr and CrstoBe is
passed on to the model by the modeler. Paradigm handles the defining of these
variables implicitly during the JITting stage. The next Section will describe a
UML method for this implicit addition of variables to the model.

Observing newRuleSet

Content Shrinking StartMigr

start

phaseOut

doStep

finalize

stabilize

migrDone

Figure 5.3: Subprocess Shrink of partition Migr of McPal

– 35 –

5.3 JIT modeling in UML

5.3 JIT modeling in UML

Paradigm handles complex migrations by changing its CRS set through change
clauses, which can be modeled into UML as usecases, see Section 4.4. However,
the critical difference between unforeseen (or Just In Time: JIT) and foreseen
migrations is the addition of the contents of the Crsmigr and CrstoBe sets. These
are filled by implicitly allowing the modeler to input migrational and target be-
haviour during the JITting state of McPal. After this, the new PM-constituents
are implemented in the model as usual, see Section 4.

To model this in the UML component, we need to add another type of be-
haviour to the generic component, a behaviour normally only shown by McPal,
and then only during the JITting state. This can be done by adding another
port to the model, which allows a external modeler to insert an usecase similar
to the ones used in Section 4.5. The transition into JITting can only be trig-
gered by the modeler —see Figure 4.9— and will then have an extended activity,
that sends a request to the port. The request requires the modeler to enter an
usecase in some way (e.g.: through text, programming code, a java-class etc).
This usecase is then added to the McPal model in the usual fashion.

– 36 –

6 CONCLUSION, RELATED AND FUTURE WORK

6 Conclusion, Related and Future Work

This Master’s Thesis illustrates how Paradigm models work and how they can be
described through the use of UML constructs. This grants UML modelers access
to both Paradigm’s separation of concern and its quiescence-less, unforeseen
migrations towards other models. This not only makes modeling of complex,
parallel processes easier, but it also solves UML’s restriction to as-is models,
removing the necessity of predicting future model changes.

6.1 Solution

The UML description was achieved using a complex interaction between multiple
state machines. Each UML-style Paradigm component contains at least 3 state
machines:

• Exactly one state machine for the detailed process.

• One state machine per partition for the global processes, using the sub-
processes as states and subprocess changes as transitions.

• One state machine per subprocess, using the traps as states, and each
possibility of entering a trap as its transitions.

The interaction between the state machines was achieved through two types
of interaction. The first links the activity of a transition to the trigger of a
transition of another state machine. For example, entering a new state in the
detailed state machine could mean entering a new trap, therefore each detailed
transition triggers all transitions of the trap state machines.

The second interaction is woven into the guards of state machines. These
can obtain information from other state machines in order to determine whether
a transition can be taken. E.g., the trap state machines use their guards in order
to ensure that a state change occurs only if the resultant trap state contains the
current detailed state.

These two interactions allow state machines to communicate, and were used
for all interactions, both within a component —to keep it internally consistent—
and between two components, in order to allow for manager-employee dynamics.

Finally, it was shown that a transition’s activity could also be used to start a
use case, which contains all steps required to execute a change clause. Therefore,
foreseen on-the-fly migrations could be executed by the model, while adding a
user-input port to the McPal component also allowed us to have the migra-
tions be unforeseen. All these migrations are without quiescence, since they are
based entirely on the underlying Paradigm model, and do not require additional
constraints on the operation of the model.

6.2 Environment

An environment was created which utilizes the concepts within this Master’s
Thesis to visualize a Paradigm Model. The code of this environment is given
in Appendix B, while Appendix A contains a short description of some of the
more complex mechanisms in the environment. Within this environment, some
Paradigm models were tested, including the Worker-Scheduler from [3, 2] (both

– 37 –

6.3 Related Work

a stable and migrating version), the Producer-Consumer model from this pa-
per and a hereto forth unpublished pipeline model which contains some highly
complex dynamics.

6.3 Related Work

Recently, it has been shown that Paradigm (including migrations without qui-
escence) can be translated into Process Algebra (see [1, 4]). The trap state
machine concept given in this thesis is reminiscent of how process algebra han-
dles traps; both make a split between the detailed states and the traps they are
contained in, only to have the two separate methods communicate afterwards.

ParADE (see [5]) is another environment used to visualize Paradigm. Build
entirely in Java, it remains closer to the original concepts of Paradigm in its
design. Whenever a process desires to take a step, it first finds out which of the
transitions from the current state are allowed by each of its protocols, and then
takes a random allowed transition. This differs from the environment created for
this thesis, in that ParADE only takes allowed transition, while our environment
triggers a random transition going from the current state and only then finds
out whether the transition is allowed. It depends on the actual model, which
method is more efficient; if we can expect an average of less than half of all
transitions to be forbidden, the method employed by ParADE is probably less
efficient.

ParADE has one advantage in efficiency though: it uses a protocol layer to
keep track of the models consistency instead of direct communication between
state machines. Whenever a detailed process makes a transition, it communi-
cates all the relevant information (i.e. traps entered and subprocesses changed)
to the protocol. This means that when a process determines which transitions
are allowed, it only needs to request that information from the protocol. It
also means no separate state machine needs to be maintained for the trap in-
formation. These two points cause a large reduction in the number of messages
required, which increases the efficiency of ParADE significantly. In the current
ParADE version however, the protocol layer allows a maximum of one manager
to each protocol though, so co-management of an employee (as shown in the
aforementioned pipeline model) can not be correctly modeled in ParADE.

6.4 Future Research

The environment shown in Appendix B can be used in order to visualize Paradigm
Models, so it presents an easily accessible platform for those unfamiliar with
paradigm and allows Paradigm to be used in a larger context, without losing
information about the model in the translation to human understandable infor-
mation when required. This opens up the possibility of cross-discipline research,
ranging from using evolutionary algorithms to optimize multi-role business pro-
cesses —e.g.: every actor explains to a modeler the required input and outputs
of his/her work process, and the evolutionary algorithm can find the optimal
trap and global processes to maximize the amount of parallel activities— to
a new view of the steps within biological or chemical reactions, allowing for
greater insight into the various parallel reactions taking place on the various
active groups of a molecule during synthesis.

– 38 –

6.4 Future Research

With the addition of an intuitive user interface, the tooling can also be
used to allow business modelers to try out complex parallel processes without
requiring a deeper understanding of Paradigm, while still allowing automatic
testing and deadlock detection (using model-checking of the underlying process
algebra). Also, this can allow a modeler to obtain an automated migration from
one model to another, since the steps required to do so are easily identified when
the from and to models are known; migrational patterns can be identified and
applied more easily using new insights gained from the separation of concern in
Paradigm. The solid frame requirement of Paradigm might lead to complication
though, so some sort of creation and deletion of components and partitions,
as well as a renaming operator, need to be more closely researched, both in
Paradigm and in UML.

– 39 –

REFERENCES

References

[1] S. Andova, L.P.J. Groenewegen, and E.P. de Vink. Dynamic consis-
tency in process algebra: From Paradigm to ACP In P. Poizat, C.
Canal and M. Sirjani, editors, Proc FOCLASA ’08. 19pp. To appear in
ENTCS, extended version submitted.

[2] L.P.J. Groenewegen and E.P. de Vink. Dynamic System Adaptation
by Constraint Orchestration. In P.M.E. de Bra and J.J. van Wijk,
editors, CS-Report 08-29, TU Eindhoven.

[3] L. Groenewegen and E. de Vink. Evolution On-the-Fly with
Paradigm. In P. Ciancarini and H. Wiklicky, editors, Proc. Coordina-

tion 2006, pages 97-112. LNCS 4038, 2006.

[4] S. Andova, L.P.J. Groenewegen, J. Stafleu, and E.P. de Vink Formalizing
Adaptation On-the-Fly Accepted for Proc FOCLASA ’09, 2009.

[5] A.W. Stam, PhD Thesis Model-Driven Software Development with
Paradigm To be published

[6] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Con-
cepts, 6th edition: XP Version. John Wiley & Sons, Inc, 2002. ISBN
0-47-126272-2, pages 108-109.

[7] L.P.J. Groenewegen, A.W. Stam, P.J. Toussaint and E.P. de Vink.
Paradigm as Organization-Oriented Coordination Language. In
L. van de Torre and G. Boella, editors, Proc. CoOrg 2005, pages 93-113.
ENTCS 150(3), 2005.

[8] M. Fowler. UML Distilled (3rd edition). Addison -Wesley, 2004. ISBN
0-321-19368-7

– 40 –

A PROGRAM

A Program

The concepts described in this paper have been used to create an environment
in which Paradigm models can be simulated and visualised during execution.
This appendix will describe the methods used to do so. This environment also
acts as a proof of concept for the theories in this paper.

A.1 Technologies Used

In order to obtain an highly distributable environment, we chose to make the
environment entirely web-based. This allows us to use the HTTP protocol
to easily distribute the component code —written in JavaScript— among the
clients , since all a client needs is a web-browser. This also allows the use of
HTML elements for UI-widgets and the use of Dynamic HTML to have the page
content respond to changes in the model’s state, ranging from simple current
state changes to subprocess changes. Finally, using the XMLHttpRequest ob-
ject, we can send and receive short messages to the server in order to create
communication channels. This method of client sided asynchronous messaging
is commonly known as AJAX.

In order to obtain a high grade of parallelization, server-sided coding was
kept to a minimum. The startup definitions of the components are stored in a
SQL database, but distributed through a JavaScript file generated using PHP,
so that only the definitions for the initialization needs to be centralized.

A.2 Component Communication

Usually, when two components need to communicate, a direct channel can be
created between the two. However, using HTTP restricts the communication:
clients can only send requests and server can only send replies to those requests.
Since all component threads are distributed among the clients, this communi-
cation channel is too restrictive, because direct communication between compo-
nents is not available. We therefore needed to store messages of clients to other
clients on the server, which the other client can retrieve at leisure.

To do the latter, we created a Polling mechanism in JavaScript. This
mechanism allows us to send a Polling Request —using AJAX— to the server
once every x seconds, which asks the server whether any messages have been
send to this component. Any such messages are then handled by a Polling
Handler. In this case, the polling handlers are functions which take one of the
messages from Figure 3.8 as input and calculate the correct message to send
back. This response is stored in the exact same location on the server, allowing
the original client to pick up the response using a poll of its own.

The server has a message table which acts as the location to store messages.
This table contains 4 fields; the message, the message’s source, its target (which
the polling mechanism uses to identify the messages send to a component) and
an identifier id. This last field contains an auto incremented identifier and acts as
the primary key. After the first message in a communication has been received,
this identifier is send (in the server’s reply) to the communication’s originator.
From that moment on, it acts as a postal box number; if a participant α wants
to send a message to participant β, it merely needs to send that message to a

– 41 –

A.2 Component Communication

particular box, after which the target field is set to β and the source state to α,
so β’s polling requests will yield the new message.

The source field is used to obtain anonymity in the channel: only the server
knows the participants. When a message is send by one of the participants, the
following query is used to store it:

UPDATE messages

SET target = IF(source = ‘$source’, target, source),

source = ‘$source’,

message = ‘$message’

WHERE id = $id

AND target = ‘$source’

resulting in the target to be the other participant, without the requesting par-
ticipant knowing who that is.

A typical message exchange (as based upon Figure 3.8) could be:

1. A manager Man tries to trigger a detailed transition and has checked this
against its own subprocesses. It therefore sends a message to the server
asking it whether employee Emp’s partition Part is in subprocess Sub and
in trap Trap. It also sends the target Subprocess SubTarget.

2. The server receives this message and stores it in the messages table in
its database. It sends the unique identifier i as a response to the Man’s
request.

3. Man gets the response and tells the polling handler that when a mes-
sage with id i comes in, it needs to be handled by the handleDetailedAlt
function, which contains the code for the alt box in the sequence diagram.

4. After a while, Emp executes a polling request, asking the server for any
messages.

5. The server selects all messages for Emp by checking the target field of its
messages table and sends them as reply.

6. Emp receives the polling answer and receives the new message, and passes
this on to the polling handler. The polling handler executes the han-
dlePartitionOpt function, which checks whether partition Part’s current
subprocess is Sub and its trap is Trap. Since it is, Emp sends a correct

message to id i. It also tells the poll handler that the next message with id
i needs to be handled by the handlePartitionAlt function and that the new
subprocess will be SubTarget if an execute message is received. Finally,
it also sets the current partition on hold; any other messages that are
received by the poll handler for this partition are skipped, automatically
reoccurring at the next poll.

7. The server sets the message field of the record with id i to correct and
switches the target and source fields. Since a response to clients is manda-
tory, but no useful information can be send, it also sends an empty re-
sponse to Emp.

8. Man sends a Poll.

9. The server selects and returns all messages for Man.

– 42 –

A.3 Making a JavaScript execution thread sleep

10. Man receives a message with id i. The poll handler knows to pass this
message on to handleDetailedAlt, which recognizes it as an correct mes-
sage, and checks whether all messages of the employees have been received.
Since this was the only employee, they are, and it sends an execute mes-
sage to the record with id i. It then executes the transition and starts at
the beginning with the next transition.

11. After sending a poll message and receiving the response from the server,
Emp obtains the execute message and changes the current subprocess to
SubTarget. It then re-enables the partition so that the poll messages that
were previously ignored are once again handled in the normal way. Finally,
it sends a delete message to the server for the message with id i

12. The server receives the delete message and deletes the record with id i

A.3 Making a JavaScript execution thread sleep

JavaScript is a single threaded language (per browser window, that is), which
has its advantages and disadvantages. An advantage is that we do not have to
plan for inconsistency in the model due to one thread having been cleared to
take a transition and another thread to take another transition, both of which
then occur (which should not be possible). A disadvantage is that having a
thread sleep or wait causes the entire JavaScript execution to stall.

Nonetheless, having a STD wait for some signal is sometimes still required
(e.g.: an manager waiting for each employee to send an answer to a request).
Pseudo-multi-threading is available using the setTimeout and setInterval func-
tions, after which thread control can be returned to the top level (allowing
events to gain control over the thread). Then, after a certain amount of time
has passed, an instruction predefined in the setTimeout/setInterval call is han-
dled and thread control can be “continue” the earlier thread. However, this is
not responsive enough for our purposes, since using this method the compo-
nent can not act immediately upon receiving a message, but has to wait for
the Timeout to occur. We therefore designed a different (but similar) waiting
system.

To each STD, an array waitDefs of objects was added; each object containing
an identifier, a function to execute when a wakeUp is called, and an object
containing any number of arguments to pass to the function. A wait function
was added which pushes new elements onto that array, and a wakeUp function
which takes an identifier as argument and executes each of the functions within
the waitDefs array of which the object’s identifier equals the argument.

By cleverly choosing the identifiers and functions, we can simulate incoming
messages and immediate responses. For example, a typical execution thread
of a manager could look like this (see Figure 3.8 for the sequence diagram
corresponding to this thread):

1. A manager tries to execute a transition which manages two employees. It
therefore sends 2 trapOfSubprocess messages to the server.

2. The server replies with the identifiers i and j for the communication signals
(see Section A.2).

– 43 –

A.4 Creating a new model

3. The manager adds two waits to its detailed STD, one with id i and one
with id j. As functions it passes the handleDetailedAlt function.

4. At the next poll, the manager receives a correct reply of one of the employ-
ees (corresponding to message i) and it calls wakeUp with the i as identi-
fier. This calls the handleDetailedAlt function, which first checks whether
the response was a correct. Since it is, the function checks whether all of
the employees have responded. Since the STD is waiting (for a message
with the identifier j), it apparently has not yet obtained all answers, so
the function returns. If the response had been incorrect, it would have
woken up all other waits and all of those functions would have send a
cancel message, after which the STD was no longer waiting.

5. At the second poll, a correct message is received from the second employee,
and the handleDetailedAlt is once again called. Since the STD is no longer
waiting for any employees, all employees are send an execute message and
the transition fires.

A.4 Creating a new model

This section will describe the databases and tables which contain the initial-
ization definitions of the models. Each component of a model has an entry in
the table models of database paradigmmodels, which consists of 6 fields, see
Table A.1.

Field Desciption

id This field is auto-incremented and acts as primary key.
It is not required for anything else

database Refers to the database in which the definitions for the
states and transitions are held. This database also con-
tains the messages table as described in Section A.2.

component Refers to the base name of the component

numIds Contains the number of parametrizations, e.g.: Workeri

contains one parametrization

variables Contains a variable description, which can be referenced
to in state and transition definitions

display a boolean stating whether this component should be
displayed in the index page

Table A.1: Definition of the table models of Paradigmmodels

Two fields require additional explanation: the numIds field and the variables
field. The first makes it possible to have an arbitrary number of components of
a certain type, e.g.: there were three Worker components in section 3, that all
worked the same. The variables field allows a single component to have mul-
tiple states and transitions, while only one definition exists, For example, the
scheduler component needs an equal amount of asg states as there are Workers.

– 44 –

A.4 Creating a new model

Both the numIds and variables values are inputed by the user when the
component is started up, and the states and transitions tables described later
in this section can use those values to determine not only the number of states
and transitions, but also what the initial state needs to be.

Every model in the environment also has its own database, which contains
3 tables: messages, states and transitions. Messages was handled shortly in
Section A.2, but requires no new actions when creating a new model database.
We will explain the other two tables and their fields shortly. Table A.2 contains
the definitions for the Transitions table.

Field Desciption

id This field is auto-incremented and acts as primary key.
It is not required for anything else

compName Contains the name of the component the transition be-
longs to

stateMachine Contains the STD within the component the transition
belongs to. If empty, the transition is considered to be-
long to the detailed STD, otherwise this field contains
either the subprocess name (for trap STDs) or the par-
tition name (for global STDs)

source The source state

target The target state

triggerSig The signal for the transition

guard The guard for the transition

activity The activity of the transition

Table A.2: Definition of the table Transitions of a Paradigm Model

Three fields in this table need further explanation. The first is the triggerSig

field. This field can have 3 types of values:

• The action label for detailed transitions

• The trap names for global transitions

• cascade for trap transitions

The STDs define a trigger function which takes a textual signal as their argu-
ment. If called, that function triggers each transition for which the trigger field
equals the argument. This shows that the activities of the detailed transitions
only need to trigger all transitions with cascade as trigger in order to cascade
all trap STDs.

This is represented in the two possible values of the activity field:

• sendTrigger(‘cascade’) for detailed transitions and trap transitions

• changeSubprocess(this.from.name, this.to.name); for global tran-
sitions

– 45 –

A.5 Adaptation

The traps and detailed transitions both trigger the cascades, just as required
of the cascade function. The global transitions change the current subprocess,
which requires four actions: changing the global state, disable the trap STD
belonging to the previous current subprocess and enable the trap STD belonging
to the new current subprocess, followed by a cascade call to that STD. The first
action is implicitly taken by the transition, but the other actions need to be
executed separately, which the line given takes care of.

Finally, the guard field also has three possible values:

• paradigmGuard(this, ‘list of subprocesses’, ‘optional list of employ-

ees’); for detailed transitions

• getSTD(a detailed STD).isTrapped(a list of detailed state); for trap
transitions

• getSTD(this.from.name).isCurrent(this.trigger); for global tran-
sitions

The function paradigmGuard returns true iff each of the current subprocesses
occur in the listOfSubprocesses list, thus evaluating the guard using the eval

function, we get a simple true or false on whether the transition is allowed. If
the optional list of employees is also defined, each of the employees is checked (as
described in A.2), the paradigmGuard function returns false and the STD sleeps
while waiting for responses of the employees. Iff all of these have send a correct
message back, the transition will once again be triggered, but unconditionally,
that is, the guard will not be tested.

Table A.3 shows the states table.

Field Description

id This field is auto-incremented and acts as primary key.
Not required for anything else

stateName Contains the name of the state

compName Contains the component the state belongs to

stateMachine Contains the STD within the component the state be-
longs to. If empty, the state is considered to belong to
the detailed STD, otherwise this field contains either the
subprocess name (for trap STDs) or the partition name
(for global STDs)

initial A boolean statement determining whether this state is
the initial state, which can use the numIds and vari-
ables from the paradigmmodels table upon startup as
arguments.

Table A.3: Definition of the table States of a Paradigm Model

A.5 Adaptation

The environment is also capable of on-the-fly migration as described in Sec-
tions 4 and 5. It was stated that the migrational information is added to the

– 46 –

A.6 Multiple views

model using the activity of the transitions into newRuleSet —the form of which
was stated to be a use case—, but how the use case was executed was left unde-
fined. In this environment, we chose to have the activity be evaluable JavaScript,
evaluating it using the JavaScript eval function when the transition is taken.
These activities contain the calls to the object constructors as required. If the
use case calls for the creation of a new transition, but the source and/or target
states do not yet exist, those states are first created. Similarly, STD’s are au-
tomatically initiated if states are created which belong to a non-existing STD.
Because of this, it is often enough to add only the transitions of the new STD’s.

Foreseen migration can be included in the activity field of the database record
of the transition, so modeling foreseen migration occurs within the model’s defi-
nition itself, as required. Unforeseen migrations require a more flexible approach
though, since we want the modeler to have complete control over the migra-
tion. To handle this, the activity of the transition into the JIT state of McPal
(startJit) was set so it opens an upload file field, where the modeler can input
a migration. After the modeler had uploaded a file, the guard on the transition
into NewRuleSet (doneJit) will request the new definitions of the server, which
has generated the required JavaScript from the uploaded file. The start and
stabilize transitions are then created with the correct usecases included in their
activities, and the rest of the migration can occur.

A.6 Multiple views

The current model configuration can be visualized in any number of ways (i.e.:
textual, UML-style STD’s, paradigm notation, etc), so some effort went into
making sure any of these could be easily implemented. In order to do this, the
graphical interface was made dependent upon the underlying objects (statema-
chines), each of which contains an update function. Whenever this update
function is called, it executes all of the functions registered to the STD (which
can be done using the addUpdate function), which are responsible for altering
their own particular piece visualization.

In particular, an UML-style STD visualization was added to the program.
It uses an object defining the drawing of the transitions and states. Each state
has a DIV element corresponding to it, whose background denotes whether the
corresponding state is the STD’s current state. Whenever the objects update
function is called, the currently highlighted DIV is returned to the default back-
ground color and the state corresponding to the underlying STD’s current state,
if any, is highlighted. This update function can be registered to the update of
one or more STDs using the addUpdate function, and a visualization of the
underlying model has been obtained. Using the STD’s removeUpdate function,
it can also be unregistered.

In a similar way, any type of visualization capable of being represented in
Dynamic HTML can be created, and each visualization can be run simultane-
ously, since the underlying STD’s do not change their behaviour.

A.7 Wrap-up: Possible Improvements in Parallelism

Thus, in our environment, each client can be running any number of components,
but each component occupies one browser window and therefore has its own
JavaScript execution thread. It can also visualize the model in any number

– 47 –

A.7 Wrap-up: Possible Improvements in Parallelism

of ways. The server is used only for the initiation of components and as a
communication channel, the latter of which makes it the bottle neck of the
parallelism objective, since it has only a single thread with which to control all
communication.

This problem can be solved in many ways. For starters, another platform
could be chosen in order to allow direct communication between components,
but this will still need central distribution of the component locations. This
also enlarges the security related problems, which the platform chosen solves by
using the HTTP protocol and its inherent security.

Another solution could be to introduce multiple servers, at least one for
each client. Then, a channel could be handled completely client sided, and the
servers could run in parallel. This however would greatly increase the cost of
implementation, since a simple browser would no longer be enough.

Finally, another bottleneck for the parallelism is that for each component,
all of its detailed STD, its global STDs and its trap STDs run on a single
thread. An increase in parallelism could be obtained by also distributing this
interaction over multiple clients. This could be set up in a similar manner as
described earlier in this Section.

– 48 –

B CODE

B Code

B.1 script/Statemachine.js

f un c t i on Statemachine (name , a l l ows) {
var STD = {

name : name ,
s t a t e s : Array () ,
t r a n s i t i o n s : Array () ,
current : null ,
updateFunctions : Array () ,
a l l ows : a l l ows != ’ ’ ? a l l ows : null ,
waitDefs : Array () ,
h i s t o r y : Array ()

} ;

STD. State = func t i on (name) {
i f (this . g e tS ta t e (name)) {

return e (”A s t a t e ”+name+” al ready e x i s t s in statemachine ”+this .
parent . name) ;

}

var State = {
name : name ,
parent : STD

} ;

S tate . getName = func t i on () {
return name ;

} ;

this . s t a t e s . push (State) ;
return State ;

} ;

STD. ge tS ta t e = func t i on (name) {
for (var i t = 0 ; i t < this . s t a t e s . l ength ; i t++) {

i f (this . s t a t e s [i t] . name == name) return this . s t a t e s [i t] ;
}
return fa l se ;

} ;

STD. Tran s i t i on = func t i on (name , from , to , t r i g g e r , guard , a c t i v i t y) {
i f (! from | | ! this . g e tS ta t e (from)) {

return e (”No s t a t e ”+from+” (from) found”) ;
}
i f (! to | | ! this . g e tS ta t e (to)) {

return e (”No s t a t e ”+to+” (to) found”) ;
}

var Tran s i t i on = {
name : name ,
from : this . g e tS ta t e (from) ,
t r i g g e r : t r i g g e r ,
guard : guard ,
a c t i v i t y : a c t i v i t y ,
to : this . g e tS ta t e (to) ,
parent : STD

} ;

Tran s i t i on . doTrigger = func t i on (t r i g g e r , e n f o r c e) {
i f (en f o r c e | | (this . t r i g g e r == t r i g g e r && this . parent . current ==

this . from && this . testGuard ())) {
this . parent . former = this . from ;
this . parent . h i s t o r y . push (this . parent . current . name) ;
this . parent . current = this . to ;
e va l (this . a c t i v i t y) ;
this . parent . update () ;
return true ;

}
return fa l se ;

} ;

– 49 –

B.1 script/Statemachine.js

Tran s i t i on . testGuard = func t i on (a l soCheckHistory) {
i f (this . parent . i sWait ing ()) return fa l se ; // prevent eva luat ion of

guard i f the STD i s wait ing for some other awnser
i f (a l soCheckHistory && STD. hasBeenIn (Tran s i t i on . from . name)) return

true ;
return (this . guard == unde f ined | | eva l (this . guard)) ;

} ;

this . t r a n s i t i o n s . push (Tran s i t i on) ;
return Tran s i t i on ;

} ;

STD. ge tTran s i t i on = func t i on (name) {
for (var i t = 0 ; i t < t r a n s i t i o n s . l ength ; i t++) {

i f (t r a n s i t i o n s [i t] . name == name) return t r a n s i t i o n s [i t] ;
}
return fa l se ;

} ;

STD. getTransit ionsFrom = func t i on (from) {
i f (! from) return fa l se ;
i f (! from . name) from = this . g e tS ta t e (from) ;
var r e s u l t = Array () ;
for (var i t = 0 ; i t < this . t r a n s i t i o n s . l ength ; i t++) {

i f (this . t r a n s i t i o n s [i t] . from == from) {
r e s u l t . push (this . t r a n s i t i o n s [i t]) ;

}
}
return r e s u l t . l ength==0?fa l se : r e s u l t ;

} ;

STD. isTrapped = func t i on (s t a t e s S t r i n g) {
var regExp = ” (ˆ | ,) ”+this . current . name+” (, | $) ” ;
return s t a t e s S t r i n g . match (regExp) ;

} ;

STD. i sCurrent = func t i on (t e s t) {
i f (! t e s t . name) t e s t = this . g e tS ta t e (t e s t) ;
return (t e s t == this . current) ;

} ;

STD. t r i g g e r = func t i on (t r i g g e r) {
var t r a n s i t i o n s = this . getTransit ionsFrom (this . current) ;
for (var i t = 0 ; i t < t r a n s i t i o n s . l ength ; i t++) {

i f (t r a n s i t i o n s [i t] . doTrigger (t r i g g e r)) return true ;
}
return fa l se ;

} ;

STD. triggerRandom = func t i on () {
var t r a n s i t i o n s = this . getTransit ionsFrom (this . current) ;
i f (t r a n s i t i o n s == fa l se) return fa l se ;
var random = Math . f l o o r (Math . random() ∗ t r an s i t i o n s . l ength) ;
return t r a n s i t i o n s [random] . doTrigger (t r a n s i t i o n s [random] . t r i g g e r) ;

} ;

STD. r e s e tH i s t o r y = func t i on () {
STD. h i s t o r y = Array () ;

} ;

STD. hasBeenIn = func t i on (name) {
i f (STD. current == null) return fa l se ; // not even the

current l y execut ing t h i s statemachine
i f (STD. current . name == name) return true ; // i s i t cu rrent l y

there ?
for (var i t = 0 ; i t < STD. h i s t o r y . l ength ; i t++) {

i f (STD. h i s t o r y [i t] == name) return true ; // has i t been there
and current l y l e f t i t ?

}
return fa l se ; // never seen a s t a t e by tha t name

in the current run
} ;

STD. removeState = func t i on (name) {

– 50 –

B.1 script/Statemachine.js

var s t a t e = STD. ge tS ta t e (name) ;
for (var i t = 0 ; i t < STD. t r a n s i t i o n s . l ength ; i t++) {

var temp = STD. t r a n s i t i o n s [i t] ;
i f (temp . from == s t a t e | | temp . to == s t a t e) {

STD. t r a n s i t i o n s . s p l i c e (i t , 1) ;
i t −−;

}
}
for (var i t = 0 ; i t < STD. s t a t e s . l ength ; i t++) {

var temp = STD. s t a t e s . s h i f t () ;
i f (temp != s t a t e) {

STD. s t a t e s . push (temp) ;
} else {

break ; // found the s t a t e . Since i t i s unique , i t should be f ine
to simply e x i t the loop

}
}

} ;

STD. removeTransit ion = func t i on (from , to , t r i g g e r) {
for (var i t = 0 ; i t < STD. t r a n s i t i o n s . l ength ; i t++) {

temp = STD. t r a n s i t i o n s [i t] ;
i f (temp . from . name == from && temp . to . name == to && temp . t r i g g e r ==

t r i g g e r) {
STD. t r a n s i t i o n s . s p l i c e (i t , 1) ;
break ;

}
}

} ;

STD. update = func t i on (args) {
for (var i t = 0 ; i t < this . updateFunctions . l ength ; i t++) {

this . updateFunctions [i t] (args) ;
}

} ;

STD. addUpdate = func t i on (func) {
i f (e va l (” t h i s . ”+func)) {

return e (func+” al ready e x i s t s ”) ;
}
i f (typeof e va l (func) == ’ func t i on ’) {

this . updateFunctions . push (eva l (” t h i s . ”+func+” = ”+eva l (func))) ;
}

} ;

STD. removeUpdate = func t i on (func) {
for (var i t = 0 ; i t < this . updateFunctions . l ength ; i t++) {

var t e s t = this . updateFunctions . s h i f t () ;
i f (t e s t . t oS t r i ng () != eva l (func) . t oS t r i ng ()) {

this . updateFunctions . push (t e s t) ;
} else {

eva l (” de l e t e t h i s . ”+func+” ; ”) ;
i t −−;

}
}

} ;

STD. wait = func t i on (id , func , vars) {
this . waitDefs . push ({ id : id , func : func , vars : vars }) ;

} ;

STD. wakeUp = func t i on (id , vars , skipWaitFunction) {
var found = 0 ;
var temp = unde f ined ;
for (var i t = 0 ; i t < this . waitDefs . l ength ; i t++) {

temp = this . waitDefs . s h i f t () ;
i f (temp . id != id) {

this . waitDefs . push (temp) ;
} else {

i t −−;
found++;
i f (temp != unde f ined && typeof temp . func == ’ func t i on ’ && ! (

skipWaitFunction == true)) {
var updateVars = temp . func (vars , temp . vars) ;

– 51 –

B.2 script/Paradigm.js

i f (updateVars != fa l se) {
// funct ion does not return f a l s e : s e t back at s t a r t o f the

l i s t and increase i t ;
i f (typeof updateVars == ’ ob j e c t ’) {

for (i t 2 in updateVars) {
eva l (”temp . vars . ”+i t 2+” = updateVars . ”+i t 2+” ; ”) ;

}
}
this . waitDefs . push (temp) ;
i t ++;

}
}

}
}
return found ;

} ;

STD. removeWait = func t i on (id) {
STD. wakeUp(id , {} , true) ;

} ;

STD. wakeUpAll = func t i on (txt) {
while (this . waitDefs . l ength > 0) {

var temp = this . waitDefs . s h i f t () ;
i f (temp != unde f ined && typeof temp . func == ’ func t i on ’) {

temp . func (txt , temp . vars) ;
}

}
} ;

STD. i sWait ing = func t i on (sk ip) {
for (var i t = 0 ; i t < this . waitDefs . l ength ; i t++) {

i f (sk ip != unde f ined) {
eva l (”var temp = th i s . waitDefs [i t] . vars . ”+sk ip+” ; ”) ;
temp = eva l (temp) ;

}
i f (sk ip == unde f ined | | ! temp) return true ; // please don ’ t count

id = 0 , they are p laceho lde r s .
}
return fa l se ;

} ;
s tatemach ines . push (STD) ;
return STD;

}

statemach ines = Array () ;
f unc t i on sendTr igge r (t r i g g e r) {

for (var i t =0; i t < statemach ines . l ength ; i t++) {
statemach ines [i t] . t r i g g e r (t r i g g e r) ;

}
}

f un c t i on getSTD(name) {
for (var i t =0; i t < statemach ines . l ength ; i t++) {

i f (statemach ines [i t] . name == name) return statemach ines [i t] ;
}
return fa l se ;

}

f un c t i on numSTD() {
return statemach ines . l ength ;

}

B.2 script/Paradigm.js

f un c t i on addit ionUseCase (arr , requestBy) {
// t h i s adds new s t a t e s and t r an s i t i on s .
i f (requestBy == unde f ined) requestBy = ”McPal” ; // de f au l t requester

name

for (var i t = 0 ; i t < a r r . l ength ; i t++) {
var de f = ar r [i t] ;

– 52 –

B.2 script/Paradigm.js

i f (de f . compName == unde f ined | | de f . compName == ’ ’ | | de f . compName
== ’ s e l f ’) { // addit ions to s e l f

var STD = getSTD(de f . stateMachine) ;
i f (!STD) {

STD = Statemachine(de f . stateMachine) ;
}
i f (de f . stateName != unde f ined) {

// new s t a t e s
STD. State (de f . stateName) ;

} else i f (de f . from != unde f ined) {
// new t r ans i t i on s
i f (!STD. ge tS ta t e (de f . from)) STD. State (de f . from) ;
i f (!STD. ge tS ta t e (de f . to)) STD. State (de f . to) ;
STD. Tran s i t i on (’ ’ , de f . from , de f . to , de f . t r i g g e r , de f . guard , de f .

a c t i v i t y) ;
} else {

e (’ unknown add i t i on de f type ’) ;
}

} else { // addit ions to send e lsewhere
de f . add i t i on = true ;
var mess = Array () ;
for (var i t 2 in de f) {

i f (i t 2 != ’compName ’) {
eva l (’ mess . push (i t 2 +”:\ ’”+ de f . ’+i t 2+ ’ +”\ ’”) ; ’) ;

}
}
mess = ”sendMessage . php?db=”+database+”&source=”+requestBy+”&

targe t=”+de f . compName+”&message=”+escape (”{”+mess . j o i n (’ , ’)+”
}”) ; ;

send (mess) ;
}

}
statemach ines [0] . update (’ redraw ’) ;
return true ;

}

f un c t i on removalUseCase(arr , requestBy) {
// Remove s t a t e s and t r an s i t i on s .
i f (requestBy == unde f ined) requestBy = ”McPal” ; // de f au l t requester

name

for (var i t = 0 ; i t < a r r . l ength ; i t++) {
var de f = ar r [i t] ;
i f (de f . compName == unde f ined | | de f . compName == ’ ’ | | de f . compName

== ’ s e l f ’) { // removes of s e l f
var STD = getSTD(de f . stateMachine) ;
i f (!STD) continue ; // i f the STD does not e x i s t s , nothing needs be

done
i f (de f . stateName == unde f ined && de f . from == unde f ined) {

// remove an ent i r e statemachine
for (var i t 2 = 0 ; i t 2 < statemach ines . l ength ; i t 2++) {

var temp = statemach ines . s h i f t () ;
i f (temp != STD) {

statemach ines . push (temp) ;
} else {

// break ; // found the statemachine . Since i t i s unique , i t
should be f ine to simply e x i t the loop . . .

// . . . but ac tua l l y , t h i s changes the order of the
statemachines array , so the automatic

// random t r i g g e r e r doesn ’ t l i k e i t t h i s way and ge t s
broken . This way i s s l i g h t l y l e s s

// optimal , but oh we l l .
i t2 −−; // t h i s should of course be done in order to ensure

a l l STD’ s are checked
}

}
} else i f (de f . stateName != unde f ined) {

// remove an s t a t e
STD. removeState(de f . stateName) ;

} else i f (de f . from != unde f ined) {
// remove t rans i t ion based upon from , to and t r i g g e r
STD. removeTransit ion (de f . from , de f . to , de f . t r i g g e r) ;

} else {

– 53 –

B.2 script/Paradigm.js

e (’ unknown remove de f type ’) ;
}

} else { // removals to send e lsewhere
de f . removal = true ;
var mess = Array () ;
for (var i t 2 in de f) {

i f (i t 2 != ’compName ’) {
eva l (’ mess . push (i t 2 +”:\ ’”+ de f . ’+i t 2+ ’ +”\ ’”) ; ’) ;

}
}
mess = ”sendMessage . php?db=”+database+”&source=”+requestBy+”&

targe t=”+de f . compName+”&message=”+escape (”{”+mess . j o i n (’ , ’)+”
}”) ; ;

send (mess) ;
}

}
statemach ines [0] . update (’ redraw ’) ;
return true ;

}

f un c t i on hand leDeta i l edAlt (txt , vars) {
i f (txt . match (/ execute/ i) | | txt . match (/ canc e l / i)) {

send (” sendMessage . php?db=”+database+”&id=”+vars . messId+”&source=”+
vars . s r c+”&message=”+txt) ;

} else i f (txt . match (/ c o r r e c t / i) && ! vars . checked) {
i f (txt . match (/ not/ i)) { // subprocess does not a l low the

t rans i t ion , so cancel a l l .
vars . t rans . parent . wakeUpAll (’ c anc e l ’) ;
send (” sendMessage . php?db=”+database+”&message=remove&id=”+vars .

messId+”&source=”+vars . s r c) ;
} else i f (vars . t rans . parent . i sWait ing (’ checked==true ’)) { // STD

i s s t i l l waiting , so s t i l l more subprocesses need to awnser the
correc t ? message

return { checked : true } ;
} else { // STD i s not wait ing anymore , so a l l the messages were

su c c e s f u l l , send execute messages and enforce t r i g g e r
vars . t rans . parent . wakeUpAll (’ execute ’) ;
send (” sendMessage . php?db=”+database+”&id=”+vars . messId+”&source=”+

vars . s r c+”&message=execute”) ;
vars . t rans . doTrigger (vars . t rans . t r i g g e r , true) ;

}
} else {

return true ;
}
return fa l se ;

}

f un c t i on hand l ePar t i t i onA l t (txt , vars) {
i f (txt . match (/ canc e l / i)) {

send (” sendMessage . php?db=”+database+”&message=remove&id=”+vars .
messId+”&source=”+vars . s r c) ;

// canceled , remove channel and continue execut ion of STD, to do
t h i s :

// do nothing , tha t is , don ’ t execute the t rans i t ion and don ’ t
return t h i s to the STD wa i t l i s t

} else i f (txt . match (/ execute/ i)) {
// t rans i t ion taken ; change subprocess to do t h i s :
// execute the t rans i t ion stored in var . trans
send (” sendMessage . php?db=”+database+”&message=remove&id=”+vars .

messId+”&source=”+vars . s r c) ;
vars . t rans . doTrigger (vars . t rans . t r i g g e r , true) ; // enforce t r i g g e r

} else {
return true ; // return the l i s t e n e r to the wait s tack

}
return fa l se ;

}

f un c t i on hand lePart i t ionOpt(messId , mess , s r c) {
var STD = getSTD(mess .STD) ;
message = ”sendMessage . php?db=”+database+”&id=”+messId+”&source=”+mess

. t a rge t+”&message=” ;

– 54 –

B.2 script/Paradigm.js

i f (STD. current != null && getSTD(mess . s t a t e) . hasBeenIn (mess . trap)) {
var t r a n s i t i o n s = STD. getTransit ionsFrom (mess . s t a t e) ;
for (var i t = 0 ; i t < t r a n s i t i o n s . l ength ; i t++) {

i f (t r a n s i t i o n s [i t] . t r i g g e r == mess . trap && (mess . next == unde f ined
| | mess . next == t r a n s i t i o n s [i t] . to . name) && t r an s i t i o n s [i t] .

testGuard (true)) {
STD. wait (messId , hand lePart i t ionAlt , { s r c : src , t rans :

t r a n s i t i o n s [i t] , messId : messId }) ;
send (message+” co r r e c t ”) ;
return true ;

}
}

}
send (message+”notCorrec t”) ;
return fa l se ;

}

removeStack = {} ;
f un c t i on hand lePol l (txt , vars) {

i f (txt == ’ ’) return fa l se ;
var txtArr = txt . s p l i t (” ;\n”) ;
for (var i t = 0 ; i t < txtArr . l ength ; i t++) {

temp = txtArr [i t] . s p l i t (”=”) ;
messId = temp [0] ;
e va l (”var mess = ”+((typeof temp [1] != ’ number ’ && ! temp [1] . match (/ˆ\ s

∗\{ .∗ : .∗\}\ s∗$ /)) ?” ’ ”+temp [1]+ ” ’ ” : temp [1])+” ; ”) ;
i f (typeof (mess) == ’ ob j e c t ’) {

i f (mess . add i t i on != unde f ined) {
// Addition Use Case
i f (addit ionUseCase (Array (mess))) send (” sendMessage . php?db=”+

database+”&message=remove&source=”+vars . s r c+”&id=”+messId) ;
} else i f (mess . removal != unde f ined) {

// Removal Use Case
i f (removalUseCase(Array (mess))) send (” sendMessage . php?db=”+

database+”&message=remove&source=”+vars . s r c+”&id=”+messId) ;
} else {

// Global t rans i t ion requested
hand lePart i t ionOpt(messId , mess , vars . s r c) ;

}
} else i f (mess . match (/ noL i s t en e r/ i)) {

send (” sendMessage . php?db=”+database+”&message=remove&source=”+vars
. s r c+”&id=”+messId) ;

for (var i t 2 = 0 ; i t 2 < statemach ines . l ength ; i t 2++) {
statemach ines [i t 2] . removeWait (messId) ;

}
} else {

var found = 0 ;
for (var i t 2 = 0 ; i t 2 < statemach ines . l ength ; i t 2++) {

found += statemach ines [i t 2] . wakeUp(messId , mess) ;
}
i f (found == 0) { // nobody l i s t e n ing , send noListener message . . .

eva l (”var temp = removeStack . var ”+messId+”==unde f ined ; ”) ; // . . .
but only i f t h i s i s not the f i r s t time , to a l low s e l f −

messages to be sent . Probably not needed though . . .
i f (! temp) {

send (” sendMessage . php?db=”+database+”&message=noL i s t en e r&id=”+
messId+”&source=”+vars . s r c) ;

e va l (” d e l e t e removeStack . var ”+messId+” ; ”) ;
} else {

eva l (” removeStack . var ”+messId+” = 1 ; ”) ;
}

}
}

}
}

f un c t i on a l te rWait (text , vars) {
var trans = vars . t rans ;
t rans . parent . wait (text , hand leDeta i l edAlt , { s r c : vars . src , t rans :

trans , messId : t e x t }) ;
t rans . parent . wakeUp(vars . i t) ;
return fa l se ;

}

– 55 –

B.2 script/Paradigm.js

f un c t i on paradigmGuard (trans , subproce sse s , g l o b a l L i s t) {
i f (t rans . parent . i sWait ing ()) return fa l se ; // d i sa l l ow i f the

statemachine i s current l y wait ing for some awnser
i f (! (subp roc e s s e s == unde f ined && numSTD() == 1)) { // t e s t whether

current subprocesses e x i s t and a l low t h i s t rans i t ion
var subArr = subp roc e s s e s . s p l i t (” ; ”) ;
var part = {} ;
for (var i t = 0 ; i t < subArr . l ength ; i t++) { // order subprocesses

according to t he i r pa r t i t i on
var temp = subArr [i t] . s p l i t (” . ”) ;
e va l (” i f (part . ”+temp [0]+ ”==unde f ined) part . ”+temp [0]+ ” = Array (’ ”+

temp [1]+ ” ’) ; e l s e part . ”+temp [0]+ ” . push (’ ”+temp [1]+ ” ’) ; ”) ;
}
for (var i t in part) {

var c o r r e c t = fa l se ;
e va l (” var sub = part . ”+i t+” ; ”) ;
for (var i t 2 = 0 ; i t 2 < sub . l ength ; i t 2++) {

i f (getSTD(i t) != fa l se && getSTD(i t) . current != null && getSTD(
i t) . current . name == sub [i t 2]) {

c o r r e c t = true ;
break ;

}
}
i f (c o r r e c t == fa l se) return fa l se ;

}
}

i f (g l o b a l L i s t==unde f ined) return true ; // pure employee t rans i t ion ,
a l low at t h i s junct ion .

// handle asynchronous trapOfSubprocess s i g na l s
g l ob a l L i s t = g l ob a l L i s t . s p l i t (”&”) ;
var addr = ”sendMessage . php?db=”+escape (database) ;
addr += ”&source=”+escape (t rans . parent . name) ;

for (var i t = 0 ; i t < g l ob a l L i s t . l ength ; i t++) {
var addrTemp = addr ;
var temp = g l ob a l L i s t [i t] . s p l i t (” . ”) ;
addrTemp += ”&targe t=”+escape (temp [0]) ;
addrTemp += ”&message=” ;
addrTemp += escape (”{ t a rge t : ’ ”+temp . s h i f t ()+” ’ ,STD: ’ ”+temp . s h i f t ()+”

’ , s t a t e : ’ ”+temp . s h i f t ()+” ’ , trap : ’ ”+temp . s h i f t ()+(temp . l ength
==0?” ’}” : ” ’ , next : ’ ”+temp . s h i f t ()+” ’} ”)) ;

t rans . parent . wait(− i t −1) ;
send (addrTemp , alterWait , { s r c : t rans . parent . name , t rans : trans , i t :

−i t −1}) ;
}

return fa l se ; // do not a l low ! Allow w i l l be enforced by fo l l ow up
funct ions (a l t e r wait e tc)

}

f un c t i on changeSubprocess (from , to) {
i f (getSTD(from)) { // ju s t in case a migration has a lready removed the

o r i g i na l subprocess
getSTD(from) . r e s e tH i s t o r y () ;
getSTD(from) . current = null ;
getSTD(from) . update () ;

}
getSTD(to) . current = getSTD(to) . g e tS ta t e (’ t r i v ’) ;
getSTD(to) . update () ;
sendTr igge r (’ cascade ’) ;

}

var storeUseCases = ”” ;
f unc t i on handleMigr (txt) {

document . getElementById(”upload ”) . className = ”hideIFrame” ;
storeUseCases = txt ;

}

f un c t i on getMigr () {
storeUseCases = ’ ’ ;
document . getElementById(”upload ”) . className = ”showIFrame” ;

– 56 –

B.3 script/Poll.js

}

B.3 script/Poll.js

var p o l l s = Array () ;

f unc t i on Po l l (name) {
try {
var Po l l = {

name : name ,
t imer : null ,
speed : 0

} ;
} catch (e) { a l e r t (e) ;}

Po l l . p o l l = func t i on () {
send (” p o l l . php?db=”+database+”&source=”+this . name , this . handle , { s r c

: this . name}) ;
} ;

Po l l . r epeat = func t i on (m i l i s e c) {
i f (m i l i s e c != unde f ined) {

c learTimeout (this . t imer) ;
this . speed = m i l i s e c ;

}
this . p o l l () ;
i f (this . speed && this . speed > 100) {

this . t imer = setTimeout (” ge tPo l l (’ ”+this . name+” ’) . repeat () ” , this .
speed) ;

} else {
c learTimeout (this . t imer) ;

}
} ;

Po l l . hand le = func t i on (message , vars) { // standard funct ion
// handled here in order to show get message and removal from

database
i f (message == ””) {

return fa l se ;
}
var messages = message . s p l i t (” ; ”) ;
for (var i t = 0 ; i t < messages . l ength ; i t++) {

var temp = messages [i t] . s p l i t (”=”) ;
var id = temp [0] ;
i f (id == ””) continue ;
var mess= temp [1] ;
send (” sendMessage . php?db=”+database

+”&targe t=”+Po l l . name // only remove messages send to you !
+”&message=remove”
+”&id=”+id ,
(typeof e == ’ func t i on ’) ? e : a l e r t

// show the message (uses e , a gener ic error function , i f
i t e x i s t s , otherwise , a l e r t)

) ;
}

} ;

Po l l . handle = this . hand le ; // overload t h i s ! ! !
// Pol l . repeat () ;

p o l l s . push (Po l l) ;
return Po l l ;

}

f un c t i on ge tPo l l (name) {
for (var i t = 0 ; i t < p o l l s . l ength ; i t++) {

i f (p o l l s [i t] . name == name) return po l l s [i t] ;
}

}

B.4 script/std.js

f un c t i on ve rbo se () {

– 57 –

B.5 script/umlPrint.js

var verbose = {
div : null ,
s tateMach ines : Array ()

} ;

ve rbose . update = func t i on (STD) {
i f (STD. current) ve rbose . div . innerHTML = STD. name+” . current = ”+STD.

current . getName ()+”
\n” + verbose . div . innerHTML ;
} ;

ve rbose . draw = func t i on (elem) {
for (var i t = 0 ; i t < this . s tateMach ines . l ength ; i t++) {

i f (this . s tateMach ines [i t] == elem) return true ;
}
this . s tateMach ines . push (elem) ;
i f (ve rbose . div == null) {

verbose . div = document . createElement (’ div ’) ;
ve rbose . div . id = ’ p r i n t ’ ;
ve rbose . div . className = ’ r epo r t ’ ;
document . body . appendChild(ve rbose . div) ;

}

var p r i n t = ”<DIV STYLE=’border : 2px s o l i d b lack ; background : #
DDDDDD’>Start ”+elem . name+”
\n” ;

for (var i t = 0 ; i t < elem . s t a t e s . l ength ; i t++) {
p r i n t += elem . s t a t e s [i t] . getName ()+”
\n” ;

}
for (var i t = 0 ; i t < elem . t r an s i t i o n s . l ength ; i t++) {

var trans = elem . t r an s i t i o n s [i t] ;
p r i n t += ” Tran s i t i on (”+trans . name+”) : ”+trans . from . getName ()+”

−−” ;
p r i n t += trans . t r i g g e r==unde f ined?”” : t rans . t r i g g e r ;
p r i n t += trans . guard==unde f ined?”” : ” [”+trans . guard+”] ” ;
p r i n t += trans . a c t i v i t y==unde f ined?”” : ”/”+trans . a c t i v i t y ;
p r i n t += ”−−> ”+trans . to . getName ()+”
\n” ;

}
p r in t += ”End ”+elem . name+” (current s t a t e : ”+(elem . current ? elem

. current . getName () : ” nu l l ”)+”)</DIV>\n” ;
ve rbose . div . innerHTML = p r i n t + verbose . div . innerHTML ;
elem . addUpdate (” verboseUpdate ”) ;
elem . update () ;

} ;

ve rbose . unDraw = func t i on () {
i f (ve rbose . div == null) return true ;
ve rbose . div . parentNode . removeChild (ve rbose . div) ;
ve rbose . div = null ;
for (var i t = 0 ; i t < this . s tateMach ines . l ength ; i t++) {

this . s tateMach ines [i t] . removeUpdate (’ verboseUpdate ’) ;
}
this . s tateMach ines = Array () ;

} ;

return verbose ;
}

var verbose = ve rbose () ;
verboseUpdate = func t i on () {

verbose . update (STD) ;
}

B.5 script/umlPrint.js

f un c t i on UML() {
var UML = {

stateMach ines : Array () ,
s t a t e s : Array () ,
t r a n s i t i o n s : Array () ,
drag : null ,
o f f s e t : {

x : 0 ,
y : 0

} ,

– 58 –

B.5 script/umlPrint.js

begin : {
x : 0 ,
y : 0

}
} ;

UML. update = func t i on (STD) {
for (var i t = 0 ; i t < STD. s t a t e s . l ength ; i t++) {

var div = document . getElementById(”uml . ”+STD. name+” . ”+STD. s t a t e s [
i t] . getName ()) ;

// i f (d iv == undefined) {
// UML.unDraw () ;
// for (var i t = 0; i t < statemachines . l eng th ; i t++) uml . draw(

statemachines [i t]) ;
// }
// e l s e

div . className = ’ s t a t e ’ ;
}
i f (STD. current) {

var temp = document . getElementById(”uml . ”+STD. name+” . ”+STD. current
. getName ()) ;

i f (temp) temp . className = ’ cu r r en tS ta t e ’ ; // might f a i l due to
removal o f s t a t e

}
} ;

UML. draw = func t i on (elem , width , x , y) {
for (var i t = 0 ; i t < this . s tateMach ines . l ength ; i t++) {

i f (this . s tateMach ines [i t] == elem) return fa l se ;
}
this . s tateMach ines . push (elem) ;
i f (! width) width = 4 ;
i f (! x) x = 0 ;
i f (! y) y = 0 ;
for (var i t = 0 ; i t < elem . s t a t e s . l ength ; i t++) { // draw the s t a t e s

var name = elem . s t a t e s [i t] . getName () ;
newDiv = document . createElement (’ div ’) ;
newDiv . id = ’uml . ’+elem . name+’ . ’+name ;

// DB
var mess = ” getLocat ion . php? s t a t e=”+newDiv . id ;
func = func t i on (obj , vars) {

eva l (”var temp = ”+obj+” ; ”) ;
vars . d iv . s t y l e . l e f t = temp . l e f t+”px” ;
vars . d iv . s t y l e . top = temp . top+”px” ;
while (UML. t r a n s i t i o n s . l ength != 0) {

div = UML. t r a n s i t i o n s . pop () ;
d iv . parentNode . removeChild (div) ;

}
for (var i t = 0 ; i t < statemach ines . l ength ; i t++) {

for (var i t 2 = 0 ; i t 2 < statemach ines [i t] . t r a n s i t i o n s . l ength ;
i t 2++) {

UML. trans i t ionDraw (statemach ines [i t] . t r a n s i t i o n s [i t 2]) ;
}

}
}
newDiv . s t y l e . top = ((Math . f l o o r (i t /width)) ∗100+y)+”px” ;
newDiv . s t y l e . l e f t = (((Math . f l o o r ((i t%(width∗2)) /width) !=0) ?(width

−1− i t%width) : i t%width)∗150+x)+”px” ;
send (mess , func , {div : newDiv , UML: UML}) ;
// end DB

/∗
// cook ies
var temp = getCookie (’ l oca t ions ’) ;
i f (temp && temp . match(”#”+newDiv . id+”=”)) {

temp = temp . s p l i t (”#”+newDiv . id+”=”) ;
temp = temp [1] . s p l i t (”#”) ;
e va l (” temp = ”+temp[0]+”;”) ;

} e l s e {
temp = undefined ;

}

– 59 –

B.5 script/umlPrint.js

newDiv . s t y l e . top = (temp != undefined)?temp . top : ((Math . f l o o r (i t /
width))∗100+y)+”px ”;

newDiv . s t y l e . l e f t = (temp != undefined)?temp . l e f t : (((Math . f l o o r ((
i t%(width ∗2))/width) !=0) ?(width−1− i t%width) : i t%width)∗150+x)
+”px ”;

// end cook ies
∗/

newDiv . className = (elem . current&&elem . current . getName ()==name) ?”
cu r r en tS ta t e” : ” s t a t e ” ;

newDiv . innerHTML = name+”
(”+elem . name+”) ” ;
newDiv . s t y l e . he ight = ”50px” ;
newDiv . s t y l e . width = ”100px” ;
newDiv . s e tAt t r i bu t e (’ onmousedown ’ , ’ uml . star tDrag (event , t h i s) ’) ;
newDiv . s e tAt t r i bu t e (’ onmouseup ’ , ’ uml . stopDrag (t h i s) ’) ;
this . s t a t e s . push (document . body . appendChild(newDiv)) ;

}
for (var i t = 0 ; i t < elem . t r an s i t i o n s . l ength ; i t++) {

this . t rans i t ionDraw (elem . t r a n s i t i o n s [i t]) ;
}
elem . addUpdate (”umlUpdate”) ;
elem . update () ;
// return the number of rows i t occupies :
return Math . c e i l (elem . s t a t e s . l ength /width) ;

} ;

UML. trans i t ionDraw = func t i on (t rans) {
from = document . getElementById(”uml . ”+trans . parent . name+” . ”+trans .

from . getName ()) ;
to = document . getElementById(”uml . ”+trans . parent . name+” . ”+trans . to .

getName ()) ;
i f (! from | | ! to) return fa l se ;
t i t l e = trans . t r i g g e r==unde f ined?”” : t rans . t r i g g e r ;
t i t l e += trans . guard==unde f ined?”” : ” [”+trans . guard+”] ” ;
t i t l e += trans . a c t i v i t y==unde f ined?”” : ”/”+trans . a c t i v i t y ;

var from = {
x : pa r s e In t (from . s t y l e . l e f t) ,
width : pa r s e In t (from . s t y l e . width) ,
y : pa r s e In t (from . s t y l e . top) ,
he ight : pa r s e In t (from . s t y l e . he ight)

} ;
var to = {

x : pa r s e In t (to . s t y l e . l e f t) ,
width : pa r s e In t (to . s t y l e . width) ,
y : pa r s e In t (to . s t y l e . top) ,
he ight : pa r s e In t (to . s t y l e . he ight)

} ;
i f ((from . x >= to . x && from . x <= to . x + to . width) | | (from . x <= to . x

&& to . x <= from . x + from . width)) { // v e r t i c a l
this . drawLine (

{
x : (from . x > to . x) ? from . x + (to . x + to . width − from . x) /2 − 1 :

to . x + (from . x + from . width − to . x) /2 − 1 ,
y : from . y + ((from . y<to . y) ? from . he ight : 0)

} ,
{

x : (to . x > from . x) ? to . x + (from . x + from . width − to . x) /2 − 1 :
from . x + (to . x + to . width − from . x) /2 − 1 ,

y : to . y + ((to . y<from . y) ? to . he ight :−2)
} ,
t i t l e

) ;
} else i f ((from . y >= to . y && from . y <= to . y + to . he ight) | | (from . y

<= to . y && to . y <= from . y + from . he ight)) { // hor i zonta l
this . drawLine (

{
x : from . x + ((from . x<to . x) ? from . width : 0) ,
y : ((from . y > to . y) ? from . y + (to . y + to . he ight − from . y) /2 : to .

y + (from . y + from . he ight − to . y) /2) − 1
} ,
{

x : to . x + ((to . x<from . x) ? to . width : 0) ,

– 60 –

B.5 script/umlPrint.js

y : ((to . y > from . y) ? to . y + (from . y + from . he ight − to . y) /2 :
from . y + (to . y + to . he ight − from . y) /2) − 1

} ,
t i t l e

) ;
} else {

this . drawLine (
{

x : from . x+from . width/2+1,
y : from . y + ((from . y < to . y) ? from . he ight : 0)

} ,
{

x : from . x+from . width/2−1,
y : from . y + ((from . y < to . y) ? from . he ight : 0) + ((from . he ight /2)

∗ ((from . y < to . y) ?1:−1))
} ,
t i t l e ,
true

) ;
this . drawLine (

{
x : from . x+from . width/2+1,
y : from . y + ((from . y < to . y) ? from . he ight : 0) + ((from . he ight /2)

∗ ((from . y < to . y) ?1:−1))
} ,
{

x : from . x+from . width/2−1 + (from . width ∗(from . x<to . x ? .75 : − . 75))
+ (from . x<to . x ?3 : 0) ,

y : from . y + ((from . y < to . y) ? from . he ight : 0) + ((from . he ight /2)
∗ ((from . y < to . y) ?1:−1))

} ,
t i t l e ,
true

) ;
this . drawLine (

{
x : from . x+from . width/2−1 + (from . width ∗(from . x<to . x ? .75 : − . 75))

,
y : from . y + ((from . y < to . y) ? from . he ight : 0) + ((from . he ight /2)

∗ ((from . y < to . y) ?1:−1))
} ,
{

x : from . x+from . width/2−1 + (from . width ∗(from . x<to . x ? .75 : − . 75))
,

y : to . y + ((from . y < to . y) ?0 : to . he ight) + ((to . he ight /2) ∗ ((
from . y < to . y) ?−1:1))

} ,
t i t l e ,
true

) ;
this . drawLine (

{
x : from . x+from . width/2−1 + (from . width ∗(from . x<to . x ? .75 : − . 75))

,
y : to . y + ((from . y < to . y) ?0 : to . he ight) + ((to . he ight /2) ∗ ((

from . y < to . y) ?−1:1))
} ,
{

x : to . x+to . width/2 − 1 + (from . x<to . x ?3 : 0) ,
y : to . y + ((from . y < to . y) ?0 : to . he ight) + ((to . he ight /2) ∗ ((

from . y < to . y) ?−1:1))
} ,
t i t l e ,
true

) ;
this . drawLine (

{
x : to . x+to . width/2 − 1 ,
y : to . y + ((from . y < to . y) ?0 : to . he ight) + ((to . he ight /2) ∗ ((

from . y < to . y) ?−1:1))
} ,
{

x : to . x+to . width/2 − 1 ,
y : to . y + ((from . y < to . y) ?0 : to . he ight) − (from . y<to . y ?3 : 0)

– 61 –

B.5 script/umlPrint.js

} ,
t i t l e

) ;
}

} ;

UML. drawLine = func t i on (from , to , t i t l e , noArrow) {
var elem = document . createElement (”DIV”) ;
elem . className = ” l i n e ” ;
elem . s t y l e . width = Math .max(3 , Math . abs (from . x − to . x))+”px” ;
elem . s t y l e . he ight = Math .max(3 , (Math . abs (from . y − to . y) +(((noArrow)

&&(from . y<to . y)) ?3 : 0)))+”px” ;
elem . s t y l e . l e f t = Math . min(from . x , to . x)+”px” ;
elem . s t y l e . top = Math . min (from . y , to . y)+”px” ;
elem . t i t l e = t i t l e ;

i f (! noArrow) {
var arrow = document . createElement (”DIV”) ;
i f (from . x < to . x) {

arrow . className = ”harrow” ;
arrow . innerHTML = ”> ; ” ;
arrow . s t y l e . width = to . x − from . x + 5+”px” ;
arrow . s t y l e . textAl ign = ” r i g h t ” ;

} else i f (from . x > to . x) {
arrow . className = ”harrow” ;
arrow . innerHTML = ”&l t ; ” ;

} else i f (from . y < to . y) {
arrow . className = ”varrow” ;
arrow . innerHTML = ”&or ; ” ;
arrow . s t y l e . top = (to . y − from . y − 23)+”px” ;

} else {
arrow . className = ”varrow” ;
arrow . innerHTML = ”&and ; ” ;

}
this . t r a n s i t i o n s . push (elem . appendChild(arrow)) ;

}
this . t r a n s i t i o n s . push (document . body . appendChild(elem)) ;
return elem ;

} ;

UML. unDraw = func t i on () {
UML. stopDrag () ;
var div ;
while (this . s tateMach ines . l ength != 0) {

div = this . s tateMach ines . pop () ;
}
while (this . s t a t e s . l ength != 0) {

div = this . s t a t e s . pop () ;
d iv . parentNode . removeChild (div) ;

}
while (this . t r a n s i t i o n s . l ength != 0) {

div = this . t r a n s i t i o n s . pop () ;
d iv . parentNode . removeChild (div) ;

}
for (var i t = 0 ; i t < statemach ines . l ength ; i t++) {

statemach ines [i t] . removeUpdate (’ umlUpdate ’) ;
}

} ;

UML. startDrag = func t i on (event , elem) {
this . drag = elem ;
this . begin . x = event . c l i e n tX − elem . o f f s e t L e f t + this . o f f s e t . x ;
this . begin . y = event . c l i e n tY − elem . o f f se tTop + this . o f f s e t . y ;
document . onmousemove = this . dragFunction ;

} ;

UML. stopDrag = func t i on (elem) {
i f (this . drag) {

var mess = ”updateLocation . php? l e f t=”+par se In t (this . drag . s t y l e .
l e f t)+”&top=”+par se In t (this . drag . s t y l e . top)+”&s t a t e=”+escape (
this . drag . id) ;

send (mess) ;

var temp = getCookie (’ l o c a t i o n s ’) ;

– 62 –

B.6 script/script.js

i f (temp) {
eva l (’ var regExp = /# ’+this . drag . id+’ [ˆ#]∗ ($ |#)/ g i ’) ;
temp = temp . r ep l a c e (regExp , ”\#”) ;
temp = temp . r ep l a c e (/#+/g , ”\#”) ;
i f (temp == ’#’) temp = ”” ;

}
temp = (temp?temp : ””)+”#”+this . drag . id+”={ l e f t : ’ ”+this . drag . s t y l e .

l e f t+” ’ , top : ’ ”+this . drag . s t y l e . top+” ’} ” ;

se tCook ie (’ l o c a t i o n s ’ , temp , 365) ; // exp i re s a f t e r a year
}

this . drag = null ;
document . onmousemove = null ;
while (this . t r a n s i t i o n s . l ength != 0) {

div = this . t r a n s i t i o n s . pop () ;
d iv . parentNode . removeChild (div) ;

}
for (var i t = 0 ; i t < statemach ines . l ength ; i t++) {

for (var i t 2 = 0 ; i t 2 < statemach ines [i t] . t r a n s i t i o n s . l ength ; i t 2
++) {

UML. trans i t ionDraw (statemach ines [i t] . t r a n s i t i o n s [i t 2]) ;
}

}
} ;

UML. dragFunction = func t i on (event) {
i f (UML. drag) {

i f (! event) event = window . event ;
UML. drag . s t y l e . l e f t = (event . c l i e n tX − UML. begin . x)+”px” ;
UML. drag . s t y l e . top = (event . c l i e n tY − UML. begin . y)+”px” ;

}
while (UML. t r a n s i t i o n s . l ength != 0) {

div = UML. t r an s i t i o n s . pop () ;
d iv . parentNode . removeChild (div) ;

}
for (var i t = 0 ; i t < statemach ines . l ength ; i t++) {

for (var i t 2 = 0 ; i t 2 < statemach ines [i t] . t r a n s i t i o n s . l ength ; i t 2
++) {

UML. trans i t ionDraw (statemach ines [i t] . t r a n s i t i o n s [i t 2]) ;
}

}
} ;
return UML;

}

var uml = UML() ; // create an instance of the c l a s s
f un c t i on umlWaitForIt (STD) {

uml . unDraw () ;
for (var i t = 0 ; i t < statemach ines . l ength ; i t++) {

uml . draw(statemach ines [i t]) ;
}

}

f un c t i on umlUpdate(args) { // funct ion to append to the draw funct ions
array of the statemachine STD

i f (args == ’ redraw ’) {
i f (uml . wai te r) c learTimeout (uml . wai te r) ;
uml . wai te r = setTimeout (”umlWaitForIt () ” , 1000) ;

} else {
uml . update (STD) ;

}
}

B.6 script/script.js

f un c t i on e (message) { // an error message funct ion
document . getElementById(’ e r r o r ’) . innerHTML = message + ”
\n” +

document . getElementById(’ e r r o r ’) . innerHTML ;
return fa l se ;

}

f un c t i on i n i t () {

– 63 –

B.7 ajaxFiles/sendMessage.php

for (var i t = 0 ; i t < a dd i t i o n a l I n i t . l ength ; i t++) {
a dd i t i o n a l I n i t [i t] () ;

}
var he ight = 10 ;
for (var i t = 0 ; i t < statemach ines . l ength ; i t++) {

he ight += uml . draw (statemach ines [i t] , 4 , 300 , he ight) ∗100 ;
}
sendTr igge r (’ cascade ’) ;

}

f un c t i on send (ur l , func , funcArgs , synchronous) {
i f (func == unde f ined) func = func t i on (a , b) {} ;
var req = (window . XMLHttpRequest) ?new XMLHttpRequest() :new

ActiveXObject (” Microso f t .XMLHTTP”) ;
req . onreadystatechange = func t i on () {

i f (req . readyState == 4) {
try{

i f (req . s t a tu s == 200) func (req . responseText , funcArgs) ;
else a l e r t (”Error : ”+req . s t a tu s) ;

} catch (e) {
}

}
} ;
req . open (”GET” , ” a j a xF i l e s /”+ur l , ! synchronous) ;

req . send (null) ;
return req ;

}

f un c t i on se tCook ie (name , value , e xp i r e In) {
i f (e xp i r e In) {

var exp i r e = new Date () ;
e xp i r e . setDate (exp i r e . getDate ()+exp i r e In) ;

}
document . cook ie = name . s p l i t (” . ”) . j o i n (” ”)+”=”+escape (va lue)+((

exp i r e In==unde f ined) ?”” : ” ; e xp i r e s=”+exp i r e . toGMTString()) ;
}

f un c t i on getCookie (name) {
i f (document . cook ie . length >0) {

var s t a r t = document . cook ie . indexOf (name + ”=”) ;
i f (s t a r t != −1) {

s t a r t = s t a r t + name . l ength + 1 ;
var end = document . cook ie . indexOf (” ; ” , s t a r t) ;

i f (end == −1) end = document . cook ie . l ength ;
return unescape (document . cook ie . sub s t r i ng (s t a r t , end)) ;

}
}
return unde f ined ;

}

var t imer = null ;
f un c t i on setRandom (speed) {

c learTimeout (t imer) ;
i f (speed != 0) {

statemach ines [0] . triggerRandom () ;
c learTimeout (t imer) ;
t imer = setTimeout (”setRandom (”+speed+”) ; ” , speed) ;

}
}

B.7 ajaxFiles/sendMessage.php

<?
// @ATTR, required : database , the l oca t ion of the messages t a b l e
// @ATTR, required : source , the sender
// @ATTR, op t iona l : targe t , the intended rece iver , op t iona l i f f

removal message
// @ATTR, required : message , the message
// @ATTR, op t iona l : id , the update locat ion , inse r t i f not se t
// @RETURN, required : id , or the channel number , a l so the wait id

// f i r s t send no caching headers

– 64 –

B.7 ajaxFiles/sendMessage.php

r e qu i r e onc e ”noCache . php” ;

r e qu i r e onc e ”/xampp/htdocs /paradigm/query . php” ;

i f (! i s set ($ REQUEST[” id ”])) {
$sq l = ”

INSERT
INTO messages (source , targe t , message)
VALUES (

’{$ REQUEST[” source ”] } ’ ,
’{$ REQUEST[” ta rge t ”] } ’ ,
’{$ REQUEST[”message”] } ’

)
” ;
$my sq l i n s e r t i d = 0 ;
$ r e s u l t = query ($sq l , $ REQUEST[’db ’]) ;
$rep ly = $my sq l i n s e r t i d ;

} else i f ($ REQUEST[”message”]==”remove”) {
$sq l = ”

DELETE
FROM messages
WHERE id = ’{$ REQUEST[’ id ’]} ’
AND targe t = ’{$ REQUEST[’ source ’] } ’

” ;
$mysq l a f f e c t ed rows = 0 ;
$ r e s u l t = query ($sq l , $ REQUEST[’db ’]) ;
$rep ly = ” de l e t ed $mysq l a f f e c t ed rows rows” ;

} else i f ($ REQUEST[’ message ’] == ’ canc e l ’) {
$sq l = ”

UPDATE messages
SET targe t = IF (source = ’{$ REQUEST[’ source ’] } ’ , targe t , source) ,

source = ’{$ REQUEST[’ source ’] } ’ ,
message = ’ c anc e l ’

WHERE id = ’{$ REQUEST[’ id ’]} ’
AND (

source = ’{$ REQUEST[’ source ’] } ’
OR
ta rge t = ’{$ REQUEST[’ source ’] } ’

)
” ;
$mysq l a f f e c t ed rows = 0 ;
$ r e s u l t = query ($sq l , $ REQUEST[’db ’]) ;
$rep ly = ”updated $mysq l a f f e c t ed rows rows” ;

} else {
$sq l = ”

UPDATE messages
SET targe t = source ,

source = ’{$ REQUEST[’ source ’] } ’ ,
message = ’{$ REQUEST[’ message ’] } ’

WHERE id = ’{$ REQUEST[’ id ’]} ’
AND targe t = ’{$ REQUEST[’ source ’] } ’

” ;
$mysq l a f f e c t ed rows = 0 ;
$ r e s u l t = query ($sq l , $ REQUEST[’db ’]) ;
$rep ly = ”updated $mysq l a f f e c t ed rows rows” ;

}
echo $rep ly ;

/∗ use below in case of debugging ne cce s i t i e s ∗/
/∗ k sor t ($ REQUEST) ;
unset ($ REQUEST[” loca t ions ”]) ;
$temp = Array () ;
foreach ($ REQUEST as $key => $va l) {

$temp [] = ”$key=$va l ” ;
}
$temp = implode(”&”, $temp) ;

$ s q l = ”
INSERT
INTO mess log (t i j d , message , r ep l y)
VALUES (NOW() , ’ $temp ’ , ’ $ rep l y ’)

” ;
$ r e su l t = query ($sq l , $ REQUEST[’ db ’]) ;
∗/

– 65 –

B.8 ajaxFiles/poll.php

?>

B.8 ajaxFiles/poll.php

<?
// f i r s t send no caching headers
r e qu i r e onc e ”noCache . php” ;

// act ions f i r s t

$sq l = ”
SELECT id ,

message
FROM messages
WHERE targe t = ’{$ REQUEST[” source ”] } ’
ORDER BY message != ’ noL i s t en e r ’ , message LIKE ’{%} ’

” ;
require ”/xampp/ htdocs /paradigm/query . php” ;
$ r e s u l t = query ($sq l , $ REQUEST[”db”]) ;

$temp = array () ;
while (($row = mysql fetch assoc ($ r e s u l t)) !== FALSE) {

$temp [] = ”{$row [” id ”]}={$row [”message”]} ” ;
}

echo implode (” ;\n” , $temp) ;

?>

B.9 ajaxFiles/leavePage.php

<?
r equ i r e onc e ”noCache . php” ;
r e qu i r e onc e ”/xampp/htdocs /paradigm/query . php” ;

$rep ly = ”No db or comp found” ;
i f (i s set ($ REQUEST[”db”]) && i s set ($ REQUEST[”comp”])) {

$sq l = ”
DELETE
FROM messages
WHERE source = ’{$ REQUEST[”comp”] } ’
OR ta rge t = ’{$ REQUEST[”comp”] } ’

” ;
$mysq l a f f e c t ed rows = 0 ;
$ r e s u l t = query ($sq l , $ REQUEST[’db ’]) ;
$rep ly = ” de l e t ed $mysq l a f f e c t ed rows rows” ;

}
echo $rep ly ;
?>

B.10 ajaxFiles/JITForm.php

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01//EN” ”http : //www.w3 . org /TR/
html4/ s t r i c t . dtd”>

<HTML>
<HEAD>

<TITLE>Fi l e Upload Form</TITLE>

<LINK REL=” s t y l e s h e e t ” TYPE=” tex t / c s s ” HREF=” s t y l e . c s s ”>
</HEAD>

<BODY>

<FORM ID=” f i l e u p l o a d f o rm ” METHOD=”post ” ENCTYPE=”mult ipart / form−data”
ACTION=”uploadResult . php” CLASS=’ uploadForm ’>

<INPUT NAME=” f i l e ” TYPE=” f i l e ” ONCHANGE=’ t h i s . form . submit () ’ SIZE=0>
</FORM>

</BODY>

</HTML>

B.11 ajaxFiles/uploadResult.php

– 66 –

B.11 ajaxFiles/uploadResult.php

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01//EN” ”http : //www.w3 . org /TR/
html4/ s t r i c t . dtd”>

<HTML>
<HEAD>

<TITLE>Get and send Usecase </TITLE>

<?
// some u s e f u l l v a r i a b l e s to se t :
$map = ”/xampp/ htdocs /paradigm/upload /” ;
$max = 1048576; // max s i z e = 1Mb
$extAl low = Array (

”migr” ,
) ; // moge l i jke e x t e n t i e s (zonder punt) , h oo f d l e t t e r ongevoe l ig

// Controleren
i f (i s set ($ FILES [’ f i l e ’])) {

$bestand = explode (”\\” , $ FILES [’ f i l e ’] [’name ’]) ;
$bestand = $bestand [count ($bestand) − 1] ;

$ext = explode (” . ” , $bestand) ;
$ext = strtolower ($ext [count ($ext) − 1]) ;

// Toegestaande ex t ens ie s opvragen
i f ($extAl low !== ””) {

$extFout = true ;
foreach ($extAl low as $va l) {

i f ($ext=== strtolower ($va l)) {
$extFout = fa l se ;
break ;

}
}

} else $extFout = fa l se ;

i f ($extFout) {
echo ”Foutieve e x t e n t i e van het m ig ra t i e bestand (moet . migr z i j n) ”

;
} else {

i f ($ FILES [’ f i l e ’] [’ s i z e ’] > $max) {
echo ”max s i z e e r r o r ; hou het AUB onder 1Mb” ;

} else {
i f (move up l oaded f i l e ($ FILES [” f i l e ”] [”tmp name”] , $map . $bestand)

!== FALSE) {
$content = f i l e ($map . $bestand) ;
$toRem = $toAdd = Array () ;

echo ”<SCRIPT TYPE=’ t ex t / j a v a s c r i p t ’>\n” ;
foreach ($content as $key => $va l) {

$va l = trim ($va l) ;
$key++;
i f (preg match (”/ˆ\w∗$/” , $va l)) {

// echo ”// sk ip empty l i n e $key ($va l)\n”;
continue ;

} else i f (s t r i p o s ($val , ”add : ”) === 0) {
$mode = ”A” ;

// echo ”// se t mode $mode on l i n e $key ($va l)\n”;
continue ;

} else i f (s t r i p o s ($val , ”remove : ”) === 0) {
$mode = ”R” ;

// echo ”// se t mode $mode on l i n e $key ($va l)\n”;
continue ;

} else i f (! i s set ($mode)) {
// echo ” a l e r t (’No mode set , assuming add ’) ; // l i n e $key\n”;

$mode = ’A ’ ;
}

// echo ”// using mode $mode on l i n e $key\n”;
i f ($mode == ’A ’) {

$toAdd [] = ”{” . $va l . ”}” ;
} else {

$toRem [] = ”{” . s t r r e p l a c e (” ’ ” , ”\\\\ ’ ” , $va l) . ”}” ;
}

}

$temp = ”addit ionUseCase (Array (” ;
$temp .= ”{ stateMachine : ’ McPal ’ , from : ’ NewRuleSet ’ , to : ’ StartMigr

’ , guard : ’ paradigmGuard (th i s ,\” Migr . StablePhase \” ,\”McPal .

– 67 –

B.12 ajaxFiles/updateLocation.php

Migr . StablePhase . ready \”) ; ’ , a c t i v i t y : ’ sendTr igge r (\” cascade
\”) ’} , ” ;

$temp .= implode ($toAdd , ” , ”) ;
$temp .= ” ,{ stateMachine : ’ McPal ’ , from : ’ Content ’ , to : ’ Observing ’ ,

guard : ’ paradigmGuard (th i s ,\” Migr . doMigr \” ,\”McPal . Migr .
doMigr . migrDone\”) ; ’ , a c t i v i t y : ’ sendTr igge r (\” cascade \”) ; ” ;

$temp .= ” removalUseCase(Array (” ;
$temp .= implode ($toRem , ” , ”) ;

$temp .= ”)) ’})) ; s toreUseCases = ’ ’ ; ” ;
$temp = ”window . top . window . handleMigr (’ ” . s t r r e p l a c e (” ’ ” , ”\\ ’ ” ,

$temp) . ” ’) ; ” ;
echo ”$temp\n</SCRIPT></HEAD><BODY><P></BODY></HTML>” ;

} else {
echo ” f a i l e d to move to mapbestand” ;

}
}

}
}
require (’JITForm . php ’) ; // d ie s i f correct , so i f i t reaches th i s , the

upload f a i l e d . Retry p lease
?>

B.12 ajaxFiles/updateLocation.php

<?
r equ i r e onc e ”noCache . php” ;
r e qu i r e onc e ”/xampp/htdocs /paradigm/query . php” ;

$mysq l a f f e c t ed rows = 0 ;
$ sq l = ”

UPDATE ‘ s ta t e s ‘
SET ‘ l e f t ‘ = {$ REQUEST[’ l e f t ’]} ,

‘ top ‘ = {$ REQUEST[’ top ’] }
WHERE ‘name ‘ = ’{$ REQUEST[’ s t a t e ’] } ’
” ;

$ r e s u l t = query ($sq l , ’ l o c a t i o n s ’) ;
i f ($mysq l a f f e c t ed rows == 0) {

$sq l = ”
INSERT
INTO ‘ s ta t e s ‘ (‘ name ‘ , ‘ l e f t ‘ , ‘ top ‘)
VALUES(

’{$ REQUEST[’ s t a t e ’]} ’ ,
{$ REQUEST[’ l e f t ’]} ,
{$ REQUEST[’ top ’] }

)
” ;
$ r e s u l t = query ($sq l , ’ l o c a t i o n s ’) ;

}
?>

B.13 ajaxFiles/getLocation.php

<?
r equ i r e onc e ”noCache . php” ;
r e qu i r e onc e ”/xampp/htdocs /paradigm/query . php” ;

$ sq l = ”
SELECT ‘ top ‘ , ‘ l e f t ‘
FROM ‘ s ta t e s ‘
WHERE ‘name ‘ = ’{$ REQUEST[’ s t a t e ’] } ’
” ;

$ r e s u l t = query ($sq l , ’ l o c a t i o n s ’) ;
i f (($row = mysql fetch assoc ($ r e s u l t)) !== FALSE) {

echo ”{ top : {$row [” top”] } , l e f t : {$row [” l e f t ”]}} ” ;
}
?>

B.14 ajaxFiles/noCache.php

– 68 –

B.15 script/getComponents.php

<?
header(”Exp i re s : Mon, 26 Jul 1990 05 : 00 : 00 GMT”) ;
header(”Last−Modif ied : ” . gmdate(”D, d M Y H: i : s ”) . ” GMT”) ;
header(”Cache−Control : no−store , no−cache , must−r e v a l i d a t e ”) ;
header(”Cache−Control : post−check=0, pre−check=0” , fa l se) ;
header(”Pragma : no−cache”) ;
?>

B.15 script/getComponents.php

ad d i t i o n a l I n i t = Array () ;
<?
r equ i r e onc e ”/xampp/htdocs /paradigm/query . php” ;

f unc t i on varParse ($varArr , $arr) { // t h i s got to be too complicated . . .
foreach ($varArr as $key => $va l) {

foreach ($arr as $arrKey => $row) {
i f (($temp = s t r r e p l a c e ($key , ’HELEMAALNIETS ’ , $row)) !== $row) {

$row [” id ”] .= ” $key ” ;
$row = s t r r e p l a c e (”max($key) ” , $val , $row) ;
for ($ i t = 0 ; $ i t < $va l ; $ i t++) {

$temp = s t r r e p l a c e ($key , $ i t , $row) ;
foreach ($temp as $tempKey => $tempVal) {

i f (strpos ($tempVal , ”CALC[”) !== FALSE) {
$temp2 = preg replace (” / .∗CALC\ [([ˆ \]] ∗) \] . ∗ / ” , ”$1” ,

$tempVal) ;
eval (’ $temp2 = ’ . $temp2 . ’ ; ’) ;
$temp [$tempKey] = preg replace (”/CALC\ [([ˆ \]] ∗) \] / ” ,

$temp2 , $tempVal) ;
}

}
$arr [] = $temp ;

}
unset ($arr [$arrKey]) ;

}
}

}
re turn $arr ;

}

f un c t i on idParse ($idAdd , $arr) {
foreach ($idAdd as $key => $va l) {

foreach ($arr as $arrKey => $row) {
i f (($temp = s t r r e p l a c e (” id$key ” , $val , $row)) !== $row) {

$arr [$arrKey] = $temp ;
}

}
}
re turn $arr ;

}

$componentNames = Array () ;
foreach (explode (” ; ” , $ REQUEST[”components”]) as $component) {

echo ”var database = ’{$ REQUEST[”db”] } ’ ; \ n” ;
echo ”var temp = func t i on () {\n” ;

/∗ s t a r t s t a t e s ∗/
$sq l = ”

SELECT S . stateName ,
S . compName,
S . statemachine ,
S . i n i t i a l

FROM s t a t e s S
WHERE S . compName = ’ $component ’

” ;

$ r e s u l t = query ($sq l , $ REQUEST[”db”]) ;

while (($row = mysql fetch assoc ($ r e s u l t)) !== FALSE) {
$comps [] = $row ;

}

i f (i s set ($ REQUEST[”var ”])) {

– 69 –

B.15 script/getComponents.php

$comps = varParse ($ REQUEST[”var ”] , $comps) ;
}

i f (i s set ($ REQUEST[” id ”])) {
$comps = idParse ($ REQUEST[” id ”] , $comps) ;

}

foreach ($comps as $row) {
$row = s t r r e p l a c e (Array (” ’ ” , ”\n”) , Array (”\\ ’ ” , ” ”) , $row) ;
$comp = ($row [” statemachine ”]== ’ ’) ?$component : $row [” statemachine ”] ;
$compLong = $comp ;
i f (i s set ($ REQUEST[” id ”]) && $row [” statemachine ”] == ””) {

$compLong = $comp . ” ” . implode (” , ” ,$ REQUEST[” id ”]) ;
$detailedComp = $comp ;
$detailedCompLong = $compLong ;

}

i f (! i s set ($componentNames [$comp])) {
echo ”\ tvar $comp = Statemachine (’ $compLong ’) ;\n” ;
i f ($comp == $component) {

echo ”\ tP o l l (’ $compLong ’) ;\n” ;
echo ”\ t g e tPo l l (’ $compLong ’) . handle = hand lePol l ;\n” ;

}
$componentNames [$comp] = true ;

}

eval (’ $temp = ’ . $row [” i n i t i a l ”] . ’ ; ’) ;
echo ($temp?”\t$comp . current = ” : ”\ t ”) . ”$comp . State (’{ $row [”

stateName”] } ’) ;\n” ;
}
/∗ end s t a t e s ∗/

/∗ s t a r t t rans i t ion ∗/
$sq l = ”

SELECT T. id ,
T. statemachine ,
T. source ,
T. targe t ,
T. t r i gg e r S i g ,
REPLACE(REPLACE(T. guard , ’\\ r ’ , ’ ’) , ’\\ t ’ , ’ ’) as guard ,
REPLACE(REPLACE(T. a c t i v i t y , ’\\ r ’ , ’ ’) , ’\\ t ’ , ’ ’) as a c t i v i t y

FROM t r a n s i t i o n s T
WHERE T. compName = ’ $component ’

” ;
$ r e s u l t = query ($sq l , $ REQUEST[”db”]) ;
while (($row = mysql fetch assoc ($ r e s u l t)) !== FALSE) {

$trans [] = $row ;
}

i f (! i s set ($t rans)) {
echo ” e (’No t r a n s i t i o n s found ! ! ! ’) ; ” ;

} else {
i f (i s set ($ REQUEST[”var ”])) {

$trans = varParse ($ REQUEST[”var ”] , $t rans) ;
}

i f (i s set ($ REQUEST[” id ”])) {
$trans = idParse ($ REQUEST[” id ”] , $t rans) ;

}

foreach ($t rans as $row) {
$row = s t r r e p l a c e (Array (” ’ ” , ”\n” , $detailedComp) , Array (” \\ ’ ” , ”

” , $detailedCompLong) , $row) ;
$comp = $row [” statemachine ”]== ’ ’ ?$component : $row [” statemachine ”] ;
unset ($row [” statemachine ”]) ;
foreach ($row as $key => $va l) $row [$key] = ($va l == ’ ’) ? ’ unde f ined

’ : ” ’ $va l ’ ” ;
echo ”\t$comp . Tran s i t i on (” . implode (” , ” , $row) . ”) ;\n” ;

}
}
/∗ end t rans i t ion ∗/

// foreach ($componentNames as $comp => $ t rue) {

– 70 –

B.16 index.php

// echo ”\ t s ta temachines . push ($comp) ;\n”;
// }

echo ”}\n” ;
echo ” a dd i t i o n a l I n i t . push (temp) ;\n” ;
echo ” sendTr igge r (’ cascade ’) ;\n” ;

}

?>

B.16 index.php

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01//EN” ”http : //www.w3 . org /TR/
html4/ s t r i c t . dtd”>

<HTML>
<HEAD>

<?
i f (i s set ($ REQUEST[”components”])) {

echo ”<TITLE>” ;
$pageTit l e = $ REQUEST[”components”] ;
i f (i s set ($ REQUEST[” id ”])) {

foreach ($ REQUEST[” id ”] as $va l) {
$pageTit l e .= ” $va l ” ;

}
}
echo $pageTit l e . ” − ” ;

?>Paradigm UML Tool</TITLE>

<LINK REL=” s t y l e s h e e t ” TYPE=” tex t / c s s ” HREF=” s t y l e . c s s ”>
<SCRIPT TYPE=’ t ex t/ j a v a s c r i p t ’ SRC=’ s c r i p t / Po l l . j s ’></SCRIPT>

<SCRIPT TYPE=’ t ex t/ j a v a s c r i p t ’ SRC=’ s c r i p t /Statemachine . j s ’></SCRIPT>

<SCRIPT TYPE=’ t ex t/ j a v a s c r i p t ’ SRC=’ s c r i p t /Paradigm . j s ’></SCRIPT>

<SCRIPT TYPE=’ t ex t/ j a v a s c r i p t ’ SRC=’ s c r i p t / std . j s ’></SCRIPT>

<SCRIPT TYPE=’ t ex t/ j a v a s c r i p t ’ SRC=’ s c r i p t /umlPrint . j s ’></SCRIPT>

<!−− SCRIPT TYPE=’ t ex t / j a v a s c r i p t ’ SRC=’ s c r i p t /paradigmPrint . j s ’></
SCRIPT −−>

<SCRIPT TYPE=’ t ex t/ j a v a s c r i p t ’ SRC=’ s c r i p t /getComponents . php?<?
$temp = Array () ;
f o r e ach ($ REQUEST as $key => $va l) {

i f ($key == ” l o c a t i o n s ”) cont inue ;
i f (i s a r r a y ($va l)) {

f o r e ach ($va l as $key2 => $va l2) {
$temp [] = ”$key ” . ” [$key2]= $val2 ” ;

}
} e l s e {

$temp [] = ”$key=$val ” ;
}

}
echo implode(”&” , $temp) ;

?> ’></SCRIPT>

<SCRIPT TYPE=’ t ex t/ j a v a s c r i p t ’ SRC=’ s c r i p t / s c r i p t . j s ’></SCRIPT>

</HEAD>

<BODY ONLOAD=’ i n i t () ’ ONUNLOAD=’ send (” leavePage . php?comp=”+statemach ines
[0] . name+”&db=”+database , a l e r t , undef ined , t rue) ; ’>

<FIELDSET STYLE=”width : 0px”>
<LEGEND>I n t e r f a c e <? echo $pageTit l e ; ?></LEGEND>

<TABLE>

<TBODY>
<TR><TD><INPUT ID=’ t r i g g e r ’ VALUE=’ manager ’></TD><TD><BUTTON ONCLICK=”

sendTr igge r (document . getElementById(’ t r i g g e r ’) . va lue) ; ”>Trigger </
BUTTON></TD></TR>

<TR><TD><INPUT ID=’ randomSpeed ’ VALUE=’ 0 . 5 ’></TD><TD><BUTTON ONCLICK=”
setRandom (document . getElementById(’ randomSpeed ’) . va lue ∗1000) ; ”
STYLE=”white−space : nowrap”>Rand Sec</BUTTON></TD></TR>

<TR><TD><INPUT ID=’ po l lSpeed ’ VALUE=’ 1 ’></TD><TD><BUTTON ONCLICK=” fo r (
var i t =0; i t <p o l l s . l ength ; i t++)p o l l s [i t] . r epeat (document .
getElementById(’ po l lSpeed ’) . va lue ∗1000) ; ” STYLE=”white−space :
nowrap”>Pol Sec</BUTTON></TD></TR>

<TR><TD COLSPAN=2><BUTTON ONCLICK=” fo r (var i t =0; i t <p o l l s . l ength ; i t++)
po l l s [i t] . r epeat (0) ; ”>Stop Pol l </BUTTON></TD></TR>

<TR><TD COLSPAN=2><BUTTON ONCLICK=” statemach ines [0] . triggerRandom () ; ”>
Trigge r Random</BUTTON></TD></TR>

<TR><TD><INPUT ID=’ toEval ’ VALUE=’ ’></TD><TD><BUTTON ONCLICK=” eva l (
document . getElementById(’ toEval ’) . va lue) ; ” STYLE=”white−space :
nowrap”>Eval</BUTTON></TD></TR>

– 71 –

B.16 index.php

<TR><TD COLSPAN=2><BUTTON ONCLICK=”uml . unDraw () ; ”>Undraw UML</BUTTON></
TD></TR>

<TR><TD COLSPAN=2><BUTTON ONCLICK=” fo r (var i t = 0 ; i t < statemach ines .
l ength ; i t++) uml . draw (statemach ines [i t] , 3 , 300 , (200∗ i t)+10) ; ”>
Draw UML</BUTTON></TD></TR>

<TR><TD COLSPAN=2><BUTTON ONCLICK=” fo r (var i t = 0 ; i t < statemach ines .
l ength ; i t++) verbose . draw(statemach ines [i t]) ; ”>Turn verbose ON</
BUTTON></TD></TR>

<TR><TD COLSPAN=2><BUTTON ONCLICK=”verbose . unDraw () ; ”>Turn verbose OFF</
BUTTON></TD></TR>

</TBODY>
</TABLE>

</FIELDSET>

<DIV ID=’ e r r o r ’ CLASS=’ r epo r t ’ STYLE=’ po s i t i o n : ab so lu t e ; top : 0px ; l e f t
: 1000px ; c o l o r : red ; width : 75% ’></DIV>

<IFRAME ID=”upload” SRC=” a j a xF i l e s /JITForm . php” CLASS=’ hideIFrame ’></
IFRAME>

</BODY>

</HTML><?
} else { ?>
<TITLE>Paradigm UML Tool ; S e l e c t model</TITLE>

<LINK REL=” s t y l e s h e e t ” TYPE=” tex t / c s s ” HREF=” s t y l e . c s s ”>
</HEAD>

<BODY>

<?
$ sq l = ”SELECT ∗

FROM models
WHERE d i sp l ay = 1

” ;
r e qu i r e onc e ”/xampp/ htdocs /paradigm/query . php” ;

$ r e s u l t = query ($sq l , ” paradigmmodels”) ;

while (($row = mysql fetch assoc ($ r e s u l t)) !== FALSE) {
$models [$row [” database ”]] [$row [”component”]] = Array (” id s ” => $row [”

numIds”] , ” vars ” => explode (” ; ” , $row [” v a r i a b l e s ”])) ;
}

ksort ($models) ;
foreach ($models as $db => $compArr) {

ksort ($compArr) ;
echo ”<FIELDSET>\n” ;
echo ”<LEGEND>$db</LEGEND>\n” ;
echo ”<TABLE>\n” ;
echo ”<TBODY>\n” ;
foreach ($compArr as $comp => $varArr) {

echo ”<FORM METHOD=’post ’><TR>\n<TD>$comp<INPUT TYPE=’hidden ’
VALUE=’$db ’ NAME=’db’><INPUT TYPE=’hidden ’ VALUE=’$comp ’ NAME
=’components’></TD>\n<TD><TABLE><TBODY>\n” ;

for ($ i t = 0 ; $ i t < $varArr [” i d s ”] ; $ i t++) {
echo ”<TR><TD STYLE=’width : 50px’> Id [$ i t] : </TD><TD STYLE=’width

: 50px’><INPUT TYPE=’ t ex t ’ NAME=’ id [$ i t] ’ STYLE=’width : 50
px’></INPUT></TD></TR>” ;

}
echo ”</TBODY></TABLE></TD>\n<TD><TABLE><TBODY>\n” ;
foreach ($varArr [” vars ”] as $var) {

i f ($var !== ””) {
echo ”<TR><TD STYLE=’width : 50px’>$var : </TD><TD STYLE=’width :

50px’><INPUT TYPE=’ t ex t ’ NAME=’var [$var] ’ STYLE=’width :
50px’></INPUT></TD></TR>” ;

}
}
echo ”</TBODY></TABLE></TD>\n<TD><INPUT TYPE=submit VALUE=’Open

’></INPUT></TD></TR></FORM>\n” ;
}
echo ”</TBODY>\n” ;
echo ”</TABLE>\n” ;
echo ”</FIELDSET>\n” ;

}
?>
</BODY>

</HTML><? } ?>

– 72 –

B.17 query.php

B.17 query.php

<?
f unc t i on query ($sq l , $db , $ s e rv e r = ” l o c a l h o s t ” , $use r = ”∗∗∗” , $pass =

”∗∗∗”) {
g l oba l $my sq l i n s e r t i d ;
g l oba l $mysq l a f f e c t ed rows ;
$ l i nk = mysql connect ($se rve r , $user , $pass) or die (’ Could not

connect : ’ . mysql error ()) ;
mysql select db ($db) or die (’ Could not s e l e c t database : ’

. $db) ;
$ r e s u l t = mysql query($ sq l) or die (’ Query ’ . $ sq l . ’ f a i l e d

: ’ . mysql error ()) ;
$my sq l i n s e r t i d = mysql insert id () ;
$mysq l a f f e c t ed rows = mysql affected rows () ;
mysq l c l o s e ($ l i nk) ;
re turn $ r e s u l t ;

}
?>

B.18 img/rounded.php

<?php

foreach ($ REQUEST as $key => $va l) $$key = $val ;
i f (! i s set ($w)) $w = 100;
i f (! i s set ($h)) $h = 50 ;
i f (! i s set ($cw)) $cw = $w/5 ;
i f (! i s set ($ch)) $ch = $cw ;

// create image
$img = imagecreatetruecolor ($w , $h) ;
imagean t i a l i a s ($img , true) ;

// a l l o c a t e some so lo r s
$trans = imagecolorallocate ($img , 0xC0 , 0xC0 , 0xC0) ;
imagef i l l ($img , 0 ,0 , $t rans) ;
image co l o r t r anspa rent ($img , $trans) ;
$white = imagecolorallocate ($img , 0xFF , 0xFF , 0xFF) ;
$border = imagecolorallocate ($img , 0x00 , 0x00 , 0x00) ;

// draw the corners and l i n e s between them
imagearc($img , $cw/2−1, $ch/2−1, $cw , $ch , 180 , 270 , $border) ;
imageline ($img , $cw/2 , 0 , $w−$cw/2 , 0 , $border) ;
imagearc($img , $w−$cw/2 , $ch/2 − 1 , $cw , $ch , 270 , 0 , $border) ;
imageline ($img , $w−1, $ch /2 , $w−1, $h−$ch /2 , $border) ;
imagearc($img , $w−$cw/2 , $h−$ch /2 , $cw , $ch , 0 , 90 , $border) ;
imageline ($img , $cw/2 , $h−1, $w−$cw/2 , $h−1, $border) ;
imagearc($img , $cw/2−1, $h−$ch /2 , $cw , $ch , 90 , 180 , $border) ;
imageline ($img , 0 , $ch /2 , 0 , $h−$ch /2 , $border) ;

// f i l l the corners (non−t ransparent)
imagef i l l ($img , 0 ,0 , $white) ;
imagef i l l ($img , $w−1 ,0 , $white) ;
imagef i l l ($img , 0 , $h−1, $white) ;
imagef i l l ($img , $w−1,$h−1, $white) ;

// imagee l l i p se ($image , $w/2 , $h /2 , $cw , $ch , $white) ;

// f l u s h image
header(’ Content−type : image/png ’) ;
imagepng($img) ;
imagedestroy ($img) ;
?>

B.19 style.css

. r e po r t {
he ight : 500px ;
width : 250px ;
over f low : auto ;
text−a l i g n : l e f t ;

– 73 –

B.20 sampleMigrFiles/MigrDetSchedExtWorker.migr

z−index : −1;
}
. s tate , . c u r r en tS ta t e {

background : #F0E68C ur l (’ img/rounded . php ’) ;
p o s i t i o n : ab so lu t e ;
text−a l i g n : c en t e r ;
v e r t i c a l −a l i g n : middle ;
c u r so r : po in t e r ;
z−index : 2 ;

}
. c u r r en tS ta t e {

background : #6B8E23 u r l (’ img/rounded . php ’) ;
c o l o r : white ;
font−weight : bold ;
z−index : 2 ;

}
. l i n e {

po s i t i o n : ab so lu t e ;
ove r f l ow : v i s i b l e ;
background : b lack ;
border : 0px ;
text−a l i g n : c en t e r ;
padding : 0px ;
z−index : 1 ;

}
. harrow ,
. varrow {

po s i t i o n : ab so lu t e ;
ove r f l ow : v i s i b l e ;
font−s i z e : 25px ;
l e f t : −5px ;
top : −12px ;
font−weight : 900 ;
z−index : 1 ;

}
. harrow {

top : −16px ;
l e f t : −3px ;
z−index : 1 ;

}
button {

min−width : 75px ;
width : 100%;

}

. hideIFrame {
d i sp l ay : none ;

}
. showIFrame {

border : 0px s o l i d b lack ;
p o s i t i o n : ab so lu t e ;
l e f t : 380px ;
top : 70px ;
z−index : 100 ;

}
. uploadForm {

border : 1px s o l i d b lack ;
width : 225px ;
background : #AAAAAA;

}

B.20 sampleMigrFiles/MigrDetSchedExtWorker.migr

Add : McPal add : / remove : i s enough , the r e s t can be viewed as comments
stateMachine : ’ Migr ’ , from : ’ StablePhase ’ , to : ’ doMigr ’ , t r i g g e r : ’ ready ’ , guard

: ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ , a c t i v i t y : ’
changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

stateMachine : ’ Migr ’ , from : ’ doMigr ’ , to : ’ StablePhase ’ , t r i g g e r : ’ migrDone ’ ,
guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ , a c t i v i t y : ’
changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

stateMachine : ’ doMigr ’ , from : ’ t r i v ’ , to : ’ migrDone ’ , t r i g g e r : ’ cascade ’ , guard :
’ getSTD(”McPal”) . i sTrapped (” Content , Observing ”) ’ , a c t i v i t y : ’
sendTr igge r (” cascade ”) ’

– 74 –

B.20 sampleMigrFiles/MigrDetSchedExtWorker.migr

stateMachine : ’McPal ’ , from : ’ StartMigr ’ , to : ’ Both1to2 ’ , guard : ’ paradigmGuard
(th i s , ” Migr . doMigr ” ,” Schedu le r . Migr . Stab le . t r i v&Worker 0 . Migr .
StablePhase . t r i v&Worker 1 . Migr . StablePhase . t r i v&Worker 2 . Migr .
StablePhase . t r i v ”) ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ’

stateMachine : ’McPal ’ , from : ’ Both1to2 ’ , to : ’ Content ’ , guard : ’ paradigmGuard (
th i s , ” Migr . doMigr ” ,” Schedu le r . Migr . SchedMigr . f i n i s h e d&Worker 0 .CSM.
OutCS . t r i v .OutCS”) ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ’

Remove : McPal
stateMachine : ’ doMigr ’
stateMachine : ’ Migr ’ , stateName : ’ doMigr ’
stateMachine : ’McPal ’ , stateName : ’ Both1to2 ’
stateMachine : ’McPal ’ , from : ’ NewRuleSet ’ , to : ’ StartMigr ’
stateMachine : ’McPal ’ , from : ’ Content ’ , to : ’ Observing ’

Add : Schedu le r
compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ check 0 ’ , to : ’ asg 0 ’ ,

t r i g g e r : ’ a l l ow 0 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 0 .CSM. OutCSBlock . en t e r i ng ”) ; ’ , a c t i v i t y : ’
sendTr igge r (” cascade ”) ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ check 1 ’ , to : ’ asg 1 ’ ,
t r i g g e r : ’ a l l ow 1 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 1 .CSM. OutCSBlock . en t e r i ng ”) ; ’ , a c t i v i t y : ’
sendTr igge r (” cascade ”) ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ check 2 ’ , to : ’ asg 2 ’ ,
t r i g g e r : ’ a l l ow 2 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 2 .CSM. OutCSBlock . en t e r i ng ”) ; ’ , a c t i v i t y : ’
sendTr igge r (” cascade ”) ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ check 0 ’ , to : ’ check 1
’ , t r i g g e r : ’ sk i p 0 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 0 .CSM. OutCSBlock . stay&Worker 1 .CSM.OutCS . t r i v .
OutCSBlock ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ check 1 ’ , to : ’ check 2
’ , t r i g g e r : ’ sk i p 1 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 1 .CSM. OutCSBlock . stay&Worker 2 .CSM.OutCS . t r i v .
OutCSBlock ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ check 2 ’ , to : ’ check 0
’ , t r i g g e r : ’ sk i p 2 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 2 .CSM. OutCSBlock . stay&Worker 0 .CSM.OutCS . t r i v .
OutCSBlock ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ asg 0 ’ , to : ’ check 1 ’ ,
t r i g g e r : ’ r evoke 0 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 0 .CSM. InCS . l e f t&Worker 1 .CSM. OutCS . t r i v .
OutCSBlock ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ asg 1 ’ , to : ’ check 2 ’ ,
t r i g g e r : ’ r evoke 1 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 1 .CSM. InCS . l e f t&Worker 2 .CSM. OutCS . t r i v .
OutCSBlock ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ asg 2 ’ , to : ’ check 0 ’ ,
t r i g g e r : ’ r evoke 2 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ; Migr .
SchedPhase2 ” ,” Worker 2 .CSM. InCS . l e f t&Worker 0 .CSM. OutCS . t r i v .
OutCSBlock ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ asg 0 ’ , to : ’ check 1 ’ ,
t r i g g e r : ’ r evoke 0 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ” ,”
Worker 0 .CSM. Busy . done . OutCS&Worker 1 .CSM. Free . t r i v . OutCSBlock&
Worker 2 .CSM. Free . t r i v . OutCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” ca scade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ asg 1 ’ , to : ’ check 2 ’ ,
t r i g g e r : ’ r evoke 1 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ” ,”
Worker 1 .CSM. Busy . done . OutCS&Worker 2 .CSM. Free . t r i v . OutCSBlock&
Worker 0 .CSM. Free . t r i v . OutCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” ca scade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ asg 2 ’ , to : ’ check 0 ’ ,
t r i g g e r : ’ r evoke 2 ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ” ,”
Worker 2 .CSM. Busy . done . OutCS&Worker 0 .CSM. Free . t r i v . OutCSBlock&
Worker 1 .CSM. Free . t r i v . OutCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” ca scade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , from : ’ i d l e ’ , to : ’ check 0 ’ ,
t r i g g e r : ’ l e a v e I d l e ’ , guard : ’ paradigmGuard (th i s , ” Migr . SchedMigr ” ,”
Worker 0 .CSM. Free . t r i v . OutCSBlock&Worker 1 .CSM. Free . t r i v . OutCS&
Worker 2 .CSM. Free . t r i v . OutCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” ca scade ”) ; ’

– 75 –

B.20 sampleMigrFiles/MigrDetSchedExtWorker.migr

compName: ’ Schedu le r ’ , stateMachine : ’ SchedMigr ’ , from : ’ t r i v ’ , to : ’ f i n i s h e d ’ ,
t r i g g e r : ’ cascade ’ , guard : ’ getSTD(” Schedu le r ”) . i sTrapped (” asg 0 ,
check 0 , asg 1 , check 1 , asg 2 , check 2 ”) ’ , a c t i v i t y : ’ sendTr igge r (”
cascade ”) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ SchedPhase2 ’ , stateName : ’ t r i v ’
compName: ’ Schedu le r ’ , stateMachine : ’ Migr ’ , from : ’ Stab le ’ , to : ’ SchedMigr ’ ,

t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Schedu le r ’ , stateMachine : ’ Migr ’ , from : ’ SchedMigr ’ , to : ’
SchedPhase2 ’ , t r i g g e r : ’ f i n i s h e d ’ , guard : ’ getSTD(th i s . from . name) .
i sCurrent (t h i s . t r i g g e r) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name
, t h i s . to . name) ; ’

Remove : Schedu le r
compName: ’ Schedu le r ’ , stateMachine : ’ Schedu le r ’ , stateName : ’ i d l e ’
compName: ’ Schedu le r ’ , stateMachine : ’ S tab le ’
compName: ’ Schedu le r ’ , stateMachine : ’ SchedMigr ’
compName: ’ Schedu le r ’ , stateMachine : ’ Migr ’ , stateName : ’ Stab le ’
compName: ’ Schedu le r ’ , stateMachine : ’ Migr ’ , stateName : ’ SchedMigr ’

Add : Worker 0
compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’ Free ’ , to : ’OutCS ’ , t r i g g e r : ’

t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’ Free ’ , to : ’ OutCSBlock ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’Busy ’ , to : ’OutCS ’ , t r i g g e r : ’
done ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’OutCS ’ , to : ’OutCSBlock ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’OutCSBlock ’ , to : ’OutCS ’ ,
t r i g g e r : ’ s tay ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’OutCSBlock ’ , to : ’ InCS ’ ,
t r i g g e r : ’ e n t e r i ng ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s .
t r i g g e r) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ;
’

compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’ InCS ’ , to : ’OutCS ’ , t r i g g e r : ’
l e f t ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’OutCS ’ , stateName : ’ t r i v ’
compName: ’ Worker 0 ’ , stateMachine : ’ OutCSBlock ’ , from : ’ t r i v ’ , to : ’ s tay ’ ,

t r i g g e r : ’ cascade ’ , guard : ’ getSTD(” Worker 0 ”) . i sTrapped (” post , f r e e ,
nonCrit ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’ OutCSBlock ’ , from : ’ t r i v ’ , to : ’ e n t e r i ng ’ ,
t r i g g e r : ’ cascade ’ , guard : ’ getSTD(” Worker 0 ”) . i sTrapped (” pre ”) ; ’ ,
a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’ InCS ’ , from : ’ t r i v ’ , to : ’ l e f t ’ , t r i g g e r : ’
cascade ’ , guard : ’ getSTD(”Worker 0 ”) . i sTrapped (” post , nonCrit , f r e e ”) ; ’
, a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’ Migr ’ , from : ’ StablePhase ’ , to : ’ Phase2 ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’ Phase2 ’ , stateName : ’ t r i v ’
compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , from : ’OutCS ’ , to : ’OutCS ’ , t r i g g e r : ’

t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’ Worker 0 ’ , from : ’ f r e e ’ , to : ’ nonCrit ’ ,
t r i g g e r : ’ begin ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Free ;CSM
.OutCS ;CSM. OutCSBlock ;CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”)
; ’

compName: ’ Worker 0 ’ , stateMachine : ’ Worker 0 ’ , from : ’ nonCrit ’ , to : ’ pre ’ ,
t r i g g e r : ’ occupy ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM.OutCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’ Worker 0 ’ , from : ’ pre ’ , to : ’ c r i t ’ , t r i g g e r
: ’ pickUp ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;CSM. InCS
”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

– 76 –

B.20 sampleMigrFiles/MigrDetSchedExtWorker.migr

compName: ’ Worker 0 ’ , stateMachine : ’ Worker 0 ’ , from : ’ c r i t ’ , to : ’ post ’ ,
t r i g g e r : ’ layDown ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 0 ’ , stateMachine : ’ Worker 0 ’ , from : ’ post ’ , to : ’ f r e e ’ ,
t r i g g e r : ’ f i n i s h ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM.OutCS ;CSM. OutCSBlock ;CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (”
cascade ”) ; ’

Remove : Worker 0
compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , stateName : ’ Free ’
compName: ’ Worker 0 ’ , stateMachine : ’CSM’ , stateName : ’Busy ’
compName: ’ Worker 0 ’ , stateMachine : ’ Free ’
compName: ’ Worker 0 ’ , stateMachine : ’Busy ’
compName: ’ Worker 0 ’ , stateMachine : ’ Migr ’ , stateName : ’ StablePhase ’
compName: ’ Worker 0 ’ , stateMachine : ’ StablePhase ’

Add : Worker 1
compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , from : ’ Free ’ , to : ’OutCS ’ , t r i g g e r : ’

t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , from : ’ Free ’ , to : ’ OutCSBlock ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , from : ’Busy ’ , to : ’OutCS ’ , t r i g g e r : ’
done ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , from : ’OutCS ’ , to : ’OutCSBlock ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , from : ’OutCSBlock ’ , to : ’OutCS ’ ,
t r i g g e r : ’ s tay ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , from : ’OutCSBlock ’ , to : ’ InCS ’ ,
t r i g g e r : ’ e n t e r i ng ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s .
t r i g g e r) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ;
’

compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , from : ’ InCS ’ , to : ’OutCS ’ , t r i g g e r : ’
l e f t ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’OutCS ’ , stateName : ’ t r i v ’
compName: ’ Worker 1 ’ , stateMachine : ’ OutCSBlock ’ , from : ’ t r i v ’ , to : ’ s tay ’ ,

t r i g g e r : ’ cascade ’ , guard : ’ getSTD(” Worker 1 ”) . i sTrapped (” post , f r e e ,
nonCrit ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’ OutCSBlock ’ , from : ’ t r i v ’ , to : ’ e n t e r i ng ’ ,
t r i g g e r : ’ cascade ’ , guard : ’ getSTD(” Worker 1 ”) . i sTrapped (” pre ”) ; ’ ,
a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’ InCS ’ , from : ’ t r i v ’ , to : ’ l e f t ’ , t r i g g e r : ’
cascade ’ , guard : ’ getSTD(”Worker 1 ”) . i sTrapped (” post , nonCrit , f r e e ”) ; ’
, a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’ Migr ’ , from : ’ StablePhase ’ , to : ’ Phase2 ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’ Phase2 ’ , stateName : ’ t r i v ’

compName: ’ Worker 1 ’ , stateMachine : ’ Worker 1 ’ , from : ’ f r e e ’ , to : ’ nonCrit ’ ,
t r i g g e r : ’ begin ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Free ;CSM
.OutCS ;CSM. OutCSBlock ;CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”)
; ’

compName: ’ Worker 1 ’ , stateMachine : ’ Worker 1 ’ , from : ’ nonCrit ’ , to : ’ pre ’ ,
t r i g g e r : ’ occupy ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM.OutCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’ Worker 1 ’ , from : ’ pre ’ , to : ’ c r i t ’ , t r i g g e r
: ’ pickUp ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;CSM. InCS
”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’ Worker 1 ’ , from : ’ c r i t ’ , to : ’ post ’ ,
t r i g g e r : ’ layDown ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 1 ’ , stateMachine : ’ Worker 1 ’ , from : ’ post ’ , to : ’ f r e e ’ ,
t r i g g e r : ’ f i n i s h ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM.OutCS ;CSM. OutCSBlock ;CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (”
cascade ”) ; ’

– 77 –

B.20 sampleMigrFiles/MigrDetSchedExtWorker.migr

Remove : Worker 1
compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , stateName : ’ Free ’
compName: ’ Worker 1 ’ , stateMachine : ’CSM’ , stateName : ’Busy ’
compName: ’ Worker 1 ’ , stateMachine : ’ Free ’
compName: ’ Worker 1 ’ , stateMachine : ’Busy ’
compName: ’ Worker 1 ’ , stateMachine : ’ Migr ’ , stateName : ’ StablePhase ’
compName: ’ Worker 1 ’ , stateMachine : ’ StablePhase ’

Add : Worker 2
compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , from : ’ Free ’ , to : ’OutCS ’ , t r i g g e r : ’

t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , from : ’ Free ’ , to : ’ OutCSBlock ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , from : ’Busy ’ , to : ’OutCS ’ , t r i g g e r : ’
done ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , from : ’OutCS ’ , to : ’OutCSBlock ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , from : ’OutCSBlock ’ , to : ’OutCS ’ ,
t r i g g e r : ’ s tay ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , from : ’OutCSBlock ’ , to : ’ InCS ’ ,
t r i g g e r : ’ e n t e r i ng ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s .
t r i g g e r) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ;
’

compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , from : ’ InCS ’ , to : ’OutCS ’ , t r i g g e r : ’
l e f t ’ , guard : ’ getSTD(th i s . from . name) . i sCurrent (t h i s . t r i g g e r) ; ’ ,
a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’OutCS ’ , stateName : ’ t r i v ’
compName: ’ Worker 2 ’ , stateMachine : ’ OutCSBlock ’ , from : ’ t r i v ’ , to : ’ s tay ’ ,

t r i g g e r : ’ cascade ’ , guard : ’ getSTD(” Worker 2 ”) . i sTrapped (” post , f r e e ,
nonCrit ”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’ OutCSBlock ’ , from : ’ t r i v ’ , to : ’ e n t e r i ng ’ ,
t r i g g e r : ’ cascade ’ , guard : ’ getSTD(” Worker 2 ”) . i sTrapped (” pre ”) ; ’ ,
a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’ InCS ’ , from : ’ t r i v ’ , to : ’ l e f t ’ , t r i g g e r : ’
cascade ’ , guard : ’ getSTD(”Worker 2 ”) . i sTrapped (” post , nonCrit , f r e e ”) ; ’
, a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’ Migr ’ , from : ’ StablePhase ’ , to : ’ Phase2 ’ ,
t r i g g e r : ’ t r i v ’ , guard : ’ getSTD(th i s . from . name) . i sCurr ent (t h i s . t r i g g e r
) ; ’ , a c t i v i t y : ’ changeSubprocess (t h i s . from . name , t h i s . to . name) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’ Phase2 ’ , stateName : ’ t r i v ’

compName: ’ Worker 2 ’ , stateMachine : ’ Worker 2 ’ , from : ’ f r e e ’ , to : ’ nonCrit ’ ,
t r i g g e r : ’ begin ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Free ;CSM
.OutCS ;CSM. OutCSBlock ;CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”)
; ’

compName: ’ Worker 2 ’ , stateMachine : ’ Worker 2 ’ , from : ’ nonCrit ’ , to : ’ pre ’ ,
t r i g g e r : ’ occupy ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM.OutCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’ Worker 2 ’ , from : ’ pre ’ , to : ’ c r i t ’ , t r i g g e r
: ’ pickUp ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;CSM. InCS
”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’ Worker 2 ’ , from : ’ c r i t ’ , to : ’ post ’ ,
t r i g g e r : ’ layDown ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (” cascade ”) ; ’

compName: ’ Worker 2 ’ , stateMachine : ’ Worker 2 ’ , from : ’ post ’ , to : ’ f r e e ’ ,
t r i g g e r : ’ f i n i s h ’ , guard : ’ paradigmGuard (th i s , ” Migr . Phase2 ;CSM. Busy ;
CSM.OutCS ;CSM. OutCSBlock ;CSM. InCS”) ; ’ , a c t i v i t y : ’ sendTr igge r (”
cascade ”) ; ’

Remove : Worker 2
compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , stateName : ’ Free ’
compName: ’ Worker 2 ’ , stateMachine : ’CSM’ , stateName : ’Busy ’
compName: ’ Worker 2 ’ , stateMachine : ’ Free ’
compName: ’ Worker 2 ’ , stateMachine : ’Busy ’
compName: ’ Worker 2 ’ , stateMachine : ’ Migr ’ , stateName : ’ StablePhase ’
compName: ’ Worker 2 ’ , stateMachine : ’ StablePhase ’

– 78 –

	Introduction
	A description of Paradigm
	Detailed Behaviour
	Global Behaviour and Partitions
	Subprocesses and Traps
	Management and Consistency Rules
	Changeclauses
	Hierarchy of Paradigm

	UML Modeling of Paradigm without reconfiguration
	Detailed behaviour
	Subprocesses
	Partitions and Traps
	Component Interaction

	Foreseen Model Adaptation
	McPal
	A Producer Consumer for Paradigm
	Self-adaptation of the Producer-Consumer
	Adaptation in UML
	Self-Adapting Producer Consumer in UML

	Unforeseen Adaptation in Paradigm and UML
	Scenario
	Shrinking the Buffer
	JIT modeling in UML

	Conclusion, Related and Future Work
	Solution
	Environment
	Related Work
	Future Research

	Program
	Technologies Used
	Component Communication
	Making a JavaScript execution thread sleep
	Creating a new model
	Adaptation
	Multiple views
	Wrap-up: Possible Improvements in Parallelism

	Code
	script/Statemachine.js
	script/Paradigm.js
	script/Poll.js
	script/std.js
	script/umlPrint.js
	script/script.js
	ajaxFiles/sendMessage.php
	ajaxFiles/poll.php
	ajaxFiles/leavePage.php
	ajaxFiles/JITForm.php
	ajaxFiles/uploadResult.php
	ajaxFiles/updateLocation.php
	ajaxFiles/getLocation.php
	ajaxFiles/noCache.php
	script/getComponents.php
	index.php
	query.php
	img/rounded.php
	style.css
	sampleMigrFiles/MigrDetSchedExtWorker.migr

