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Abstract 
 

SMEPP is a novel System Modeling Environment for Performance Prediction. The 

environment consists of methods for modeling the entire context of a system, from 

hardware and software components to the workload posed on them. Additionally, it 

includes an application to simulate these models. SMEPP enables one to quickly and 

accurately assess the performance of a (proposed) system based on a minimal amount of 

input information. Also, the consequences of updates within the hardware and software 

components and the evolution of workload can be evaluated. Examples include 

increasing resource capacity, decreasing a components execution time, increasing the 

number of requests and so on. Particularly because of its wide context, SMEPP is 

applicable in real life situations. This will be illustrated by various cases. The first part of 

the experiments is aimed at the validation of SMEPP with respect to concrete scenarios. 

The remaining experiments are focused on prediction of the results in more abstract 

situations. It will be shown that SMEPP is a valid, scalable and general approach to 

system modeling and performance prediction. 
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1 Introduction 
 

The term Software Performance Engineering (SPE) is somewhat misleading in that it 

seems to describe the process of performance analysis of software exclusively. SPE 

however represents a much broader field of research, as software performance is affected 

by many other system aspects, for example workloads and hardware capacity. Instead, 

the name refers to the ideal situation in which performance engineering is completely 

integrated within the software engineering process, as described by Smith and Williams 

[1]. Their approach is model-based, which means that performance models are created in 

the early stages of software development and the results are used to improve the 

architecture in the process. There is also a measurement-based approach of SPE, for 

example described by Barber [2;16], that addresses performance late in the development 

process, when the system is already functional. Ideally, one should try to combine the 

„best of both worlds‟ in such a way that the measurement results assist in improving the 

models. However, the reader should keep in mind that both SPE approaches, as described 

in literature, are highly theoretical. In reality, true integration of performance engineering 

within software engineering is seldom. The reason for this is the gap between functional 

requirements (the usual concern of a software engineer) and non-functional requirements, 

such as performance, reliability and security [13]. Often, the development process 

focuses on functional correctness only. When that goal is accomplished, the application is 

fine-tuned for performance reasons. This is referred to as the „fix it later‟ approach. 

However, the impact of these late modifications is small compared to architectural 

changes that might be applied when performance engineering is done earlier in the 

development process [1]. In some cases, non-functional properties are not addressed at all 

and performance evaluation is done when the system is already running in a production 

environment. This limits the possibility to make structural changes in order to optimize 

the performance when the results are unsatisfactory. 

 

As said before, performance is not limited to the application itself. Instead, it addresses 

the complete environment in which software is running, from hardware resources to user 

behaviour. Thus, to create an appropriate performance model, one has to find a way of 

modeling all system aspects. Modeling methods, such as Use Case Maps (UCM) [3] and 

even the nowadays widely adopted Unified Modeling Language (UML) [4] are software 

oriented and lack features to effectively describe non-functional requirements in a wider 

context. In the case of UML, various profiles have been developed to improve the 

usability of the language in an SPE process. These include, in order of appearance, the 

UML Profile for Schedulability, Performance and Time (SPT) [5], the UML Profile for 

Modeling QoS and Fault Tolerance Characteristics and Mechanisms [6] and the planned 

UML Profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) 

[7]. See [9] for a comparison of the SPT and QoS profiles. From the systems engineering 

perspective, another interesting development is the Systems Modeling Language 

(SysML) [8], a subset of UML 2 with extensions for systems engineering that can be used 

to model hardware, software, information, personnel, procedures and facilities. Examples 

of its application are described in [31;32;33]. Note that all UML extensions mentioned 

here are specified by the Object Management Group (OMG), the organization also 

responsible for the official UML specification. From the architectural point of view, the 
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ArchiMate [19] language (also UML based) is worth mentioning. It started in 2002 as a 

research project by a joint effort of several Dutch companies (Ordina, ABN AMRO), 

institutes (CWI, TI) and universities (Leiden, Nijmegen) and was adopted by the 

standardization organization The Open Group in 2008. ArchiMate allows for integrated 

modeling of the architecture on three different levels (business, application and 

technology) which supports the decision making process across organizations. It was 

successfully applied in various cases [19;29;30] at Dutch organizations, for example 

UWV, Belastingdienst and SVB. Languages as SysML and ArchiMate are certainly 

promising. However they are not as widely used as their parent language UML. This 

means that there are not as many successful implementations known and that support and 

confidence for such an approach may be too low. Earlier attempts, for example the UML 

SPT profile, have been the basis for many projects [36;37] by now, but are significantly 

less powerful than for example SysML. This dilemma is probably also preventing a 

definitive breakthrough into a certain direction. As a result, new standards keep being 

proposed and the original goal of a powerful, universal modeling language for complete 

systems is farther away than ever [13]. 

 

Design models, both UML (possibly with an extension mentioned above) and non-UML, 

are usually translated into performance models to enable quantification of performance 

issues. The results are then used to improve the original design. A wide range of 

performance model formats exist, including stochastic Petri nets (Merseguer [11], King 

and Pooley [10]), stochastic process algebras [46], layered queuing models [1] and 

simulation models [47]. An even wider range of translations from different design models 

into different performance models exists. This issue was tackled by Woodside, 

Merseguer and others with the PUMA (Performance by Unified Model Analysis) [12] 

architecture. As part of PUMA, an intermediate format called Core Scenario Model 

(CSM) is proposed that can be used to easily translate various design models into various 

performance models within a single architecture. For capturing performance information, 

CSM depends on the UML SPT profile, which is originally developed for UML 1.4. 

Another drawback is that CSM is not the only intermediate format known. For example 

SysML depends on the XML Metadata Interchange (XMI) [15] standard for exchanging 

information between different environments, others use the Performance Model 

Interchange Format (PMIF) [14] and so on. Unfortunately these issues have prevented 

either of them from becoming the standard in software performance modeling. 

 

The measurement-based SPE approach [2;16] is a vital method to either confirm or 

correct the results of the model-based methods. However, this approach also has its 

shortcomings. On of the main drawbacks is that in literature, often a significant amount 

of input data, for example server log files that describe a representative workload, is 

assumed to be available. In practice, this assumption is far from realistic, because in most 

cases this information is either missing or incomplete [16]. Several excellent techniques 

for performance prediction and capacity planning exist [16;17]. However the absence of 

accurate input data makes the results of even the best methods highly questionable. Even 

if test results are reliable, there is a lack of theoretical justification for improvements 

based on them [18]. For example, if a certain bottleneck is solved by increasing local 

capacity, it could easily introduce a bottleneck somewhere else in the system. One still 
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depends on an expert to analyze the results in each specific case before any changes can 

be implemented. This process is time consuming and hard to automate. 

 

Summarizing, one can identify these main problems in the system performance field: 

 

1. Modeling languages and performance evaluation methods suffer from a lack of 

standardization which prevents their successful use on a larger scale. 

2. These languages and methods are often restricted to a certain context (software, 

hardware), which is too small to model and evaluate complete systems. This 

prevents their application (and justification) in larger, real life cases. 

3. Usually there is too little accurate input information to effectively evaluate a 

system before it is deployed in a production environment. 

4. There is a historical gap between evaluation of functional (does it work?) and 

non-functional (does it perform?) requirements which prevents their successful 

integration. 

5. There is a lack of knowledge about the general consequences of modifications 

within hardware and software systems. 

 

SMEPP is focused on the first three problems. Existing techniques (1) are applied to 

create a modeling environment for the entire context of a system (2), based on a minimal 

amount of input information (3). The goal is to enable quick and accurate assessment of 

system performance. Additionally, the approach should be applicable for a large part of 

the currently existing systems. These include web-based applications, e-commerce, 

multimedia services, enterprise management systems and so on [45]. 

 

Section 2 provides background information about some of the techniques that are applied. 

The general approach of SMEPP is described in Section 3. In Sections 4 to 7 an analysis 

of the components within the system context is given. The most important properties and 

relations within each component are determined, as well as how to model them. In 

Section 8 an application to simulate these models is proposed. Section 9 describes the 

experimental setup used to validate SMEPP with respect to real life and to determine its 

prediction accuracy. Using this setup, extensive experiments are done, aimed at both 

validation and prediction. The results are described in Section 10. Finally, Sections 11 

and 12 contain conclusions and future work, respectively. 
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2 Preliminaries 
 

2.1 UML diagrams 
 

A UML deployment diagram [4] gives a static view of the runtime configuration of a 

system. In other words: it shows the hardware within a system, the software running on 

that hardware and the connections between these components. Physical (hardware) 

components in a deployment diagram are labeled with the stereotype Device, while non-

physical (software) components are labeled with Artifact. The software components use 

the same notation as in a UML component diagram. 

 

2.2 Continuous probability distributions 
 

An exponential distribution is often used to model the time until failure of a device, or 

the time between consecutive events in a memoryless process (i.e. the time elapsed 

already has absolutely no meaning with respect to the remaining time until the next 

event). It is related to the Rayleigh distribution in that both are special cases of the more 

general Weibull distribution, whose reverse is also referred to as type III extreme value 

distribution. Another type of generalized extreme value distribution (more specifically, 

type I) is the Gumbel distribution. The normal or Gaussian distribution is used to model 

variables with a symmetric structure. In practice many natural phenomena can, to a 

certain degree, be approximated by a normal distribution due to the central limit theorem 

[42]. A related distribution is the log-normal distribution, where not the variable itself, 

but its natural logarithm is normally distributed. The logistic distribution resembles the 

normal distribution but has heavier tails. A uniform distribution is the best model if only 

a variables extremes are known and all values in between are more or less equally likely. 

If a distinctive mode (most likely value) is discovered, it is better to use a triangular 

distribution. The u-quadratic distribution is a useful model for symmetric data with two 

different modes. However, the Beta distribution allows more flexibility with respect to 

non-symmetric data and non-quadratic shapes of the probability density function. The 

Gamma distribution is frequently used as a model for waiting times. The Chi-square 

distribution is a special case of the Gamma distribution. Further details for these 

distributions are given in [41][43][44]. 

 

In addition to the probability density function (PDF), all distributions mentioned above 

have a cumulative distribution function (CDF) which describes the probability of a value 

lower than or equal to x occurring, according to the distribution concerned. An overview 

of these cumulative distribution functions is given in Appendix B. 

 

2.3 Goodness of fit 
 

A goodness of fit test assesses how well a given data set fits a certain probability 

distribution. Many goodness of fit tests are known, some general and some specific for 

certain distributions. The Kolmogorov-Smirnov test [44] finds the maximum distance 

between the empirical CDF of a data set and the theoretical CDF F of the distribution 
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being tested. That is, for each value Yi in the ordered set, it compares the probability of a 

value lower than or equal to Yi in the set with its theoretical probability according to F 

and determines the maximum difference between them: 
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If the data set corresponds to the distribution being tested, D will converge to 0 almost 

surely. The Anderson-Darling test [38] assesses whether there is evidence that the data 

set does not correspond to the distribution concerned by measuring the distance between 

them as: 
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where n is the number of values in the data set, Yi for i = 1…n are the values sorted from 

low to high and F is the CDF of the distribution being tested. The value of A
2
 should be 

slightly adjusted for low n values and compared to the critical value for the distribution 

being tested. The specifics of the test for different distributions have been published in 

different papers by Stephens, e.g. [39]. 

 

A correlation coefficient is a measure of correlation between two variables. One speaks 

of correlation when a certain linear relationship exists between the variables. The Pearson 

product-moment correlation coefficient [40] is the most widely used correlation 

coefficient. It is equivalent to the covariance of variables X and Y divided by the product 

of their standard deviations: 
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The value of ρ may vary between -1 and 1. A value of -1 or 1 means that there is a perfect 

(inverse) linear relationship between X and Y. A value of 0 means that there is no linear 

relationship at all. There may however be another type of relation. 
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3 Solution approach 
 

3.1 Introduction 
 

With respect to the standardization problem mentioned in Section 1, it seems obvious to 

select the most widely adopted methods rather than creating new ones, because that 

would only make the situation worse. For a modeling language the initial choice is UML, 

while as an intermediate format the XMI standard seems to be sufficient. The resulting 

formalism should allow one to model all system aspects that might be involved in its 

performance, in order to bridge the gap between the software and hardware perspectives. 

SMEPP will be used to predict the consequences of changes in any of these aspects for 

the system as a whole, based on knowledge gathered and refined in the process. For 

example, if a certain application request can be handled twice as fast, what is the result 

for the complete system? Or, if the number of requests is doubled, what happens? 

SMEPP may also be used to address the performance within a different environment, 

which is useful for example when predicting the result in a production environment based 

on measurements in a test environment. Finally, all of this should be possible even with a 

minimal amount of information available, to allow for quick experiments. 

 

3.2 Model components 
 

Within the system context described, the following components are identified: 

 

 workload (Section 4) 

 hardware (Section 5) 

 software (Section 6) 

 

SMEPP will quantify the system performance level based on these three components. 

Therefore each of them needs to be modeled, as shown in Figure 1. The performance 

level might for example be defined as the distribution of execution times. Given a 

(satisfactory) target performance level, SMEPP may also be used to answer capacity and 

scalability related questions by determining for example: 

 

 the minimum hardware required; 

 the maximum workload allowed; 

 the minimum software efficiency needed. 

 

For this purpose, the environment should include simulation possibilities. Several 

simulators for UML models exist [26;27;28;34;35], however they are usually applied 

within a restricted context. For example, they simulate a UML description of an 

application by running physical processes on a system. Within SMEPP both the 

application and the system (and finally the workload) can be simulated, thereby making 

the result independent of the system the simulation is run on. See Figure 1. This adds 

some layers of abstraction, which is why a novel simulation engine is introduced in this 

article. Naturally, there should be a trade-off between model simplicity and simulation 
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accuracy. Software characteristics for example, can initially be abstracted by considering 

an application as a „black box‟ with only basic properties. This representation can be 

made more concrete if needed. Additionally, an initial model might be limited to a single 

system running a single application, after which it is iteratively extended to cover more of 

the environment. 

 

Figure 1 shows a schematic overview of the SMEPP approach. The red square represents 

the focus of this article: modeling methods and a simulation engine. 

 

 
Figure 1: SMEPP context and approach 
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4 Workload analysis 
 

4.1 Introduction 
 

In this section, a workload will be defined and characterized by its most important 

properties. The findings will result in a representation for the workload component within 

SMEPP. An example analysis is given in Section 10.3. 

 

4.2 Definition 
 

In this article, workload is referred to as the amount, type and distribution of requests 

posed on a system within a certain period of time. Thus, workload does not say anything 

about the system itself or its performance. A workload is typically captured by a log file, 

on either system or application level, that describes what, when and how many requests 

are posed on the system or application concerned. 

 

One way to describe a workload is to describe the request rate over a period of time. The 

period that is best used to describe such a workload depends on the situation. Certain 

workloads may be described best over a period of 24 hours (for example, web site traffic) 

while for others such a workload description is not representative (for example, a web 

site that has more visitors during weekdays than in the weekend). 

 

Another way to define a workload is to focus on the request interval, the time between 

the start of consecutive calls to a system or application. The request interval becomes 

more meaningful as the resolution increases. For example, an average request interval of 

10 seconds over 24 hours is useless if the average was 5 seconds during the day and 15 

seconds during the night. However, if the average request interval would be measured 

every hour, the result would be far more meaningful (and accurate). Remember that 

increasing the resolution actually means decreasing the measurement interval.  

 

While both the request rate and the request interval seem to be sensible metrics for 

describing a workload, there are some pitfalls. When a request rate is visualized in a 

graph, it seems logical to scale the values linearly along the axis. In fact the metric should 

be interpreted non-linearly. For example, the impact of increasing the rate from 1 to 2 

requests per minute is far greater than the impact of increasing the rate from 20 to 21 

requests per minute. The first scenario means decreasing the interval from 60 to 30 

seconds while the second corresponds to decreasing the interval from 3 to 2.86 seconds. 

One has to keep in mind that both metrics are not linearly related (Figure 2). 

 

Both request rates and request intervals have advantages and disadvantages. In general 

one could argue that the request rate is best used to visualize a workload. Consider a 

graph that relates the request rate to the time. The surface beneath the graph represents 

the total number of requests in the depicted period. Such a representation is easy to 

interpret. Contrary, if the request interval is considered in relation to the time, the surface 

meaning is less obvious. However, the interval more realistically represents the impact of 
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a changing workload for the system concerned (recall the example from Figure 2). This 

makes the request interval (or its distribution) more valuable as input for analysis and 

simulation. Thus, the request rate will be used for visualization purposes, while the 

request interval will be used as input for the experiments later on. 
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Figure 2: relation between request rate (per minute) and request interval (in seconds) 

 

For both request rate and request interval there are 3 choices to be made. Optimal settings 

for each of them strongly depend on the specifics of the situation. 

 

 Source window (SW): the period over which the source data runs 

 Target window (TW): the period used to describe a workload   

 Resolution (R): the number of measurements within the target window 

 

4.2.1 Source window 

 

Increasing the source window will improve the chances that extremes are included in the 

representation. However, a too large source window may result in an unrealistic workload 

with respect to the situation that needs to be modeled. 

 

4.2.2 Target window 

 

Decreasing the target window is useful for visualization, for example to show a part of 

the window in more detail. However, it does not improve the accuracy of the workload 

representation. Increasing the target window may improve the accuracy, because a small 

target window might not show the evolution of values within a larger window. Example: 

a target window of one day when all weekdays are different. When the target window is 

smaller than the source window, there may be multiple values for each data point in the 
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target window. In those cases, aggregate functions such as minimum, maximum and 

average should be used to represent the values.  

 

4.2.3 Resolution 

 

Increasing the resolution (to a certain extent) will result in a more realistic view and more 

correct interpretation of extremes. In general one could argue that it is worth increasing 

the resolution if the results at the current resolution are generally larger than the number 

of smaller time units within the current resolution. Remember that for a request rate, it 

does not make sense to use a resolution other than the one used to define the rate. 

Example: it does not make sense to measure the number of requests per hour every 

minute, or just once a day. Hence, a trade-off should be made between resolution and 

accuracy. 

 

4.3 Distribution of requests 
 

Until now, a workload was considered as a concrete log file. To model a workload, a 

more abstract notation is needed. This can be achieved by determining probability 

distributions that approach the values in a log file. As said before, the focus will be on 

request intervals for simulation input, which means that continuous probability 

distributions are required. Examples and their occurrences are given in Section 2.2. 

Recall, in the case of modeling request rates, discrete probability distributions would be 

needed. 

 

4.3.1 Dynamic optimal resolution 

 

Before determining the probability distributions that approach the values in the log file, a 

correct resolution has to be selected. Remember that when using a low resolution, the 

resulting model is simple, however the specific distributions of certain parts within the 

window may miss. Using a high resolution leads to a very accurate representation, 

however goes beyond the idea of a model. Thus, the optimal resolution is a trade-off 

between accuracy of the representation and simplicity of the model. In addition to that, 

the optimal resolution may be different throughout the window. Hence, a method of 

determining a dynamic optimal resolution is needed. This can be done by using a binary 

algorithm that takes a set of intervals, splits the set in 2 subsets, determines if the 

characteristics of the subsets (for example: mean and variance) are substantially different 

from the original set and if so, recursively continues with the subsets. Using variable 

lower bounds on the set size and the deviation of subsets from original sets, enables one 

to make the right trade-off mentioned earlier. See the next page for a pseudo code 

example. 

 

4.3.2 Best matching probability distribution 

 

Once the characteristic parts of the scenario have been determined, each part can be 

represented with the probability distribution that best matches the values within that part. 

This can be done by using statistical methods like the Kolmogorov-Smirnov test (K-S) 
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and the Anderson-Darling test (A-D). Both are described in Section 2.3. The K-S test is 

typically used to determine if a given data set corresponds to a certain distribution by 

measuring the maximum distance between the empirical and theoretical CDF and 

comparing this to a certain critical value. Hence, this is a Boolean test. However, the data 

should be compared to a set of different distributions in order to select the best 

approximation. In that case, the maximum distance is less indicative of the 

correspondence and it would be better to sum the distances, like the A-D test does.  

However, the A-D test is only valid for a few specific distributions, while the K-S test 

may be used for any continuous probability distribution for which the CDF is defined. To 

overcome these issues, the best of both worlds is combined. In fact, for each value the 

distance between the empirical and theoretical CDF is measured (like the K-S test) and 

these distances are summed (like the A-D test): 

 

)('
1

i

n

i

YF
n

i
D 



 

 

D’ is determined for a set of different distributions (an overview is given in Appendix B) 

and the distribution for which D’ is minimal, is selected as the best approximation. This 

procedure is repeated for each characteristic part in the log file, according to the dynamic 

optimal resolution algorithm: 

 
dynres (INPUT, MIN_SIZE, MAX_DEVIATION) 

{ 

    OUTPUT = empty; 

 

    if length(INPUT) >= 2 * MIN_SIZE 

    { 

        LEFT = first half of INPUT; 

        RIGHT = second half of INPUT; 

 

        if absolute(mean(LEFT) - mean(INPUT)) / mean(INPUT) > MAX_DEVIATION 

        { 

            add to OUTPUT: dynres(LEFT, MIN_SIZE, MAX_DEVIATION); 

        } 

        else 

        { 

            add to OUTPUT: LEFT; 

        } 

         

        if absolute(mean(RIGHT) - mean(INPUT)) / mean(INPUT) > MAX_DEVIATION 

        { 

            add to OUTPUT: dynres(RIGHT, MIN_SIZE, MAX_DEVIATION); 

        } 

        else 

        { 

            add to OUTPUT: RIGHT; 

        } 

    } 

    else 

    { 

        add to OUTPUT: INPUT; 

    } 

 

    return OUTPUT; 

} 

Pseudo code for dynamic optimal resolution algorithm 
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4.4 Workload model 
 

The procedure described in the previous section results in a list of parameterized 

distributions and their lengths, which looks like this: 

 
length;distribution(parameter1,parameter2) 

length;distribution(parameter1,parameter2,parameter3) 

length;distribution(parameter1) 

... 

 

where length ∈ ℕ, distribution ∈ {Normal, LogNormal, Logistic, Beta, Gamma, 

ChiSquare, Gumbel, Exponential, Rayleigh, Uniform, Triangular, UQuadratic, Constant}. 

 

Using a workload model instead of a concrete log file has several advantages. First, 

different simulations of a single model will result in comparable, however different 

scenarios. This may help to discover (worst case) situations one would not have seen if a 

log file (i.e. fixed scenario) was used. Second, a workload model can be easily modified, 

in order to simulate the consequences of an evolving workload. More specifically, the 

parameters of the probability distributions allow for easily increasing or decreasing (parts 

of) the workload based on real life observations. It is a lot harder to realistically increase 

or decrease a workload based on a fixed scenario. Finally, a workload model may easily 

be specified manually as well, without being based on real life data. This allows for fast 

and dynamic experimenting. 

 

4.5 Correctness 
 

The described model includes the request interval distributions and parameter values. 

These are considered as input. Based on that, SMEPP will simulate the performance, in 

terms of execution times. These are considered as output. This suggests that the intervals 

partly determine the execution times. However there may also be a backwards relation, in 

the sense that execution times (output) may partly determine the intervals (input) that will 

follow. For example, a high execution time might prevent a user from issuing a new 

request for a while, or from issuing a new request at all. Hence, it has an indirect 

influence on the following intervals. The question is how significant this influence is. 

 

When the interval distributions are based on real life data (i.e. on a log file), a possible 

influence of execution times on intervals is already taken into account. However, when 

the distribution parameters are modified in order to increase or decrease (part of) the 

workload, this factor might come into play. Consider the case in which the interval 

distribution parameters are modified such that the mean interval will be twice as low (in 

the period concerned) and as a result the execution times will increase. Indirectly, the 

intervals of an individual user may increase, due to waiting time, while the goal was to 

decrease them. 

 

This phenomenon is illustrated in Figure 3. The horizontal line represents time, while the 

vertical lines each represent a point in time at which a request is issued. Hence, ix 
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represents the interval between requests x and x+1, ex represents the execution time of 

request x and ux represents the user issuing request x. 

 

 
Figure 3: relation between request interval and execution time 

 

The assumption is that ex may depend on multiple factors: 

 

 ex depends on ix if ex > ix 

 ex also depends on ix+1 if ex > ix + ix+1 

 and so on, in general: 

 ex depends on ix+a if 



a

y

yxx ie
0

with a ≥ 0 

 

However to what extent the opposite is true? In other words: does ix+a also depend on ex? 

When ex is greater than ix (illustrated by the red arrows) ix is obviously not caused by ex. 

However one of the following ix+a (a > 0) may depend on ex provided that request x+a+1 

is issued by the same user. Note that while an execution time may depend on multiple 

intervals, an interval may only depend on a single execution time. Hence: 

 

 ix depends on ex if ex < ix and ux = ux+1 

 ix+1 depends on ex if ix < ex < ix + ix+1 and ux = ux+2 

 and so on, in general: 

 ix+a depends on ex if 
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and ux = ux+a+1 with a ≥ 0 

 

Naturally, ex also depends on any overlapping ey with x ≠ y. Given that u3 = u6, u4 = u5 

and u1 ≠ u2 ≠ u3 ≠ u4 ≠ u7 the dependencies in Figure 3 are as follows: 

 

 e3 depends on i3, i4, e4 and e5 

 e4 depends on e3 

 e5 depends on i5, e3 and e6 

 e6 depends on i6, e5 and e7 

 e7 depends on e6 

 i5 depends on e3 

 i4 depends on e4 

 

The ix values corresponding to the red ex arrows in Figure 3 are perfectly valid, as long as 

during execution of request x, subsequent requests are issued by different users or the 

system is asynchronous (or both). However, if this is not always the case, using a custom 
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interval distribution (i.e. not based on real life data) may lead to unrealistic scenarios. For 

example, if Figure 3 corresponds to a synchronous system (i.e. the user has to wait for a 

request to finish before issuing a new one) and requests 3 and 4 are issued by the same 

user, this scenario is invalid. This needs to be taken into account upon simulation of the 

model. More specifically, when request x is started, the probability that within the next 

interval ix any request y will be finished with y ≤ x and uy = ux+1 needs to be determined. 

Hence, the probability depends on the number of unique users and the execution times 

seen so far. For a synchronous system the generated intervals need to be corrected 

according to this probability. In general, increasing execution times or decreasing the 

number of unique users within a scenario will result in an increased probability of 

intervals depending on execution times. 
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5 Hardware analysis 
 

5.1 Introduction 
 

To model a hardware component (more specifically: its performance) one needs a few 

metrics that together define its relative speed. An ideal method to gather these metrics is 

to run a fixed set of benchmarks that generates exactly the same amount of work on each 

component. In this section, such a set of benchmarks will be proposed. For a computer 

system, the benchmarks should assess different resources as isolated from each other as 

possible. Only then it is possible to predict the consequences of a modification in a single 

resource for the system as a whole. Also, the benchmarks should exploit the full power of 

resources to determine their theoretical performance limit. Finally, the set of benchmarks 

should be as representative as possible with respect to the software components of the 

model (Section 6). An example analysis is given in Section 10.4. 

 

5.2 Benchmarks 
 

The Stream memory benchmark [20] is designed to work with data sets larger than the 

available cache on any given system, so that the results are indicative of the memory 

performance only and that the influence from other resources is as low as possible. It 

reports memory bandwidth in megabytes per second. The Dhrystone CPU benchmark 

[21] is commonly used to test integer arithmetic. The algorithm is based on the C 

implementation written by Reinhold P. Weicker. The test reports in MIPS (Million 

Instructions Per Second). The Whetstone CPU benchmark [22] is commonly used to test 

floating point arithmetic. The algorithm is based on the C implementation written by Rich 

Painter. The benchmark is designed to test the speed of commonly used floating point 

CPU instructions. The test also reports in MIPS. The Compression benchmark uses an 

Adaptive encoding algorithm based on source code from Witten, Neal and Cleary [23]. 

The system uses a model which maintains the probability of each symbol being the next 

encoded. It reports a compression rate of 363% for English text, which is slightly better 

than the standard Huffman method. This test reports its results in compressed kilobytes 

per second. The Quicksort benchmark [24] continually sorts 1000 strings of 256 

characters. The test reports the speed of the sorting in thousands of strings per second. 

The Blowfish benchmark uses the equally named enciphering algorithm [25]. It is based 

on the C implementation written by Paul Kocher. Data is enciphered using a 16 byte key 

in blocks of 4 KB. The test reports in encrypted kilobytes per second. 

 

5.3 Hardware model 
 

Within SMEPP, a system is represented by the benchmark results of each resource that is 

used by one or more of the applications represented in the same model. These values 

should be defined in MIPS (Million Instructions Per Second). Depending on the resource, 

MIPS might refer to CPU instructions, memory instructions and so on. Section 7 

describes how to incorporate these values in a UML model. 
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6 Software analysis 
 

6.1 Introduction 
 

This section will describe a method of modeling software components (more specifically: 

their utilization of resources) in the same terms of the benchmarks that were selected in 

Section 5. An example analysis is given in Section 10.4. 

 

6.2 Optimal utilization/time 
 

The first step is to look at the minimal resource utilizations for different phases in an 

applications process. This is done because these values are most representative for 

optimal application performance with minimal influence from other applications or 

environment factors. When these tests are done on a baseline system that is completely 

utilized by the application concerned, the number of instructions needed for the 

application to finish its job may be estimated, by multiplying the theoretical benchmark 

speed of each resource with the optimal execution time measured. When benchmark 

values cannot be determined (for example for external systems) the focus will simply be 

on optimal execution times. 

 

6.3 Individual efficiency 
 

Next, the same experiment should be run on several other systems, which may or may not 

be fully utilized by the application. In the process, their optimal execution times should 

be recorded and related to the base line execution time. Also, the benchmarks of those 

systems should be related to the base line benchmark. By dividing the execution time 

speedup with the benchmark speedup, efficiency values can be determined for all 

systems. They represent the part of the theoretical speed that was actually used by the 

application. Based on these values, an individual efficiency trend Ei can be discovered: 
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where x is the system under test, c is the base line system, ti is the optimal execution time 

for system i and bi is its benchmark value. For an ideal application, Ei should always 

evaluate to 1, meaning that the theoretical speed is fully utilized and that application 

speed increases linearly with it. The individual efficiency expression, whether it is a 

simple constant or a complex function, is an important property for representing 

applications within SMEPP. In fact, it does not really matter what benchmarks are used to 

represent the systems, as long as an Ei expression can be defined, that correctly relates the 

benchmark values to the execution times on those systems. In practice however, simple Ei 

expressions and thus, representative benchmarks are preferred. 
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6.4 Multi tasking efficiency 
 

The simplest way to model multi tasking behavior is to divide the number of instructions 

that a resource (for example CPU) could execute within a certain period of time by the 

number of operations executed in parallel by the same resource. This way, all operations 

receive an equal „slice‟ of execution time within each execution cycle. Remember that 

this doesn‟t mean that each operation processes the same number of instructions within a 

cycle, because operations may have different efficiencies (as described in Section 6.3), 

meaning that they will only process part of the instructions they could process in theory. 

By default operations may run in parallel according to this model. However by limiting 

the number of parallel operations to one, a simple sequential resource can be modeled. 

 

The time slicing model described here is a generalization of several more distinctive 

scheduling principles and thus, applicable in almost any case. However, its efficiency 

largely depends on the specifics of the resource and the characteristics of the applications 

running in parallel. For example, a dual core CPU will more efficiently run two tasks in 

parallel, provided that the application exploits these features. To incorporate these 

dependencies into the general time slicing model, an efficiency factor similar to the one 

described in Section 6.3 is introduced. However, this factor does not represent the 

efficiency of an individual task being executed with respect to the theoretical speed 

possible. Instead it represents the efficiency with which multiple tasks may run in 

parallel. More specifically, it represents the ratio of the optimal execution time of n 

consecutive equal operations and n simultaneous equal operations: 
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where tx (i) is the optimal execution time of i simultaneous operations on system x. 

Hence, if Em (x,n) is greater than 1, it means that n simultaneous operations are completed 

in less time than n individual operations on system x (i.e. that parallelism is exploited) 

and vice versa. Ideally this factor should approach the number of operations that can be 

processed in parallel without loss of performance. For example, for a dual core CPU, Em 

should approach 2. In practice however there are lots of other factors, both with respect to 

the application and the system, that may determine why these ideal values are seldom 

reached. 

 

6.5 Software model 
 

Within SMEPP, an application is represented by its optimal utilizations, either in terms of 

instructions or time, with respect to different system resources (Section 6.2). 

Additionally, one may specify expressions that approach the individual efficiency Ei 

(Section 6.3) and multi tasking efficiency Em (Section 6.4) for these resources. Here, 

curve fitting might be used. Both Ei and Em default to 1. Finally, it is important to find the 

most important parameters of the application, determine the probability distributions of 

their values and find out how the previous observations (e.g. resource utilizations) relate 

to them. Section 7 describes how to incorporate all findings in a UML model. 
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7 Hardware/software model 
 

7.1 Introduction 
 

In this section a UML model will be described, to represent the hardware and software 

components within a system based on the findings from Sections 5 and 6. This model is 

based on an extended UML deployment diagram (Section 2.1). The main objects in the 

model are Devices (representing hardware components) and Artifacts (representing 

software components). Initially, only their names have to be specified. All other 

properties of devices and artifacts are defined using several types of Constraints. Finally, 

there are 3 types of Relations between objects. 

 

7.2 Relations 
 

A Deployment is a relation from an artifact to a device, meaning that the artifact is 

running on that device. Because artifacts may have multiple deployments, an artifact only 

has to be specified once, even if it runs on multiple devices. If multiple instances of the 

same artifact should run on a single device, multiple deployments can be specified 

between the artifact and device concerned 

 

A Dependency is a relation from an artifact to another artifact, meaning that the former 

depends on the latter. In other words: the former cannot finish before the latter is 

finished. Artifacts may have multiple dependencies that may be deployed on the same or 

other devices. This way, requests to other devices can be incorporated. The dependent 

artifacts may have their own dependencies, which enables one to create a tree-like 

structure of artifacts. 

 

A Manifestation is a relation from an artifact to another artifact, meaning that the former 

is an instance of the latter. Artifacts may have multiple manifestations. This is useful for 

example when the properties of an artifact (Section 7.3) should have different values in 

different cases. 

 

7.3 Constraints 
 

Constraints typically consist of a name and a value. An artifact A or device D may have 

several types of constraints associated with it: 

 

 Benchmark: the theoretical number of instructions a resource within D may 

execute (Section 5.2). These values should be defined in MIPS. Benchmark 

names consist of a „b‟ followed by the resource name. 

Example: bCPU = 308.8. 

 

 Utilization: the minimal time (for example, in milliseconds) that A will utilize a 

resource within D (Section 6.2). The name refers to the resource concerned and 
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should be prefixed with „u‟. 

Example: uCPU = 988. 

 

 Time: the range of time (for example, in milliseconds) that A needs to run. This is 

used when benchmarks and utilizations are unknown (Section 6.2). 

Example: t = 1746-2261. 

 

 Efficiency: an expression that represents the individual efficiency Ei (Section 6.3)  

of an operation of A running on a resource within D, or the multi tasking 

efficiency Em (Section 6.4) of operations of type A running on a resource within 

D. Both default to 1. 

Example: eCPU = 6656.0)ln(0448.0  x  

 

 Capacity: an upper bound on the number of requests that may run in parallel 

within D or the number of parallel executions of A (Section 6.4). Both default to 

infinity. 

Example: c = 1 (to represent a sequential resource). 

 

 Parameter: the name of a parameter that A requires. It should be prefixed with 

„p‟. A value is not necessary. 

Example: pProductCode. 

 

 ParameterValue: a possible value for a parameter, associated with an instance of 

A. The name refers to the parameter, but should be prefixed with „v‟ here. 

Example: vProductCode = 3. 

 

 Probability: the chance that (an instance of) A will be executed at runtime. 

Defaults to uniform probability. 

Example: p = 0.11. 
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7.4 Example 
 

Figure 4 shows an example of a hardware/software model, as it can be composed in any 

graphical UML environment. Artifact1 and Artifact2 are deployed on Device1, Artifact3 

is deployed on Device2. Artifact1 depends on both Artifact2 and Artifact3, in other 

words: a request to Artifact1 cannot finish before those to Artifact2 and Artifact3 are 

finished. Artifact3 has two manifestations. They are constrained with their probabilities 

and the parameter values associated. As a result, when Artifact3 is called, the correct 

manifestation (Artifact3a or Artifact3b) is called according to the parameter value, which 

is determined by the probabilities set. The other types of constraints described above, are 

shown in the example too. 

 

Artifact1

Artifact2

Artifact3

Device1

Device2

Dependency1

Dependency2

Deployment2

Deployment1

Deployment3

{Parameter}

{Benchmark}Artifact3a Artifact3b

Manifestation1 Manifestation2

{ParameterValue}{ParameterValue}

{Utilization}

{Time}

{Probability} {Probability}

{Efficiency}

{Capacity}

 
Figure 4: example UML hardware/software model 
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8 Simulator 
 

8.1 Introduction 
 

This section will introduce XMISim, an application used to simulate the UML 

hardware/software models proposed in the previous section and predict the performance 

of the represented system under various workloads. XMISim was written in the C# 

programming language. Part of the process involved the development of a library that can 

be used to generate random numbers corresponding to a wide variety of probability 

distributions (see Appendix B) and to estimate their parameters based on real life data. 

Appendix A contains a class diagram for the XMISim application. 

 

8.2 Simulator input 
 

A hardware/software model as described in the previous section can be composed within 

any graphical UML environment. However, to load the model into the simulator, it 

should be in XMI [15] format. Most UML environments provide an „export to XMI‟ 

feature. 

 

As described in Section 3.2, a third component is needed to simulate the model: the 

workload component. This component is defined separately, either by loading a log file 

describing a real life scenario, or by defining a workload model based on probability 

distributions. Log files should be in CSV (Comma Separated Values) format. 

Confusingly, the values are actually separated by semicolons. The first row contains the 

column headers, while each consecutive row represents an individual request. The CSV 

file may include an „interval‟ column (specifying the time between a request and the 

previous one) and a „deployment‟ column (specifying the artifact and device the request 

is associated with). Additional columns may be used to specify parameter values that 

should be used when simulating the request. The headers of these columns should 

correspond to parameter names as defined in the hardware/software model. The actual 

order of columns is irrelevant. None of the columns are required, because the 

distributions of intervals, deployments and parameter values may also be defined in the 

application itself. An example CSV file: 

 
interval;deployment;parameter1 

6436;Artifact1 @ Device1;5 

7162;Artifact2 @ Device2;6 

1749;Artifact1 @ Device1;6 

1595;Artifact3 @ Device2;4 

4550;Artifact1 @ Device1;5 

7288;Artifact2 @ Device1;3 

2752;Artifact3 @ Device2;6 

... 

 

When a CSV file is loaded, XMISim determines the distributions of the values in the file 

in order to generate a workload model. For the deployment and parameter columns, the 

probability distributions of their values are simply determined. For the interval column a 

more advanced method is used. The concept is explained in Section 4.3. The results of all 
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determinations are shown in the main window (see Figure 6) and can be modified by the 

user before starting the simulation. This way, the user has several options for simulating 

the intervals, the deployments as well as the parameter values. One may choose to 

 

 exactly replay a log file; 

 simulate a model of a log file in terms of probability distributions; 

 simulate a modified or completely custom model; 

 combine any of the above; for example: use the parameter distribution from a log 

file with custom intervals, and so on. 

 

All this results in great flexibility with respect to workload specification and the 

possibility to compare different scenarios. 

 

8.3 Running the simulator 
 

When the XMI file is loaded, its structure of objects, relations and constraints is exactly 

recreated. In addition to that, some runtime components are added. For example, for 

every benchmark constraint associated with a device, a Resource is created that will 

process Operations at the rate specified. Each device also has a Global resource that will 

process operations of which the specific resource utilizations are unknown. These include 

the operations defined by time constraints. Figure 5 shows the example input model from 

Figure 4 in its runtime configuration. 

 

Artifact1

Artifact2

Artifact3

Device1

Device2

Dependency1

Dependency2

Deployment2

Deployment1

Deployment3

Resource1

Resource2

Resource3

Resource4

Resource5

Resource6

Operation1

Operation2

Operation3

Operation4

Operation5

Request1

Request2

WorkLoad

Artifact3a Artifact3b

Manifestation1 Manifestation2

 
Figure 5: example model from Figure 4 at runtime 
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After starting the simulation, XMISim will create a number of Requests with intervals 

based on the workload description supplied. A request is associated with a deployment 

relation, thus with artifact A and device D. When a request is started, the resources of D 

are supplied with operations based on the utilization and time constraints of A (see Figure 

5). When A requires a parameter, its value is either taken from the log file (if supplied) or 

selected from the possible manifestations by probability, or uniformly if no probability 

constraints are set. Next, the instance of A associated with the selected parameter value 

runs. This way, it is possible to simulate different utilizations and times for different 

parameter values. Based on the dependencies of A, requests for those artifacts are also 

created. A request is finished when all of its own operations and those of its dependencies 

are finished. More specifically, the time needed for an operation O to be completely 

executed by a resource R may depend on: 

 

 the rate at which R processes instructions (benchmark constraint) 

 the initial utilization or time needed for O with respect to R (utilization or time 

constraint) 

 the part of the theoretical speed of R actually exploited by O (individual 

efficiency constraint) 

 the influence of operations processed in parallel by R (multi tasking efficiency 

constraint) 

 the maximum number of operations processed in parallel by R (capacity 

constraint) 

 

Except for the benchmark, all of these constraints may have different values 

corresponding to different manifestations of an artifact. Additionally, the occurrence of 

these manifestations may be influenced by probability constraints. All of this leads to a 

dynamic simulation of a static hardware/software model. 

 

8.4 Timing 
 

XMISim has a built in timing mechanism with a default cycle time of 1 millisecond. 

However, the precision may easily be adapted if needed. Upon each cycle, the simulator 

will enable the resources to process some instructions, check if operations are finished 

and start new requests if needed according to the interval distribution. Generated intervals 

are corrected if they are unrealistic with respect to the number of unique users and the 

execution times seen so far. See Section 4.5 for details. 

 

XMISim uses a simple time slicing principle as described in Section 6.4. Each resource 

has a list of active operations and a list of queued operations. The former contains 

operations that are being processed at that moment, the latter contains operations that, for 

example, have been started but cannot run because they have to wait for another 

operation to finish. Upon each cycle, the resource will check if the queued operations 

may already run and if so, move them to the active list. Next, the number of instructions 

the resource could theoretically process within that cycle, is divided by the number of 

active operations. All of them are allowed to process a „slice‟ of the total number of 

instructions. 
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8.5 Efficiency 
 

Remember that an individual efficiency constraint refers to the part of the theoretical 

speed that is actually used by an application. In real life, efficiency varies during 

execution of an operation. This is why peaks are typically seen when looking at, for 

example, CPU usage graphs. Although the efficiency of an operation being processed by 

a resource depends on both the operation and the resource within SMEPP, its value will 

be fixed throughout simulation of that operation. This means that there will be no peaks, 

unless multiple operations run in parallel. However, the surface beneath such a graph, 

corresponding to the number of instructions executed, is the same as in real life. This 

generalization makes it possible to simulate general resources without specific knowledge 

of the used CPU, memory and so on. The constraints described in Section 7.3 allow for 

more specific representation and simulation of different types of resources. 

 

8.6 Output 
 

Figure 6 shows a running simulation in XMISim. The left side is used to load XMI and 

CSV files and to define several parameters. In the middle column, the devices, resources 

and their current utilizations are shown. The right side contains the results of the files 

loaded and the running simulation. XMISim will report its results in the form of response 

time distributions of steps in the process as well as the total process. These values are 

easy to compare with real life observations (for validation purposes) and easy to interpret 

(for prediction purposes). 

 

 
Figure 6: running simulation in XMISim 
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9 Experimental setup 
 

9.1 Introduction 
 

This section will describe the experimental setup used to determine the correctness of the 

hardware, software and workload components within SMEPP and the accuracy of the 

simulator. 

 

9.2 Input components 
 

Three components are needed for simulation. For the hardware component, benchmarks 

should be run on all systems involved in the environment that needs to be simulated. This 

is described in Section 5. Similarly, for the software component, each application 

involved needs to be observed as described in Section 6. All findings should be 

incorporated in a UML model in the form of constraints connected to devices (systems) 

and artifacts (applications). Finally the relations among them need to be defined. All of 

this is described in more detail in Section 7. When the model is finished it should be 

exported to XMI format. 

 

The third component needed for simulation is the workload description. This can be 

either a concrete workload in the form of a log file, or a „synthetic‟ workload description 

based on probability distributions. See Section 4. 

 

9.3 Practical validation 
 

When a concrete workload is loaded, the simulation may immediately be started. The 

simulator will exactly replay the real life workload in this case. By comparing the 

simulator results with the real life results corresponding to the same workload, the 

hardware and software model components can be practically validated. This way, it can 

be made sure that a possible deviation of simulation results from real life results is not 

due to the workload component within SMEPP. 

 

Instead of exactly replaying the workload from the log file, there is also the option to 

replay its distributions only. This means that on a long simulation run, the intervals and 

parameter values will approach those of the real life workload, however the runs won‟t be 

exactly the same. When the simulation runs long enough, one may discover scenarios that 

were not represented in the original workload. Also, by comparing the results of an exact 

replay with those of a distribution replay, the workload model within SMEPP can be 

practically validated. 

 

For an exact replay, the simulation results could be compared with the real results by 

simply comparing the execution times throughout the whole run. However, the results of 

a distribution replay cannot be directly compared with those of a concrete workload, 

because the runs are different. In that case the focus should be on the distribution of 

execution times and their extremes, in order to compare the results. 
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9.4 Theoretical validation 
 

The experiments described earlier are a practical „proof‟ of the correctness of different 

model components and how the simulator handles them. For the workload component, a 

more theoretical analysis is also possible. A concrete workload is approached by 

XMISim with a resolution and accuracy set by the user. Naturally, when the resolution is 

high enough, every workload may be approached with uniform or even constant 

distributions. However, the workload needs to be modeled with a limited number of 

distributions (i.e. relatively low resolution) without losing too much detail. Otherwise, the 

concrete workload might just as well be used for simulation. When decreasing the 

resolution, it becomes increasingly important that the selected distributions accurately 

reflect the parts of the original workload they correspond with. Thus, to provide a more 

theoretical proof of the correctness of the workload component, one should show that the 

selected distributions are valid in the sense that they reflect the characteristics of the 

original workload without being too specific or general. 

 

9.5 Prediction 
 

When all SMEPP components are validated, the environment can be used to predict the 

performance in more abstract situations. Instead of loading a log file and doing an exact 

replay or distribution replay, the workload parameters may be manually specified. This 

enables one to predict the results in a case of which a concrete workload example and 

corresponding results are not available. This is the goal of SMEPP in the end. A 

combination of both options is also possible. One could load a log file, let XMISim 

determine its properties and then modify them before starting the simulation. For 

example, the average request interval could be decreased to simulate the consequences of 

this modification. Naturally the same holds for changes within the hardware and software 

components of the system. 
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10 Experiments 
 

10.1 About Voogd & Voogd 
 

Voogd & Voogd is an excellent example of a company dealing with most of the common 

problems described in Section 1. The software developed at Voogd & Voogd (V&V from 

now on) is changing rapidly. Also, the number of users is strongly increasing. Software 

functionality is tested extensively, however at this moment it is unknown whether non-

functional requirements, such as performance, will be satisfied when new software is 

introduced. In some cases, these requirements are not even known. V&V is also unable to 

make concrete capacity and availability predictions with respect to the future. This is a 

typical example of the gap between software engineering and system engineering 

described earlier. At the moment, all effort to bridge this gap is based on previous 

experience. This is a critical, however not seldom seen situation. There is a strong need 

for a more structural approach. 

 

10.2 Applications and servers 
 

PBP (in Dutch: PremieBerekeningsProgramma) is an application developed by V&V that 

is used by several other applications. Its most important task is to calculate premiums for 

different products from different insurers, for example to enable comparison of premiums 

in a consumer specific case. With respect to calculation, PBP can be considered as the 

heart of the software architecture at V&V. 

 

PBE (in Dutch: Premie Berekening Extern) is also developed internally and can be seen 

as a wrapper around PBP. A request to PBE is usually forwarded to PBP. In addition to 

that, PBE also calls an external party called Moneyview that essentially does the same job 

as PBP, however for a different set of insurers. When both are finished, the Moneyview 

premiums are translated to PBP format and the internal premiums are merged with the 

external premiums. The result is an enriched list of options for each product. PBE is used 

by several other applications. The difference mainly lies in the source of the request. 

 

Klik & Sluit is an interface that enables the user to enter criteria (for example the license 

plate number for a car insurance) after which the concept as described before (PBE, PBP, 

Moneyview) is used to generate a list of premiums for this case. This form is used by 

intermediaries, the primary customers of V&V. Intermediary requests are handled by the 

Marktplaats servers. Intermediaries may also offer this functionality to their own 

customers (mostly consumers) through their website. Consumer requests to Klik & Sluit 

are handled by the Diensten servers. Finally, some of the largest customers of V&V do 

not send their requests through the Klik & Sluit interface, but use a customized SOAP 

(Simple Object Access Protocol) interface. These services run on several other servers, 

however this is beyond the scope of this article. 
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10.3 Workload analysis example 
 

In this example, the log data of the PBP application running on 4 Marktplaats (M) and 2 

Diensten (D) servers within September 2008 is used. Figure 7 and Figure 8 show the 

request rates on these servers in the complete month (SW: 1 month, TW: 1 month, TR: 1 

hour). It is obvious that a pattern repeats itself every week, which means that the target 

window should be decreased to one week. Also, it seams that all M servers and all D 

servers show equal behavior, which makes sense because all requests are divided over 

servers by load balancers. 

 

10.3.1 Decreasing the target window 

 

As said before, when the target window becomes smaller than the source window, there 

may be multiple values for each data point. In this case for example, the source data from 

4 M servers and 4 weeks will lead to 16 values for each data point. Aggregate functions 

(minimum, maximum, average) will be used to visualize the request rates from now on. 

Figure 9 and Figure 10 show the request rates on any M or D server in any week of 

September 2008 (TW is now 1 week). Figure 9 shows peaks during working days and 

hours, which makes sense because the M servers are used by intermediaries, not by 

consumers themselves. Figure 10 shows a more equal distribution, as the D servers are 

used by consumers. 

 

10.3.2 Increasing the source window 

 

Figure 11 and Figure 12 show exactly the same as Figure 9 and Figure 10, except for the 

fact that all weeks and servers since January 2008 are now included (SW is now 9 

months). As you can see the averages are almost equal to the previous graphs, however 

the minimum and maximum values are, respectively, lower and higher. For example, 

within the September window, the maximum request rate for an M server was 437 per 

hour, while for the January-September window, it was 728 per hour. This means that a 

source window of 1 month is not enough to capture the extremes in this case. 

 

10.3.3 Increasing the resolution    

 

Figure 13 and Figure 14 are the same as Figure 11 and Figure 12, except that the 

resolution is now 1 minute and the frequencies in the graph are also defined per minute. 

Remember that the maximum request rate on an M server was 728 per hour, which 

corresponds to 12.1 per minute. In Figure 13 however, a maximum of 32 requests per 

minute is shown. This case would not have been discovered without increasing the 

resolution. Increasing the resolution further to 1 second however, would not make sense 

because then the average measurement result would be below 1. Recall: for a request rate 

of 728 per hour, it is worth increasing the resolution to 1 minute, because 728 is larger 

than 60 (minutes per hour). However, for a rate of 32 per minute, it is not worth 

increasing the resolution to 1 second, because 32 is smaller than 60 (seconds per minute). 
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Figure 7: PBP request rate @ Marktplaats (SW: 1 month, TW: 1 month, R: 1 hour) 
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Figure 8: PBP request rate @ Diensten (SW: 1 month, TW: 1 month, R: 1 hour) 
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Figure 9: PBP request rate @ Marktplaats (SW: 1 month, TW: 1 week, R: 1 hour) 
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Figure 10: PBP request rate @ Diensten (SW: 1 month, TW: 1 week, R: 1 hour) 
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Figure 11: PBP request rate @ Marktplaats (SW: 9 months, TW: 1 week, R: 1 hour) 
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Figure 12: PBP request rate @ Diensten (SW: 9 months, TW: 1 week, R: 1 hour) 
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Figure 13: PBP request rate @ Marktplaats (SW: 9 months, TW: 1 week, R: 1 minute) 
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Figure 14: PBP request rate @ Diensten (SW: 9 months, TW: 1 week, R: 1 minute) 
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10.4 Hardware/software analysis example 
 

In this example the CPU utilization of a certain request to the PBP application is 

analyzed. As base line a relatively slow single core system with a CPU benchmark value 

of 308.8 MIPS was used. The system was fully utilized by the PBP request during 

execution. By running the calculation a large number of times, an optimal execution time 

of 3199 milliseconds was measured. 

 

Next, exactly the same experiment was done on four other systems with CPU benchmark 

values ranging from 400 to 1400 MIPS. As described in Section 6.3, the execution time 

speedup was related to the benchmark speedup (both with respect to the base line system) 

for each of those systems. This results in the following graph (Figure 15) for the 

individual efficiency Ei. As you can see the slowest system has an Ei value of 0.67 while 

the fastest system scores only 0.37. Looking at the optimal execution times, the latter is 

still significantly faster. However, the individual efficiency (the part of the theoretical 

speed that is actually used) decreases as the benchmark value increases. This makes sense 

because the benchmark makes effective use of multiple CPU cores, while the PBP 

application does not. Remember that for an ideal application, this graph should be a 

horizontal line at 1, meaning that the theoretical speed is fully utilized and that 

application speed increases linearly with it. For this example, Ei can be approached by a 

logarithmic (pink) or power (blue) function: 
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Figure 15: PBP individual efficiency trend 
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10.5 PBE @ Marktplaats simulation 
 

10.5.1 Hardware and software components 

 

Figure 16 shows a UML model as defined in Section 7 to represent the hardware and 

software components involved in the PBE case. As you can see, the PBE artifact has two 

dependencies connecting it to other artifacts: PBP and Moneyview. PBP has four 

manifestations connecting it to different instances of itself. PBE and PBP have 

deployments connecting them to the Marktplaats1 device. The Moneyview artifact is 

connected to the MVServer device through a deployment. PBP has 2 constraints: a 

parameter called ProductCode and an efficiency expression with respect to CPU usage. 

The instances of PBP each have 3 constraints: a probability of occurrence, a value for the 

ProductCode parameter and a CPU utilization value. For the Moneyview part, the 

utilization and benchmark values are unknown, which is why only a time constraint is 

used. 

 

PBE

PBP Moneyview

DependencyDependency

WA WABeperktCasco WACasco AlleDekkingen

Manifestation Manifestation Manifestation Manifestation

{p = 0.19

vProductCode = 5

uCPU = 680}

{p = 0.39

vProductCode = 6

uCPU = 945}

{p = 0.11

vProductCode = 3

uCPU = 2108}

{p = 0.31

vProductCode = 4

uCPU = 507}

{pProductCode

eCPU = -0.0448*Ln(x)+0.6656}

{uCPU = 22}

{t = 1546-2277}

Marktplaats1 MVServer

DeploymentDeployment

Deployment

{bCPU = 915.4}

 
Figure 16: hardware/software model as input for PBE simulation 
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10.5.2 Practical validation 

 

Figure 17 shows the response times of the PBE application and its dependencies: PBP 

and Moneyview within a range of 600 requests on an ordinary morning for one of the 

Marktplaats (M) servers. In general the intervals are decreasing throughout the scenario. 

As you can see, the PBE time (blue) is determined by the PBP time (pink) in most cases. 

However it may also be determined by the Moneyview time (yellow). Remember that 

both dependencies have to be finished before a request to PBE can finish. 

 

When the interval and parameter values of this real life scenario are loaded into XMISim 

and an exact replay is done, Figure 18 is the result. The PBP graph is very similar to the 

original graph, which is not surprising because XMISim has simulated exactly the same 

workload as in real life. The Moneyview graph however is somewhat different. This is 

because Moneyview is an external party with other customers as well, which means that 

the Moneyview times cannot be directly related to the workload generated from V&V 

only. The times are also influenced by other Moneyview customers of whom no data is 

available, so this part of the scenario cannot be exactly replayed. However the 

distribution of the real life Moneyview times can be used. This means that the times do 

not exactly correspond with the real life ones, but over the complete picture, the graphs 

are comparable, as shown in Figure 18. As a result, the Pearson correlation coefficient of 

the blue graphs (0.971), though a bit lower than those of the pink (0.987), is very high. 

 

When the log file is loaded into XMISim, the application tries to determine its 

distributions. Example: with a fixed resolution of 25, the 600 requests in the log file are 

divided into 24 local parts, each with its own distribution. In this case, XMISim 

determined two normal, three uniform, one log-normal and one logistic distributed part. 

The others were best described with a Beta distribution. For the ProductCode parameter, 

the same probability distribution as in the log file was taken. This means that, during 

simulation, the parameter values will occur with roughly the same frequencies as in the 

log file, however the order may be completely different. After running this „distribution 

replay‟, Figure 19 is the result. Because the intervals and parameter values used here 

were only an approach of the real life ones, Figure 19 cannot be directly compared with 

the previous graphs. However, it is obvious that the characteristics of the graphs are quite 

similar. 

 

Remember that the request intervals within this scenario were modeled with 24 individual 

distributions. The real life intervals (and the distributions detected from them) are shown 

in Figure 20. The resulting intervals that were used for the distribution replay are shown 

in Figure 21. As you can see, modeling the request intervals like this, and then running a 

simulation, leads to a comparable however somewhat different scenario. Naturally, using 

a lower resolution for detecting the distributions will lead to a greater deviation from the 

original scenario. A workload model like this can be easily modified and as a result, the 

consequences of such a modification can be easily simulated. Figure 22 shows the 

intervals that would have been used if XMISim would model the workload with only 

normal distributions. As you can see that generalization results in a less accurate model at 

the same resolution. 
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Figure 17: execution times in real life scenario 
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Figure 18: simulated execution times for exact replay 
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Figure 19: simulated execution times for mixed distribution replay 



 42 

0

2000

4000

6000

8000

10000

12000

14000

16000

8:00 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45 8:50 8:55

R
eq

u
es

t 
in

te
rv

al
 (

m
s)

Beta(0,14219,6339.96,4684.20) Beta(312,14732,8043.44,4468.52) Beta(453,13278,7282.88,4347.22) Beta(403,13121,6173.36,3888.57)

Uniform(536,12070) Beta(350,12866,7220.76,3885.51) Beta(701,11348,6583.32,3480.62) Beta(70,11171,5208.64,3861.61)

Beta(197,8987,4169.56,2716.36) Beta(257,10491,5124.4,3151.10) Uniform(407,9840) LogNormal(8.17,0.60)

Beta(412,10649,5616.28,3359.54) Beta(123,8292,4086.92,2820.04) Normal(4046.48,2046.28) Beta(90,4997,2620.32,1348.53)

Beta(178,6225,3035.52,2099.99) Beta(32,6659,3005.6,2027.63) Beta(54,5933,2747.44,2120.92) Beta(369,5926,3488.32,1798.58)

Normal(3466.44,2358.93) Uniform(86,4904) Logistic(2564.4,1116.92) Beta(283,3829,1837.32,1107.29)

 
Figure 20: request intervals in real life scenario (Figure 17 and Figure 18) 
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Figure 21: request intervals for mixed distribution replay (Figure 19) 
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Figure 22: request intervals for normal distribution replay 
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10.6 PBE critical section case 
 

The previous experiment illustrated the general concept of SMEPP, how to define the 

workload, hardware and software components and how to simulate the system 

accordingly. This case will focus on the software component and illustrate how it may be 

exploited in a decision making process. 

 

As described before, the PBE application depends on both PBP and Moneyview. While 

the PBE execution times were determined by those of PBP in most cases, the question 

arose whether it would be more efficient to execute PBP requests within a so-called 

critical section. In that case, for each instance of the PBE application, only one request to 

PBP would be processed at any time. Others would have to wait until PBP is available 

again. As a result, the PBE execution times will be determined by PBP in less cases. In 

fact, the PBP execution times will all be more or less optimal, because only one request is 

processed at any time. However, it may also introduce a „lag‟ as new requests are posed 

on PBE while PBP is still processing previous requests. Consequently, PBE may have to 

wait for PBP and the latter may still be the determining factor for the PBE execution 

times. 

 

Figure 23 shows the execution times of PBE, again within an ordinary scenario during 

one hour. The blue line represents real life, while the pink line represents the result of 

simulating this scenario using the hardware and software models from the previous 

experiment. Their correlation value of 0.988 is extremely high again. Next, the 

consequences of introducing a critical section as described above were simulated. To 

represent this in the software model, the PBP artifact (see Figure 16) was simply supplied 

with a capacity constraint of value 1. Figure 24 shows the result of simulating the 

modified model with respect to the scenario before. It also shows the execution times of a 

PBE version that actually contains the critical section in the same scenario. As you can 

see, the simulation very accurately predicted the positive consequences (i.e. decreasing 

execution times) of introducing the critical section. The correlation value of 0.979 was 

only slightly lower than in the non-critical section case.  
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Figure 23: PBE execution times without critical section 
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Figure 24: PBE execution times with critical section 
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10.7 PBP worst case workload scenario 
 

10.7.1 Modeling the worst case scenario 

 

The previous experiments illustrated the concept of SMEPP and its simulation in random 

scenarios. To validate the workload component within SMEPP in more characteristic 

scenarios, this section will focus on some extremes with respect to the workload posed on 

the PBP application. For this task, the worst case scenarios for the past four years 

(according to the PBP log files) were analyzed. In this respect, a month-to-month trend is 

hard to discover. Instead, one should compare the intervals within clearly distinct 

windows, which is why only the first months of each year have been analyzed. Figure 25 

shows three examples of worst case scenarios for the PBP application within January and 

February of 2006, 2007, 2008 and 2009. The periods before and after are also shown in 

the figures, to make sure that the „normal‟ workload is included in the window. In fact, 

each example shows the intervals within a window of 200 requests with the „worst case‟ 

centered. Note that while the figure shows only three examples per year, the 

approximations made further on are based on at least 20 worst case scenarios for each 

year. All of these scenarios have been analyzed using SMEPP. More specifically, 

XMISim has determined the characteristic parts of each scenario, according to the 

dynamic optimal resolution algorithm described in Section 4.3. Next, it determined the 

parameterized distributions that best matched each of these parts. This procedure is also 

described in Section 4.3. This way, a model of each scenario is automatically generated. 

 

When comparing the example figures, it is clear that the worst case scenarios have 

become „worse‟ through the years. However it appeared that the trends discovered in 

these scenarios were all more or less similar. This observation is supported by the models 

generated for each scenario that was analyzed. The „normal‟ workload (not to be 

confused with a normally distributed workload), which is shown on the left and right 

sides of the graphs, was usually characterized by log-normal distributions with 

parameters μ close to 8.0 and σ between 1.0 and 1.5 (see Appendix B on how to interpret 

these). The parts in which the intervals either substantially decrease or increase (i.e. 

increasing or decreasing workload), are best represented by the Gamma distribution, 

which in fact is a generalization of the exponential distribution. This makes perfect sense, 

considering that the parameters of these distributions do not restrict their values with a 

certain upper bound (see Appendix B). In other words: these distributions are best used to 

represent unpredictable behavior. The center periods, in which the intervals were actually 

minimal, are best approached by the Beta distribution with parameters α approximately 

0.2 and β approximately 0.4. Note that because the Beta distribution is only supported 

between 0 and 1, these parameters correspond to that support. The result is however 

rescaled by XMISim to fit the interval distribution as required. The occurrence of Beta 

distributions in the center periods is explained as follows. When the number of requests 

in, for example, a single minute increases, the probability of „extreme‟ intervals within 

that minute decreases. Hence, the interval distribution tends to uniformity. Not 

surprisingly, the uniform distribution is a special case of the Beta distribution. 

Concluding, a model of the typical worst case workload scenario for the PBP application 

looks like this (see Section 4.4 for the syntax): 
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x;LogNormal(μ,σ) 

y;Gamma(k,θ) 

z;Beta(α,β) 

y;Gamma(k,θ) 

x;LogNormal(μ,σ) 

 

By using different parameter values, the worst case scenarios of different years can be 

approached with a single model. Figure 26 shows 3 example scenarios that might occur 

in each of those years according to the model above. They should be compared to the real 

life scenarios on the page before. The following parameter values were used to fit the 

model to the scenarios for the different years. 

 

 x y z μ σ k θ α β 

2006 55 35 20 8.49 1.28 0.54 20454.55 0.21 0.38 

2007 55 30 30 8.05 1.21 1.05 8704.40 0.21 0.38 

2008 55 29 32 8.05 1.20 1.11 3709.76 0.21 0.38 

2009 55 35 20 8.04 1.17 0.90 7922.54 0.21 0.38 

 

The Beta distribution parameters α and β, that define the center (i.e. the most busy 

period) were more or less constant through the years. As a minor generalization, the same 

values were taken for each year. The most significant evolution is seen in the periods 

described by the Gamma distributions. Both the interval mean and standard deviation 

have decreased throughout the years, which is mostly reflected in the scale parameter θ 

estimated by XMISim. The log-normal parameters μ and σ show a similar, however less 

significant, evolution. Another interesting development is that the length of the center 

period z has increased, meaning that the period in which the intervals were minimal, 

lasted longer. However, the last year this effect, as well as the evolution of the Gamma 

parameters was reversed, meaning that the center period became shorter and the 

difference between the Gamma and the log-normal periods became smaller. As a result, 

the intervals over the whole scenario show less variance and the characteristic symmetric 

decreasing-and-then-increasing shape slowly disappears. 

 

10.7.2 Simulating the worst case scenario 

 

Now that a worst case scenario model with parameters for each year is available, the 

execution times of the PBP application (with respect to this scenario) can be simulated 

and compared with the real life times. Remember that the PBP execution times are only 

partly determined by the request intervals. A large part is also determined by the values 

of the ProductCode parameter (see Figure 16). To remove this „noise‟, the execution 

times need to be normalized for each different ProductCode value. As a result, a low 

execution time will be close to zero and a high execution time will be close to one, 

regardless of the ProductCode value. 

 

For each of the worst case scenarios in Figure 25 and Figure 26 the corresponding 

(normalized) execution times are also shown at the top of the graph. Note that the values 
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on the vertical axis correspond to the intervals, not the execution times. Remember that 

Figure 25 shows real life execution times according to the scenarios from 2006 to 2009, 

while Figure 26 shows simulated execution times according to a single workload model, 

which is parameterized to fit the different years. Hence, if this model is correct, the 

execution times in these figures should be globally comparable. However the actual order 

and peak locations may be completely different. Thus, one should not directly compare 

these lines. Instead, one should compare their characteristics. For example, the mean 

execution time in the simulated 2009 scenarios is 454 ms, while in the real scenarios it is 

380 ms. A more sophisticated comparison uses the distributions of execution times in the 

real life and simulated figures, as demonstrated in Figure 27. The blue columns represent 

the frequencies of execution times in ranges of 100 ms. The pink line shows the 

cumulative probability of execution times, i.e. the probability that the execution time is 

smaller than or equal to the value on the horizontal axis, within the scenarios represented. 

 

Although the cumulative probabilities correlate for nearly 0.99, the simulated execution 

times in Figure 27 show less variance than the real ones. This is also characterized by the 

„jumps‟ in the cumulative probability lines. These are due to some generalizations and 

assumptions in the models of the PBP application and the workload posed on it. More 

specifically: 

 

 The workload model was parameterized to evolve in a way comparable to real life 

observations. However essentially the model was the same for all years. 

 The application model includes the optimal execution times for 6 of the 

ProductCode values where they were most distinct, while at least 16 different 

values occurred throughout the scenarios. As a result, requests with other 

ProductCode values will have approximately equal execution times, provided that 

only one of them is executed simultaneously. 

 The optimal execution times that were modeled are based on 2008 measurements. 

Any evolution of the application itself was not modeled. 

 

Keeping all this in mind while looking at Figure 27, the simulated execution times are 

actually very accurate. To say the least, the simulation provides a good impression of the 

execution times in real life scenarios. It is quite surprising that the performance of a 

heavy weight application like PBP, under a worst case workload, can be predicted on this 

level with models as abstract as those used here. 

 

10.7.3 Correctness 

 

When comparing the request intervals and the normalized execution times in Figure 25 

and Figure 26, it becomes clear that low intervals correspond to higher frequencies of 

high execution times, in both the real and simulated scenarios. However, in real life this 

correspondence has become less obvious through the years, which can be explained 

because at the same time, the interval scenarios have become more and more „flat‟. 

Naturally the dependency of execution times on intervals decreases when the variance in 

the latter decreases. The opposite relation, intervals depending on execution times, may 

also play a role. For each interval throughout the scenario, XMISim has determined the 
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probability that it was depending on the execution time of any running request as 

described in Section 4.5. This probability was 0.04 at most, perhaps explained by the fact 

that in the 2009 scenarios the average number of requests per user was only 1.5. Thus, 

within this window of 200 requests, at most 8 (and probably less) of the intervals have 

been partly determined by execution times. Although in these scenarios the dependency 

of intervals on execution times is small, XMISim does take it into account upon 

simulation. 
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Figure 25: top 3 worst case scenarios in January/February 2006/2007/2008/2009 
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Figure 26: example scenarios with 2006/2007/2008/2009 parameters 
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Figure 27: distribution of execution times in real and simulated 2009 scenarios 
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11 Conclusions 
 

This article introduces SMEPP, a novel System Modeling Environment for Performance 

Prediction. The environment consists of methods for modeling the entire context of a 

system. Additionally, it includes an application to simulate these models. The simulator, 

XMISim, needs two types of input. First, it expects a model of the hardware and software 

components within the system concerned. The hardware/software model used within 

SMEPP  is an extended version of the UML deployment diagram. It is a flexible model in 

which many real life systems [45] may be represented. See Section 7 for details. A 

hardware/software model can be composed in any graphical UML environment that 

includes functionality to export the model into the standard XMI format. As its name 

suggests, XMISim expects the model to be in this format. 

 

In addition to the hardware/software model, XMISim expects a workload model. This is a 

description of the requests that should be posed on the system during simulation. At first, 

extensive work has been done to make sure that the simulator produces valid results with 

respect to concrete workloads. In other words: real life scenarios (as extracted from log 

files and databases) were exactly replayed in order to compare the simulator results with 

the real life ones. Here, „results‟ refers to the execution times of the modeled system and 

its components. Correlation values no lower than 0.97 were seen in these cases. Examples 

are given in Section 10.5 and 10.6. 

 

Naturally, exactly replaying a real life workload scenario is useful for validation of the 

hardware/software model. However for predictive purposes, which is the main goal, a 

generalized representation of such a scenario was needed. Therefore, the next focus was 

on modeling workload scenarios. This has resulted in a method of determining the 

characteristic parts within a concrete workload and for each of these parts, finding the 

best approximation among a set of probability distributions. See Section 4.3 for details. 

XMISim was extended with functionality to semi-automatically execute this process. As 

a result, the application can generate a workload scenario model by itself. This model 

may directly be used in a subsequent simulation. Using a workload model instead of a 

concrete workload has several advantages, as described in Section 4.4. 

 

SMEPP enables one to quickly and accurately assess the performance of a (proposed) 

system based on a minimal amount of input information. Also, the consequences of 

updates within the hardware and software components and the evolution of workload can 

be evaluated. Section 10.7 gives an example of how extremely abstract 

hardware/software and workload models can be simulated to provide a quick and 

valuable insight in the performance of the system concerned. In this respect, the goal of 

requiring a minimal amount of input information was accomplished. 

 

One of the other goals, the use of existing methods, was partly accomplished. For the 

modeling and analysis parts, lots of techniques already known in literature were 

combined. Only for the simulation part a new solution has been developed, because 

existing simulators were focused on either hardware or software models (both were 
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needed), while the ability to accurately simulate a workload scenario was insufficient or 

even absent. 

 

Particularly because of its wide context, which was the third goal, SMEPP is applicable 

in real life situations. This is illustrated by various cases, aimed at both validation and 

prediction. It is shown that SMEPP is a valid, scalable and general approach to system 

modeling and performance prediction. 
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12 Future work 
 

This article has presented methods of retrieving information about a system, modeling the 

system and finally simulating this model. Although the whole process fits together quite 

nicely, some improvements might make life easier. In addition to that, some suggestions 

are given to enlarge the area of applicability for SMEPP. 

 

It was described how to define existing hardware and software components, as well as 

concrete workloads in models suitable for simulation. Additionally, it was shown how the 

evolution in any of these components may be exploited to approach the results in more 

abstract cases. For example, given the evolution of workload within the past years, the 

workload within the next year may be approached. However, to represent any given case 

(possibly without any real life information) still requires quite some expertise. For 

example, if one is asked to simulate a 40 % increase in the current „average‟ workload, it 

is quite a challenge to translate such a rough metric into a scenario which is both 

representative and suitable for simulation. In practice however, this is the type of input 

that should be expected. Hence, it would be interesting to see if this process can be made 

any easier by developing methods that automatically perform these kinds of translations. 

 

Section 6.3 describes a method of relating measured execution times of an application to 

the systems benchmark values, in order to discover an individual efficiency trend Ei. For 

this task curve fitting techniques in external statistical tools are used. The resulting 

expression is then included in the UML model, to be evaluated during simulation. 

Instead, it would be nice to integrate the curve fitting process in XMISim. This way, one 

would simply put the measured execution times and benchmark values in the model and 

their relation would be determined on the fly, without the need for external tools. 

 

The output of XMISim is currently restricted to a list of execution times for the system 

and its components, accompanied by some basic statistics. However, to perform a 

thorough analysis of the results external tools are still needed. An example is determining 

the distribution of execution times as demonstrated in Section 10.7. It would be useful to 

integrate this process, in order for XMISim to automatically provide such an analysis 

after simulation. 

 

The simulation experiments have focused on CPU and memory performance, as these 

were most determining for the performance of the applications concerned. More 

specifically, the benchmarks that were used, as well as the process of relating them to 

execution times, were aimed at these resources. Although the framework that was 

presented might just as easily be used to simulate, for example, graphics performance, it 

is currently unknown how accurate the results would be. 

 

Finally, it would be interesting to evaluate the applicability of SMEPP and the accuracy 

of XMISim with respect to virtual systems. 
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Appendix A: XMISim class diagram 
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Figure 28: Class diagram for XMISim 
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Appendix B: continuous probability distributions 

and their cumulative distribution functions 
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Figure 29: Exponential F(x; 1/7500) such that 

mean = 7500 
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Figure 30: Normal F(x; 7500, 2000) 

 

Log-normal distribution 








 


2

)ln(

2

1

2

1
),;(






x
erfxF  




x
t dtexerfstdevmean

0

22
)(,,


  

 

Logistic distribution 

sxe
sxF

/)(1

1
),;(





  

3
,

2

2




stdev
smean   [44] 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

-1
00

0 0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

 
Figure 31: Log-normal F(x; ln(7500), ln(2000)) 
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Figure 32: Logistic F(x; 7500, 1102.65…) such 

that stdev = 2000 
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Chi-square distribution 
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Figure 33: Chi-square F(x; 7500) 
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Figure 34: Uniform F(x; 3000, 9000) 
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Figure 35: Triangular F(x; 3000, 9000, 7500) 
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Figure 36: U-quadratic F(x; 3000, 9000) 
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Beta distribution 
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Figure 37: Beta F(x; 0.51…, 0.17…) with 

parameters estimated from mean = 7500, stdev 

= 2000, minimum = 3000, maximum = 9000 
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Figure 38: Gamma F(x; 14.06…, 533.33…) with 

parameters estimated from mean = 7500, stdev = 

2000 
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 Euler-Mascheroni constant (0.5772…) 

 

Rayleigh distribution 
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Figure 39: Gumbel F(x; 6599.89..., 1559.39...) 

with parameters estimated from mean = 7500, 

stdev = 2000 
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Figure 40: Rayleigh F(x; 5984.13...) with 

parameter estimated from mean = 7500 
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