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Chapter 1

Introduction

The goal of research in the area of Artificial Neural Networks is twofold.
First of all we want to gain a better understanding in order to build accurate
models of our brains, and to better understand what can go wrong with it.
The second part is that we need better computational devices for a range
of real world problems. Often these problems are (too) hard to understand,
computationally too expensive with traditional methods, or the problem has
to be solved with incomplete or noisy data. Neural networks are an excellent
way of dealing with these issues, and much research is being done to improve
the capacity, accuracy and biological realism of these connectionist models
of computation.

In this thesis the application of data mining will be addressed with neural
networks. The emphasis will be on neural networks as a computational device
rather than a biological realistic artificial version of our brains. However bio-
logical realism is pursued. Previous work suggests that the more biologically
realistic the model is, the more powerful the device is as a computational en-
tity. The key will be the use of temporal data; data where the data points are
dependant on other data points in the data set, i.e., have a causal relation.
This means that an input x partly determines the output of the network
for input x + 1 since the state of the network is still affected by input x
when input x + 1 is being presented. Many real world problems are char-
acterized by temporal data. Vision, speech, language, motor control, goal
directed-behavior and planning are all examples where temporal computa-
tional models are used. In fact most human behavior and many processes are
characterized by the notion of time somehow. Therefore the implicit repre-
sentation of time in connectionist models is a crucial step in closing the gap
between the performance of nature’s evolved cognition and our artificially
constructed imitations of it.

Many attempts have been made to somehow incorporate time in com-
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putational models. Explicit methods where information about past states is
distributed or stored in tapped delay lines or context layers have been proven
to work but are problematic in terms of storage or computational complex-
ity [10, 36]. More information on ways to explicitly incorporate the notion of
time in neural networks can be found in [12, 18, 10].

A better way might be to incorporate time implicitly, thereby overcoming
the problem when to discard information since the information is not actually
kept. When time is being represented implicitly it means that it has an
effect on processing the current state of the system, rather than having some
representation of time as an additional input to, or data structure in the
system.

This thesis is based on the work of Maass [21] where he introduced a new
computational paradigm, the Liquid State Machine. The model he intro-
duced could solve many problems that the more traditional neural networks
do have, especially when dealing with temporal data. Independently, Echo
State Networks have been introduced by Jaeger [19] which is a computational
paradigm based on similar principals. This area of neural computation id re-
ferred to as reservoir computing. However most of the work that has been
done on this model has been done with non-numerical data and moreover,
no training methods have been described to train the randomly connected
column of neurons. The work for this Master’s thesis, has been conducted
at LIACS (Leiden Institute of Advanced Computer Science, Universiteit Lei-
den) under supervision of dr. W.A. Kosters and prof.dr. J.N. Kok. We will
examine how we can use this model for numerical temporal data mining.

In Chapters 1–4 some background information will be presented about
artificial neural networks, spiking neurons, dynamic synapses and the neu-
ral code. In Chapter 5 a new computational paradigm, introduced by Maass
et al. [21], will described. Then in Chapter 6 we will describe some recent
methods to use spiking neurons in feed forward neural networks. In Chap-
ter 7 We will describe the results of our experiments. we will introduce a
method to control the activity in a randomly connected column of neurons
by adapting the dynamic synapses which form the connections. This is a
highly useful property for a desired sparse code. We will introduce a method
to minimize crosstalk between patterns and with that increase the efficiency
of the network. In this chapter we will also introduce a new method to use
spiking neurons as a collection of perceptrons with the purpose of decoding
the liquid state and to produce an output value, that is especially well suited
for a liquid state machine. It produces a better resolution than the existing
P-delta rule by Auer, Burgesteiner and Maass [2] and it is less computation-
ally expensive than Spikeprop by Bothe and Kok [7], since there is no need to
calculate complex derivatives by means of back propagation. It is also noise
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robust due to the fact the output is distributed over a number of output neu-
rons. We will show that a column of neurons is able to contain information of
past inputs by means of recurrent connections and that our newly introduced
readout mechanism is capable of extracting information from this column of
neurons, even about past inputs. We will conclude with chapter 8 where we
will point out areas which are well worth investigating further.
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Chapter 2

Artificial Neural Networks

In this chapter Artificial Neural Networks will be explained briefly. After
this introduction it will be made clear why a new computational paradigm is
necessary especially for temporal data analysis. A good introduction to the
traditional neural networks can be found in [17]. A more elaborate work on
the same subject matter can be found in [4].

2.1 The Artificial Neuron

The general concept of an artificial neuron is an old one. In [21] it is stated
that three generations of neurons exist. The first generation of neural net-
works consisted of McCulloch-Pitts neurons depicted in Figure 2.1, about
fifty years old. This is the most simple model we know for a neuron. Let’s
consider a neuron i with threshold µi. The neuron i sends a binary output
according to a weighted input. When the input is above the threshold µi the
neuron sends out a binary 1, below the threshold a binary 0. This is called a
Heaviside step function Θ. When a connection exists from neuron j to neuron
i, a weight, wij is associated with this connection. The weight wij determines
the strength of the connection from neuron j to neuron i, i.e., it regulates
the amount of influence neuron j has on the output of neuron i. The output
of a neuron i is denoted as Vi. The output of a neuron i with a connection
from neuron j can be computed as:

Oi =
∑
j

Θi(wijVj − µi). (2.1)

Note that the output of neuron j serves as the input for neuron i and is being
scaled by the weight, wij. The Heaviside step function is depicted in Fig-
ure 2.1(a). Although conceptually very simple these types of networks have
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been successfully applied to many problems[4, 17, 35]. A network consisting
of simple McCulloch-Pitts neurons with one hidden layer with sufficiently
many neurons, can compute any function with binary output.
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Schematic of a traditional
McCulloch-Pitts neuron. This
type of neuron is of the first

generation and is binary. If the
weighted input from neurons
j = 1, 2, 3 for neuron i reaches

the threshold i.e.,
sgn(

∑
j wijSj − µi) > 0, neuron i

responds with a signal ’high’. If
the weighted input stays below
the threshold the output of the
neuron responds with ’low’. The
activation function for this type

of neuron is depicted in
Figure 2.1(a)
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Schematic of a continuous valued
neuron. This type of neuron is
from the second generation. A

neuron with continuous outputs
uses a sigmoidal shaped

activation function as depicted
in Figure 2.1(b) and 2.1(c)

The second generation of neurons uses a continuous function that makes
them suitable for analog in- and output, depicted in 2.1. For every input h to
neuron i, an output O can be calculated according to an activation function
g(.). The output of a neuron i connected to neurons j can be computed as:

oi =
∑
j

g(wijVj), (2.2)

Where Vj is the output of neuron j. Common activation functions are the
hyperbolic tangent or the sigmoidal function. Two examples of sigmoidal
activation functions can be found in Figures 2.1(b) and 2.1(c). Networks
of second generation neurons with at least one hidden layer with sufficiently
many neurons can also compute any boolean function by applying a threshold
function in the output layer. In fact they can do this with fewer neurons
and therefore make them more more powerful than networks that consist of
first generation neurons. In addition to that, networks consisting of second
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generation neurons with at least one hidden layer with sufficiently many
neurons can approximate any continuous function arbitrarily well. The first
two generations are not believed to be biologically realistic.

Real neurons use electric pulses to communicate information through the
network instead of the input-output paradigm used by the first two gener-
ations. The third generation of neurons are the so-called spiking neurons.
The output of spiking neurons is binary, a spike is emitted only when the in-
puts reach a certain threshold value. The difference with the first generation
of neurons which are also binary, is that spiking neurons have complicated
inner dynamics and the information spiking neurons provide is encoded in
the timing of the spikes. One way to interpret the information provided by
spiking neurons is to use the average rate at which it fires. The continuous
output of the second generation of neurons can be interpreted as an average
output. The average firing rate is then reflected by the continuous output
of the neuron. Another big difference between the third generation and the
first two generations is that the third generation doesn’t necessarily produce
an output for a particular input. Spiking neurons are described in detail in
Section 3

2.2 The Feed-forward Network

A feed-forward neural network is a network of artificial neurons which have
only, as the name implies, forward connections between the artificial neurons.
This type of network can only be used to approximate static functions. Static
functions are functions whose output only depends on its current input and
not on any of the previous inputs, in contrast to temporal data. The artificial
neurons are usually called units. A feed-forward network has an input layer,
an output layer and optionally several hidden layers which can be seen in
Figure 2.3. Units in the input layer are denoted by ξk where k = 1, 2, . . .,
units in the hidden layer are denoted by Vj where j = 1, 2, . . . and the
units in the output layer are denoted by Oi where i = 1, 2, . . .. Between the
layers connections exist which represent adaptable weights. When a neural
network is trained to perform a specific task, the weights are adapted to
better approximate the target response. There are several conventions for
counting the layers in a neural network. In this work the input layer will
not be counted. This way the number of layers corresponds to the number
of layers of adaptable weights. Only having forward connections means that
there can be no connection from a layer ` to a layer `′ with `′ < `. The
output units are denoted by Oi where i = 1, . . . denotes the specific unit
in the output layer and the input units are denoted by ξk where k = 1, . . .

10



(a) Heaviside step function used by the
McCulloch-Pitts neuron

(b) Sigmoidal activation function,tanhβx
used by a second generation neuron. The
parameter β regulates the steepness of the
activation function. In this case β = 0.4.

(c) Sigmoidal activation function,1/(1 +
exp(−2βx)) used by a second generation
neuron. Again here β = 0.4 is used.

Figure 2.1: Activation functions used in the traditional neural networks. Note
the difference in range for the two sigmoidal activation functions.

denotes the specific unit in the input layer.

2.2.1 Perceptrons

A simple perceptron, as depicted in Figure 2.2.1 is a feed-forward network
which consists only of a single layer (an input layer does not perform any
computation and is not counted). The ith output of a single layer network,
called a simple perceptron, can be described by:

11



xx x x
��
��
��
��

� 3

J
J
J
JJ] �
Y

ξ1ξ0 ξ2 ξ3

o

O1 O2

3 1

Figure 2.2: A simple perceptron consists of one layer. The input layer consists
here of the filled circles and is not counted in the number of layers.

Oi = g(xi) = g(
∑
k

wikξk), (2.3)

where g(x) is the activation function, xi is the input to unit i, wik is the con-
nection strength or weight from input unit k to output unit i. The activation
function is usually taken to be nonlinear. There are several options but the
most common function used is a non-saturated continuous sigmoid function.
Two options for a sigmoid function are:

g(x) =
1

1 + exp(−2βx)
(2.4)

as depicted in Figure 2.1(b) and

g(x) = tanh(βx) (2.5)

as depicted in Figure 2.1(c). Here β is a parameter that regulates the steep-
ness of the sigmoidal curve.

Often a network has an input node that is clamped to a fixed value,
usually −1, which is called a bias node. In the case of a binary activation
function a bias node represents a threshold implicitly, when the activation
function is continuous the term “threshold” is not appropriate. The bias node
gives the network an extra dimension or degree of freedom which makes the
network computationally more powerful. If ξ0 represents the bias node, the
output Oi can be calculated as:

Oi = g(xi) = g(
n∑
k=1

wikξk − wi0ξ0), (2.6)
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where n is the number of input nodes. In the case of a binary activation
function the threshold is then implicitly represented by wi0ξ0. When the
activation function is continuous, wi0ξ0 is called a bias. In network diagrams
the bias node is usually not shown but in most cases, unless explicitly stated
otherwise present.

The perceptron is severely limited in its applications[17, 4]. Only lin-
ear separable problems can be solved with a perceptron. The computational
power can be increased by adding hidden layers to the perceptron.

2.2.2 Multi-layer Networks

The limitations of simple perceptrons do not apply to multi-layered feed-
forward networks. A simple perceptron can be transformed into a multi-
layered feed-forward network by adding one or more hidden layers.A multi-
layerd feed-forward network is also called a multi-layer perceptron.

2.2.3 Back-Propagation

Back-propagation is a method to change the weights in the network in order
to learn a training set consisting of input-output pairs (ξµ, ζµ), where ξµk is the
input to the network and ζµi is the target output of the network, for µ = 1, . . .
denoting different patterns. The learning rule will be explained by a two-layer
network. For a more elaborate description please consult [10, 17, 4].

The lack of a learning algorithm for multi-layered networks has led to
a decline of interest in artificial neural networks for quite some time. The
back-propagation algorithm is rediscovered several times and basically is the
well-known chain rule from mathematics applied to the simple learning rule
used with perceptrons.

Output units will be denoted by Oi, hidden units by Vj, and input termi-
nals by ξk, as depicted in Figure Ċonnections wjk are present from the input
units to the hidden units and connections wij from the hidden units to the
output units. Different patterns are denoted by a superscript µ. The inputs
can be binary or continuous valued. It has to be noted that this is somewhat
an abuse of notation since the weights are not uniquely specified. We use
that the output layer is referred to with subscript i, the hidden layer with
subscript j and the input layer with subscript k, to distinguish the weights.
However all subscripts run over 1, 2, . . ., which means that the true identifiers
to denote the weights are not unique. However this is a generally accepted
notation.

13
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Figure 2.3: An example of a feed-forward neural network.

For a pattern µ, hidden unit j receives a net input of:

hµj =
∑
k

wjkξ
µ
k , (2.7)

and produces an output by:

V µ
j = g(hµj ) = g(

∑
k

wjkξ
µ
k ). (2.8)

This way the output unit receives an input:

hµj =
∑
j

wijV
µ
j =

∑
j

wijg(
∑
k

wjkξ
µ
k ), (2.9)

and produces the final output:

Oi = g(hµj ) = g(
∑
j

wijV
µ
j ) = g(

∑
j

wijg(
∑
k

wjkξ
µ
k )). (2.10)

Determining whether or not the network produces the right output an error
measure is used. This is referred to as the error or cost function:

E[W ] =
1

2

∑
µ,i

[ζµi −O
µ
i ]2, (2.11)
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where W is the weight vector. The error measure becomes:

E[W ] =
1

2

∑
µ,i

[ζµi − g(
∑
j

wijg(
∑
k

wjkξ
µ
k ))]2. (2.12)

The error is a function of the weights. To change the weights into the right
direction we can differentiate the error with respect to the weights. This is
known as the gradient descent method. The amount of change of the weights
after each update is regulated by the learning rate η. For the connections
between the hidden and output units, the gradient descent rule gives:

∆Wij = −η ∂E
∂wij

= η
∑
µ

[ζµi −O
µ
i ]g′(hµi )V µ

j = η
∑
µ

δµi V
µ
j , (2.13)

where
δµi = g′(hµi )[ζµi −O

µ
i ]. (2.14)

Now we need to adjust the weights from the input units to the hidden units.
These weights are more deeply embedded within the network and his is where
we need the chain rule. We obtain:

∆wjk = −η
∑
µ

∂E

∂wjk

= −η
∑
µ

∂E

∂V µ
j

∂V µ
j

∂wjk

= η
∑
µi

[ζµi −O
µ
i ]g′(hµi )Wijg

′(hµj )ξµk

= η
∑
µi

δµiWijg
′(hµi )ξµk

= η
∑
µi

δµj ξ
µ
k , (2.15)

where
δµj = g′(hµj )

∑
i

Wijδ
µ
i . (2.16)

Note that 2.16 allows us to determine the error(δj) for a given hidden unit
Vj in terms of the δ’s for the output units Oi that Vj is connected to. This
is the way the error is propagated back through the network and hence the
name back-propagation. A potential problem with back-propagation becomes
clear now. High precision floating point numbers have to be communicated
through the network, which is computational expensive and compromises the
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precision when a large number of layers are used due to roundoff errors. We
can see now that we need to communicate an error through the network
with high precision. There are many different algorithms based on back-
propagation to improve its performance and there is a lot to be said about
the values of different parameters of the network.

There are two common ways the network can be trained. One way is to
first propagate all input-output pairs through the network and accumulate
the weight changes by adding up the δ′s. Then after all patterns have been
presented the weights are updated. The second way is incremental mode
where after each input-output pair the weights are updated. It is a good idea
to present the input-output pairs in a random order so the network will not
learn the sequence of the data set.

2.3 Recurrent Neural Networks

In the multi-layer neural networks only forward connections exist. In a some-
what more complicated network connections backwards are allowed as well.
This way we get loops in the network. These loops are called recurrent con-
nections. There are no restrictions on the topology of the network except that
there are clearly defined inputs and outputs. Any node can be connected to
any node, including itself. In Section 2.2 it was stated that networks that
only have forward connections are only suitable to approximate static func-
tions. In the next section it will be explained that a recurrent neural network
(RNN) does not have this restriction.

2.3.1 Increased Computational Power

A recurrent neural network can be used for temporal classification tasks that
demand context dependent memory. That means this network can handle the
notion of time, what a strictly feed-forward network cannot do. The ability
for temporal classification comes from a so-called context-layer that acts as
a memory for the network. Memory is achieved by storing the state of the
hidden layer into the context layer and feeding those past observations back
into the network as inputs. This context-layer, which holds the internal state
(the state of the hidden layer) of time t− 1, where t is the current time step,
is then being used as input together with the input at time t which will be
mapped to some desirable output as depicted in Figure 2.4. The input at time
t is then being correlated with the state of the hidden layer at time t− 1 and
is thus also being correlated with the input at time t− 1. This mechanism is
also referred to as a dynamic memory. This way past observations are used
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Inputs
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(a) Simple recurrent neural network

Inputs
state t-1
(contextlayer)

hidden layer

outputs

weights weights

weights

delayed copy

state t-2
(contextlayer)

state t-3
(contextlayer)

Inputs t-1

Inputs t-2

delayed copy

delayed copy
weights

weightsweights

weights

(b) Unfolded recurrent neural network

Figure 2.4: Two recurrent neural network architectures. In (a) the state of the
hidden layer is copied to the context-layer one time step later, a delayed copy.
In (b) there are multiple context-layers for increased temporal capacity. With
more context-layers it is possible to make correlations between data points
that are further separated.

in the present observation, which means that the internal state is not only
dependant on the current input but also on the previous internal state. This
translates into a correlation between earlier inputs and the current input
by reflecting previous internal states in the context of the current input,
to form the current internal state. Since both the previous internal state
and the current input are mapped to a desirable output the network is able
to correlate between different inputs and thus encode temporal structures.
The context layer is just another hidden layer whose input comes from the
hidden layer and whose output is the input to the hidden layer. In 2.4(b)
this method is being extended. By using more context-layers, more temporal
dependencies can be represented in the network and thus being used in the
calculations. It is clear that for every extra context-layer the computational
complexity increases significantly. There are many variations on these two
architectures [18, 12, 36].

A toy example of a situation when the notion of time is necessary to
approximate a system, is the next deterministic finite automaton (DFA).
The DFA will output its state every time it makes a transition. Now for the
same input the DFA will produce different outputs according to which state
it is in. For example when a c has just been read, the output depends on the
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Figure 2.5: A deterministic finite automaton (DFA) which outputs its state
after every transition is a toy example of temporal data.

previous read letter a or b. When we wish to make a neural network that can
predict the next output of the system, it must have a memory which stores
how past inputs affected the output and use this information when processing
the current input. We must be able to store and use past information.

The use of a context-layer makes it possible that the network behavior
is based on its past inputs, and that is why the pattern it recognizes must
be seen as it happens in time. The network architecture of a RNN has a
responsive mechanism to temporal structures which have an effect on pro-
cessing. This is a key property of representing time implicitly. It is not an
additional input, but rather it has an effect on processing the internal states
of the system.

The calculations that can be done with a recurrent neural network are the
same as a feed-forward neural network with the exception that standard feed-
forward networks have no notion of time. The weights can be found by for ex-
ample the algorithms called back-propagation through time (BPTT) [10, 18]
or real time recurrent learning (RTRL) [41], which basically are extensions
from the normal back-propagation algorithm. But again there are many vari-
ations of learning algorithms.

This type of network is particularly well-suited to handle noisy data. In
general any temporal data mining technique handles noise gracefully. When
memory is present, in this case implicitly, the ability to inspect the temporal
neighborhood of the data point is present to derive a response considering
the context of the data point.

Since many real world problems require the notion of time this type of net-
work is commonly used in practice. Example applications are: speech recog-
nition, stock market prediction, robotic control, music composition, etc.
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2.3.2 Fluctuations in Error Prediction

As an example of the strength of recurrent neural networks and how the
notion of time in a neural system is used, a very interesting result from the
influential paper by Elman [12] will be described.

Fluctuations in the error prediction can be used to identify statistical
properties in the data. A RNN was trained to predict the next character
on an input character of a sequence of characters that was derived from a
stream of sentences. All spaces and punctuation within the sentences were
removed. The input of the network was a single character, the output of
the network was the predicted next character in the stream. During training
the output of the network was compared with the actual next character and
the weights adjusted accordingly. Then during a test phase, the network was
again presented with a stream of characters that represent sentences with all
spaces and punctuation removed. The error was calculated by comparing the
output character with the actual next input character.

The results are very interesting. Although for every beginning of a word
the error was high, the error subsequently dropped for every new letter that
was processed by the RNN in the original sentences. It is thus possible to
perform word segmentation for concatenated words. This mechanism of fluc-
tuations in error will be clarified in Section 2.3.3. The network had learned
the words. This is quite remarkable since the network, at initiation, had no
knowledge of language whatsoever.

The notion of time in this case can be traced back to the fact that when
more of a particular word is seen, the more the network knows about it and
the lower the error of prediction is. Every new input character is thus seen
in the light of the previous input characters.

2.3.3 An Example of Temporal Processing

In [12] a nice example can be found as to how temporal structures can be
found by a RNN. In one of the experiments described in [12] a string of 1000
characters is formed consisting of the letters b, d and g in random order. Each
of these consonants were replaced by a sequence of characters according to
the following rules:

b → ba
d → dii
g → guuu

An initial sequence dbgbddg. . . would thus be converted into diibagu-
ubadiidiiguu. . . making this sequence semi-random. The consonants are placed
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Figure 2.6: Encoding of the inputs. Each letter is encoded by a 6-bit vector.
The underlying structure is extremely important for learning the structural
dependencies (figure taken from [12]).

at random but a clear temporal pattern can be found in the vowels following
the consonants. A recurrent neural network as described in Section 2.3 was
trained to predict the next input. An input consisted of one letter from the
sequence, it was then the task of the network to predict the next occurring
letter in the sequence. The network consisted of 6 input units (each letter
was encoded as a 6-bit vector, as can be seen in Figure 2.6), 20 hidden units,
6 output units and 20 context-units. During training 200 passes were made
through the training sequence.

The error during part of this training phase can be seen in Figure 2.7. The
target outputs can be seen in parenthesis. It can be clearly seen in Figure 2.7
that the error for predicting consonants is high and the error for predicting
vowels is low. The network cannot possibly predict the consonants correctly
since they were put in a sequence randomly. However not only is the network
able to predict the right vowel after a consonant, the network also knows the
number of vowels it can expect since the vowels follow a clear pattern. This
is a very interesting feature. One might suspect that when a network knows
how many vowels to expect the network can predict when the next consonant
will be, however cannot predict which consonant.

Further analysis indeed revealed that the network was able to predict
when the next consonant occurred. In Figure 2.6 the encoding of the let-
ters can be seen. Note that the property “consonant” is the same for all
consonants, property “high” may differ for consonants. When analyzing the
prediction of the individual bits one and four representing the properties
“consonant” and “high” respectively it can be seen that bit one is predicted
with low error and the fourth bit is predicted with high error as depicted in
Figure 2.8. From this it can be concluded the network can correctly predict
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Figure 2.7: The mean squared error when predicting the next input. Note the
large fluctuations in error. The network predicts with low error which vowel
is the next input and how many vowels follow a consonant. The network
predicts with high error the next consonant (figure taken from [12]).

(a) Error on prediction task bit 1, consonant
property

(b) Error on prediction task bit 4, HIGH prop-
erty

Figure 2.8: From these errors in predicting the individual bits of the encoded
letters it is clear the network is able to make partial predictions. The network
can correctly predict when the next consonant will occur but not which
consonant (figure taken from [12]).

when a consonant follows but since the fourth bit is different for the different
consonants the network cannot correctly classify which consonant.

The example just described is typical for temporal data. A feed-forward
network could not learn the pattern of consonants and vowels. The reason is
the sequential dependency of the input data. When the network “sees” the
second vowel it needs to remember it has just seen a vowel to know the next
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input will be a consonant. This can only be so if the network has some kind
of memory and thus has some sort of recurrent connections. This experiment
from which the results are plotted in Figure 2.8 also shows the network is
able to make partial predictions when a complete prediction is not possible.
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Chapter 3

Spiking Neurons

In this chapter some background will be given about spiking neurons. In Sec-
tion 3.2 the general outline will be given of how a spiking neuron behaves, in
Sections 3.5 and 3.6 two specific models of spiking neurons will be explained
in detail. Since a full introduction could fill several books we keep it brief. A
more elaborate introduction can be found in [15].

3.1 Introduction to Spiking Neurons

The Sigmoidal neuron described in Section 2.1 has proved to very successful
in numerous applications and has gained a considerable amount of insight
into the behavior of real neurons and connectionist systems [7, 4, 5, 17].
The Sigmoidal neuron models a rate output where the rate is a measure of
the frequency at which the neuron fires electrical pulses for a certain input.
However, the model where the average firing frequency is used as output, is
infinitely simplistic compared to realistic neural behavior.

Real neurons do not have a simple input-output scheme as described in
Section 2.2, but they behave more complicated. Real neurons emit spikes,
short electrical pulses, and carry information in the timing of the spikes.
It is generally believed that only the timing of the spike matters, there is
no information in the shape of the electrical pulse. All spikes are similar
in shape. Research provides evidence that spikes can be very reliable and
precise. That is why more and more research is being conducted with regard
to the computational properties of precisely timed spiking neurons. It has
been shown in [22] that a spiking neural network can simulate arbitrary
feed-forward sigmoidal networks which means that spiking neural networks
can approximate any continuous function. In this work spiking neurons where
the timing of the spikes are of importance will be used. This clearly gives a
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Figure 3.1: The three important parts of a spiking neuron. The soma (Cell
Body) as central processing unit, the dendrites as inputs and the axon as an
output device. The synapses form the connections between the axon and the
dendrites. We can use the biological schematic as an example to create an
artificial computational entity.

much more rich dynamic to a connectionist system than with a simple rate
coding scheme.

The number of neurons a human brain is made up of is about 10 to 100
billion neurons. There exist many different types of neurons that function
in different parts of the brain. Different types of neurons differ in the way
they respond to inputs, the way they are connected and their function. A
typical neuron has three distinct, clearly identifiable parts. These three parts
are dendrites, soma and axon, and can be seen in Figure 3.1. Dendrites are
the connecting wires so to speak. They have the role of carrying the input
to the soma. The soma is the central processing unit. This unit performs a
non-linear processing step which gives the neuron its functionality. When the
inputs amount to a certain threshold the neuron emits a spike. This spike is
carried over the axon to other neurons. The axon can be seen as the output
device.

Another important anatomical part of the neuron is the synapse, the
junction between two neurons. At the synapse the postsynaptic dendrite and
the presynaptic axon meet. When a neuron fires it is said to be a presynaptic
neuron. The neuron that receives the spike is called the postsynaptic neu-
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ron. When a spike travelling across a presynaptic axon arrives at a synapse,
a complicated bio-chemical process is started. Neurotransmitters will be re-
leased from the presynaptic terminal and will be received by the postsynaptic
receptors. A single neuron is connected to a bewildering amount of other neu-
rons, around 1000–100000 in number. Most of these connections are in the
immediate neighborhood although some connections can stretch to several
centimeters in the surrounding area.

3.2 Neural Dynamics

Many experiments have been performed to capture the dynamics of real
neurons. The membrane potential can be measured with an intracellular
electrode. By measuring this membrane potential in reaction to (artificial)
stimuli from outside, a great deal is known about the dynamics of neurons.
Although much is learned from experiments like this, many properties of the
functioning of single neurons still remain elusive. That makes understanding a
connectionist system rather complicated. However by implementing artificial
neural networks with simplified dynamics, much can be learned.

The resting potential of a neuron is around −65mV . A spike will typically
have a duration of around 1−2ms and an amplitude of around 100mV . When
a spike arrives the resting potential is altered and will return to its resting
potential over a certain time course. When the membrane potential is altered
positively, the synapse is said to be excitatory. When the membrane potential
is altered negatively, the synapse is said to be inhibitory.

As an example the time course of the membrane potential of a postsynap-
tic neuron i, ui will be examined. When ui is unaffected by other neurons its
value will be the resting potential, urest. When presynaptic neuron j fires a
spike which is received by the postsynaptic neuron i, the membrane potential
of i will be affected. The details of how the postsynaptic potential changes
differs per model in both complexity and realism. Two different models of
spiking neurons will be described in Sections 3.5 and 3.6. Let’s say neuron j
fires at time t = 0. neuron i responds in the following way:

ui(t)− urest = εij(t). (3.1)

Where εij(t) is the response of i to an incoming spike from a presynaptic
neuron j at time t which defines the postsynaptic potential (PSP) depicted
in Figure 3.2(A). Exactly how this response is defined differs per spiking neu-
ron model. When εij(t) > 0 the postsynaptic potential is excitatory (EPSP),
when εij(t) < 0 the postsynaptic potential is inhibitory (IPSP). In a typical
situation a neuron i receives input spikes from several presynaptic neurons
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Figure 3.2: The complicated dynamics of a neuron receiving several spikes
(Figure taken from [15]).

j = 1, 2, . . .. The nth spike time of neuron j is denoted as t
(n)
j . When presy-

naptic neuron j = 1 fires spikes t
(1)
1 and t

(2)
1 which will be received by the

postsynaptic neuron i, the postsynaptic potential εi1 characterizes the re-
sponse of neuron i to each spike, as can be seen in Figure 3.2. Typical for
spiking neurons is that there is not necessarily an output of the neuron re-
ceiving incoming spikes if the threshold is not reached, and the membrane
potential slowly returns to its resting state when no more spikes are received.
An example can be seen in Figure 3.2(B) when another neuron j = 2, fires

spikes t
(1)
2 and t

(2)
2 . The postsynaptic potential responds linearly to input

spikes and is about the sum of the individual PSP’s,

ui(t) =
∑
j

∑
f

ε(t− t(f)
j ) + urest. (3.2)

Typically a PSP is around 1mV .
The membrane potential stops to respond linearly when a threshold ϑ is

reached, depicted in Figure 3.2(C). The potential will then briefly peak to an
amplitude of about 100 mV which is called an action potential. This action
potential is propagated through the axon and will reach other neurons as
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an incoming spike. After the pulse the potential will fall beyond the resting
potential, the so called after potential. This phenomenon of falling beyond
the resting potential is called hyperpolarization. Typically 20–30 presynap-
tic spikes have to arrive before an action potential is triggered. Although a
neuron cannot fire two spikes immediately after each other, due to the after
potential, spiking neurons can fire spikes in succession. Successive spikes from
the same neuron form a spike train.

Many different models exist to simulate the behavior of real neurons.
The most detailed and most complicated is the Hodgkin-Huxley model which
is derived from measurements of neurons of the giant squid. In this model
several ion concentrations are realistically modelled to simulate the change
in membrane potential. However this model is difficult to implement and
computationally expensive. Another well known model is the spike response
model, which is easier to implement.

The most widely used spiking neuron model is the integrate and fire
model. It is a simpler model that still captures the most important fea-
tures of spiking neurons. Simplified versions of these two models, the spike
response model and the leaky integrate and fire model, will be used for the
simulations in this work.

3.3 Synaptic Heterogenity

In Section 3.1 the three most important parts of a real neuron were described.
In this section we’ll look into more detail on the workings of the synapse.

The synapse is a connection between two neurons, and does not just rep-
resent a static weight between two neurons. It has been shown that synapses
behave highly dynamic [23, 16, 25]. A presynaptic spike is communicated to
a postsynaptic neuron through the synapse. Synaptic vesicles in the axon
terminal, transfer neurotransmitter through the synaptic cleft to receptors
located at the membrane of the dendrites of the postsynaptic neuron. This is
illustrated in Figure 3.3. The amplitude of the postsynaptic potential depends
strongly on the time since the last spike was received, which has an influ-
ence on the amount of available neurotransmitter, and the specific properties
of a synapse. These two factors determine the internal state of a synapse.
In [25] it is suggested that every synapse is possibly unique and that dif-
ferent types of target neurons underly differences in the synaptic properties.
Through this heterogeneity of synapses, differential signaling emerges. Dif-
ferential signalling means that, due to multiple synaptic representations, dif-
ferent synapses respond with different sequences of amplitudes to the same
presynaptic spike train. This allows each postsynaptic neuron to interpret
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Figure 3.3: The junction between two neurons in close-up: the synapse (Fig-
ure taken from http://www.bomi-1-gezondheid.com/Lichaam_en_geest/

electro_biochemie_gevoel.htm).

the same presynaptic spike train in a distinct fashion. The experiments con-
ducted by [25] showed that the same spike train indeed induced different
reactions in different types of neurons. Therefore they suggest that this dif-
ferential signalling is a key mechanism for neural information processing.

In [23] it was shown that internal dynamic state of a synapse may serve
as a transient memory buffer, that stores information about the most recent
segment of the spike train it has just seen. These results hold great promise
for the use of synaptic dynamics in temporal pattern recognition.

In [26] the heterogeneity of synapses was approached with the focus of
the properties of an individual synapse. They defined an optimizing criterion
for a spike train that will lead to a maximum response of the postsynaptic
target. The resulting spike trains were interestingly enough common found
spike trains patterns in biological networks of neurons. This inverse approach
where the spike train is adjusted to the synapse, has lead to the idea of
preferential addressing where the same presynaptic neuron can, by means of
its firing behavior, target a specific postsynaptic neuron. This way temporal
firing patterns encode information in the delays of the spike train that is
decoded buy the dynamic behavior of the synapses.

Research has shown that the heterogeneity of synapses does not just con-
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tribute to interpreting incoming information but retaining information from
the recent past as well. From a computational point of view these results
could have a great impact on the way temporal patterns could be processed.

3.4 Synaptic Dynamics

We use the model suggested in [23] for the synaptic dynamics. The properties
and thus the specific behavior of a synapse is specified by four parameters
A > 0, Uε[0, 1], τfacil > 0 and τdepr > 0. A can be seen as the weight of the
connection between the pre- and postsynaptic connection, more precisely:
A is the total amount of synaptic efficacy available. U represents the frac-
tion of resources (neurotransmitter vesicles) that is used for a single spike.
The parameters τfacil and τdepr represent the time constant of recovery from
facilitation and the time constant of recovery from depression respectively.
Facilitation means an increase in total efficacy in response to a presynaptic
spike and depression means that synaptic resources are getting depleted and
induce a less string postsynaptic potential.

The amplitude of a postsynaptic potential is calculated according to re-
cursive Equations 3.3, 3.4 and 3.5. The total synaptic efficacy An, for the nth
spike of a presynaptic spike train is calculated by:

An = A · un ·Rn, (3.3)

where the variable Rn is the fraction of synaptic efficacy available for the
nth spike, and un represents how much of the fraction of available synaptic
efficacy is actually used for the nth spike. Thus un ·Rn models the fraction of
synaptic efficacy that is used for the nth spike. un+1 is calculated according
to:

un+1 = U + un(1− U) exp(
∆tn
τfacil

), (3.4)

where ∆tn is the time that passed since the nth spike. The factor un varies
between U and 1 and, the initial value u1 = U and after every spike n =
1, 2, . . . the value un is increased ad recovers back to the value of U because
of the term exp(∆tn/τfacil). The variable Rn+1 is calculated according to:

Rn+1 = 1 + (Rn −Rnun − 1) exp(
∆tn
τdepr

). (3.5)

Note that the parameter R varies between 0 and 1. The initial value R1 = 1
and is decreased after every spike. The term exp(∆tn/τfacil) causes R to
recover back to 1.
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Figure 3.4: A) the parameter space for the parameters U , D and F is
shown. Different combinations of values will produce different behavior of
the synapse. B).Different types of synapses lead to different outputs on the
same input spike train. (Figure taken from [26]).

This model of the internal state of a synapse has the effect that the first
spike in a spike train causes a maximal postsynaptic potential. After that,
part of the available resources to transmit incoming spikes have been used
and so there will be less neurotransmitter to communicate the next spike in
close succession to the postsynaptic neuron, with the result that the post
synaptic potential will have a smaller amplitude. This phenomena is called
depression. On the other hand there is a facilitation factor. The amount of the
available neurotransmitter that is actually used to communicate a spike to a
postsynaptic neuron depends on the facilitation parameter u. This regulates
how fast after an incoming spike, the maximum amount of neurotransmitter
used for a single spike, U will be used again. The initial values of the pa-
rameters for this model can have a severe impact on synaptic information
transmission and thus on the behavior of a postsynaptic neuron as reported
in [25] as a result of experiments on real neurons.

In [16] inhibitory synapses were investigated and it was found the synapses
could be grouped into three major classes called facilitating (F1), depressing
(F2) and recovering (F3). The parameters U , D and F determine to which
class a synapse belongs. In Figure 3.4A the parameter space that gives rise to
the classification can be seen. The different classes of synapses behave quite
differently on the same input spike train as can be seen in 3.4B.
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Figure 3.5: Schematic on which the leaky integrate and fire model is based.
The main circuit is inside the dashed circle. The RC circuit is charged by a
current I(t). When the voltage u(t) reaches the threshold ϑ, an output pulse
is emitted. The circuit inside the square circuit models a synaptic connection.

3.5 The Leaky Integrate and Fire Model

The most widely used model is the leaky integrate and fire model. The model
is simple enough for implementation but still captures the essential dynamics
of real spiking neurons. The integrate and fire model is based on a circuit
which consists of a capacitor C parallel to a resistor R and is driven by a
current as can be seen in Figure 3.5.

The current I at time t therefore consists of I(t) = IR + IC , where IR
is the resistive current, and the component IC charges the capacitor C. IR
can be calculated by Ohm’s law IR = u/R where u is the voltage across the
resistor. The capacity is defined as C = q/u where q is the charge and u is
the voltage. From these formulas we can derive the formula for the current:

I(t) =
u(t)

R
+ C

du(t)

dt
. (3.6)

This formula is multiplied by R and this way the time constant τm = RC is
introduced. This produces the standard form:

τm
du(t)

dt
= −u(t) +RI(t), (3.7)

where u is the membrane potential and τm the membrane time constant of
the neuron. The membrane time constant τm regulates the speed at which
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the voltage of the neuron decays, i.e., leaks. In integrate and fire models
the membrane voltage is not described explicitly but by the way it changes
to stimuli. When the membrane potential reaches a certain threshold ϑ the
membrane potential is reset to ur < ϑ. The leaky integration and reset are
typical characteristics for the leaky integrate and fire model.

In integrate and fire models the form of an action potential is not explicitly
defined. The fth action potential emitted by neuron j is characterized by a
firing time t

(f)
j which in turn is defined by the time the membrane potential

reaches the threshold ϑ:

t
(f)
j : u(t

(f)
j ) = ϑ and

du(t
(f)
j )

dt
> 0. (3.8)

The second term means that the threshold has to be reached from below in
order for neuron j to emit an action potential. When the threshold is reached
and a spike emitted the membrane potential is reset to a new value ur < ϑ:

lim
t→t(f)j ,t>t

(f)
j

u(t) = ur. (3.9)

Usually the membrane potential is reset below the resting potential. For t >
t
(f)
j the membrane potential is again calculated as Equation 3.7. Because of

the reset mechanism the membrane potential will never sustain a value larger
than the threshold and so the condition du(t

(f)
j )/dt > 0 from Equation 3.8

can be dropped. Some versions also incorporate an absolute refractory period.
When the membrane potential reaches a certain threshold and fires at time tf ,
the dynamics is interrupted for a period of ∆abs and integration is restarted
at tf + ∆abs with initial condition ur.

3.5.1 Implementing the Leaky Integrate and Fire Model

When we want to use the leaky integrate and fire model we can use the non-
linear model. The nonlinear model is a generalization of the leaky integrate
and fire model where the parameters are made voltage dependant. In real
neurons the rate at which the membrane potential “leaks away” denoted by
τm and the resistance denoted by R, are dependant on the membrane po-
tential. The membrane potential of neuron i at time t is found by replacing
Equation 3.7 by

τ
dui(t)

dt
= F (ui) +G(ui)I, (3.10)

where F (ui) is a voltage dependant decay constant for neuron i and G(ui) is
a voltage dependant input resistance for neuron i which comes down to:
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dui(t)

dt
=

1

τm(ui)
+
R(ui)

τm(ui)
Ii(t), (3.11)

where ui is the membrane potential of neuron i at time t−1. The current
I at time t for a neuron i is found by evaluating the stimulation by other
neurons connected to i. When a presynaptic neuron j fires at time t

(f)
j , a

postsynaptic neuron will be influenced by the current of this spike over a
time course α(t− t(f)

j ). We can then find the total input current to neuron i
according to

Ii(t) =
∑
j

wij
∑
f

α(t− t(f)
j ), (3.12)

where wij is the strength of the connection from neuron j to neuron i. A
common way to define the postsynaptic current from Equation 3.6 α(s) is by

α(s) =
q

τs
exp(− s

τs
)Θ(s), (3.13)

where Θ(s) is the Heaviside step function which returns 1 when s > 0 and
0 otherwise. The Heaviside step function basically ensures that a neuron
cannot influence another neuron when the difference in time is negative, τs
represents the time constant that regulates the decay of the post-synaptic
current and q is the charge. A more realistic version would also incorporate
a finite rise time τr with 0 < τs < τr of the postsynaptic current and a
transmission delay ∆ax,

q

τs − τr

[
exp

(
−s−∆ax

τs

)
− exp

(
−s−∆ax

τr

)]
Θ (s−∆ax) . (3.14)

The integrate and fire model used for our experiments uses Equation 3.11
with a constant τm and a constant R non-dependant on the membrane po-
tential. To calculate the synaptic current Equation 3.13 is used.

3.6 The Spike Response Model

The spike response model will now be briefly explained. First a simplified
version will be described. In Section 2.2 a somewhat modified model of this
simplified version will be used. Then some phenomena that are missing from
the simplified version of the spike response model will be described and how
they are incorporated in the more complicated version of the spike response
model. For a more elaborate description please consult [15, 14].
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3.7 The Simplified Spike Response Model

The major difference between the spike response model (SRM) and the in-
tegrate and fire model is in the formulation of the equations. Integrate and
fire models are usually expressed in terms of differential equations, the SRM
expresses the membrane potential as an integral over the past. In addition,
the threshold ϑ is not fixed but may depend on the time since the last spike
fired, t− ti where t is the current time. There is also a clear relation between
the integrate and fire model and the SRM model. The SRM model can be
mapped to the integrate and fire model as a special case [15].

The spike response kernel has so called responsive kernels that describe
how the membrane potential is changed by incoming spikes. In the simplified
version there are two kernels: η that describes the form of the spike and the
spike after-potential, and the kernel εij that describes the response of neuron
i to presynaptic spikes from a neuron j. The membrane potential of neuron
i is described by:

ui(t) = η(t− t̂i) +
∑
j

∑
f

εij(t− t(f)
j ) + urest, (3.15)

where t̂i = max{t(f)
i |t

(f)
i < t}, the last firing time of neuron i. just like in the

spike response model a neuron i fires whenever the threshold is reached from
below:

ui(t) = ϑ |and|
du(t

(f)
j )

dt
> 0 ⇒ t = t

(f)
j . (3.16)

This is a simplified version that does not fully capture the rich dynamics of
real neurons. The most essential limitations in this simplified spike response
model is that all postsynaptic potentials have the same shape, regardless of
the state the neuron is in. In addition to that, the dynamics of neuron i only
rely in its most recent firing time t̂i. In the next section an example will be
given of a postsynaptic potential which shape is dependant on the state the
neuron is in. More detailed descriptions can be found in [15].

3.8 More Realism

The Spike Response Model is just like the nonlinear integrate and fire model,
a generalization of the Leaky integrate and fire model. However, the nonlinear
integrate and fire model has parameters that are voltage dependant, whereas
with the spike response model the parameters depend on the time since the
last spike. This dependence of the membrane potential on the last output
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spike time facilitates the possibility to model refractoriness, temporary loss
of responsiveness to incoming spikes due to recent activity, in terms of three
components. First of all a reduced responsiveness after an output spike, sec-
ond an increase of the threshold after firing and third a hyperpolarizing spike
after-potential.

There are three important kernels that define the spike emission behavior
and the response of the neuron’s membrane potential to incoming spikes.
The response of the membrane potential to incoming spikes is defined by the
three kernels that are illustrated in Figure 3.6. The kernel η describes the
form of the action potential and after-potential. Again the shape of the action
potential does not contain information. The action potential is a function of
the time since the last firing time t̂

(f)
i . The kernel ε describes the time course

of the response of the membrane potential to an incoming spike also called
the postsynaptic potential. Note that the shape of the postsynaptic potential
is dependant on two parameters, the time since the last spike emitted, and
the time since the last incoming spike. When a neuron i has fired its last
spike time is denoted as: ti = max{tfi < t}, where t is the current time.
The kernel κ describes the time course of the response to an input current
pulse after a postsynaptic firing time tfi . The time course of the membrane
potential of neuron i, ui, is given by:

ui(t) =η(t− ti) +
∑
j

wij
∑
f

ε(t− ti, t− tfj )

+

∫ ∞
0

κ(t− ti, s)Iext(t− s)ds, (3.17)

where tfj are spikes from pre-synaptic neurons j, and wij is the strength of the
connection between neuron i and neuron j. The last term, Iext, is an external
(background)current. The second term runs over all pre-synaptic neurons j
and all pre-synaptic firing times tfj of neuron j. Note that all terms depend

on the time of the last fired post-synaptic spike t̂i.
In Figure 3.6 the time course of the membrane potential ui of neuron i is

shown, and it can be seen exactly what the individual kernels do. Up to the
firing time of neuron i t̂i the responsiveness of kernel εij can be seen. The
responsiveness is due to the impinging spikes of other neurons j. When ui
reaches the threshold a spike is emitted. The shape of the spike is described
by kernel η as a function of the time passed since the last spike. Note that the
threshold is also changed at the time of the spike and moves back towards
its original value as a function the time since t̂i. This is a way to incorpo-
rate a mechanism to make sure a neuron cannot emit two successive spikes
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Figure 3.6: The responses of the different kernels to the membrane poten-
tial ui of a neuron i. Note the three components that are used to model
refractoriness. First, after a spike is emitted the threshold is set at a high
value so a neuron can fire two spikes immediately after each other. Second
there is a reduced response just when a spike has been emitted and third the
hyperpolarizeing after-potential.

immediately after each other. When the membrane potential overshoots the
resting potential, and reaches the so called after-potential, the kernel κ starts
to respond. Note that shortly after a spike is fired the response of an incom-
ing spike at time t′ is a lot smaller than when an incoming spike arrives at
time t′′a long time after the spike was emitted. This phenomena is called
refractoriness.
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Chapter 4

Interpreting the Neural Code

An issue neuroscientists have been dealing with for quite some time is how to
interpret the neural code. Through sophisticated equipment neuroscientists
have been able to record the brain activity but interpreting this activity
proved to be hard. For example, what information is contained in a pattern
of pulses, how is this information communicated and how is this information
decoded by other neurons and what are the building blocks of computation
are key issues. Since we wish to build a computational model we need to
look at some of these issues. First of all we need to interpret the output of
our system, something neuroscientists have studied extensively. Second, we
need to encode input data into a pattern of pulses. This latter issue has not
been studied by neuroscientists. After all, they wish to understand the neural
code, not produce a new one. In this section we will give a brief overview
of how, according to the literature, information can be extracted from or
encoded into spike trains.

4.1 Spike Trains

When the membrane potential reaches the threshold a neuron emits a short
action potential. The time of this action potential is referred to as the fir-
ing time which coincides with the time the membrane potential crossed the
threshold for the first time. The firing time of a neuron i is denoted as tfi
where f = 1, 2, 3, . . . is the number of the spike. Formally, a spike train is
defined as a sequence of pulses:

Si(t) =
∑
f

δ(t− tfi )

where δ(x) is the Dirac function, δ(x) = 0 for x 6= 0 and
∫∞
−∞ δ(x)dx = 1.

This means that every pulse is taken as a single point in time.
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Figure 4.1: Spatio-temporal pulse pattern. Activity of 30 neurons, named
A1-E6, are plotted along the vertical axis as a function of time. The firing
times can be identified by the short vertical bars. A key issue in neuroscience
is how to interpret such neuronal code. From [15]

4.2 Rate Codes

Traditionally it was believed that all of the relevant information was con-
tained in the mean firing rate of the neuron. However, there are several
different definitions of rate codes. One definition deals with averaging over
time, another with averaging over several repetitions over the experiment or
an average over a population of neurons.

Rate as a Spike Count

The number of spikes over a certain time window T , say 500ms, is divided
by the length of the time window. The mean firing rate is then defined as:

ν =
ηsp(T )

T
(4.1)

This definition comes from several classic experiments where a current is
applied to a receptor. The most well known example is from Adrian [1] where
a current is applied to a receptor in a muscle spindle. Other experiments
have been conducted with the touch receptor in a leech [20]. From these
experiments an observer could classify the the neuronal firing by a spike
count measure, an increase in current resulted in an increase in spikes. It
is questionable wether brains really use such an averaging mechanism. An
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Figure 4.2: Example of an Peri Stimulus Time Histogram as an average over
several runs over the experiment (From [15])

important counter arguments comes from behavioral experiments. Reaction
times seem to be too fast to count the spikes and average them over some
long time window. Note that this averaging mechanism is used with the
traditional second generation neural networks.

Rate as a Spike Density

This definition of rate works for both stationary as for time-dependant stim-
uli. The same stimulation sequence is applied several times and reported in
a so called Peri Stimulus Time Histogram(PSTH). The number of spikes be-
tween time t and ∆t is then summed up over all experiments and divided by
the number of K repetitions. This results in a number that represents typical
activity of a neuron between time t and ∆t. Spike density is then defined by:

ρ(t) =
1

∆t

ηk(t, t+ ∆t)

K
(4.2)

An important argument against this method is that it can hardly be biologi-
cally plausible. A classic counterargument against rate as a spike density is a
frog that wants to catch a fly, it can not wait for the insect to fly repeatedly
along the same trajectory. It could make sense when it involves a population
of neurons whose response is averaged in a single run.

Rate as a population Activity

A good example of rate as a population activity is rate as a population
activity are the columns of neurons with similar properties found in the
primary visual cortex of various animals. Note that this is exactly the idea
on which the liquid state machine(see chapter 5) has been based. Unlike
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(a) A population of neurons (b) population activity

Figure 4.3: Rate as a Population activity does not suffer from the disad-
vantages of temporal averaging. Here a postsynaptic neuron receives input
fro a pre-synaptic population of neurons. This population is able to reflect
instantaneously changes in the input it receives.

temporal averaging at a single neuron level, the population of neurons is able
to reflect changes rapidly with changing stimuli.
The activity of a population of neurons can be defined as:

A(t) =
1

∆t

ηact(t, t+ ∆t)

N
=

1

∆t

∫ t+∆t

t

∑
j

∑
f δ(t− t

f
j )dt

N
(4.3)

where N is the number of neurons in the population. Although rate codes
have been successfully applied in numerous models, a common belief that
not just the rate of a neuron contains information but also the timing of the
spikes matter is rapidly emerging. For a survey see [8].

4.3 Population Coding

In this section we will look at how a the activity of a population of neurons
can encode information. First it will be stated what is required in a computa-
tional model, then some neuroscience literature will be reviewed. A standard
model for population coding will be explained as well as how this model was
derived. Finally the model will be analyzed to establish how this model fits
our requirements.
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In the previous section 4.2 some neural coding schemes were described.
These coding schemes are inefficient, slow and lack biological realism as well
as the properties that would be required in a computational model. Neu-
roscience research suggests that information in the brain is encoded not by
single cells but by populations of cells [28, 27]. In recent years the mecha-
nism of encoding information by populations of neurons is better understood.
Much research has been done to what information can be extracted from a
population of neurons and how the brain is capable of interpreting such a
neural code. Many sensory and motor variables are encoded by populations
of neurons, such as the perception of movement where the angle of the mov-
ing object is encoded as to interpret the direction the object is moving in, or
the perception of wind and the orientation in an environment among others.
Each neuron in the population responds to a certain part of the domain of
that encoded variable, the neuron is said to be sensitive to this part of the
domain. This will be explained in detail in Section 4.3.1 The many neurons in
the population have overlapping sensitivity profiles which means that many
neurons are active at a given time. The advantage is that damage to a single
cell will not have a critical effect to the information that is encoded.

Actually those factors that would make a neural coding scheme successful
for computational purposes would also make that coding scheme biologically
successful. First of all such a coding scheme needs to be noise robust. Noise
is that part of the output that cannot be accounted for by the stimulus[28],
either caused by stochastic fluctuations or by interference from other parts
of the neuronal network. The purpose of a network is to make generaliza-
tions based on a training set and thus has to be able to correctly classify
noisy data. Second, the scheme has to be efficient. In biological terms this
means using a minimal amount of energy while functioning competitively in
an environment. From a computational point of view it is required that a
minimal amount of spikes has to be processed in order to classify noisy data
correctly. The last but certainly not the least requirement is that the the
coding scheme has to be able to represent a nonlinear mapping i.e. has a
high enough resolution to encode a particular variable.

4.3.1 The Population Coding Model

A model[43] has been devised that uses bell shaped tuning curves to calculate
the response of a neuron as can be seen in Figure 4.4 a. The model is inspired
by measuring the responses of neurons during the perception of a motion
stimulus in the visual area MT of a macaque monkey. Activity was monitored
of neurons which are sensitive to visual movement in a small area of the visual
field. The response of a neuron is defined as the number of action potentials
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Figure 4.4: a) Tuning curves for a population of neurons. The tuning curves
define the sensitivity for each neuron in the population to a perceived direc-
tion. b) Activity of each neuron plotted against the preferred direction. c)
Template matching with the population vector method. d) Template match-
ing with the maximum likelihood method

per second measured over a few hundred milliseconds during the presentation
of the stimulus[43]. The response of a neuron can formally be described by

ri = fi(s) + ni, (4.4)

fi(s) describes the tuning curve and is the average response of neuron i to
stimulus s and ni is the noise in the response to stimulus s. The tuning curve
is commonly written as:

fi(s) = ke−(s−si)2/2σ2

, (4.5)

where si is the mean of the gaussian which, when presented with a stim-
ulus s where s = si, triggers the maximum response. The mean si of neuron
i is often called the preferred direction. In the example of an object which
is moving in a certain direction at an angle s, the stimulus s− si represents
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the angular difference at which the moving object is presented to neuron i
with respect to the preferred direction of neuron i. This neuron will then
respond with activity fi(s− si). Note that the inclusion of noise in Equation
4.4 makes the response non-deterministic. In computational models this is an
undesirable property, however this gives us the opportunity to analyze the
robustness of information encoding of a population and compare different
readout methods.

4.3.2 Decoding a Population Code

The model of a population code as described in Section 4.3.1 realistically
defines the response of a population of neurons as is experimentally recorded
during in vivo experiments. Just as important is the question what informa-
tion can be extracted from such a population of neurons. In this Section we’ll
assume a population P exists and responds as described in Section 4.3.1.

Noise

A population P of neurons responds with a noisy hill as can be seen in
Figure 4.4. When the activity of each neuron is plotted against its preferred
orientation the result is not a smooth hill. The presence of noise poses a
difficulty. When a neuron responds with a certain firing rate, it is not known
how much the stimulus contributed to this firing rate and how much is due
to noise. Even for a computational model it is important to be able to deal
with noise even though in the response of the neuron the amount of noise
can be controlled and even reduced to zero with Equation 4.4. Noise can
arise from noisy input data or an imprecise response of the population due
to insufficient training or a difficult training set. To determine the output we
could look at the neuron that has the maximum activity and assume that
the estimated output is the preferred direction of the neuron. However this
method is not noise robust and will lead to large fluctuations. It would be
better to reduce noise by averaging over all neurons. To determine the exact
output of P we would like to know the exact contribution of the stimulus to
each tuning curve.

A common method for decoding is a bayesian model. In this case it is
assumed that noise has a normal distribution with a mean of zero. The prob-
ability of a stimulus s can be determined by the mean responses f(s) given
the observed response r. The probability distribution P (s|r) can then be de-
termined which states how likely a stimulus s is for a given response r. The
probability distribution P (s|r) can be calculated as:

43



P (s|r) =
P (r|s)P (r)

P (r)
. (4.6)

For a more detailed description see [28]. Once a probability distribution has
been determined a value for the direction for each cell is the result. But only
one estimate of s is needed. Several possibilities exist to select one estimate
of s. The first method is to choose the estimate with the highest probability
density P (s|r). This is known as the maximum a posteriori estimate(MAP).
Another option is to choose the direction that maximizes the likelihood func-
tion P (r|s). This is known as the maximum likelihood estimate (ML).

Both ML and MAP require a tremendous amount of data and analysis
before they can be put to use. The probability distributions of the responses
r given a stimulus s have to be known for each neuron. This is the method
used in neuroscience research. Often however, we wish ro read the output in
one trial. In such a method the preferred direction of each cell is assumed to
be known. Methods that rely on the preferred direction of a cell are called
voting methods. The name arises from the fact that in these methods the ac-
tivity of each neuron counts as a vote for the stimulus s. A well known voting
method is the population vector estimator [13]. With this method each neu-
ron is assigned a vector where the length of the vector is based on its activity
and the direction of the vector corresponds with the value of the stimulus the
neuron encodes. A weighted average over all the vectors gives the estimated
stimulus. The population vector method is known not to give the optimal
accuracy [28, 11, 31]. Whether a read-out method performs with optimal ac-
curacy can be determined by a statistical construct called the Cramer-Rao
bound. This bound produces the minimal trial to trial error at a certain noise
level. Voting methods and ML are template matching procedures. Template
matching procedures slide a response curve across the output of the popu-
lation and for the best fit the peak position of the response curve is used
as the estimate of the stimulus. In Figure 4.4c and d the templates of the
population vector and the maximum likelihood can be seen. The difference
in accuracy of the estimate lies in the template used. The template used in
the population vector method is a cosine whereas the template used in the
ML method is based on the tuning curves and is proven to be a better esti-
mator based on this fact. In fact, the ML fit is often assumed to equal the
Cramer-Rao bound.

A method to computationally determine the stimulus from a population
of neurons is proposed in [31]. They investigate an optimal way to decode the
information present in a population of neurons, and they show their method
is equivalent to the ML method, thereby stating that their method is optimal.
They propose to convolve the noisy response of the population with a filter
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that is based on the average tuning curve of the population. The maximum
of the filtered response is taken to be the estimated stimulus. This filter is
called the matching filter and has the shape of the average tuning curve. They
show that the standard deviation of the estimated stimulus approaches the
cramer-Rao bound when the matched filter has the width that is the same as
the response curves of the neurons in the receptive population. However the
Cramer-Rao limit is only reached for small noise amplitudes and starts to
stride away from the optimal bound for higher noise levels, which are stated
to be non-realistically high.

A different method has been taken by [11] where a close approximation of
a ML estimator is implemented in a biologically plausible network of neurons.
Their network consists of a pool of neurons that have lateral connections.
Such a network is said to be an ideal observer. they show that for neuronal
noise independent of the firing rate the variance achieved by the estimator
is equal to the minimum variance as is produced by the ML estimation. For
neuronal noise dependant on the firing rate, such as generated in poisson-like
distributions, the achieved variance is close to the ML estimation. The noisy
hill that is the result of the activity in the population is being evolved into a
smooth hill by a 2D-gaussian filter. The peak of the resulting smooth hill is
taken as the estimated output value. Interestingly they managed to produce
an optimal readout with a neural implementation. It is speculated that it
is not unlikely the brain has implemented a maximum likelihood estimation
through evolution.

4.4 Encoding Continuous Data into Spike Times

It was shown in [24] that spiking neurons are computationally more powerful
than artificial sigmoidal neurons. However the encoding of information in the
spike times is more complicated than is the case with the artificial neurons.
Where a simple activation function translates an input value into an output
value, spiking neurons use a differential equation to determine when to fire
a spike. Somehow we need to encode the input information in a form we can
feed into a spiking neural network. Since the only thing a spiking neuron can
process are spikes from other neurons we have to translate the input data
into spikes.

A common method for decoding a spike train is the spike information
interval coding(SIIC). This method uses a convolution,

x(n) =
N∑
k=0

f(k)u(n− k)

45



where x is the reconstructed waveform, f is the convolution filter modelled
after the post-synaptic potential and u is the spike train. This method is
described in detail in [29], [34]. The idea is to use the form of the action
potential to reconstruct the analog signal from a spike train. The Hough
Spiker Algorithm is designed to do the exact opposite. A drawback with these
methods is that, since they use the form of the action potential, these methods
are only usable for waveforms. Another drawback is that for encoding an
analog signal into a spike train we need a filter that is optimized for the
particular function to be converted. That makes these techniques ill suited
for a general temporal pattern analysis purpose. After all, we don’t know in
advance what the data looks like. We need a way to translate every data
point in the input data into a unique spike train. No two numbers can be
translated into the same spike train and in order to train the network we also
need to be able to reverse the process. The output spike train needs to be
translated into a real value. This mapping from the real data-points to the
spike trains needs to be a bijection.

A widely studied method to use real numbers with spiking neurons is to
use input neurons that use an activation function to translate the input into
a firing rate [44]. These input neurons are so called receptive fields. The input
variable is then distributed over a population of input neurons with graded
and overlapping activation functions. This method of population encoding
is used to produce a firing rate for every input neuron and thus encode the
information distributed over the network.

It is well known by now that the information a spiking neuron encodes is
not just by the rate that it fires at. An increasing amount of evidence reveals
that information is also encoded in the timing of the spikes. This is the
reason that the method of translating a real number by population encoding
is being used to translate the data value into a firing time. This method was
introduced by Bohte[6]. With their method an optimally stimulated neuron
will fire at t = 0 and a minimally stimulated neuron will fire at t = tmax. A
threshold can be introduced as a minimal output value of the gaussian i.e
receptive field, that has to reached in order for the input neuron the receptive
field is associated with, to fire. In [6] population encoding was used to increase
the temporal distance between the data points, which will result in increased
resolution once presented to a network of spiking neurons like the liquid of a
liquid state machine.

In [6] it was found that it is least expensive to independently encode each
of the input dimensions by a separate 1-dimensional array of receptive fields.
This suggests that in advance the dimensionality of the 1-dimensional array
has to be set. In [44] it was found that the encoding accuracy of a partic-
ular variable is increased when the dimensionality of the receptive fields is
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increased and the activation functions of these input neurons are sharpened.
In [6] the activation functions used are Gaussians. First the data range is

determined and for each input dimension n the minimum, Minn and max-
imum, Maxn are determined. For the ith neuron encoding a variable in di-
mension n the center c of the Gaussian was determined by

c = Minn +
2i− 3

2
· {Maxn −Minn}

m− 2
(4.7)

where m is the number of neurons with Gaussian receptive fields used. The
width σ of the Gaussians was set to

σ =
1

γ

{Maxn −Minn}
m− 2

,m > 2 (4.8)

Each receptive field is then defined by the following equation:

Fφ

(
(x− c)2

σ2

)
(4.9)

where x is an input dimension and φ(z) = exp(−z/2).
In [6] it was stated that the the use of a mixture of receptive fields with
varying receptive field widths greatly enhanced the level of detectable detail.
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Figure 4.5: A sensor is made up of an array of receptive fields. Each recep-
tive field is a gaussian defined by Equation 4.9. This way an input value is
translated into an array of output values which represent firing times of the
input neuron the sensor is connected to.

It is clear it is desirable that the distance between the data points is
high. This will increase the resolution since the further the data points are
separated in the encoding space the easier it will be for the neural network
to discriminate between them.
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The maximum resolution is determined by F . Every receptive field will
have a range between 0 and F . With this encoding scheme for each data
point we get N × m(n) values between 0 and 1. These values were then
converted to delay times between t = 1 for a 0 and t = 10 for a 1. This type
of coding has two desirable properties. It produces a sparse coding which
allows only to process a small amount of active neurons. By encoding each
variable separately coarse coding is achieved. This allows each variable to be
encoded by an optimal number of neurons.

4.4.1 Inspecting Population Coding by Receptive Fields

In this section the usability of encoding real numbers into a vector of spike
times, by means of population coding using multiple receptive fields with
varying field widths, will be investigated.

To investigate the useability of this encoding technique we will encode
some data into spike trains and analyze whether the results fit our goals.
The data we will be using is simply the domain [0 : 10] of real numbers
with a resolution of 0.1. This gives a total of 100 data points. The data
was normalized to values between 0 and 1. To encode this data an array of
receptive fields is used. A receptive field is defined here by a neuron which
has a sensitivity area in the form of a gaussian as described in Section 4.4.

Several criteria have to be met in order for this encoding method to be
useful. First of all, the number of spikes and the interval these spikes are
distributed on are an important factor for the interpretation of this spike
train by the neural network. If not enough spikes are generated the concerning
input will not be able to induce a spike at the postsynaptic neurons since
the postsynaptic neuron’s potential will not reach threshold . Secondly, if
the spikes are distributed on a short interval then the learning function of
a network will also be limited to a short interval and therefore will not be
able to produce late firing times as the output. A network has to be as
flexible as possible so it is important the responses of the output neurons
can be adjusted over a wide interval. This requires an interval that is as long
as the output domain. In [6] it was not defined how to convert the output
of the gaussian function to a spike time other than that a lightly excited
receptor was assigned a late firing time and a highly excited receptor was
assigned an early firing time. The output values of the receptor are confined
to [0 : 1] and converted to a value that is within the defined spiking interval
I. The interval I is the duration an encoded input value is being presented to
the postsynaptic neural structure. We convert the result R of the receptor’s
sensitivity area defined by Equation 4.9 to a firing time as
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Figure 4.6: Few spikes are generated per input value.

Tmin + (1.0−R)(Tmax − Tmin), (4.10)

where Tmin is the minimum firing time and Tmax the maximum firing time
of I.

Another property we wish from the encoding mechanism is that a neuron
can emit a spike train as a result of an input instead of a single spike time.
This can be achieved simply by assigning several receptive fields i.e. gaussians
to an input neuron. This will produce a spike per gaussian where the level of
activation exceeded the threshold.

The most important property is to be able to regulate a certain amount of
distance between encoded spike time vectors in order for a neural network of
any kind to be able to discriminate between inputs. How much distance this
has to be is impossible to state, however the importance here is it is possible
to regulate and control the distance between inputs. When this is possible
the discriminatory property of the real input values to be encoded can be
increased at a temporal level. All the information in such an encoded vector
of spike times is embedded in the time difference of successive spike times.
The discriminatory property of the resulting spike trains will be investigated
from the receiving neuron’s point of view. The distance between two spike
trains Si and Sj will be defined as as the difference ∆Si,Sj over all the input
neurons n in postsynaptic potential over time t and where t ≥ 0 and t ≤ TI
where TI is the length of the encoding interval. The discriminatory property

49



 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016  0.018

Time [msec]

InputNr 0

InputNr 20

InputNr 40

InputNr 60

InputNr 80

Figure 4.7: Many spikes are generated per input value.
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Figure 4.8: Narrow Gaussians produce few spikes.

50



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
Time[msec]

Figure 4.9: Wide Gaussians produce many spikes.

∆Si,Sj will be defined as:

∆ =
∑
n

∑
`

|y(t− t`Sin )− y(t− t
`Sj
n )|, (4.11)

where y(t) is the postsynaptic potential and t
`Si
n is the `th spike emitted by

neuron n that belongs to spike train Si.

4.4.2 Decoding a Spike Train Obtained by a 1-Dimensional
Receptive Field

In Section 4.4 it was described how to encode an input variable into a spike
train. In the field of numerical data mining recognizable patterns are sought
in large amounts of data. When seeking for patterns in data one tries to
predict the next input based on what is seen so far. A pattern can be found
this way by correcting any error that is present in the output of the network.
This implies that we also need a way to reverse the coding.

We need two important properties. It was already stated that a bijection
is needed. Every input is to be encoded uniquely into a spike train and
every spike train is to be decoded back into this same number without error.
Another important property is the scaling in between two encoded spike
trains. A small error in the output of firing times by the output neurons
must give rise to only a small error in the predicted value presented by the
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Figure 4.10: Distances for spike trains with different spike densities.

network.
Lets first look at a way to decode an encoded spike train. A spike train

is encoded by a 1-dimensional array of receptive fields. Every receptive field
yields a firing time and these firing times determine at which points in time
the input neuron fires. The output of the network is of the same form. A
1-dimensional array of spike times. We must simply solve for every receptive
field r the input value that produced firing time t

(f)
r . When we look at the

equation for a single receptive field,

t(f)
r = Fφ

(
(x− c)2

σ2

)
(4.12)

we have to solve x for t
(f)
r . The derivation is as follows:

y = exp

(
−(x− c)

2σ2

)
ln y =

−(x− c)
2σ2

ln y =
−x2 + 2xc− c2

2σ2

ln y · 2σ2 −
(
−x2 + 2xc− c2

)
= 0 (4.13)

Equation 4.13 can simply be solved by the ABC-formula which yields the
final Equation that will yield our answer.
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x1,2 =
−2c±

√
2c2 − 4 · (−1) · (−c2 − ln y · 2σ2)

−2
(4.14)

The only problem is then that for a single firing time results in two
solutions and only one is the correct solution which will yield our input.
This problem can be solved by the fact that every receptive field produces
two values, but every receptive field actually should produce the same value
since they each decode the same input value. So by looking at which value
is produced by every receptive field we know the correct input value we are
looking for.

This yields the desirable property that no matter how many receptive
fields we use to encode an input value, we only need to solve Equation 4.14
twice to find the encoded input value.
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Chapter 5

Liquid State Machines

5.1 The Analogy

The common analogy of the inner workings of the brain is a pool of water.
The relaxed state of the water is a smooth surface. When looking at this of
the point of view of neural networks with an energy function this is the only
attractor of the error landscape. When the surface of the water is disturbed
this disturbance will fade out and the surface of the water will return to its
resting state. As a computational device this has not much to offer. But in
the event of a continuous stream of disturbances the water surface holds all
information of present and past disturbances(inputs). This means that there
are no stable states except for the resting state.

To use this as a computational device we need a medium that represents
the water surface in the analogy just described. Since the state of this medium
is a result of the past inputs we can use this to extract information and
analyze some dynamical system. The perturbations in the medium must react
to different inputs in different ways that is recognizable and must be non-
chaotic. The medium can be any analyzable and excitable entity. However
different mediums will have different characteristics. For example, the water
surface will have strictly local interactions. A medium of neurons is an ideal
medium since the structure and dynamics can be defined by properties such
as the degree of connectivity, which will determine range of interactions and
recurrent structure, and variety responses by the individual neurons which is
determined by the definition of the neuron model.

The most important aspect is that in this computational paradigm com-
putation is performed without stable states. This results in the ability to
analyze rapidly changing inputs of a dynamical system.
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5.2 The Computational Paradigm

The computational paradigm called ”the liquid state machine” is introduced
by Maass et al. [21]. The computational device is a neural network whose
architecture is not dependent on a particular application, rather the neural
structure is biologically realistic. There is an increasing amount of evidence
for a neural structure described by the liquid state machine in the neocortex.
The model is designed to process a continuous stream of data in a rapidly
changing environment.

There has been an increasing amount of evidence of a particular form of
neural structure in the brain that is surprisingly stereotypical. An intricately
connected column of neurons acts as a fading memory which seemingly has
the ability for complex universal computational power. The intricately con-
nected structure of the column of neurons form a great amount of recurrent
loops which are capable of retaining information and have the ability to make
correlations between data points. The neuronal structure is referred to as the
”liquid” in the computational paradigm. Inputs to this neuronal structure are
captured in the dynamics of the system. The dynamics of the liquid forms
a dynamic path of internal transient states. The recurrent loops in the liq-
uid cause past inputs to be captured in the perturbations of the system and
gradually fade out. That is why this neural structure forms a fading memory.
Studying a neuronal structure like this is highly complex since biologically
realistic neuronal models have dynamics that are not easily understood. Es-
pecially considering that each neuron adds a degree of freedom and keeping
in mind the complicated dynamics of recurrent loops, such a system high di-
mensional. Therefore it has been a great challenge to study such complicated
dynamics and utilize the great potential of a such a neuronal structure as a
computational device.

In [21] it is stated that the connectivity of the column of neurons can
be found randomly. Their experiments have been conducted with a neuronal
structure, illustrated in Figure 5.2 that has been generated randomly adding
to the evidence of its great versatility since the structure is not application
dependant. Another option would be to evolve the structure. This holds great
promise since this could be done real time, leading to improved performance.

The complex high dimensional dynamics of the neuronal structure can
be used to extract information by a so called read-out mechanism. Reading
out information from the liquid can be done by a neural network that is
trained to analyze the information that is provided by the liquid. Since the
liquid has many recurrent loops it can very well be used for spatio-temporal
information. It is well suited for spatio-temporal information since the liquid
acts as a fading memory. The transient states of the liquid are very dynamic.
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Figure 5.1: Structure of a column of neurons. A column like this, that is ran-
domly connected forms an intricate web of recurrent connections. Another
option is to evolve the connections(like in a real brain) as to get a struc-
ture optimized to retain information for a specific pattern. These recurrent
connections are capable of retaining information of past inputs and acts as a
fading meory. All the information of past inputs can be read out of this struc-
ture by special readout neutworks that are trained to recognize a particular
pattern. (Graphics by Maass)

The transient liquid never goes back to the same state yet the read-out neural
network can be trained to recognize dynamical states. In [21] this is noted
as an unexpected result; ”each readout can learn to define its own notion of
equivalence of dynamical states within the neural microcircuit, and can then
perform its task on novel inputs”. they define it as ”the readout-assigned
equivalent states of a dynamical system”. In fact, different read-outs can be
trained to interpret the same state in a different way providing the ability
for parallel computation.

5.3 The Computational Model

In [21] it is stated that under idealized conditions the Liquid state machine
is capable of universal computational power. They provide a mathematical
framework to prove this. The difference with a Turing machine however, is
that the liquid state machine computes on real-time input in continuous time
with a fading memory. Another difference is that where a Turing machine
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Figure 5.2: A function u(t) acts as a continuous stream of disturbances to
excite the medium LM . At time t a liquid state xM(t) is created. This liquid
state is read by a memory-less readout unit to interpret the information
provided by the liquid state. The memory-less readout unit produces the
output y(t). (Graphics by [21])

performs a state transition for a pre-specified task, the states of the liquid
change continuously over time.

The input to the liquid state machine can be characterized by a continuous
stream of disturbances u(t) at every time t. Lets denote a liquid state machine
by M, and lets denote a state of the excitable medium by xM(t) at every
time t. The liquid is also called a Liquid filter, LM . The state xM(t) of the
Liquid filter contains all information about a the past disturbances. Its state
is a result of the most recent input as well as a result of the perturbations
within the liquid filter from the history of inputs. The information about the
preceding inputs is continuously decaying, and therefore the liquid filter is a
fading memory. Lets denote the output of the liquid, xM(t) , as a result of
the input u(t) as:

xM(t) = (Lmu)(t) (5.1)

To extract information from the liquid filter in order to analyze the inputs
to this liquid filter, memory-less readout maps are used. They are called
memory-less since in contrast to the liquid filter they do not possess any
mechanism to retain information about previous states. These readout maps
are adaptable and therefore contribute to the overall memory of the system.
Readout map are, as opposed to the liquid filter, chosen for a specific task.
In fact, different task-specific readout maps can be used to analyze the same
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state of the liquid filter and potentially perform different tasks in parallel.
The memory-less readout maps, fM transform the liquid state into the output
y(t) at every time t by the following definition:

y(t) = fM(xM(t)) (5.2)

Note that more traditional systems use some location to store the infor-
mation about past stable states. For example in buffers or tapped delay lines.
However in connectionist models it is a good idea to use past states implic-
itly. In [21] it is stated that it is important to focus on two crucial properties;
the separation property and the approximation property.

The separation property means that for some time point t two significant
different inputs u(t) and v(t), there are noticeably different liquid states xMu
and `Mv . When this separation property is met in combination with a good
readout map, the need to store information in some location until a decision
is made it can be discarded, is circumvented.

The approximation property means that the liquid states can be decoded
by the readout maps in a proper way. There needs to be sufficient information
in the liquid state for a readout map to transform the liquid state into a
certain target value. The approximation can be seen as the plasticity of the
readout maps when analyzing the liquid state.
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Chapter 6

Supervised Learning for
Spiking Neural Networks

For a long time a supervised learning algorithm has been lacking for spiking
neural networks. Learning with networks of spiking neurons was possible but
only in an unsupervised manner. Around 2002 two supervised learning al-
gorithms were introduced. The p-Delta learning rule for parallel perceptrons
by Maass [2] and Spikeprop by Bohte [7]. In Section 6.1 we will describe the
Spikeprop algorithm and in Section 6.2 some problems of Spikeprop will be
reviewed. In Section 6.2.1 an extension on spikeprop will be described and
in Section 6.3 we will review the model of [2]. Then, in Section 7.3 we will
introduce a new learning algorithm for parallel perceptrons. This new algo-
rithm will enhance the resolution and flexibility of the encoded output by
taking the temporal information into account that is present in the delays of
the presynaptic spike trains. For convenience and clarity we will adopt the
notation of [7] for the neural dynamics.

6.1 Multilayer Supervised Learning for Spik-

ing Neural Networks

In this section the SpikeProp algorithm devised by [7] will be explained. The
Learning algorithm is modelled akin to the traditional error-backpropagation
methods. It was found that networks of spiking neurons, with biologically
realistic action potentials, could perform complex non-linear classification
tasks with fast temporal coding just as well as the more traditional sigmoidal
networks. The information communicated through the network is done only
by the timing of the spikes. In [7] it is shown that with temporal coding less
spiking neurons are needed to solve the interpolated XOR problem than with
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instantaneous rate coding. This credits their newly proposed temporal coding
technique, described in section 4.4. The algorithm spikeProp is extended by
Schrauwen [33] where several improvements are proposed. He shows it is
possible to learn several constants used in the network and by this severely
reduces the number of weights needed to solve the interpolated XOR problem.

6.1.1 SpikeProp

The Neuron model used is the Spike response model(SRM) introduced by
Gerstner [14], the algorithm can be adapted to numerous spiking neuron
models depending on the choice of the spike response function. Let Γj define
the set of pre-synaptic neurons for a neuron j. Neuron j receives spikes at
times ti from neurons i ∈ Γj. A neuron fires at most one spike during a
simulation interval(presentation of one input variable), and fires when the
internal state variable reaches threshold ϑ. The internal state variable is
defined by

xj(t) =
∑
i∈Γj

wijε(t− ti) (6.1)

where wij is the connection efficacy or weight of the connection. The spike
response function is defined by:

ε(t) =
t

τ
e1− t

τ (6.2)

where τ is the membrane potential decay time constant which regulates the
rise and decay time of the PSP. In the network used in [7] a single connection
between a neuron i and a neuron j consists of a fixed number of m synaptic
terminals. Assume a pre-synaptic neuron i fires at time ti. A synaptic terminal
is a sub-connection that associates a different delay time dk and weight wkij
with the pre-synaptic spike ti. The delay dk is the difference between the
time the presynaptic neuron fires and when the postsynaptic neuron receives
the spike and thus affects the postsynaptic potential. In [7] a presynaptic
spike at a synaptic terminal k is described as a PSP of standard height with
delay dk. The unweighed contribution of a pre-synaptic spike from neuron i
for synaptic terminal k is then defined by:

yki (t) = ε(t− ti − dk) (6.3)

where ε(t) is the spike response function determining the shape of the PSP.
Furthermore ε(t) = 0 for t < 0.

Equation 6.1 is extended for multiple terminal synapses per connection
and the internal state variable xj receiving stimuli from all other connected
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Figure 6.1: (A) is a Feedforward spiking neural network. (B) A connection be-
tween neurons consists of multiple sub-connections called synaptic terminals.
Every synaptic terminal has a delay dk and a weight wkij. The delay deter-
mines the time between the spike fired by the pre-synaptic neuron and the
change in PSP of the post-synaptic neuron. The weight regulates the amount
of change the pre-synaptic spike will make to the membrane potential of the
post-synaptic neuron. (graphics by [7]).

neurons i ∈ Γj where Γj is the set of all immediate predecessors for neuron
j. Then the internal state variable xj can be described by the weighted sum
of the pre-synaptic spikes.

xj(t) =
∑
i∈Γj

m∑
k=1

wkijy
k
i (t) (6.4)

where weight wkij is the weight associated with the synaptic terminal k. The
firing time is determined by the first time the internal state variable crosses
the threshold ϑ : xj(t) ≥ ϑ. The firing time is thus a non-linear function of
the state variable xj : tj = tj(xj). In [7] the threshold is constant and equal
for all neurons in the network. Because time to first spike encoding is used
for the feed-forward network it is not important what happens to the neuron
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after it fires. Keeping in mind that a neuron is only allowed to fire once per
simulation interval(presentation of one input variable), all the information
the neuron provides is in the first and only spike it produces during that
simulation interval. This means that all the information neuron i provides is
based on its inputs, γi, until neuron i emits a spike. The inputs a neuron i
receives after it has emitted a spike do not influence the postsynaptic neuron
i, nor the dynamics of the network. This also makes sure that the information
the neuron provides us with is only for the present input variable. We do not
need to to reset the neuron nor incorporate a refractory period. For an in
depth description of the spikeProp algorithm see [7].

6.2 Problems with SpikeProp

For a long time a supervised learning method has been lacking for networks
of spiking neurons and the SpikeProp algorithm eagerly fills this gap. Since
this algorithm is the first in its kind it is not surprising some initial problems
with this algorithm exist.

So far, the network has not been tested on true numerical data, but merely
on categorical data sets. This raises the question whether the network is
suitable for regression tasks, although this is also strongly dependant on the
encoding of the variables that act as input for the network.

Some problems with this algorithm have been addressed by Schrauwen [33].
In [7] it was already noted that a problem could arise with ”silent” neurons.
This is due to the fact that if a neuron no longer fires for any input there is
no mechanism to prop up the weights again so as to make this neuron fire
again. Weight initialization is a difficult problem, but is even more crucial
with the spikeProp algorithm. The weights have to be initialized exactly in
such a way that there is at least one input pattern a neuron responds to. If
not, the network will not be able to learn the input data. With the tradi-
tional sigmoidal networks weight initialization was always difficult as well. It
can severely affect the learning speed of the network. However in the case of
SpikeProp it is crucial since not just the performance of the network depends
on it, it is the deciding factor whether the network will learn at all. In [33]
it is suggested to actively lower the threshold by a factor of 0.9 whenever a
neuron stops firing. This corresponds to scaling all the weights up. Another
way to interpret the mechanism to make a neuron start firing again.

Another problem, or at least a factor that severely compromises the per-
formance of the network, addressed in [33], is that with the network described
by [7] there is a tendency to an overly determined architecture. As described
in section 6.1 we need to enumerate the delays of the synaptic terminals since
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for every synaptic terminal and thus for every weight we need a different de-
lay over some specified interval. The enumerated delays remain fixed over the
entire run of the network. This causes an overspecification of the network and
it hardly seems biologically plausible that these parameters of the network
are so rigidly determined. So in [33] it is suggested to adapt these delays as
well as the other parameters. The adaptation of the delays will reduce the
number of synaptic terminals necessary and thus the weights used in the net-
work. The adaptation is very similar as the weight update rule. Just use the
gradient error method with respect to a certain parameter. The parameters
suggested to update in [33] are the delays dkij, the membrane time constant τ
and the threshold ϑ. Updating the threshold for spiking neurons is nothing
new however. It seems biologically plausible and has been done before by
many researchers. To use this in a supervised adaptive manner with a gra-
dient error method is new and seems biologically plausible. However it does
raise the question whether we do not get too many degrees of freedom in the
network and if the order in which these adaptations are performed make a
difference. In [33] the actual algorithm and thus the order in which to make
the adjustments are not described.

6.2.1 Adapting the Parameters of the Network

In this section the derivation of the learning rules for the parameters will be
explained. The parameters that are being adapted in [33] are the weights wkij,
the synaptic time constants τ kij, the synaptic thresholds ϑi and the delays dkij.
This also means that there will be four different learning rates ηw, ητ , ηϑ and
ηd respectively.

Learning Rule for The Synaptic Time Constants

The synaptic time constant τ models the decay rate of the membrane poten-
tial and determines the shape of the PSP. A higher value for τ will decrease
the decay rate of the membrane potential. This clearly has a big influence of
the firing time of the neuron. It is necessary to calculate how a change in the
synaptic time constant changes the error E. This can be expressed this as:

∂E

∂τ kij
=
∂E

∂tj
(taj )

∂tj
∂xj(t)

taj
∂xj(t)

∂τ kij
(taj ) (6.5)

where τ kij is the membrane constant for synaptic terminal k between neuron
i and j. The last term in 6.5 can be written as:
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∂xj(t)

∂τ kij
(taj ) = wkij

∂εkij
∂τ kij

(taj − tai − dkij)

= wkijε
k
ij(t

a
j − tai − dkij)

(
(taj − tai − dkij)

(τ kij)
2

− 1

τ kij

)
(6.6)

where εkij is the spike-response function for which the delay dkij and the mem-
brane time constant τ kij for synaptic terminal k are used. Now we have:

∂E

∂τ kij
= wkijε

k
ij(t

a
j − tai − dkij)

(
(taj − tai − dkij)

(τ kij)
2

− 1

τ kij

)
δj (6.7)

The update rule for the membrane time constant then becomes:

∆τ kij = −ητ
∂E

∂τ kij
(6.8)

Where ητ is the learning rate for the membrane time constant.
When adapting the delays to a hidden layer, the change in error with respect
to the synaptic time constants can be expressed like:

∂E

∂τ khi
=
∂xi(t

a
i )

∂τ khi

∂tai
∂xi(tai )

∂E

∂tai

=
∂xi(t

a
i )

∂τ khi
δi

= wkhiε
k
hi(t

a
i − tah − dkhi)

(
(tai − tah − dkhi)

(τ khi)
2

− 1

τ khi

)
δi (6.9)

The update rule for the membrane time constant to the hidden layer then
simply becomes:

∆τ khi = −ητ
∂E

∂τ khi
(6.10)

Learning Rule for The Synaptic Delay Times

The delay times are a very important factor to determine the firing time of a
spiking neuron. To learn these delay times instead of enumerating them has
the advantage the network can contain less weights because the network is
no longer overly specified. Now it is necessary to know how the delay time
from neuron i to neuron j at synaptic terminal k influences the error:
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∂E

∂dkij
=
∂E

∂tj
(taj )

∂tj
∂xj(t)

(taj )
∂xj(t)

∂dkij(t)
(taj ) (6.11)

Then the last term can be rewritten as:

∂xj(t)

∂dkij(t)
(taj ) = −wkij

∂εkij
∂t

(taj − tai − dkij)

= −wkijεkij(taj − tai − dkij)

(
1

(taj − tai − dkij)
− 1

τ kij

)
(6.12)

Then for the output layer using the term δj equation 6.12 can be rewritten
into:

∂E

∂dkij
= −wkijεkij(taj − tai − dkij)

(
1

(taj − tai − dkij)
− 1

τ kij

)
δj (6.13)

Which makes the final update rule:

∆dkij = −ηd
∂E

∂dkij
(6.14)

Where ηd is the learning rate for the delays.
For adapting the delays to a hidden layer the change in error with respect to
the delays can be expressed like:

∂E

∂dkhi
=
∂xi(t

a
i )

∂dkhi

∂tai
∂xi(tai )

∂E

∂tai

=
∂xi(t

a
i )

∂dkhi
δi

= −wkhiεkhi(tai − tah − dkhi)

(
1

(taj − tai − dkhi)
− 1

τ khi

)
δi (6.15)

The update rule for the delay time dkhi between neuron h and i where neuron
i is in the hidden layer then simply becomes:

∆dkhi = −ηd
∂E

∂dkhi
(6.16)
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Learning Rule for The Synaptic Threshold

The change in error with respect to the change in threshold for a neuron in
the output layer can be described by:

∂E

∂ϑj
=
∂E

∂tj
(taj )

∂tj
∂ϑj

(taj ) (6.17)

The last term in eaquation 6.17 can be described by:

∂tj
∂ϑj

(taj ) =
1

∂xj(t)

∂t
(taj )

=
1∑

i∈Γj

∑
`w

`
ij

∂εkij
∂t

(taj − tai − dkij)
(6.18)

since the first term evaluates to (tdj − taj ) Equation 6.17 evaluates to −δj:

∂tj
∂ϑj

(taj ) = −δj (6.19)

The update rule for the threshold of a neuron in the output layer then be-
comes:

∆ϑj = −ηϑ
∂E

∂ϑj
(6.20)

where ηϑ is the learning rate for the neuron threshold. For the hidden layer
the change in error with respect to the threshold can be written as:

∂E

∂ϑi
=
∂tai
∂ϑi

∂E

∂tai
(6.21)

The last term will become:

∂E

∂tai
=
∑
j∈Γi

δj
∑
k

wkij
∂yki (tai )

∂tai
(6.22)

The first term of Equation 6.21 has been calculated in Equation 6.18

∂tai
∂ϑi

=
1∑

j∈Γi

∑
`w

`
hi
∂εkhi
∂t

(tai − tah − dkhi)
(6.23)
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and so the change in error with respect to the change in neuron threshold
becomes:

∂E

∂ϑi
=

∑
j∈Γi δj{

∑
`w

`
hi
∂εkhi
∂t
∂(tai − tah − dkhi)}∑

j∈Γi

∑
`w

`
hi
∂εkhi
∂t

(tai − tah − dkhi)
= −δi (6.24)

Now the update rule for the hidden layer can be written as:

∆ϑi = −ηϑ
∂E

∂ϑi
(6.25)

6.3 Feed Forward Learning with Perceptrons

Back-propagation networks pose a problem when being implemented in hard-
ware. The need for a bi-directional network and the communication of high
precision floating point numbers make it difficult to implement this type of
network in hardware. Other problems with back-propagation are the need
for a precise derivative of the activation function and the cascading of mul-
tipliers in the backward pass results in a reduced efficiency. Because of these
reasons it is questioned whether back-propagation is a biologically plausible
method to adapt the behavior of a connectionist system. A method that uses
a pool of perceptrons is introduced by Auer in [2]. Such a pool of percep-
trons is referred to as parallel perceptrons and used as an alternative for the
bi-directional networks needed by back-propagation systems. They use per-
ceptrons that consist of gates that use the Heaviside activation function, or
spiking neurons. The method to train a parallel perceptron is called the par-
allel delta rule(p-delta rule). The performance is said to be comparable with
multi-layer back-propagation networks using sigmoidal units. This method is
said to be able to approximate any continuous function arbitrarily well with
values between [0, 1].

The combined output of every perceptron in the pool is added up to form
the output O and then a squashing function sρ applied to this output O.
This pool of perceptrons is described as a group of voters. For every voter
the output is -1 or 1. The majority vote can then be seen as the binary output
of the system. When using spiking neurons this output is binary as well. This
method is said to have been successfully applied with spiking neurons in a
number of applications using liquid state machines [21, 39]. The architecture
of a parallel perceptron combined with the p-delta rule to adapt its behavior,
is claimed to be a new hypothesis regarding the organization of learning in
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biological networks of neurons that overcome the deficiencies of approaches
that were based on back-propagation.

6.3.1 Space Rate Code

Space rate code encodes information by means of the fraction of active neu-
rons. During a time window T , an input will be presented to a pool of per-
ceptrons P . At the end of the input time window T , the potential xj(t) of
all neurons j is calculated to determine if the neuron emitted a spike. The
potential xj(t) ∈ P for a neuron j in a pool of parallel perceptrons P at time
t, is calculated as:

xj(t) =
∑
i∈Γj

wij ε(t− ti), (6.26)

where Γj is the set of all predecessors of neuron j, ε(t − ti) is the shape of
the postsynaptic potential with the current time t, and where ti represents
the firing time of neuron i. This postsynaptic potential ε at time t is defined
as:

ε(t) =
t

τ
e1−t/τ , (6.27)

with τ the membrane constant. We will maintain the notation used in [7] and
define the contribution of neuron i to the postsynaptic potential of neuron j
as:

yj(t) = ε(t− ti). (6.28)

Then the postsynaptic potential for each neuron j ∈ P can be calculated as:

xj(t) =
∑
i∈Γj

wij yi(t). (6.29)

The postsynaptic potential will be calculated for each neuron j ∈ P at the
end of time window T . The output of a single neuron j for input z, which is
propagated through the pool of perceptrons during a time window T , is then
defined as:

fj(z) =

{
1 if xj(t) ≥ υ,

−1 otherwise,
(6.30)

where υ is the threshold. When the postsynaptic potential xj(t) for a neuron
j at time t exceeds the threshold, the output is 1, otherwise the output is 0.
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Figure 6.2: The squashing function to determine the output for a parallel
perceptron.

To obtain the output of the pool P for input z, we first sum the outputs of
the individual neurons as:

p =
n∑
j=1

fj(z), (6.31)

where n is the number of neurons. Then, secondly, the output of P is calcu-
lated as the fraction of the neurons in the pool that are active, and is denoted
as sρ(p), where s : Z→ R is a squashing function that scales the sum of the
outputs of all the perceptrons into an output in a specific range, e.g. [−1 : 1]
defined as:

sρ(p) =


0 if p < −ρ,
p/ρ if 0 ≤ p ≤ ρ,

1 if p > ρ,

(6.32)

The resolution ρ is derived from the tolerable error ε and is defined as:

ρ =
1

2ε
. (6.33)

It is important that the number of neurons is greater than the resolution in
order to obtain the intended output range.
In [2] it is stated that every continuous function g : R → [−1 : 1] can be
approximated within any given error bound ε on any given bounded subset
of Rd.
The adaptation process for the pool of perceptrons is summarized in Equa-
tion 6.41
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αj ← αj−η(‖αj‖2−1)αj+η


(−yj(t)) if ô > o+ ε and xj ≥ υ,

(+yj(t)) if ô < o− ε and xj < υ,

µ(+yj(t)) if ô ≤ o+ ε and υ ≤ xj < υ + γ,

µ(−yj(t)) if ô ≥ o− ε and υ + γ < xj < υ.

(6.34)
The presynaptic weights are normalized by the factor αj − η (‖αj‖2 − 1) αj,
where ‖αj‖2 is the Euclidian norm, and η represents the learning rate. The
weights are adjusted when the output ô of P differs by an amount more than
the tolerable error ε of the target output o. Just as described in Section 6.3.2,
we use that every perceptron is encouraged to have the right sign by a margin
of γ. The parameter µ determines the importance of actually reaching this
margin.

In our experiments we will use an output range of [0:1]. Because of this
we made some changes to the manner an an output for a single neuron is
calculated, the squashing function and the resolution. The output of a single
neuron is defined as:

fj(z) =

{
1 if xj(t) ≥ υ,

0 otherwise.
(6.35)

The squashing function we will use is then defined as:

sρ(p) =


0 if p < ρlow,

p/ρ if 0 ≤ p ≤ ρ,

1 if p > ρhigh,

(6.36)

where ρlow is the lower bound of neurons in pool P that have to respond and
is defined as:

ρlow =
(n− ρ)

ς
, (6.37)

where ς is a parameter > 0. The upper bound of neurons to respond is defined
by rhohigh which is defined by:

ρhigh = n− ρlow. (6.38)

The function of the parameters ρlow and ρhigh, is to serve as a buffer to give
the pool of neurons more flexibility. This way, in case of the maximal target
value, not all neurons in the pool have to fire, and in case of the minimal
output target value, it is ensured that the output does not depend on just a
single neuron.
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6.3.2 The Perceptrons

The behavior of a perceptron(also referred to as a threshold gate or McCuloch-
Pitts neuron) can be characterized as:

f(z) =

{
1, if α · z ≥ 0

−1, otherwise
(6.39)

Oi = s(
n∑
i=1

fi(z)) (6.40)

6.3.3 The p-Delta Rule

Now a summary of the p-delta rule will be given. the output ô of the parallel
perceptron is defined as ô = sρ

∑n
i=1(fi(z)), where fi(z) = +1 when αi ·z ≥ 0

and fi(z) = −1 if αi · z < 0 . For every perceptron i = 1, 2, . . . , n:

αi ← αi − η(‖αi‖2 − 1)αi + η


(−z) if ô > o+ ε and αi · z ≥ 0

(+z) if ô < o− ε and αi · z < 0

µ(+z) if ô ≤ o+ ε and 0 ≤ αi · z < γ

µ(−z) if ô ≥ o− ε and −γ < αi · z < 0

(6.41)
Where γ is a margin by which a perceptron has to have the right sign, αi
- η(‖αi‖2-1)αi is a normalizing factor for the weight vector αi that penal-
izes a deviation from unity length, η is the learning rate, µ is a measure of
importance for the margin γ, o is the target output and z is the input vector.

One of the drawbacks of this learning method can be seen in Figure 6.2.
In order to decrease the error bound ε and thus increase the precision of
the function approximated, we need more perceptrons. This problem is due
to the lack of computational power of a pool of perceptrons since a parallel
perceptron can be reduced to a feed-forward network with only one layer
of adaptable weights. According to the authors of [2] it can approximate
any continuous function g : R → [−1 : 1] with an arbitrary error bound ε.
Theoretically this is true, but in [2] it has only been tested on classification
problems. The goal of our computational model is pattern recognition in
temporal data and not a classification task. This puts strict requirements of
computational power and approximation accuracy on our readout mechanism
of our liquid state machine. Since we do not intend to implement our model
in hardware and it is well known that networks that consist of two layers of
adaptable weights are more powerful than one layer of adaptable weights, we
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choose to use another supervised learning technique for networks of spiking
neurons explained in the next section.
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Chapter 7

Experiments

In this chapter we will demonstrate the results of our methods concerning the
computational capabilities of a randomly populated and connected column
of neurons. Our concepts lean heavily on [21] and [19] with a few drastic
modifications. In Section 7.1.1 we describe the liquid and the parameters
used. In Section 7.2.1 we describe how sparseness can be measured which
is considered common knowledge. Our major contribution in an attempt to
make a practical computational tool out of this concept, is to evolve a sparse
neural code and to establish a framework of learning rules which creates a
trainable computing reservoir. In order to do this we redefine sparseness to
different time scales which is described in Section 7.2.2 and Section 7.2.3.
We then describe how to adapt the liquid weights to meet the sparseness
constraints of the liquid in Section 7.2.5 and Section 7.2.6. For each input only
a fraction of the neurons is allowed to be active. The selection of which inputs
are active for a certain input stimulus is done algorithmically such that all
neurons are utilized efficiently. In Section 7.4.2 we will show that this concept
leads to a tremendous ability to scale up the liquid dimensions without adding
to the computational load. Since a sparse neural code is present within the
liquid, the scaling ability also applies to the storage capability of the network.
Originally in [21] and [19] only the weights to the readouts were trained. In
Section 7.3.3 we will introduce a set of local learning rules which will adapt
the firing times of the neurons within the randomly connected population
of neurons in order to reduce the readout error. These learning rules rely
both on a gradient descent method and a method where an attempt is made
to control how specialized a neuron responds to the presynaptic spikes it
receives. In Sections 7.4.4 and 7.4.5 we describe methods to efficiently use
the great number of connections within the liquid, since initially the spiking
nature of the neuronal model causes some connection to remain ineffective.
In Section 7.3.1 we introduce a mechanism to encode the liquid state into an
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output value by averaging the firing time of a so called readout structure.
Finally in Section 7.4.7 we will demonstrate the network’s ability to act as a
fading memory.

7.1 The Liquid

In Section 7.1.1 the liquid parameters will be described and these values will
be used for the experiments unless stated otherwise.

7.1.1 The Liquid Parameters

We will use a liquid that is closely modeled after the column of neurons as
described in [21], however there are differences. We use encoded inputs by an
encoding method as described in [6]. Inputs are encoded into spike times by
an array of neurons that each has a sensitivity profile shaped as a Gaussian.
The Gaussian is used to calculate the spike time(s) as is also described in 4.4.
We set γ to be 0.1, which makes a fairly broad Gaussian, for 30 neurons per
input variable. A spike train is calculated for every neuron within the sensor.
The initial spike tinit is calculated as:

tinit = tmin + (1.0− r) (tmax − tmin), (7.1)

where tmax and tmin are the maximum and minimum firing time of each sensor
neuron respectively and r is the resulting value calculated by Equation 4.9.
The inter spike interval tisi is calculated as:

tisi =
1.0

r tmaxrate
, (7.2)

where tmaxrate is a constant used to scale the inters pike interval. We set tmin
to be 0 and tmax to be 0.07. The inputs are being propagated through the
liquid during a certain time interval Tp before the next input is being encoded
and propagated through the liquid of neurons. The start of the time interval
will be denoted as T sp and the end of the time interval will be denoted as T ep .
This time interval is important since the effect of an input still needs to be
present when the next input is being presented to the liquid. The length of
the time window needs to be considered with the membrane time constant
τm of the neuron since both these parameters will partly create a temporal
effect. However we believe that the greatest influence on the temporal effect,
which makes the liquid act as a fading memory, are the recurrent connections
form the context layer. Connections between neurons i and j are generated
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according to the probability

C · exp(−D(i, j)2/λ2),

where D(i, j)2 is the Euclidean distance between neurons i and j, C scales
the probability for creating a connection, λ is a parameter which controls the
connectivity density as well as the average distance between the connections.
We chose to set λ = 2. Each connection between a neuron i and j has a delay
di,j which is determined according to

Tp ((D(a, b)/Dmax) /$) ,

where Dmax is maximum distance possible within the liquid of neurons, and
$ is a parameter which scales the delay. We set $ to 0.7. The neuronal
dynamics are a simplification of the spike response model as described in
Section 3.2. We model the postsynaptic potential of neurons in the liquid as

ε(t) =
t− ti
τ

e1− t−ti
τ

like Equation 6.2, where τm is the membrane potential and ti and incoming
spike at time t from neuron i. We model the neurons refractory by:

−ηrefr · exp(−(t− ti)/τrefr),

where ηrefr is a parameter which scales the refractory, and τrefr is the refrac-
tory time constant. In addition each neuron has an absolute refractory time
denoted by tabs. We set ηrefr to be 0.005, τrefr to be 1.0 and τabs to be 0.003.
Note that the absolute refractory time is very small since a large absolute
refractory time would make a low sparse target trivial and a high sparse tar-
get impossible. A small absolute refractory time does not restrict the activity
and poses a greater challenge to the activity controlling algorithm. We set
20 percent of the liquid neurons to be inhibitory.

7.2 Evolving the Activity of the Liquid

In this section we will describe the learning rules in order to evolve a sparse
liquid response. A sparse liquid response will dramatically improve compu-
tational performance. On top of that a sparse code will reduce the crosstalk
when training the network and will associate portions of the liquid with
specific input values. We believe this improves the learning ability of the net-
work. In Section 7.2.1 we will explain how to measure sparseness. Then in
Sections 7.2.2 and 7.2.3 we will explain how to differentiate between popula-
tion sparseness and lifetime sparseness. Finally in Sections 7.2.5 and 7.2.6 we
will define the learning rules to achieve lifetime and population sparseness
respectively.
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7.2.1 How to Measure Sparseness

We wish to take advantage of a sparse neural code both for the liquid response
as well as the readout activity. The advantage of this sparse neural code is the
computational efficiency and the great discriminatory property a true sparse
neural code provides. However this raises the question of how to define a
sparse code and how to assign a value to the sparseness of a neural code. In
fact several notions of how to measure sparseness exist as is described in [27].

A commonly used solution to measure sparseness for a single neuron can
be found in [30] which was defined as

a =
(1/n

∑n
s=1 rs)

2

1/n
∑n

s=1 r
2
s

, (7.3)

where rs is the response to the sth stimulus and n is the total number of
stimuli a single neuron exhibits. When for all inputs the number of spikes
is about the same then the sparseness is 1, when all spikes of a neuron are
concentrated as a result of a single stimulus then the result is near 0. The
output of Equation 7.3 was conveniently scaled into a value between 0 and
1 by [38] which was used for experiments with cells from the visual cortex.
An experiment was set up where controlled stimuli in the form of a sequence
of images stimulating the spatial and temporal patterns in and around the
Primary Visual Cortex when an animal freely views a natural scene. The
measure of the sparseness S is then defined as:

S =
(1− a)

(1− amin)
, (7.4)

where amin is the minimum value Equation 7.3 can produce. Equations 7.3
and 7.4 do not make a distinction between lifetime sparseness and population
sparseness. Equations 7.3 and 7.4 measure how selective a neuron is in its
responses to input stimuli, however if a neuron responds to every input with
a single spike, except for one input where it responds with a lot of spikes, the
response is still considered sparse according to Equations 7.3 and 7.4. We dis-
agree with this definition and would like to differentiate between population
sparseness, where it is measured what fraction of neurons of a population re-
sponds and to lifetime sparseness, where we measure how active a neuron is
over a period of time. The main reason for this is to reduce crosstalk between
different patterns when training the network.
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7.2.2 Lifetime Sparseness

When measuring lifetime sparseness we would like to know how active a
neuron is over a given period of time. An interesting question arises about
the duration of that time as well as the resolution of that time. We can make
a distinction between sparseness for the duration of a single input, which has
been defined as a Time window, and sparseness over a past number of inputs.

When measuring the sparseness of a single neuron over a past number of
inputs we are not interested in how many times a neuron fired for a given
input. Whenever a neuron responds to a given input by emitting one or more
spikes we want to take into account that the neuron has responded. In the
case of lifetime sparseness we define the time bin bL as the smallest possible
amount of time for which the activity of a neuron is relevant. In this case
bL equals the duration of a single time window. We define the occurrence of
activity for a neuron i within the timebin bL as:

FL(i) =

{
1 if ϑ : xi(t) ≥ ϑ and TS ≤ ti ≤ TS + bL,

0 otherwise,
(7.5)

where Ts is the start time of the time window the sparseness is being cal-
culated for and ti is the first firing time of neuron i within the current time
window. Measuring the sparseness SL across the past P inputs then becomes:

SL =

1−


(∑P

p=1 FL(i)
)2

P
∑P

p=1 FL(i)


 / (1 − (1 / P )). (7.6)

In the course of a time window, i.e., the neuronal response as a result of
a single input, it is possible for a neuron to emit several spikes. Note that
it is important to acknowledge the difference between the number of times
a neuron has been active over the past number of inputs and the number
of spikes a neuron emits as a result of a single input. The definition of the
activity of a single neuron as a result of a single input is:

FT (i) =

{
1 if ϑ : xi(t) ≥ ϑ and TS ≤ ti ≤ TS + bT ,

0 otherwise.
(7.7)

The number of time bins,which is the smallest possible amount of time in
which a single spike by neuron i can occur, is defined as:

B =
bL
bT
, (7.8)
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where the sparseness ST for the duration of a single input then becomes:

ST =

1−


(∑B

b=1 FT (i)
)2

B
∑B

b=1 FT (i)


 / (1 − (1 / B)). (7.9)

where b is the smallest possible amount of time in which a spike can occur.

7.2.3 Population Sparseness

In Equations 7.6 and 7.9 it was measured how selective a neuron is in its
responses to a set of input stimuli and a single input respectively. However,
these equations measure the sparseness of a single neuron. we would like to
be able to control the activity of the population of neurons as a whole as well.
In our experiments we investigate the response of the liquid when excited by
an input. Is a neural code of a population sparse when every neuron in the
population contributes to the neural code of the population, but every neuron
by itself produces a sparse code? We would like to argue this is not the case.
We want to use a sparse neural code to construct a computationally efficient
algorithm which reduces to amount of spikes that have to be processed, as
well as severely reduce the crosstalk when learning. On top of that we want
to create a large discriminatory property where it is easy for a readout to
recognize a liquid response and associate this with an output. It is not hard
to illustrate that a neural code where for every input a single neuron responds
and no two inputs activate the same liquid neuron, has a large discriminatory
property. This notion where for every entity in the world is recognized by a
single neuron is also known as the grandmother cell. This notion is not rep-
resented by the definition of sparseness in Equations 7.6 and 7.9. In [42] the
sparseness measure as defined by Equation 7.3 is called lifetime sparseness,
and the sparseness of a population is called population sparseness. In [40]
Equation 7.4 is used for both lifetime sparseness and population sparseness.
However we use, to simplify the notion of population sparseness, simply by
the percentage of neurons within the liquid that respond to an input. The
definition of population sparseness we will use in our experiments is:

Spop =

∑N
i=1 FL(i)

N
, (7.10)

where N is the total amount of neurons within the liquid and F (i) is a func-
tion that return a 1 if neuron i emitted a spike and is defined by Equation 7.5.
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7.2.4 Adapting the Activity of the Liquid

In this section a set of learning rules will be described that will enable the
ability to control the amount of activity of a randomly connected pool of
neurons. In Section 7.2.2 and 7.2.3 a distinction was made between lifetime
and population sparseness. Similarly, this distinction is made for the learning
rules. In Section 7.2.5 it is described how to adapt the lifetime sparseness of
a neuron and in Section 7.2.6 it is described how to adapt the population
sparseness of a randomly connected population of neurons.

7.2.5 Adapting for Lifetime Sparseness

In Section 7.2.2 it was described how to measure the lifetime sparseness of a
single neuron. Since we are aiming for a sparse neural code in our experiments
we will enforce that each neuron is only allowed to fire a single spike without
setting hard constraints to achieve this. Equation 7.9 defines how to measure
the lifetime sparseness of a single neuron. When only a single spike is allowed
during a time window, Equation 7.9 results in:

ST =

1−


(∑B

b=1 FT (i)
)2

B
∑B

b=1 FT (i)


 / (1 − (1 / B)).

=
1− (1 / B)

1− (1 / B)

= 1. (7.11)

The result 1 calculated in equation 7.11 will therefore always be the target
lifetime sparseness for the duration of a single input. The lifetime sparseness
error will therefore result in:

ET = 1− ST , (7.12)

where ST is defined in 7.2.2. To adapt the lifetime sparseness of a single neu-
ron j during a single input we determine the change in presynaptic efficacy
of a weight wij by an amount proportional to the error as defined in Equa-
tion 7.12 and the potential contribution the presynaptic neuron i imposed
on the postsynaptic neuron j, which is yij(t) wij. Note that when neuron i
has not spiked, the amount of current being used to proportionally alter the
weight is the last time the potential of neuron i has been calculated. When a
neuron has spiked one or more times the potential contribution for a weight
is defined as:
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Yij =
F∑
f=1

yij(t
f
i ), (7.13)

where F is the total number of spikes neuron i emitted and yij(t
f
i ) is the

potential contribution of the weight associated to the connection from neuron
j to neuron i at the the time neuron i emitted a spike for the fth time. The
adaptation of the presynaptic weight is then defined as:

∆wij = −ηT Yij wij ET , (7.14)

where ηT is the learning rate used when adjusting for the lifetime sparseness
ST measured for a single input.

7.2.6 Adapting for Population Sparseness

In Section 7.2.3 the concept of population sparseness was described. To con-
trol the number of neurons that are active for a single input we naturally
increase sparseness and increase computational efficiency. However that does
not mean that all the resources in the liquid are being utilized effectively.
When training the network to have only a few neurons active for every input
we need to make sure that different neurons are active for different inputs.
In order to do this we employ lifetime sparseness across a large timescale.
Equation 7.6, which computes the lifetime sparseness across several inputs
basically assigns a score regarding to the activity of the neuron. When not
enough neurons within the population are active, neurons which have a high
sparseness score will be encouraged to start firing spikes. When too many
neurons are active within the population, only those neurons that have a
low sparseness score will be encouraged to stop firing. This way, efficient
use of the neurons is established. Equation 7.10 defines how to calculate the
sparseness of a population of neurons. The population sparseness is simply
calculated as the fraction of the neurons within the population which are
active. The population sparseness error Epop is defined as:

Epop = Spop −Dpop, (7.15)

where Dpop is the target population sparseness. The adaptation of the presy-
naptic weights is subject to constraints with regard to the lifetime sparseness
score SL. When Epop is positive, too many neurons are active. Since we wish
to make efficient use of all the neurons within the liquid, we will select only
those neurons whose sparseness score SL lies at most a distance C`

min from
the minimal sparseness score available Smax within the population of neurons.
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Similarly,when the error Epop is negative and therefore too few neurons are
active, some neurons need to be encouraged to emit a spike. We only select
those neurons to adapt their presynaptic weights, when the sparseness score
lies no further than C`

max from the maximal sparseness score which is present
in the population of neurons. This ensures that when too few neurons fire,
only those neurons are encouraged to fire that have been the least active for
other inputs. The adaptation for population sparseness is then summarized
as:

∆wij =


ηpop Yij wij Epop if Smax − SiL > C`

min and Epop > 0

or SiL − Smin > C`
max and Epop < 0,

0 otherwise,

(7.16)

where C`
min is a constant used when too many neurons are active, C`

max is a
constant which is used when too few neurons is active, ηpop is the learning
rate when adapting for population sparseness, SiL is the lifetime sparseness
for neuron i and Y wij computes the potential contribution from neuron i to
neuron j where Yij is defined by Equation 7.13.

7.3 Enhancing the Resolution of the Readout

Population

In this section we will describe the readout we used to compute the output
from a liquid state. First in Section 7.3.1 we describe the neural code the
readout uses to calculate the output value, then in Section 7.3.2 the learning
rules are described which will reduce the output error of the readout popu-
lation and finally in Section 7.3.3 it will be described how the firing times
within the liquid will be adapted in order to reduce the readout error.

7.3.1 Reading the Output

In Section 6.3.1 a single-layer feed forward net called a parallel perceptron
using spiking neurons is described. This method calculates the fraction of
neurons that emit a spike, and returns that fraction as the final output. This
type of neural code is called a space rate code. For some inputs a very large
number of neurons has to be active to reflect the output. The amount of
cross-talk is fairly large since for every input-output pair no constraints are
set to which weights should be adapted what could result into a negative
effect on the total error of the output. The temporal information present
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within the firing time of spike is not being utilized, which could mean a loss
of information. The activity of the population provides the output. On top
of that, the resolution of the outputs is dependant of the number of neurons
in the readout. We wish to make the output code more sparse. Sparse codes
have many advantages, the most important ones being less energy used and
faster learning due to less crosstalk between patterns [27].
To make the code more sparse we make use of the temporal information
contained in the spikes. A small adaptation of the space rate code described
in Section 6.3.1 will give the advantage of temporal information provided in
the firing time of the spike. Instead of the fraction of the pool of neurons in
the readout structure which emit a spike, we use the average firing time of
the neurons within the readout structure. To encourage a sparse code we only
average over the Nd earliest firing times of the readout. We will define this
set of neurons as Γo, and only the neurons within the set Γo participate in the
output. When fewer than Nd readout neurons emitted a spike, the number of
elements in the set Γo will thus be fewer than Nd. When this occurs we call
Γo incomplete. This does not mean that the other neurons were inactive. The
main objective is to reduce crosstalk between patterns to speed up learning.
For this reason the presynaptic weights of the readout neurons that do not
participate in the output i.e., those neurons i 6∈ Γo, will not be adapted in
order to stop that neuron from firing, since doing so would introduce more
crosstalk between the patterns.
The output of a single readout neuron i is simply defined as:

ti =

{
t if i ∈ Γo,

0 otherwise,
(7.17)

where the firing time ti > tj for all neurons i ∈ Γo and for all neurons j where
i 6∈ Γo. The output of the readout is then defined as:

Ô =
N∑
i=1

tai /N, (7.18)

where N is the number of neurons in Γo and tai is the actual firing time of
neuron i. Note that when using this neural code, early firing times are being
favored over later firing times. This makes sense with respect to the behavior
of a postsynaptic neuron. A neuron which receives presynaptic spikes, and
responds with an increasing postsynaptic potential, will emit a postsynaptic
spike when the postsynaptic potential reaches the threshold. The potential
rises with each excitatory incoming spike and therefore later presynaptic
spikes will be less likely to participate in the output. The error for the entire
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readout is defined as:

E =
1

2
(Ô − td)2, (7.19)

where tj is the target firing time of the readout. The average firing time Ô
as defined by Equation 7.18 is translated to the actual output value of the
readout by:

O =
Ô − tdmin
tdmax − tdmin

, (7.20)

where tdmin and tdmax are predefined constants and represent the minimum and
maximum target firing time respectively. The actual output value O results
then in a value between 0 and 1. The relationship we defined between lifetime
sparseness and population sparseness gives rise to specialization of neurons
regarding their response to inputs.

7.3.2 Adapting the Weights

The weights cannot be adapted in a similar manner as the Spikeprop algo-
rithm as described in [7]. A major drawback of the algorithm in [7] is that the
spike time of a neuron can only be adjusted when the neuron actually spiked.
When achieving a sparse code for pool of neurons obviously we sometimes
want to activate a neuron that did not emit a spike, or sometimes we want
a neuron to remain inactive. Another reason why we cannot make use of a
back propagation style algorithm is that we cannot propagate the error back
since the hidden layer is a population of randomly, and therefore recurrently,
connected neurons. That is why we will introduce here a Hebbian-like adap-
tation style which will provide us with more flexibility and which is suitable
for a sparse code. The target firing time of a neuron j is calculated as:

tj = tmin + (tmax − tmin) ξ, (7.21)

where ξ is the normalized target value as being presented in the input data.
The output neurons have a minimum and maximum firing time denoted
as tmin and tmax respectively. It is important to choose the values of tmin
and tmax carefully. When tmin is chosen too small there may not be enough
presynaptic spikes with t < tmin which means the neuron can not meet the
target firing time. This is a result of the input spike train. When all spikes t
emitted by the sensor t > tmin, the liquid neurons will not be able to emit a
spike t < tmin. As a result of that, the neurons in the readout will not be able
to either. When tmin is chosen too large the difference between tmin and tmax
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may be too small which negatively impacts the capacity of the readout to
represent output values. Note that individual neurons within the readout can
have a firing time different that the target firing time. As long as the average
firing time of all neurons j ∈ Γo equals the target firing time tdj . Adaptation
of the presynaptic weights for a neuron j is done like:

∆wij =

{
ηP E wij Yij ϑ : xi(t) ≥ ϑ and i ∈ P ,
ηP (tmax − tmin) wij Yij ϑ : xi(t) < ϑ and Γo is incomplete,

(7.22)
where ηP is the learning rate, ϑ : xi(t) ≥ ϑ means that neuron i emitted a
spike and wij Yij is the contribution of presynaptic neuron j to the potential
of postsynaptic neuron i where Yij is defined by Equation 7.13. Besides the
advantage of being able to adapt for neurons that did not emit a spike, this
method also has the advantage of not having to calculate computationally
expensive derivatives.

7.3.3 Adapting the Liquid Firing Times

Adapting the presynaptic weights for all neurons j in the readout P will
not ensure the correct output values after a number of iterations. When all
firing times of ti < tdj for neurons i ∈ L, the target firing time can not be
realized by adaptation of the presynaptic weight for readout neurons alone.
For that reason the presynaptic weights of neurons within the Liquid will be
adapted as well. We will not use the technique of back propagation due to
the recurrent connections within the Liquid. We will use only local adapta-
tion rules. This has the advantage of being easy to understand and leads to
greater computational efficiency. However, it has the drawback of introduc-
ing some inaccuracy since a liquid neuron which firing time is adapted will
also influence the liquid neurons it is connected to. Despite the inaccuracy
the learning rules perform quite well. We think the reason for this is that we
rely on a sparse code. The event of a spike emitted by a neuron in the liquid
does not only hold information in its firing time, but also holds information
by which neuron it is emitted.

When establishing the adaptation which is needed to reduce the error of
the output produced by the readout as defined in Equation 7.19, we need to
calculate whether an increase or decrease of presynaptic current is necessary.
The amount of adaptation solely relies on the readout error which is defined
in Equation 7.19. The direction of the adaptation is determined by several
factors. First of all, the sign of the presynaptic spike with respect to the
postsynaptic spike is important. The slope of the postsynaptic potential, as
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a result of tai , determines whether a later firing time of neuron i will result in
less or more postsynaptic current. If (taj − tai )−τj < 0 than the slope is rising,
therefore a later firing time of neuron i will result in less postsynaptic current
caused by neuron i. This factor will be called the sign S of the postsynaptic
slope caused by a presynaptic neuron i and is defined as:

S = (taj − tai )− τj. (7.23)

The second factor for determining the direction of the adaptation is
whether or not neuron i is inhibitory or excitatory. When a neuron is in-
hibitory we simply need to adapt the firing time in the opposite as when the
neuron would be excitatory. Therefore the inhibitory factor Ii of a neuron i
is defined as:

Ii =

{
−1 if neuron i is inhibitory,

1 otherwise.
(7.24)

The third and final factor in calculating the direction of adaptation of
a neuron i is determined by the fact whether or not the neuron i actually
contributed to the postsynaptic potential to the postsynaptic neuron j. When
the firing time ti > tj, neuron i did not contribute to the postsynaptic current
of neuron j. In this case, only when a postsynaptic neuron j needs an increase
in postsynaptic current, we need to adjust the firing time of a presynaptic
neuron i. The reason for this is simple. When increasing the firing time
of a presynaptic neuron, the possibility exists that the firing time of the
presynaptic neuron becomes greater than the postsynaptic neuron. When no
mechanism exists to increase the number presynaptic neurons i where ti < tj
early target firing times become impossible. In fact our own experiments
confirm this is an actual problem. Note that if it wasn’t for the tapped delay
lines, this problem could not be overcome by the Spikeprop algorithm as
described in [7]. We call this the orientation of the presynaptic spike and is
defined as:

Ri =

{
1 if (tj − ti) < 0 and Ii = 1,

0 otherwise,
(7.25)

note that the orientation of a presynaptic neuron i depends on the inhibitory
value of neuron i. In short the orientation of a presynaptic neuron i equals
1 when it did not contribute to the postsynaptic potential of a neuron j and
is not inhibitory. To combine the factors 7.23, 7.24 and 7.25,we define δi to
indicate the direction and the amount of adaptation for a neuron i as:

δi = ηL
(
taj − tdj

)
S Ri Ii. (7.26)
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The change in efficacy of the presynaptic weights of a neuron i is then defined
as:

∆wij = η δi Yij r, (7.27)

where Yij is the potential contribution defined by Equation 7.13, r is a number
∈ [0.7, 1.0], which introduces some noise. We found it improves the perfor-
mance of the learning process to add some randomness to the adaptation.

7.4 Exploring the Learning Framework

In this section we will explore several properties of the network and its learn-
ing rules. in Section 7.4.2 we will investigate the learning ability of the net-
work. Then in Section 7.4.3 we will describe how to prevent the occurrence of
very large weights and in Section 7.4.4 we will describe a method to diversify
the neural code. In Sections 7.4.5 and 7.4.6 we will describe the favorable
properties of specialization in the network. Finally, in Section 7.4.7 we will
describe a method to incorporate an implicit time dimension in the network.

7.4.1 Mackey-Glass Data Set

In this section we will describe the data we will present to the network of
neurons. We initially use a data set with few data points as a toy problem
and is meant to illustrate some key properties of the network’s behavior.

The data we will use in the experiments described in Sections 7.4.2 and
7.4.3 is known as the Mackey-Glass time series. This time-series is commonly
used to demonstrate the performance of recurrent connected neural networks
and is defined as:

dy(t)

dt
= −by(t) + a

y(t− τ)

1 + y(t− τ)10
, (7.28)

where a, b and τ are parameters which determine the behavior of the time-
series. We set a = 0.2, b = 0.1 and τ = 17, which results in the time-series
which can be observed in Figure 7.1. We have created a small subset of this
data to present to the neural network. We have integrated Equation 7.28 at
30 different time points which results in a data set of 30 data points.

7.4.2 Gradient Descent Learning

In this section the results of the methods described in Sections 7.2.5, 7.2.6,
7.3.2 and 7.3.3 will be presented. We wish to demonstrate in this experiment
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Figure 7.1: Mackey-Glass time-series where parameters τ = 17, a = 0.2 and
b = 0.1

that with a set of learning rules which have been defined locally, i.e., on the
level of a single neuron, an input pattern can be learned by the network.
Despite the fact the network can be successfully trained on the input data
set, a number of drawbacks to this method become apparent.

In Figure 7.2 the responses of the sensor and the liquid is depicted for dif-
ferent liquid and sensor sizes. It can be seen that for different inputs different
areas of the liquid are excited and therefore the liquid’s resources are being
utilized efficiently. When inspecting Figure 7.2 closely, subtle variations of
liquid responses can be observed for different inputs. Furthermore the Gaus-
sian shape of the sensor responses is apparent in Figure 7.2(f). As described
in Section 4.4 the sensor neuron’s response is determined by the output of
Gaussian function as a function of the normalized input.

In Figure 7.3 the error is depicted for the readout for each epoch. The
error tolerance is 0.01 and when the tolerance is reached the algorithm stops.
It is clear that an increase in the number of neurons greatly enhances the
performance of the network. For more traditional neural methods this is also
the case, however there is an upper limit for the amount of neurons when
increasing the network size no longer yields a beneficial effect or can even be
harmful to the performance of the network. With a sparse liquid response this
harmful effect due to upscaling the network size is confined to the number
of neurons active for a single input. However, the size of the liquid can be
scaled up indefinitely. This is due to the sparse response of the liquid. Only
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Figure 7.2: The responses of the sensor and liquid for several different sensor
and liquid sizes. Figure 7.2(a) depicts the liquid response with a size of 36
neurons and Figure 7.2(b) shows its corresponding sensor response with a
sensor size of 30 neurons. Figures 7.2(c) and 7.2(e) show the liquid responses
with a liquid size of 72 and 135 neurons respectively and Figures 7.2(d) and
7.2(f) show the sensor responses with sizes 60 and 72 neurons respectively.
The x-axis represents the time scale. Neuronal activity is propagated through
the network for the duration of 0.1 ms. The y-axis represents the neuron
number.

a small part of the liquid responds to an input which is unique to that input.
This makes the liquid a highly scalable storage medium.

In Figure 7.4 the error of the population sparseness is depicted. It can
be seen that the activity is not within the specified bounds. This is due to
the fact that a lot of adaptations are being done to the liquid weights at any
given time. Not only are the weights being adapted to adjust for the liquid
population activity, the weights are also adjusted to reduce the readout error.
Despite this activity error, the amount of liquid activity still allows for all
the advantages of a sparse neural code. Note that this error is absolute. This
means that the total number of spikes the liquid emits is either below or

88



 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250  300  350  400  450

E
po

ch
 E

rr
or

Epoch Number

Liquid size 36 neurons, sensor size 30 neurons
Liquid size 72 neurons, sensor size 60 neurons

Liquid size 135 neurons, sensor size 100 neurons
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Figure 7.4: Error activity with a liquid size of 135 neurons
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Figure 7.5: The actual output of the readout and the target output are plotted
for different network sizes. In Figure 7.5(a) the total number of neurons is
126, in Figures 7.5(b) and 7.5(c) the number of neurons is 172 and 275
respectively.
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above the target. In Figure 7.5 the outputs of the readout is plotted against
the target output. It can be seen that increasing the number of neurons in
the liquid and sensor makes for different behavior of the final output by the
readout. In Figure 7.5(a) it can be seen that after 400 runs of the entire data
set, the lowest possible output is difficult. This is due to a high Euclidean
distance of the output while the Euclidean distance of the corresponding
input values is very small. Furthermore in Figures 7.5(b) and 7.5(c) some
overfitting can be seen. It could be argued this is partly due to a somewhat
low resolution of the input data. The data set consists of only 30 data points
and makes this a toy problem.

In Figure 7.6 several traces of neuron’s firing times can be seen. Notice the
variation in responses of the individual neurons. This diversity in neuronal
behavior is very important for the readout to efficiently learn the correct
output values. The plots span the entire training process and a variety of
adaptation directions of the firing times can be noticed as well. The relative
firing time is plotted against the time. The relative firing time can have a
value in [0,0.1], since the duration of a time window is set to be 0.1 ms.

In Figure 7.7 the epoch error for several values of the connection param-
eters λS and λL can be seen. In Section 7.1.1 it was described two different
connection parameters exist. The connection parameter for connections from
the sensor to the liquid λS was set to 1.5, 2.0 and 2.5. The connection param-
eter which determines the connections within the liquid λL was also set to
1.5, 2.0 and 2.5 which resulted in 4447, 6657 and 8339 connections within the
liquid respectively. In Figure 7.7 it can be seen that increasing the number of
connections is a means to increase the networks capacity and with that the
performance of the network of neurons. Increasing the number of neurons as
well as increasing the number of connections improves the performance of the
network. However, when the number of connections are increased we are not
sure if all the connections are used efficiently. This issue will be addressed in
Section 7.4.4 and Section 7.4.5.

7.4.3 Weight Distribution

When inspecting the resulting weights after training the network we noticed
that a small number of weights were responsible for most of the presynap-
tic input. This is not surprising since in our learning rules we did not set
any constraints as to how the weights evolved as long as the readout er-
ror is reduced. We believe that these great differences in value which exist
between the weights, do compromise the ability of the network to learn. A
relatively high presynaptic weight will always dominate the postsynaptic po-
tential no matter how the input spike train is arranged. We do not believe
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Figure 7.6: Several traces of neuronal responses within the liquid. A great
diversity of neuron activity can be seen
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that the difference in presynaptic timing and order of the presynaptic spikes
will compensate for the dominance of a single weight and therefore the possi-
ble variation on liquid responses for different inputs is reduced. A fixed limit
on a weight did not improve the training results. We therefore introduce a
constraint on the set of all presynaptic weights as a whole, for any postsy-
naptic neuron. We set a limit to the difference between the maximal and
minimal presynaptic weight which have participated in a postsynaptic spike.
Note that this constraint does not apply to all presynaptic weights, but only
to those which have contributed to the postsynaptic potential on the onset
of a postsynaptic spike. We call this set the effective presynaptic weights Γeff

which applies to a single postsynaptic spike. The constraint Ceff on the set
of effective presynaptic spikes is defined as:

Ceff > wmin − wmax , (7.29)

where wmin ∈ Γeff and there is no w ∈ Γeff for which w < wmin , and wmax ∈
Γeff and there is no w ∈ Γeff for which w > wmax , and Ceff is a constant which
defines the minimal Euclidean distance between any effective presynaptic
weights. To enforce this constraint we increase weights w < wmax − Ceff by:

∆w = H(w − wmax − Ceff ) ηeff |EP |, (7.30)
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where ηeff is the learning rate, EP is the error of the readout pool P and
H(x), also known as the Heaviside function, is defined as:

H(x) =

{
1, if x ≥ 0

0, otherwise.
(7.31)

Note that in order to enforce the constraint the maximum value is not
adapted and all weights which violate the constraint as defined in Equa-
tion 7.29 are increased. This increases the overall postsynaptic potential and
the learning rules as defined in Sections 7.2.5, 7.2.6, 7.3.2 and 7.3.3 will en-
sure that too much presynaptic weight is reduced in order to reduce the
sparseness and readout error.

In Figure 7.9 it can be seen that the value of Ceff is of some influence on
the performance of the network. We trained a network with a reservoir of 90
neurons, a sensor of 60 neurons and a readout of 40 neurons. Higher values
of Ceff result in a greater precision. This came as a surprise. The expectation
was that for a large variance, i.e., a few weights which account for most of the
postsynaptic potential, compromises the performance of the network. How-
ever, when analyzing what happens we found that due to the difference in
the order and timing of the presynaptic spikes for different input values, the
higher weights do not always contribute to a postsynaptic spike. A value of
1.0 for Ceff seems quite large yet the results are better than for lower values.
In Figure 7.8 it can be seen that Ceff is enforced on the presynaptic weights
of the liquid. For greater values of Ceff The average presynaptic weight tends
to be higher when the value of Ceff smaller. This can be explained by in-
vestigating what happens when weight violates the constraint defined by
Equation 7.29. This weight is increased until it falls within the constraint de-
fined by Equation 7.29 which is defined on all the presynaptic weights which
participated in the postsynaptic spike. The assumption was that this results
in too much postsynaptic potential and Equations 7.27, 7.22, 7.14 and 7.16,
would decrease all the weights in order to reduce the sparseness and readout
error. However, lower values of Ceff merely restrict the ability of a neuron to
respond uniquely to distinct inputs and therefore lacks precision.

Another prediction we made was that lower values of Ceff would lead to
more presynaptic spikes for each postsynaptic spike. We assumed the reason
for this would be that for low values of Ceff a lower presynaptic weight would
emerge per connection. However this was not the case. In fact, in Figure 7.10
it can be seen the opposite is the case. For higher values of Ceff a slightly
lower number of incoming spikes per neuron can be seen averaged over all the
neurons within the liquid. We believe this is due to the presence of inhibitory
neurons. We also believe this is the reason a fixed limit for any presynaptic
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Figure 7.8: Average Weight difference between the minimum and maximum
presynaptic weight within the liquid
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Figure 7.9: Epoch error for several values of the parameter Ceff

weight does not have a favorable effect on the learning performance. It seems
that a quite large variance in presynaptic weight does enhance the learning
ability of the network. We believe this introduces a form of specialization for
a particular input where the order and timing of the incoming spike train
does compensate for these high presynaptic weights.
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Figure 7.10: Average number of incoming spikes per postsynaptic neuron
within the liquid.
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Figure 7.11: An overlapping plot of the liquid firing times and the readout
firing times at the top. The vertical bars indicate the readout target and the
readout output. At the bottom of the figure the sensor activity can be seen.

7.4.4 Short Term Dynamic Plasticity

In Section 7.4.2 we improved the learning ability of the network by increasing
the number of connections. In this section we would like to investigate how
efficiently these extra connections are used. It can be seen in Figure 7.11 that
the firing times of the readout neurons do not vary a lot. It was described in
Section 7.3 that the output of the readout pool is determined by averaging
a number of the earliest firing times. It turns out that, although the readout
performs quite well, almost all of the readout neurons fire at the same time.
Note that through the spiking nature of this neuronal model timing is of the
essence. This is not surprising since the output is determined by the firing
time of the readout neurons, which is determined by the firing time of the
liquid neurons which is in turn determined by the sensor neurons. This is
depicted in Figure 7.11. At the bottom the sensor firing times can be seen.
Then on top of that the firing times of the liquid as well as the firing times
of the readout are depicted. The vertical axis on the left displays the neuron
number of the readout pool, while the right axis displays the neuron number
of the liquid. The readout output and readout target are also displayed in the
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Figure 7.12: An overlapping plot of the liquid firing times and the readout
firing times at the top. The vertical bars indicate the readout target and the
readout output. At the bottom of the figure the sensor activity can be seen.

figure as the vertical bars. As described in Section 7.3 the readout neurons
fire only once. When a readout neuron i fires at time ti, any presynaptic spike
with a spike time t > ti will not contribute to the output. This means that
when the target spike time of the readout is early, fewer liquid and sensor
spikes can contribute to the output. The set of effective presynaptic spikes
Γeff is therefore smaller or more specialistic to the input than a late firing
time. In Figure 7.11 any sensor or liquid spike with a greater firing time that
the readout output, which is indicted by the vertical line, does not contribute
to the output value.

We would like to investigate the effect of this causality of this spiking
behavior by diversifying the firing times of the readout neurons. When a
subset of readout neurons fires at a later time than the target spike time,
then this has to be compensated by other neurons which fire at an earlier
time. However, the average would reflect the correct output value, while a
greater amount of information contained in the liquid and sensor firing times
can be utilized in calculating the output value by the readout. We believe
this will increase the learning ability of the network. The method which we
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Figure 7.13: An overlapping plot of the liquid firing times and the readout
firing times at the top. The vertical bars indicate the readout target and the
readout output. At the bottom of the figure the sensor activity can be seen.

use to create more diversity in the firing times of the readout neurons is
modeled after the phenomenon called short term dynamic plasticity which is
described by [32] and [9] amongst others. We implement a variation of this
phenomenon by increasing the firing time of those neurons which belong to
the upper range of firing times. This means that only high firing times are
increased. To correct for this in the output all the neuron’s firing times should
be decreased again which will give us the desired result. The presynaptic
weight change ∆wi

STDP for a neuron i is primarily based on the firing time
ti of that neuron i, but is also based on whether or not presynaptic spikes
exist with a greater firing time than ti. Since the overall goal is to reduce
the error of the readout, ∆wi

STDP is also dependant on the readout error Ep
of the readout pool P as defined in Equation 7.19. The presynaptic weight
change ∆wi

STDP is applied only to those presynaptic weights which carry a
spike time greater than the postsynaptic spike time, and is defined for both
liquid and readout neurons as:
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Figure 7.14: An overlapping plot of the liquid firing times and the readout
firing times at the top. The vertical bars indicate the readout target and the
readout output. At the bottom of the figure the sensor activity can be seen.

∆wSTDPij = ηstdp exp(−(1.0− tnormi )/Cstdp) Yij Ep, (7.32)

where Cstdp is a constant which determines how much weight change is pre-
ferred to diversify the firing times, Yij is the potential contribution of the
connection from neuron j to i as defined by Equation 7.13, and tnormi is the
normalized spike time used for computational convenience to acquire a value
between 0 and 1. The normalized spike time is defined as:

tnormi =
(ti − tmin)

(tmax − tmin)
, (7.33)

where tmax is the largest firing time, tmin is the smallest firing time within the
neuronal structure. This means that tmax for the readout is the maximum
firing time of all the readout neurons, and tmax for a liquid neuron is the
maximum firing time of all the liquid neurons.

In Figure 7.12 the results can be seen for CSTDP = 0.5 where only the
readout neurons are adjusted. We can see some more variation in the firing
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Figure 7.15: An overlapping plot of the liquid firing times and the readout
firing times at the top. The vertical bars indicate the readout target and
the readout output. At the bottom of the figure the sensor activity can be
seen. The value for CSTDP at the liquid level is 0.1 and CSTDP is 1.0 for the
readout neurons.

times of the readout neurons for a single input. Note that the vertical bars
indicate the readout output and readout target. It can be seen that the error
is very low. It can also be observed that many liquid spikes do not participate
in the readout output since they occur when all the readout spikes have been
emitted. In Figure 7.13 it can be seen that for a higher value CSTDP = 1.0,
more variation in the readout spike times exits. The number of liquid firing
times which contribute to the output of the readout varies greatly. In the
interval [1500.4,1500.5] fewer liquid spikes can be labeled as effective than
in the interval [1500.4,1500.5] which can be interpreted as either a positive
or a negative characteristic as explained in Section 7.4.5. In Figure 7.14 the
variety of readout responses is even greater for CSTDP = 2.0, however, it can
also be seen that the error for the inputs is greater. We believe that this
variety is a good characteristic and could be beneficial for the precision of
the network but it takes longer to learn the input pattern. In Figure 7.15
both the liquid and readout neurons are subject to the changes based on
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Figure 7.16: Epoch error for several values of the parameter CSTDP

Equation 7.32. It can be seen that fewer liquid neurons are active. This is
due to the fact that when neurons are encouraged to fire at a later time the
presynaptic potential has to be decreased. When the presynaptic potential
falls below the threshold, the neuron no longer fires. Equations 7.16 and 7.14
are then applied such that the neuron will start to fire again. However, this
disrupts the learning process and negatively impacts the error of the readout.
It can be seen in Figure 7.16 that this has quite a negative impact on the
learning ability of the network. Figure 7.16 also shows that an optimum
exists. A low value of CSTDP of 0.5 performs poorly, while very high values
do not perform well at all. For CSTDP = 1.0, a stable learning curve can be
observed. Note that the amount of spikes in both the sensor and the liquid
could be of great importance in determining the optimal values of CSTDP .
On top of that, the number of readout spikes which are used to average over,
could also be of great influence on the optimal value of CSTDP . However we
will not pursue to investigate the influence of the number of spikes on the
optimal value of CSTDP .
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7.4.5 Effective Spikes

In Section 7.4.4 an experiment was described where late firing times were
increased in order to more efficiently make use of many connections. The
reason behind this was that the spiking nature of the neuronal model used
adds a time dimension which can be used to encode information but does not
seem to be used effectively. Note that this time dimension is not present in
traditional sigmoidal neural models. This time dimension adds a complexity
to the network with respect to coding information through the firing times
of the liquid. Once a readout neuron spikes it will not use subsequent spikes
to determine the output. A readout neuron only fires once as is described in
Section 7.3.1. This means that some connections with a firing time which is
greater that the firing time of the postsynaptic neuron, will not be effectively
used in determining the output for a particular input. In Section 7.4.4 we
tried to combat this phenomenon by leveraging the fact that we average the
firing times of the readout. Now we want to investigate whether or not the
lack of effectiveness of connections can also be an advantage.

Some connections might be used very infrequently. We could gain an
advantage by adjusting those effective presynaptic weights which are specific
to this input. A connection is specific to a certain input when the fraction
of the inputs where the connection is actually effective, is quite low. When
dominantly adjusting those connections which are specific to the current
input, we reduce the crosstalk so that other inputs will be less influenced by
adjusting connections which are specific to this input. This is a possibility
due to two reasons. The first is that we use specialization at a neuronal level.
Only a fraction of all the neurons is allowed to be active for any given input.
The second reason is due to the timing of the spikes. After a postsynaptic
neuron fires, any subsequent presynaptic spikes will not contribute to the
postsynaptic output. This means that these connections are not effective for
this particular input. The consequence of this is that another input exists, for
which this connection might be more specific. The effectiveness score, which
is defined as the normalized fraction of effective connections, is defined as:

χij =
(sij/s

tot
ij )− χmin

(χmax − χmin)
, (7.34)

where sij is the number of presynaptic spikes for which the connection be-
tween presynaptic neuron j to postsynaptic neuron i has been effective, stot

ij

is the total number of inputs the presynaptic neuron j has produced a spike
received by postsynaptic neuron i and χmin and χmax are the minimum and
maximum effective score in order to create a value between 0 and 1 for the
effective score χ. We define the effectiveness factor ηχij which is specific to
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the connection between neuron i and j, which determines how much this
connection will be adjusted as a result of how specialistic this connection is
for the current input, as:

ηχij = ηχ exp(−(1.0− χij)/Cχ) (7.35)

where ηχ could be considered to be the learning rate for establishing the
connection specific factor ηχij. The reason for scaling the effectiveness factor
is that the effectiveness factor ηχij itself scales per connection how much the
weight will be modified. This means that all weight modifications will be
scaled by a factor between 0 and 1 which will slow down the overall learning
speed. We wish to combat this by modifying those increasing the weight
change for effective spikes and decreasing the weight change for weights with
a low effective score. We set ηχ such that the integral of the effectiveness
score will equal the constant Cscale . This is defined as:

Cscale = ηχ

∫ 1

0

exp(−(1.0− x)/Cχ)dx, (7.36)

where the constant Cscale determines how much faster the weights with high
effective scores will be modified. On top of that, even the factor ηχij is a
learning rate which is a function of the effectiveness factor χij. Several previ-
ously defined adaptation rules will use this effectiveness factor as a learning
rate. The adaptation rule defined by Equation 7.14 to adapt for the lifetime
sparseness will then become:

∆wij = −ηT Yij wij ET ηχij, (7.37)

the adaptation rule defined by Equation 7.16 to adapt for the population
sparseness will then become:

∆wij =


ηpop Yij wij Epop η

χ
ij if Smax − SiL > C`

min and Epop > 0

or SiL − Smin > C`
max and Epop < 0,

0 otherwise,

(7.38)

the adaptation rule defined by Equation 7.22 to adapt the presynaptic weights
in order to reduce the error of the readout will then become:

∆wij =

{
ηP Ei wij Yij η

χ
ij ϑ : xi(t) ≥ ϑ and i ∈ P ,

ηP (tmax − tmin) wij Yij η
χ
ij ϑ : xi(t) < ϑ and Γo is incomplete,

(7.39)
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Figure 7.17: Epoch error for several values of the parameter Cχ

and finally, the adaptation rule defined by Equation 7.27 to adapt the presy-
naptic weights within the liquid in order to reduce the error of the readout
will then become:

∆wij = η δi Yij r η
χ
ij. (7.40)

In Figure 7.17 it can be seen that for higher values of the parameter Cχ the
learning speed improves considerably. We believe that this can be explained
by the fact that crosstalk is reduced between the input patterns when weights,
which are specific to the current input, are dominantly adjusted over weights
which are not specific to the current input.

7.4.6 Increasing the Variety of Neural Responses by
Increasing Orthogonality

In Section 7.3.3 it was described how the firing times of the liquid neurons
are adapted in order to reduce the readout error. Although we do not use the
well-known back-propagation algorithm, it still has all the characteristics of
a gradient descent algorithm. Gradient descent algorithms have a tendency
to get stuck in local minima and therefore are not an optimal way to train a
neural network. In order to combat this we introduce here a method, which
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combined with the gradient descent method, will improve the learning speed.
It has been stated in [19] that a great amount of variety must exist between
the responses of the individual neurons. This can be done by inhomogeneous
connectivity, random weight initialization and by varying the neuronal pa-
rameters. We think that a great variation in neuronal responses will reduce
the network’s tendency to get stuck in local minima when training on input
data. We adopt the notion of a great variance in neuronal responses into our
framework of learning rules. We believe we can increase the variety of neural
responses within the network by introducing a learning rule which will shift
the focus of the neurons to different parts of the input. By shifting the focus
it is meant that every neuron is dominantly excited by a different part of
the input, where the input of a liquid neuron can be either sensor or other
liquid neurons. We aim to accomplish this by altering the weight vectors of
the liquid neurons in such a way that every liquid neuron perceives the input
being presented to the network differently. We believe this can be achieved
by considering the weight vectors of the liquid as a base. When this base
moves towards an orthogonal base each neuron will perceive the same input
differently which is reflected in its postsynaptic potential and ultimately in
its firing time. This result can be explained by the mutually exclusive nature
of an orthogonal base.

Since not all neurons have the same number of presynaptic weights we
define a weight vector ~wi for neuron i with the same number of dimensions as
the number of neurons combined in the sensor and liquid structure. When no
connection exists between neuron i and j the jth entry of the weight vector
~wi is 0, otherwise the jth entry will be specified with the weight between
neuron i and neuron j. In order to increase the orthogonality of two weight
vectors ~wi and ~wj, we need to split one of the vectors, in this example ~wj into
the components into the direction ~wi and into a direction perpendicular to
~wi as is depicted in Figure 7.18. The projection Proj ~wi ~wj is the component
of the vector wj onto the vector ~wi and is defined as:

Proj ~wi ~wj = λ ~wi

Proj′~wi ~wj = ~wj − λ ~wi ⊥ ~wi

⇔ 0 =< ~wj − λ ~wi, ~wi >
=< ~wj, ~wi > − λ < ~wi, ~wi >

⇔ λ =
< ~wi, ~wj >

< ~wi, ~wi >

Proj ~wi ~wj =
~wi · ~wj
| ~wi|2

~wi (7.41)
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The component of the vector ~wj perpendicular to the vector ~wi, as depicted
in Figure 7.18, is then defined as:

Proj′~wi ~wj = ~wj −
~wi · ~wj
| ~wi|2

~wi ⊥ ~wi. (7.42)

Note that we do not store negative values in our network, an inhibitory
presynaptic neuron will be specified in the weight vector as a positive number.
We can justify this by stating that the inhibitory characteristic is defined at
the level of a neuron and all neurons connected to an inhibitory neuron will
perceive its activity in the same manner. The fact that only positive numbers
are stored in the vectors makes that the maximum angle between two weight
vectors is 90 degrees. Of course we do not want to limit the search space
with orthogonal weight vectors alone. However we believe that increasing
orthogonality will increase the networks’s performance. Therefore we want
to slowly increase the orthogonality of the weight vectors of the individual
neurons as long as the error of the readout neurons is not within the tolerable
error. We apply the Gram-Schmidt process to the weight vectors of a random
selection of k neurons in the liquid to find an orthogonal base. The Gram-
Schmidt Orthogonalization algorithm is defined as:

~u1 = ~w1

~u2 = ~w2 − Proj ~u1 ~w2

...

~uk = ~wk −
k−1∑
j=1

Proj ~uj ~wk, (7.43)

where ~uk is the kth vector in the orthogonal base derived from vectors
~w1, ~w2, . . . , ~wk which have been randomly selected from the liquid. Only those
neurons which have emitted a spike are subject to this part of our learning
framework. The fact that connections within the liquid and connections from
the sensor to the liquid are based on the locations of the neurons, makes sure
that neurons which are active are relatively close together within the liquid.
This also means that the neurons which are selected for the orthogonaliza-
tion process received the same or very similar input spike trains. It would be
highly decremental to the performance of the network to alter every weight
vector such that all the weight vectors form an orthogonal base. Neurons
would not receive enough presynaptic current to emit a postsynaptic spike.
The goal is to select k neurons whose weight vectors will slowly be moved to-
wards orthogonality. A true orthogonal base will not be achieved. Increasing
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Figure 7.18: Increasing the orthogonality between vectors ~wi and ~wj results
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the orthogonality is done by calculating the orthogonal base, for a randomly
selected collection of neurons which have emitted a spike for the particular
input, and move each weight vector into the direction of its orthogonal coun-
terpart. We increase the angle between the vectors ~wk and its orthogonal
counterpart ~uk, by moving vector wk slightly into the direction of vector uk.
To accomplish this we define the weight change as:

∆wk = −ηo ( ~wk − ~uk) EP yp(tk), (7.44)

where ∆wk specifies the weight change for the entire weight vector, ηo is the
orthogonalizing learning rate, EP is the readout error and yp(tk) is the poten-
tial contribution of the pth element in vector wk for postsynaptic neuron k.
By increasing the orthogonality of the weight vectors of all active neurons in
the network, all postsynaptic neurons will develop unique presynaptic weight
vectors since different presynaptic weights will be adjusted closer to zero as
a result of increasing orthogonality. Foremost, this will increase the unique-
ness of a neuron’s response to an input. However, as a result of the temporal
nature of the input spike trains combined with the increasing orthogonal-
ity of the weight vectors, we believe that this will enable different neurons
to be dominantly excited by different parts of the same input spike train.
The result is that the information encoded within the incoming spike train
is absorbed into the population of neurons more efficiently.

In Figure 7.19 it can be seen that the adaptation rule defined by Equa-
tion 7.44 has a positive influence on the learning ability. For higher values
of the learning rate ηo it can be seen that the precision of the network in-
creases across the entire training phase of the network. Although at first the
error is more erratic when applying Equation 7.44, the output of the network
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Figure 7.19: Epoch error for several values of the orthogonal learning rate ηo.

stabilizes and the error becomes a smooth line which moves towards zero.
Note that higher learning rates of the orthogonalizing process cause more
fluctuations in the error at first but do stabilize. It seems that the maximum
learning rate for which the network behaves reliably is about 0.04 as can
be seen in Figure 7.19. We conclude that the process of orthogonalizing the
weight vectors is a good way to avoid getting stuck in local minima. The
reason for this is that neurons specialize highly efficiently. Neurons absorb
different subsets of all available input information, for a single input, in such
a way that the union of all these subsets makes up all of the available in-
put information. All input information is distributed across all of the active
neurons.

7.4.7 Introducing Recurrent Connections

In this section we will show the results of our experiments when we add
recurrent connections to the liquid. First we will describe the input data used
in the experiments. Then we will demonstrate the liquid’s ability to retain
information about past inputs by training the readout to output the previous
input. Then we will demonstrate the liquid’s ability to detect a pattern by
predicting the next input based on previous inputs. The network we trained
in the experiments used a reservoir which consisted of 135 neurons, a sensor
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of 60 neurons and a readout which consisted of 60 neurons.

7.4.8 XOR Data Set

The input data we use is derived from the XOR pattern. This pattern is
especially interesting since it can only be learned by a three layer feed for-
ward network. This data will thus be suited to initially pose a great enough
challenge for a liquid state machine to investigate some basic properties. We
choose to translate XOR input data into temporal data stream by the ex-
ample of [12]. Two randomly generated input bits are being placed one after
the other followed by the output bit. An example input string would be:

11001100011001110110111010.

When a readout is being trained to find a pattern in the liquid states that
are the result of the input stream, it will need to output the result based on
both the current input and the previous input. This input data is especially
interesting since it is only possible to predict every third bit. A correct result
cannot be predicted for every first and second bit since these bits are gener-
ated randomly. This increases the complexity when training the network on
this input string. We generated an input string which consists of 51 bits.

7.4.9 Creating a Time Dimension within the Liquid
Structure

In order to pass information about the previous input when the current in-
put is being presented to the network, we created a new kind of connection
within the liquid. Traditionally in recurrent neural networks the outputs of
the neurons in the hidden layer are copied to an additional input. This way
the output of the hidden layer at time t is being used as an input at time
t + 1 as is described in Section 2.3. Since the whole liquid is a hidden layer
we found it to be inflexible to simply copy the firing times of the liquid and
have an additional input with as many neurons as there are in the liquid. To
gain some flexibility with respect to controlling how much information from
past inputs is present within the liquid, we added a new set of connections
which have a delay as long as the input time window T . We will call these
connections simply recurrent connections. The recurrent connections are cre-
ated in the same way as the non-recurrent connections, which is described
in Section 7.1.1. The probability of a connection between neurons i and j is
determined by a parameter λR and specified by:

C · exp(−D(i, j)2/λ2
R),
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where D(i, j)2 is the Euclidean distance between neurons i and j and C scales
the probability for creating a connection. The parameter λR controls the
connectivity density as well as the average distance between the connections.
We set λR as well as λL to 1.3, where λL defines the connection parameter for
non recurrent connections within the liquid. We then defined two parameters
PC and PR, where PC specifies the percentage of liquid neurons which have
incoming connections which are not recurrent, and PR defines the percentage
of neurons which have recurrent incoming connections. Initially we set both
PC and PR to 1.0, varying these parameters could impact the ratio between
information about the current input and information about past inputs.

Discriminatory property

In this section we will introduce a method how we can gain an insight into
the discriminatory property of the liquid, i.e., we will describe a method to
measure the differences of the resulting liquid states. We will focus especially
on the effect the recurrent input connections have on the differences in the
resulting liquid states for the same input value. We assume that measuring
the distances between liquid states will give us an indication of the ability
of the liquid to function as a fading memory. We also want to determine
whether we actually can measure the ability of the liquid to function as a
fading memory by comparing the results in later experiments.

The memory of the liquid is dynamic in the fact that the state of the
column of neurons contains information about the last several recent inputs
as described in Section 5.3. The rationale is that the liquid state at the
beginning of each new input determines the response of the liquid to that
input and in turn impacts the response of the next input. Therefore the
response of an input is determined by the initial condition of the liquid as
well as the value of the input itself. The liquid state is determined through
a set of variables. First of all the voltage of each neuron at the beginning of
an input impacts the response of the liquid to an input. Secondly the time
of the last incoming spike for each neuron has an effect on the response for
an input, due to the refractory effects. The last way for an input to have an
effect on the future inputs, which is described in Section 2.3.2, is to input
the liquid state as a result of the previous input. In the experiments we will
especially focus on this effect of recurrent inputs.

We call the resulting liquid state Lt(ξ) at time t as a function of input
ξ, a base liquid state when input ξ is being presented to the liquid when the
liquid is at rest. We call a resulting liquid state, Lt(ξ) at time t, due to an
input ξ when the liquid was not at rest an accumulated liquid state, since the
perturbations of previous inputs are present in the current liquid state. The
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foundation of the liquid as a dynamic memory buffer lies in the fact that an
input ξt at time t has an influence on the response of the liquid for input ξt+1

since the liquid state is in an accumulated state as a result input ξt when
input ξt+1 is being presented. In turn, input ξt+1 causes the liquid to be in an
accumulated state when input ξt+2 is being presented. When the liquid state
does not return to its resting state, in theory no two liquid states will be
the same [21] and is called computing without stable states. We define ΓL(ξ)

to be the set of liquid states which were the result of a single input value
ξ. Note that the liquid states in the set ΓL(ξ) can be very different due to
the fact that the liquid acts as a dynamic memory buffer. We define the set
ΓL(ξk) as the set of liquid states resulting from input values ξ1, ξ2, . . ., which
can be called the history of liquid states. In this experiment we wish to gain
insight into the dynamic memory capabilities of the liquid by measuring the
difference between L(ξ) and all the possible accumulated liquid states for
input ξ, ΓL(ξ). We define the liquid state as a result of input ξ at time tk as
Ltk(ξ). It is important that the difference between the states Ltk(ξ) in ΓL(ξ)

is large enough so the readouts have information about the previous state
hidden in the difference between the accumulated liquid states. In [21] this is
called the separation property. A readout needs to have sufficient information
in a liquid state to map the state to a certain target value. However, when the
difference between the states in ΓL(ξ) is too great the differences between all
the accumulated liquid states for an input ξ will be too great for a readout to
learn the correct output value. When every liquid state is completely different
from all the previous liquid states, nothing sensible can be said about the
associated target value. In [21] this is called the separation property.

The consequence of this fact is that every distinct input value ξ produces
a set of different liquid state ΓL(ξ) as a result of the input ξ. We have chosen to
define the distance between two liquid states L(ξ1) and L(ξ2) in two distinct
ways. The first method to calculate the distance between two liquid states
focuses on the first spike time of every neuron within the liquid and calculates
the distance between two liquid states L(ξ1) and L(ξ2) as:

D1(L(ξ1), L(ξ2)) =
∑
i

(ti(ξ1)− ti(ξ2)), (7.45)

where ti(ξ1) is the time of the first spike by neuron i as part of the liquid
state L(ξ1) as a function of input ξ1 and K is the number of past inputs
we wish to calculate the average distance over. The average distance DAV

1

between the set of liquid states ΓL(ξk) as a result of input value ξk is then
defined as:
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DAV
1 =

∑K
k=1

∑k
`=1D1(L(ξk), L(ξ`))

1
2
K (K + 1)2

. (7.46)

The second method to calculate the distance between two liquid states de-
termines the distance based on the entire spike train of each neuron in the
liquid, and is defined as:

D2(L(ξ1), L(ξ2)) =
∑
i

∑
f

(

∫
ε(t − tfi (ξ1)) dt −

∫
ε(t − tfi (ξ2)) dt ) (7.47)

where ε(t) is the spike response function as defined in Equation 6.2, tfi (ξ1)
is the time of the fth spike by neuron i as a function of input ξ1, as part of
the liquid state L(ξ1). The average distance DAV

2 between the set of resulting
liquid states L(ξi) as a result of input value ξi is then defined as:

DAV
2 =

∑K
k=1

∑k
`=1D2(L(ξk), L(ξ`))

1
2
K (K + 1)2

. (7.48)

The values DAV
1 and DAV

2 is significant especially when investigating a sparse
neural code. For a good performance of the liquid state machine it is cru-
cial that the readouts can recognize a liquid state as fast as possible after
the input was presented to the liquid. The distance measure as defined in
Equations 7.46 and 7.48 will give an indication of this property.

The final method we will look at, in order to gain insight into the extent
in which past inputs influence the response of the liquid to the current input,
is what we would like to call the deviation of the individual neurons in the
liquid. We define the deviation Ξ of a neuron in the liquid as the difference
between the smallest firing time tmini (ξ) and the largest firing time tmaxi (ξ) in
ΓL(ξ), as a function of a single input value ξ for a neuron i. The deviation Ξ
for a neuron i is then calculated as:

Ξ = tmaxi (ξ)− tmini (ξ), (7.49)

where ξ is the distinct input value for which the minimum and maximum
firing time for a neuron i are recorded. The greater the deviation, the greater
the influence of past inputs onto the response of the liquid to the current
input.

7.4.10 Information about Past Inputs

In this section we will show the network’s ability to store information about
past inputs when recurrent connections are present. In Figure 7.20 the epoch
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Figure 7.20: Epoch error for several values of the maximum angle between
weight vectors.

error is displayed when the network is being trained to output the previous
input when the current input is being propagated through the network. This
is difficult since at any point in time the network contains information about
all past inputs. Each time the entire input string has been processed by the
network, the liquid is reset, which means that at the first input bit of the
string the liquid state is at rest. This creates a different liquid state for each
input bit, even though only two different values exist in the input data.

In Section 7.4.4 it was described that the timing element can be a lim-
iting factor for training a network. We noticed that this is indeed the case
for the results in Figure 7.16. Every neuron in the liquid fires once. This
means that when a neuron fires any additional incoming spikes do not par-
ticipate in the neurons response. When the neurons in the liquid receive
predominantly spikes from non-recurrent connections, no information about
past inputs is being processed by the postsynaptic neuron. In the other case,
where neurons predominantly receive spikes from recurrent connections only
information about the past inputs is being processed and in future inputs
no information about the current input is present. This can be translated to
a general problem where neurons need a mechanism to determine to which
input spikes the postsynaptic firing time needs to based when more than a
single input is present. That is why it is very important that every neuron
receives a mix of spikes form non-recurrent and recurrent connections. This
can be established by the orthogonalizing rule as defined by Equation 7.44.
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The larger the maximum angle between the weight vectors in the liquid, the
more specialized is the input the neurons receive. In Section 7.4.6 we stated
that this specialization of neurons was favorable to the learning ability of the
network. However, we establish now that this specialization can be harmful
for training the network when two or more inputs are being input to the net-
work. We believe an optimum can be found. Note that this issue arises out
of the fact that a selection of neurons fire only once per input. This sparse
neural code is our main research objective. We favor a sparse code because
of computational efficiency. Furthermore related to the timing issues is that
we found we needed to scale the firing times which are being propagated to
other neurons across recurrent connections since the liquid firing times were
always later than the sensor firing times in such a way the the recurrent firing
times were unable to participate in the postsynaptic potential. Therefore we
introduce a parameter SFT which we set to 0.3, which scales a firing time
relative to the current time window.

In Figure 7.21 the results can be seen of training the network to output the
previous input when every neuron which has outgoing recurrent connections
outputs two spikes. Earlier in this Section we introduced the parameter SFT
to scale recurrent firing times. We now want to see what the influence of
several recurrent spikes have on the performance of the network. We set SFT
to 0.1 which scales the firing time as:

tstarti = tiSFT . (7.50)

This reduces the spike time to a spike. Any timing information is lost on this
scale. We encode this spike time into subsequent spikes by calculating a spike
time interval which is calculated as:

tinterval =
(TW − tstarti )

CN

ti
TW

, (7.51)

where CN is a constant which determines how many subsequent spikes are
generated after the start spike. In Figure 7.21 the results can be seen when
neurons which have outgoing recurrent connections generate spike trains as
defined by Equation 7.50 and 7.51. Again the timing of presynaptic spikes
proved to be crucial and a limiting factor to the performance of the liquid.
Note that we want to achieves sparse neural code and ideally wish to prevent
multiple spikes for a single input. The result is only slightly better, which
raises the question if multiple spikes per neuron for a single input can improve
performance. We believe the solution is to be found in a mechanism for a
neuron to choose its input spikes.
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Figure 7.21: Epoch error when every spike with outgoing recurrent connec-
tions emits two spikes.

Orthogonality

In Section 7.4.6 it has been described how the efficiency of training the net-
work can be improved by increasing the orthogonality of the weight vectors
in the network. We found that when applying Equation 7.44 the networks
performance can become unstable. This is due to the fact that when ap-
plying Equation 7.44 weights in the network are decreased in order to in-
crease orthogonality. This causes the postsynaptic potential to drop below
the spiking threshold. The postsynaptic potential will then be increased by
Equations 7.16 and 7.14 which causes different neurons to emit spikes which
in turn need to be trained all over again. We attempt to counteract this by
establishing a maximum average angle αMAX for the base of weight vectors
which have been selected for the Gram-Schmidt process as described in Sec-
tion 7.4.6. When for a base of k weight vectors ~w1, ~w2, . . . , ~wk the average
angle α exceeds the predefined maximum angle αMAX , the base of weight
vectors will be reduced in orthogonality. This is done by moving all the
weights which have participated in a postsynaptic spike, towards the average
value of the all weights. When all weights have the same value, and thus all
weight vectors are the same, the orthogonality is at a minimum. Several plots
can be seen in Figure 7.20 for several values of the maximum angle between
the weight vectors. It can be seen in Figure 7.20 that the previous input
can be learned by the network quite well. However, it has to be noted that
the performance of the network drops considerably compared to training a
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non temporal problem and no significant improvement can be detected for
different values of the maximum angle αMAX .
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Figure 7.22: Deviation averaged across all neurons for several values of the
maximum angle between weight vectors.

In Figure 7.23 the deviation per neuron is depicted, whereas in Figure 7.22
the deviation can be seen averaged across all liquid neurons. The deviation
for a neuron is defined by Equation 7.49. The input data described in Sec-
tion 7.4.8 has two distinct input values, i.e. 0 and 1. However, there are many
times more different liquid states as a result of the input string consisting of
only two values. This is due to the recurrent connections as described in Sec-
tion 7.4.9. It can be seen that not all neurons have a significant deviation and
some neurons do not have a deviation at all. This can be optimized by making
sure all neurons in the liquid receive both recurrent and non-recurrent spikes.
Neurons which do not show any deviation receive dominantly non recurrent
spikes. It is important for the liquid neurons to display deviation since this
will increase the learning ability of the liquid. In Figure 7.24 the distances
are depicted between the liquid states as described in Section 7.4.9.

7.4.11 Information about Future Inputs

In this section the results are shown when the readout is trained to output
the next input. As explained in Section 7.4.8 not every input can be pre-
dicted and this makes this problem very difficult. Adaptations in weights
are made for every input and may disrupt the the internal representation
of the network for these inputs which can be predicted. When training the
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(b) αMAX = 70
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(c) αMAX = 50
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(d) αMAX = 30
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(e) αMAX = 20
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Figure 7.23: The deviation of all liquid neurons across all unique inputs for
several values of the maximum angle αMAX .
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Figure 7.24: Distance per distinct input value.
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Figure 7.25: Epoch error for several values of retention.

network to predict the next input, a pattern can emerge which reveals itself
in a cycle in the error pattern. It can be seen in Figure 7.26 that every second
input has a low error since every third input can be predicted correctly. This
sudden drop in error reveals a pattern in the input data. In Figure 7.28 the
output of the readout is plotted against the output target. We found that the
amount of history which is kept within the liquid is of great importance to
the performance of the network. It has been described in Section 7.4.9 that
the liquid response is, theoretically, not the same for any input value. This
increases the search space tremendously and poses an extra challenge for the
learning framework and the network to correctly output the intended pat-
tern. In order to reduce the complexity of training the network we introduce
a concept which we would like to call retention of data. The XOR pattern
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Figure 7.26: Error of the readout for several values of retention.
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Figure 7.27: Deviation averaged per neuron for different values of retention

as described in Section 7.4.8 needs the previous and the current input to
be able to predict the next input. Due to the recurrent connections every
input will cause a different liquid response since both the current input and
the input history determine the liquid response. This makes the state space
much greater than when the liquid state is caused by the current input alone.
The explosion of the state space compromises the ability of the network to
be trained on an input pattern. When the input pattern is very short, as is
the case with the input string described in Section 7.4.8, then this enormous
state space is completely unnecessary and therefore inefficient. We therefore
do not propagate recurrent spikes after a certain number of inputs, which we
call the retention value. This resets the memory of the liquid. In Figure 7.25
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Figure 7.28: The output of the readout is shown together with the target
output for several values of the retention.

the epoch error can be seen when the network is trained on the XOR input
string for different values of retention. It can be seen that for a retention
value of 3 the error is much lower than for retention values of 6 and 24. We
expect the deviation of neurons to be much higher when the retention is high.
This is clearly the case as can be seen in Figures 7.29 and 7.27. For higher
values of retention it is much more difficult to predict the next input value
as can be seen in Figures 7.26 and 7.28. It is described in Section 7.4.8 that
only every third bit can be predicted correctly. In Figure 7.26 it can be seen
that every third bit has a low error. Form this pattern in the error of the
output can we derive that a pattern exists in the input.

When training the network on a Mackey-Glass data set of 250 data points
the results look promising. It can be seen in Figure 7.31 that the output of the
network matches the target pattern quite well. In Figure 7.31(a) the output
of the network is depicted in relation to the intended target output when

122



 0

 0.02

 0.04

 0.06

 0.08

 0.1

-20  0  20  40  60  80  100  120  140
D

ev
ia

tio
n 

in
 m

s
Neuron id

(a) Retention 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-20  0  20  40  60  80  100  120  140

D
ev

ia
tio

n 
in

 m
s

Neuron id

(b) Retention 6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-20  0  20  40  60  80  100  120  140

D
ev

ia
tio

n 
in

 m
s

Neuron id

(c) Retention 24

Figure 7.29: The deviation of all liquid neurons across all unique inputs for
several values of the retention.

training the network to predict the next input. In Figure 7.31(a) the results
can be seen when the network is being trained to predict the input value ten
inputs ahead. Surprisingly, in Figure 7.30 it can be seen that the overall error
is lower when the network is trained to predict the input value ten inputs
ahead that to predict the next input value. We think this is a property of
this specific data set but implies that is not per se more difficult to predict
inputs that lie further into the future.

7.5 Temporal Pattern Prediction

In this section we will demonstrate the applicability of our neural structure
to more complex temporal data. We will train the network on an encoded
string of text. Natural language has a temporal structure and is therefore
well-suited as input data in our experiments. First we will describe the data
and then we will present the results.
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Figure 7.30: The Epoch error when predicting future inputs for the Mackey-
Glass time series.
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Figure 7.31: The output of the readout is shown together with the target
output for the Mackey-Glass time series.
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7.5.1 Data

We have chosen a string of 700 characters from the famous work of Charles
Darwin, Origin of Species :

Owing to this struggle for life, any variation, however slight
and from whatever cause proceeding, if it be in any degree prof-
itable to an individual of any species, in its infinitely complex
relations to other organic beings and to external nature, will
tend to the preservation of that individual, and will generally
be inherited by its offspring. The offspring, also, will thus have
a better chance of surviving, for, of the many individuals of
any species which are periodically born, but a small number
can survive. I have called this principle, by which each slight
variation, if useful, is preserved, by the term of Natural Selec-
tion, in order to mark its relation to man’s power of selection.

The string is encoded as depicted in Figure 7.32. The vowels in the string
are replaced with numbers lower than 6, consonants will be replaced with
a number between 6 and 26 and punctuation marks will be replaced with
the numbers 27 through 29. This replacement scheme creates three groups
of input values. The inputs can be characterized as a vowel, consonant or
punctuation mark. Note that this will give us the ability to to train the
network on different properties. We will train the network to predict the
next group as well as the next input value.

7.5.2 Applicability

The final experiment we conducted is training the network on an encoded
string of text. In Figure 7.34(a) the results can be seen when the network
has been trained to predict the group the next input value belongs to. The
three groups, vowels, consonants and punctuation marks have been described
in Section 7.5.1. The results are not as good as the results on the Mackey-
Glass data set. However, the data set is almost three times as large. The
most noticeable element of Figure 7.34(a) is that the output does go into
the right direction of the target but does not span the entire range of the
output target. Note that only three different target values are present. Pos-
sibly more training is required. In Section 7.4.11 it has been described that
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Input character Encoded value
a 1
b 6
c 7
d 8
e 2
f 9
g 10
h 11
i 3
j 12
k 13
l 14

m 15
n 16
o 4
p 17
q 18
r 19
s 20
t 21
u 5
v 22
w 23
x 24
y 25
z 26
, 27
. 28

Space 29

Figure 7.32: To encode a string of text each letter is replaced with a number.
Vowels, consonants and punctuation marks form a range of [0,5],[6,26] and
[27,29] respectively.
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not all neurons in the reservoir are influenced by previous inputs. This was
shown in Figure 7.29 since not all neurons display a deviation for a distinct
input value. We believe that this is the reason the results can be improved
significantly.

 0

 50

 100

 150

 200

 0  50  100  150  200  250

E
po

ch
 E

rr
or

Epoch Number

Predict vowel/consonant/Punctuation Mark
Predict vowel/consonant/Punctuation Mark, retention 10

Predict next letter

 140

 145

 150

 155

 160

 180  190  200  210  220  230  240  250

Figure 7.33: The Epoch error when predicting future inputs for an encoded
string of text.

In Figure 7.34(b) the results are shown when the network has to predict
the group of the next input value with a retention of 10. The retention was
defined in Section 7.4.11 as the number of consecutive inputs after which all
information about previous inputs in the reservoir is erased. It can be seen
in Figure 7.33 that the error is slightly lower when the retention is being set
to 10. In figure 7.34(c) the results an be seen when the network has been
trained to predict the next input. Again, The output does go into the right
direction of the target output but the range of the network output is much
smaller. We believe that increasing the network capacity and a higher number
of iterations will improve the results.
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(a) Predict the group the next input belongs to.
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(b) Predict the group the next input belongs to with a small retention.
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Figure 7.34: The output of the readout is shown together with the target
output for an encoded string of text.
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Chapter 8

Conclusions and future research

Neural networks constitute a sub-area of artificial intelligence modeled after
the human brain. Neural networks are an excellent way of tackling problems
which are difficult to explicitly express by rules. Examples of these are dealing
with uncertainty in data, image and text processing, pattern recognition and
speech. A neural network comprises of a collection of neurons which can be
viewed as very simple processing units. The behavior of a single neuron is
simple, a collection of neurons can lead to very complex systems which can
represent information. Neural networks have input neurons which translate
an input value into some sort of neuronal code which serves as input for
the subsequent layers of neurons the input neurons are connected to. The
connections between neurons have a weight associated with it. These weights
are crucial to the functioning of the network. The activity of the layers of
neurons is propagated through the network all the way to the output neurons
which encode a target value. Training the network is necessary to produce
the correct output for a given input. Training involves adjusting the weights
in such a way that the error of the output is reduced. It may take many
iterations to correctly learn the training data set. Many methods exist for
training a neural network based on different principles such as self-organizing
maps and supervised learning. One of the most well-known techniques for
training neural networks is back propagation.

In [21] a new computing paradigm was presented based on a neural struc-
ture of randomly connected spiking neurons. Independently echo state net-
works [19] were invented which are also based on a randomly connected
structure, but consisting of sigmoidal neurons. Characteristically both neural
paradigms rely on a highly dynamical reservoir from which readout neurons
can tap into, in order to translate the excited medium to an output value.
An example of the neural structure can be found in Figure 8.1, which depicts
schematic overview. It can be seen that the sensor neurons, which are de-
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picted in green connect to different parts of the reservoir of neurons which are
depicted in blue. The dark blue neurons are used to illustrate that recurrent
loops occur within the neural structure. The red neurons portrait a context
layer and are the way to implicitly incorporate a time dimension within the
liquid structure. Traditionally output values of neurons at time t are copied
to the context layer and then used as input at time t + 1. Instead, we used
longer delays and therefore the context layer is illustrative. The liquid state
is decoded by the readout neurons which can be seen in yellow, and produce
the output value. This type of neural network has come to be known as reser-
voir computing. Both paradigms have a way to store temporal information
within the population of neurons. In [21] dynamical synapses store informa-
tion about past inputs and in [19] recurrent connections from the readout
structure provide temporal information. The latter method makes for recur-
rent connections in the classical sense. Both structures are well suited for
time-series prediction. In both neural systems the weights of the reservoirs
are not trained. Only the weights to the readout neurons are adapted to cor-
rect the output values. Several learning methods have been applied since then
to adjust the readout weights. Both offline constructive methods, such as a
system of differential equations or any linear regression method, as well as
online adaptive methods, for example a gradient descent method, have been
successfully applied. A variety of evolutionary algorithms have been applied
for training these networks as well, for example CMA-ES or Evolino. The
most powerful part of the network, namely the randomly connected reservoir
is being left unchanged during training.

In order to improve on this concept we have introduced an online, input
driven training method where weights of the randomly connected structure of
neurons are adapted to meet several target constraints. The learning rules we
present consist of several unrelated parts with each a constraint as a target.
First of all we aim for a supersparse code for computational efficiency and,
very importantly, scalable storage provided by a population of neurons. Con-
trary to [21] and [19] we do not create a population of neurons with intrinsic
dynamics, rather we create a method which creates a highly scalable storage
medium within a population of neurons. Per input signal, only a fraction of
the neurons within the reservoir are allowed to be active. Secondly, a simple
locally defined gradient descent method is applied both to the reservoir of
neurons as well as the presynaptic weights of the readout neurons to reduce
the output error. Thirdly, in order to maximize the efficiency of the network,
we introduce a mechanism to determine which connections will be most ef-
ficient to adjust. This speeds up the learning process by reducing crosstalk
between patterns. Finally, to combat the phenomenon of the network getting
stuck in local minima, and in an attempt to create just the right amount of
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Figure 8.1: Schematic overview of a reservoir based neural network

specialization of neurons, we increase the orthogonality of the active weight
vectors in a random way as long as the readout error is not within the tol-
erable margin. To provide the network with temporal information, we took
the state of the column of neurons and presented this as an additional input.

We have shown how a supersparse code of a population of neurons can act
as a scalable storage medium. The reason for its tremendous scalability is the
result of a decrease in crosstalk between the input patterns and a decrease
in computational load. Furthermore we successfully applied a set of learning
rules to train a randomly connected structure of neurons. Not only are we able
to control the neuronal activity, we have succeeded to adjust the firing times
in order to reduce the output error. Although we have been able to get some
positive results out of the recurrent structure with the goal of time-series
prediction, we expected a better performance. We think the combination
of spiking neurons and a sparse structure compromises the ability of the
structure of neurons to act as a fading memory. We found a need for neurons
in the network to be able to select which input information is necessary. Due
to the spiking nature of the neuronal model we used, some input information
remains unused. Further research is encouraged to improve the performance
of a randomly connected network of neurons which is sparsely active, with
respect to time-series prediction.
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