
Mapping Multiple Processes onto SPEs of the
CELL BE Platform using the SCO Model of

Computation

A Master’s thesis

Computer Science

Nadia Ramjiawan

January 19, 2009

Abstract

The Cell Broadband Engine platform is a heterogeneous, distributed memory multiprocessor
architecture consists of a Power Processor Unit (PPU) and several Synergistic Processor Element
(SPE). The Cell platform supports pipeline parallellism making it very suitable for mapping
streaming application. The Synergistic Processor Elementimplemented in the Cell is a single-
threaded processor and is limited to execute only a single task. This thesis present a model
for mapping stream-processing applications on the Cell in such a way that it provides facilities
to map multiple tasks on a Synergistic Processor Element of the Cell processor. The model is
designed in the context of the SBF dataflow model. Using the dataflow rather then a thread model
we are able to map multiple tasks on an SPE.

3

4

Acknowledgments

This thesis is the result of a research work performed at the Leiden Embedded Research Center
of the Leiden Institute of Advanced Computer Science (LIACS) -Leiden University. I would
like to thank all the people who guided and supported me during my research.

First of all, I would like to thank my supervisor Dr.Ir. Bart Kienhuis for giving me the
opportunity to do my Master’s research at the Leiden Embedded Research Center (LERC). He
always provided guidance and support throughout my Master’s research and feedback during the
completion of my Master thesis.

I also want to thank Bin Jiang for all his guideness and supporthe provided during my
research. Also for the useful discussions we had and the timehe was willing to spend to clarify
previous work for me.

Finally, I would like to thank my parents who encourage me during my study. They always
stood by me and gave me the strength to continue.

5

6 Acknowledgments

Contents

Acknowledgments 4

1 Introduction 11

2 Problem description 13
2.1 KPN to DataFlow Model .15

3 Related Work 19

4 Solution Approach 25
4.1 SCO Model . 25

4.1.1 Schedule . 25
4.1.2 Communication . 27
4.1.3 Observe . 28

4.2 Merging with SCO Model . 28

5 Working out 31
5.1 SBF Model . 32
5.2 CLooG . 32
5.3 Detailed Example .. 33

6 CellFlow 39
6.1 The CellFlow Tool . 39
6.2 Code generated by CellFlow .. 41

7 Experiments & Results 47
7.1 Applications .. 47

8 Conclusions and Future Work 53

7

8 CONTENTS

A Code generated by saas for the schedule of ND 3 55

List of Figures

2.1 Cell Structure Diagram .. . 13
2.2 An example of a process network 14
2.3 One-to-one versus many-to-one mapping 14
2.4 Extend Kahn Process Network with firing rules to obtain Dataflow network . . . 16
2.5 Thread versus DataFlow model 17

3.1 Position CellFlow with the CELLCC and ESPAM tool. 21
3.2 Mapping possibilities with CELLCC 21
3.3 Mapping possibilities with ESPAM 22
3.4 Mapping possibilities with CellFlow 23

4.1 Schedule Communication Observe Model 26
4.2 Schedule algorithm .. . 26
4.3 Producer-Consumer Process Network 27
4.4 Mapping Producer/Consumer pair on Cell BE using the SCO Model. 28
4.5 The communication is performed in a round robin manner 28
4.6 Cell code in SCO format . 29
4.7 Process P1 and P2 with their variants 29
4.8 SPE code in SCO format for Process P1 and P2 29
4.9 Execution order of process P1 and P2 variants 30

5.1 Tool chain to convert Matlab code into SCO description 31
5.2 Stream-Based Function Object 32
5.3 Matlab code for QRvr matrix decomposition algorithm and the corresponding

Kahn Process Network derived by COMPAAN34
5.4 ProcessND 3 iteration space with control statements for input and output ports,

selected for theVectorizefunction . 35
5.5 CLooG input and output forND 3 of QRvr. 36

9

10 LIST OF FIGURES

5.6 Variants domains ofND 3 . 37
5.7 Variants ofND 3 with active input and output port domains 37

6.1 CellFlow design flow shows the process of translating Matlab code into SCO
model specification . 40

6.2 Speudo algorithm used by CellFlow 40
6.3 Code in SCO format . 41
6.4 init method . 41
6.5 Algorithm to select variants 43
6.6 isDataPresent method 44
6.7 execute method .44
6.8 update method .44
6.9 fireVariant method .. 45
6.10 schedule method .. 45

7.1 Self created application with different SPE mappings. 48
7.2 Code that is executed on SPE0 for the mappings shown in Fig.7.1 49
7.3 XML-Mapping specification for the mappings shown in Fig.7.1. 49
7.4 M-JPEG Process Network .. 50
7.5 Different mapping strategy for M-JPEG Application on Cell archicture 51

Chapter 1
Introduction

Heterogeneous multi-processor architectures are often mentioned as the hardware platform to be
used in modern electronics systems. They are composed of a combination of processor cores
of varying type and offers good potential for computationalefficiency for many applications.
Although providing high performance, such architecture brings new design challenges as well as
increased complexity in developing software for these platforms.

Writing efficient parallel applications that utilize the computing capability of many process-
ing cores may be even more challenging. Manually deriving parallel code from a sequential
program is very difficult. It is a very error prone and time consuming process. Another ap-
proach is required to increase programmer productivity. Compiler support is needed to generate
multithreaded parallel code from a single threaded sequential program.

The Cell Broadband Engine (Cell BE) [1] is such a heterogeneous multi-core processor com-
prised of control-intensive processor and compute-intensive SIMD processor cores, each with its
own distinguishing features. To get the most out of the Cells incredible computational capability,
it is necessary for each programmer to consider the differences between the two processor cores
and utilize them appropriately in a way to suit the intended application.

Streaming application are suitable to execute on the Cell platform because of it’s platform
characteristics. It can chain its compute-intensive processor cores together to perform streaming
operations in a sequence. For example, an processor core reads data from an input into it’s local
store, performs the processing step and stores the result into it’s local store. The second processor
reads the output from the first processor local store and processes it and stores it in it’s output
area. Streaming applications have become increasingly important and widespread. Examples of
streaming applications include Internet audio and video streaming, automatic target recognition
(ATR) found in radar digital signal processor (DSP) systems.Streaming applications operate on
a continuous stream of data and are usually compute-intensive. The Cell architecture increases
the performance of streaming applications by introducing system-level parallelism as oppose to
instruction level parallelism. It exhibit system-level parallelism by using a CPU and multiple

11

12 Chapter 1. Introduction

coprocessors.
The aim of this thesis project is to build a design environment for mapping stream-based

application on the Cell architecture, with the focus on mapping multiple tasks on the very high
performance processors of the Cell, called SPE. The motivation for exploiting the SPEs capa-
bality is that the Cell may get close to it’s theoretical maximum performance when the SPEs
processors compute heavy streaming applications. For mapping streaming applications on the
Cell we need a model that fits well into it’s platform specification. We used the Kahn Process
Network (KPN) Model of Computation, which is a widely used model to specify task level par-
allelism in streaming application. Since the KPN model is a thread based model and an SPE
is a single threaded processor, using the KPN model, we can map only a single task on a SPE.
To be able to map multiple tasks on a single threaded SPE, we need to translate the KPN into a
dataflow model. We use the SBF model [8] to express processes ina dataflow format. Using the
dataflow model specification, we are able to map mutiple taskson an SPE.

This thesis offers the following research contributions:

• A new model of computation to express streaming applications in a dataflow format. This
model offers the possibility to execute multiple processeson a single threaded processor
by exploiting the dataflow concept as opposed to the thread concept.

• Showed that we can use SBF model to realize SCO concept.

• The design and implementation of a fully automated tool for efficiently mapping streaming
applications in SCO format onto the Cell architecture.

The rest of the thesis is organized as follows. Section 2 describes the problem we are inves-
tigating in this thesis project. Section 3 shows other approaches that are mainly related to our
work. In Section 4 we briefly explain our approach to map streaming applications on the Cell
architecture and give an in-depth example in Section 5. The example shows the steps required
to translate a process from KPN format into SCO format and ready to be mapped on the Cell
architecture. Section 6 shows some experiments and resultsfor the M-JPEG application using
different mappings. Finally, we conclude the thesis in Section 7.

Chapter 2
Problem description

Cell technology has been developed as a solution to the need for higher performance. The Cell is
a heterogeneous multi-core processor comprised of one control-intensive processor core (PPE)
and eight compute-intensive processor cores (SPEs) serving different functions. A picture of the
Cell is shown in Fig. 5.1. A high-speed bus called the Element Interconnect Bus (EIB) is used
for connecting these processor cores within the Cell. The EIBalso provides connections to main
memory and external I/O devices, making it possible for processor cores to access data from var-
ious sources. The PPE shares program processing with the SPEs. Program processing is further
shared among the SPEs that perform Single Instruction Multiple Data (SIMD) calculations to
maximize the Cells computational performance.

Figure 2.1: Cell Structure Diagram

Like conventional processors, the PPE allows execution of the operating system and applica-
tions. It also performs input/output control when the operating system accesses the main memory
and external devices, and provides control over the SPEs. The PPE is designed to handle multi-
threading. The SPEs are less complex processing units than the PPE, in that they are not designed
to perform control-intensive tasks. The SPEs are designed to iterate simple operations necessary

13

14 Chapter 2. Problem description

for processing multimedia data. The Cell delivers an exceptional computational capability by
combining these compute-intensive processor cores. This comprises the focus of our research.
How can we utilize the compute power of these compute-intensive processor cores as efficient
as possible for stream based applications? The SPEs doesn’tsupport multithreading and as con-
sequence it can’t execute more than one task. This causes a situation where most of the SPE
compute power remains unused as there is not enough workloadin a single task. The Cell will
be working the hardest when the SPEs are working on compute heavy applications. Stream based
applications are heavy in compute and the type of applications on which we focus in the remain-
der of this thesis. It’s in these applications that the Cell may get close to it’s theoretical maximum
performance. Thus, improving the assignment of tasks to these SPEs is very important.

Fig. 5.2 shows a process network with six processes, p1, p2, p3, p4, p5 and p6, that are
connected with each other. This is a typical configuration when processing stream based ap-
plications. If we map these processes onto the Cell processorusing the thread concept that is
supported by the Cell, then the mapping would look like the left picture of Fig. 2.3, where only
single processes are mapped on SPEs. We actually want go to the mapping of the right pic-
ture, where multiple tasks can be mapped on single SPEs. As the picture depicts, p2 and p3 are
mapped on one SPE, p4 and p5 are mapped on another SPE and p1 andp6 are mapped on the
PPU. The problem is how to map multiple tasks on the single threaded processors of the Cell
platform?

Figure 2.2: An example of a process network

Figure 2.3: One-to-one versus many-to-one mapping

2.1. KPN to DataFlow Model 15

2.1 KPN to DataFlow Model

Applications that have to be executed on multi-processor architectures are typically specified
in a imperative language, like C or Matlab. To obtain parallel code that can be mapped on
the Cell architecture we use the COMPAAN compiler [7]. The COMPAAN tool automatically
extracts parallelism from a single threaded program written in Matlab. It transforms a nested loop
program written in Matlab into a Kahn Process Network specification. In the KPN specification
an application is modelled as a collection of concurrent processes communicating through FIFO
channels. The processes communicate with each other using blocking read and non-blocking
write operations. Writing to a channel is non-blocking because the FIFO sizes are infinite. Since
the Cell architecture doesn’t have infinite memory, we use a blocking write primitive in our
approach. Processes are arbitrary sequential programs. Ifa process tries to read from an empty
input it is suspended until enough input data is available. At any given point, a process is either
executing code or blocked waiting for data on one of its channels.

The Kahn Process Network model of computation fits well with the characteristics of the
Cell architecture. They both have distributed memory and control. The Kahn Process Network
is composed of processes and the Cell architecture is composed of multiple processing compo-
nents, making the mapping of Kahn processes on the Cell processing components easier. The
processes in the Kahn Process Network are running concurrently and atomically in the same way
an SPE executes. According to these features expressing streaming applications as kahn process
networks are very suitable for mapping on the Cell platform.

Although the KPN model is a very good model for the Cell architecture, it has some lim-
itations. First, processes in an KPN model are thread based and are controlled by the thread
scheduler. Each process in a kahn process network executes as a thread. That means that when
a process start executing we can not interrupt until it ends.If for some reason a process blocks
(waiting for data) while executing we can not do anything only the thread scheduler can yield
control to another thread. Second, because processes executes as threads and the SPE is a single
threaded processor, using the KPN model we can only map a single process on an SPE. We could
develop a multithreading environment for the SPE. But this would be a lot of work and will lead
to a performance lost. Since we are interested in mapping more than one process on a single SPE,
we need another model rather then the KPN model to express thetarget applications. Therefore,
we translate the thread model into a dataflow model. Each Kahn’s process becomes an actor with
define firing rule and function as shown in Fig. 2.4. The execution of a process then depends on
these firing rules instead on the thread control.

In the dataflow model, an application is represented as a directed graph, where nodes repre-
sent processes (actors) and arcs represent the FIFOs that connect these processes. Each actor or
process has a set of firing rules and can fire only if these firingrules are satisfied. Furthermore,
specifying processes in a dataflow format allows to explicitly define a scheduler for the firing
rules, which will evaluate the firing order of these firing rules. The execution of a process is then

16 Chapter 2. Problem description

Figure 2.4: Extend Kahn Process Network with firing rules to obtain Dataflow network

handled by this scheduler. By using firing rules with a self modeled scheduler we can guaranteed
to get the thread control during execution back and prevent the blocking of a processor. Instead
of idling we can do some other calculations which reduce the stalling time drastically leading to
more performance.

The key difference between the thread and dataflow model is that the thread model only
model the control. In this model a process don’t know when data arrive. The time of arrival
often matters more than the data. Instead in the datalow model no control is modeled, data arrive
in regular streams and the data matters the most. In the dataflow model the data availability is
checked before it is read. The thread model on the other hand doesn’t performed this check,
it directly tries to read the data without being aware if the data is available. If there is no data
available the process blocks. The execution of a process in handled by the thread control. The
dataflow model defines firing rules, an execution occurs if andonly if a firing rule is satisfied,
means if all data for the particular firing is available.

The thread and dataflow model behavior is depicted in Fig. 2.5. The left picture shows the
thread model and the right picture shows the dataflow model behavior. In the dataflow model we
read the data, execute the function and exit. We can’t block on the read since data availability
is checked before reading by the scheduler. This scheduler checks for availability of data until a
firing rule is satisfied. If a rule is satisfied, the scheduler calls the fire function that is guaranteed
to terminate giving back control to the scheduler. This is referred as the fire-exit behavior. In
the KPN model, the read blocks, we get the thread back if all loop iterations are performed. If
the read blocks in each iteration then we can imagine the stalling time this process creates for an
processor.

2.1. KPN to DataFlow Model 17

Figure 2.5: Thread versus DataFlow model

18 Chapter 2. Problem description

Chapter 3
Related Work

In this section, we discuss related work for mapping streaming applications on the Cell architec-
ture and also mapping multiple processes on a single threaded processor.

The approach presented in [2] developed the automated tool,CELLCC, that maps streaming
applications specified as Kahn Process Network (KPN) on the Cell platform. This tool is ca-
pable of mapping single tasks on the compute intensive processors (SPEs) of the Cell platform.
Each process in the KPN model corresponds to a thread and since the SPEs are single threaded
processors only one-to-one mapping is possible. The KPN model uses blocking read primitive
to synchronize the communication between processes. Thus,if an process tries to read from an
empty FIFO it blocks until data is available. This can cause asituation where an SPE spend most
of the time waiting for data instead of processing data. Since we are interested in optimizing
the workload of an SPE, mapping multiple processes simultaneously on an SPE with the thread
approach implemented in CELLCC is not possible.

Our work is different from the approach mentioned above. Ourapproach relies on a dataflow
model for specifying streaming applications in a dataflow format in order to map on the Cell
platform. Using the dataflow model as opposed to the KPN model, we are able to map multiple
processes on an SPE.

Another approach to map streaming applications on the Cell platform is presented in [3]. In
this approach the Synchronous DataFlow (SDF) model [5] is used to specify streaming appli-
cations in a dataflow format. The StreamIT [4] programming language is used to implement
the synchronous dataflow programming model. StreamIT is an explicitly parallel programming
language for streaming applications and includes stream-specific abstractions and representa-
tions that are designed to improve programmer productivity. The SDF model consist of actors
that communicate exclusively through FIFOs. The SDF actorshave a single firing rule. They
consume and produce a fixed number of data tokens in each firing. The SDF model is a more
restrictive model then the KPN model. As a result, an optimalcompile-time scheduling can be
found. However, the SDF model has limited expressiveness, it can not express the control of a

19

20 Chapter 3. Related Work

process as in the KPN model. As a consequence, an actor in the SDF model can’t switch between
different FIFOs to select input and output FIFO since it communicate through only one FIFO.
Furthermore, this approach implements one-to-one mapping, only a single actor can be mapped
on an SPE. In contrast, our approach use the SBF dataflow model to specify streaming applica-
tions in a dataflow format, which is capable to express the control of a process. The SBF model
has more expressiveness then the SDF model since it is a combination of dataflow and process
network models.

The mapping of streaming applications on a FPGA hardware platform using the ESPAM tool
is presented in [6]. We relate our work to this work since an FPGA also has multiple processing
elements as the Cell Broadband Engine and since this approach present single and multiple task
mapping on the MicroBlaze processors of an FPGA. This approach describes streaming applica-
tions as Kahn process networks as we do and uses the ESPAM toolto automatically map these
applications on the target FGPA platform. The ESPAM tool allows one-to-one mapping (one
process per processor) as well as many-to-one (more than oneprocess per processor). In this
approach three different mappings are implemented for the MicroBlaze processors:

1. Thread model: map single process on a processor.

2. Merged thread model: multiple processes are merged into one process and mapped on a
processor. In this case a valid schedule need to be found before merging.

3. OS supported thread model: execute an operating system ona processor. For this mapping
multithread support is needed and no valid schedule is required at compile time.

Our approach differs from this approach in the sense that theESPAM tool uses dedicated
hardware FIFO but our CellFlow tool uses a software modelled FIFO library. Our FIFO library
uses DMA, messages and signals to realize the communicationbetween processes. Since the
Cell architecture doesn’t provide any hardware FIFOs we haveto model the required FIFOs
in software. Furthermore, in the ESPAM tool multithreadingsupport is implemented for an Mi-
croBlaze processor, making it capable to run an operating system. As a result, multiple processes
can be mapped on an MicroBlaze processor. To tackle the problem of our reserach, we could
also implement multithreading support for an SPE. Since multithreading support creates over-
head and affect the performance of an processor, we don’t want to create multithreading support
for an SPE. In our approach, multiple process mapping relieson the way we specify streaming
applications rather than implementing extra functionality for an processor that isn’t provided by
the hardware platform. We use a dataflow model with specialized characteristics, which offers
the possibility to map multiple processes on an single threaded SPE.

Figure 3.1 illustrates the mapping possibility of our CellFlow tool compared to the CELLCC
and ESPAM tool. As depicted in the picture, the CELLCC tool implement the tread model where
only single tasks can be assigned to SPE processors. As an example Figure 3.2 show the mapping
of a producer/consumer pair for the CELLCC tool. The picture shows the matlab code with the

21

process network that is derived from it. Each process is mapped on different processors and
executes different part of the matlab code.

Figure 3.1: Position CellFlow with the CELLCC and ESPAM tool.

Figure 3.2: Mapping possibilities with CELLCC

As described above, the ESPAM tool is capable to implement three different mappings such
as the thread model, merged thread model and OS suported thread model. In Figure 3.3 the same
producer/consumer example is used to illustrate the different mapping possiblities. The thread
model mapping is the same as implemented by CELLCC. In the mergedthread model, the piece
of code of both processes are merged into one progam and mapped on a processor. The execution

22 Chapter 3. Related Work

of the merged code is handled by a single thread. In the OS thread model each process executes
a thread. In this model multiple threads runs in parallel.

Figure 3.3: Mapping possibilities with ESPAM

Our CellFlow tool offers multiple process mapping on a singlethreaded processor by ex-
ploiting the dataflow concept of our dataflow model of computation. The dataflow model allows
one-to-one as many-to-one mapping as depicted by Figure 3.4.

23

Figure 3.4: Mapping possibilities with CellFlow

24 Chapter 3. Related Work

Chapter 4
Solution Approach

The problem that is investigated in this thesis is how to map multiple processes on the single
threaded SPE processors of the Cell architecture. In this section we propose the model of com-
putation that allows many-to-one mapping on a SPE.

4.1 SCO Model

To specify streaming applications in a format that allows may-to-one mapping on a SPE we
propose the SCO model. The SCO model is a dataflow model, that is composed of three separate
components as shown in Fig. 4.1:

• Schedule

• Communication

• Observe

In the SCO model, processes consists of firing rules that fire only if their firing rules are sat-
isfied. This is controlled by the scheduler. The communication between processes is done in
the communication phase. In the SCO model, the computation and communication of processes
are seperated. This is the key to map multiple processes on a single threaded processor. The
following sections describes the several parts of the SCO model into more detail.

4.1.1 Schedule

The schedule phase of the SCO model controls the computation of a process. In this phase the
function that needs to be executed in a process is executed, based on function variants [10]. It
defines the execution order for the function variants of a process. In each function variant, the
same function is executed, only different input ports are used to read the data that is needed to

25

26 Chapter 4. Solution Approach

Figure 4.1: Schedule Communication Observe Model

execute the function and different output ports are used to write the result that is produced by the
function.

V = selectVariant();

fireVariantV() {

if (isDataPresentV()) {

executeV();

update();

}

}

Figure 4.2: Schedule algorithm

The structure of the shedule algorithm is listed in Fig. 4.6.The first step is to select which
function variant to execute. This is done by theselectVariantmethod. After a variant is selected
it can be fired using thefireVariant function. Before a variant can fire, the scheduler has to
check if all data is available for the inputs of the function and room is available for writing away
produced data. The checking of data is performed by theisDataPresentfunction. This method
will iterate over all buffers connected to the read and writeports active for variantV. For the
buffers connected with the read ports it will checks the availability of data. At the write ports
it will checks for space in the output buffers. This functionreturns a boolean value and if it
returns the valuetrue then the scheduler can executes variantV and updates the state. In the
executemethod, the function reads data from the input buffers and produces the output value that
is written to the output buffers. After each execution the scheduler has to update the state, which

4.1. SCO Model 27

is done by theupdatemethod.

4.1.2 Communication

The communication part transfers data that is produced by the schedule part. The schedule
produces tokens and store them in local buffers. The communication part reads the tokens from
the schedule local buffers and transfer it to the communicating process’s local buffers. In Fig. 4.3
a producer-consumer process network is shown. The processes are communicating through three
channels,ED 1, ED 2 andED 3. These channels are realized using the Cell’s infrastructure
involving DMA (Direct Memory Access) and messages. Suppose, that the producer is mapped
on the PPU and the consumer is mapped on a SPE. The result is given in Fig. 4.4.ED 1, ED 2

andED 3 are local buffers for the schedule part of both the producer and the consumer. The
producer process uses these local buffers to store the produced tokens and the consumer process
uses the local buffers to consume tokens from it. The PPU willsent the content of a local buffer
via DMA to the other local buffer on the SPE. The synchronization between the PPU and SPE is
done using message passing.

Figure 4.3: Producer-Consumer Process Network

To realize the FIFO implementation, we have developed a communication library. Since the
PPU and SPE have slightly different synchronization mechanisms, four different communication
types need to realized, PPUSPE, SPESPE, SPESELF and SPEPPU.For the producer-consumer
example given above, the PPUSPE communication type is used,since there is only outgoing
edges from the producer (PPU) to the consumer (SPE).

The communication is performed by iterating in a round robinmanner over all ports as de-
picted in Figure 4.5. At each port data is transferred if the data is available. For input ports we
check if data is to be received and for output ports if data is to be send. The schedule phase pro-
duces the data and the communication phase transfer these data but there is no relation between
the schedule and communication. They operate independently from each other.

28 Chapter 4. Solution Approach

Figure 4.4: Mapping Producer/Consumer pair on Cell BE using theSCO Model

Figure 4.5: The communication is performed in a round robin manner

4.1.3 Observe

The purpose for the observe part in SCO model is to detect deadlock situations. Since the observe
phase show as less relevant for our research we will not consider it in this thesis.

4.2 Merging with SCO Model

The SCO model provides the possibility the map multiple processes on a single threaded proces-
sor because of the way it expresses processes. In this model processes consists of firing rules and
can fire only if their firing rules are satisfied. After checking each firing, we jump out of the pro-
cess computation phase and execute the communication phaseof the particular process as shown
by the code given in Fig 4.6. This behavior allows us to put more than one process next to each
other into a single thread. We can simply add more firing rulesto accomodate a new process.
Similarly, we can simply add more communication ports to accomodate additional communica-
tion. Extending the set of firing rules, means that if one of the firing rule of a process does not
satisfy, the firing rules of the other process may be fired, reducing in this way the processor time

4.2. Merging with SCO Model 29

while(1) {

Schedule();

Communicate();

}

Figure 4.6: Cell code in SCO format

spent on idling. By exploiting the dataflow concept of interleaving computations, we are able to
map more than one process on a single thread processor. For example, if we have two process P1
and P2 as shown in Fig. 4.7 and we want to map both processes on one SPE, then the SPE code
in SCO format resemble the code listed in Fig. 4.8. If the data for process P1 is available, it

P1=> V1, V2, V3, V4, V5, V6

P2=> B1, B2, B3, B4

Figure 4.7: Process P1 and P2 with their variants

while(1) {

V = selectVariantP1;

fireVariantV();

B = selectVariantP2;

fireVariantB();

Communicate;

}

Figure 4.8: SPE code in SCO format for Process P1 and P2

can execute one of its variant. Otherwise the data availability of process P2 is checked. If data is
available the execution of its variant is performed. A possible execution order that may result at
runtime for both processes is listed in Fig. 4.9. In our approach we merge process P1 and P2 at
runtime. However this could also be done at compile time for the class of nested loop programs.
This would make the “selectVariant” code much simpler and faster. At the same time, the firing
shown in Figure 4.8 could be influenced at run-time by information gathered in the observation
phase of the SCO model. For example, if the observer phase detects that a particular resource
like the bus is heavily loaded between processes, it could decided to give one process a higher
priority until the bus gets less loaded.

To realize the SCO model concept for the Cell architecture, we have build the CellFLow tool,
which is described in Section 6. This tool is capable to perform runtime merging on the single

30 Chapter 4. Solution Approach

V1, B1, V2, B2, V3, B3, V4, B4, V5, V6

Figure 4.9: Execution order of process P1 and P2 variants

threaded SPE processors. The number of processes that can bemapped on an SPE depends on
the SPE memory storage and the memory usage of the processes.

Chapter 5
Working out

To convert Matlab code into the SCO model specification, we developed the tool chain as shown
in Fig. 5.1. First, the COMPAAN tool is used to convert Matlab code into a Kahn Process
Network. Next, the Kahn Process Network is converted into the SBF model specification by
the CLooG tool. Finally, the CellFlow tool converts the SBF model specification into the SCO
model specification.

Figure 5.1: Tool chain to convert Matlab code into SCO description

We already know how to translate Matlab code into a Kahn Process Network specification.
The COMPAAN tool is available to us and can automatically perform this translation. The
problem is how can we translate a Kahn Process Network specification into the SCO model
specification. We use the SBF dataflow model as an intermediatemodel to close the translation
gap between Kahn Process Network specification and SCO model specification. The schedule
phase of the SCO model is implemented using the SBF model specification. We first describe this
model in the next section, and describe how the SCO schedule isderived from this SBF model
using the CLooG tool. We also give an example, which shows how Matlab code is translated
into the SCO model specification. In Section 6, we present our CellFlow tool that automatically
translate streaming application written in Matlab into SCO model specification.

31

32 Chapter 5. Working out

5.1 SBF Model

The Stream-Based Function (SBF) model is used to close the gap between Kahn Process Network
specification and SCO model specification. The SBF model is a dataflow model that is well
suited to specify task parallelism in stream-based applications. The SBF model is composed of
two components, called Stream-Based Function Objects and Channels. It describes stream-based
applications as a network of SBF objects that communicate concurrently with each other using
channels. SBF objects transfer data by using blocking read and non-blocking write. An SBF
object contains three components: a set of function, a controller and a state. The set of functions
also called the repertoire determines the functionality ofan SBF object. This set must be finite
and should contain at least an initialization function. Thefunctions inside an SBF object are
evaluated in a sequential order determined by the controller. The controller enables the functions
of an SBF object and handle the order in which these functions are fired. After a function is
fired, the current function informs the controller that the next function state can be computed and
the next function can be enabled. The controller has atransition functionand abinding function.
The transition function determines the next function state. At each state, a specific function needs
to be evaluated, which is determined by the binding function. This binding function associates
a functionf from the function repertoire with a particular function state. Using the transition
function and the binding function, the controller repeatedly invokes and enables a function from
the function repertoire.

Fig. 5.2 illustrates an SBF Object that has two read and one write port. These ports are
connected with the input and output buffers respectively. We also see that the SBF object has
two functions,fa andfb. Functionfa reads input data from the two read ports and writes output
data to the write port. When functionfa terminates its firing, the controller enables the next
function, which isfb. Functionfb also reads input data from the two read ports and writes output
data to the write port.

f
b

f
a

Read Ports

Enable Signal

Output Buffer0

Write PortStateInput Buffer0

Input Buffer1
Controller

Figure 5.2: Stream-Based Function Object

5.2. CLooG 33

5.2 CLooG

To convert a piece of Matlab code into the SBF model, we convertthe KPN model in the SBF
model using the Chunky Loop Generator (CLooG) software [9]. This software takes as input a set
of iteration spaces and scans these space to produce the intersections between the spaces. The
Streaming Application Analysis and Synthesis (Saas) tool implements a datamodel to specify
CLooG output program as a parse tree. We can walk through this parse tree to find different
functions. From the parse tree, we construct a controller that enables and defines an execution
order for these functions. We create three functions to implement the controller:

• selectVariant, used to select function variants from CLooG’s output (binding function).

• evaluateData, used to check for data availablity on read ports and buffer space for write
ports.

• execute, used to execute a function.

We define an other function to keep track of the SBF object state, calledupdate. This function is
used to move from the current function statec to the next function statec’ whenever the current
function has fired and implements the transition function ofthe SBF model. An SBF object must
contains an initialization function. Therefore we also define an initialization function,init. This
function initialize the state of the SBF object.

5.3 Detailed Example

In this section we show for the QRvr example how the flow shown inFigure 5.1 can convert a
Matlab program, describing the QRvr matrix decomposition algorithm [11], into a SCO realiza-
tion. For this example we focus on processND 3 of QRvr.

Figure 5.3 shows the Matlab code for the QRvr application and the process network that
is derived by COMPAAN. COMPAAN generates a process for each statement in the Matlab
program. The third statement in the Matlab program(i.eVectorize) is executed in processND 3.
COMPAAN adds control statements to the iteration domain ofND 3 to select input and output
ports. These ports are the result of the distribution of control over the various processes as shown
in Fig. 5.4.

When we zoom into processND 3, we see the picture as illustrated in the right part of Fig.
5.4. ProcessND 3 has four input ports, namedA, B, C, Dand three output port, calledE, F, G.
It executes theVectorizefunction, which has two input arguments,in 0, in 1 and three output
argumentsout 0, out 1, out 2. Data for input argumentin 0 is selected from input portsA and
B. And the data for input argumentin 1 is selected from input portsC andD. At a given iteration,
one of the portcombination:AC, AD, BC, BDis selected as input forin 0 andin 1 The result

34 Chapter 5. Working out

Figure 5.3: Matlab code for QRvr matrix decomposition algorithm and the corresponding Kahn
Process Network derived by COMPAAN

of Vectorizeis written to output argumentsout 0, out 1 andout 2. These values are passed to
output portsE, F and G.

ProcessND 3 has seven control statements, where each control statementrepresents a subset
of ND 3 iteration domain. The CLooG software describes these subdomains as matrices and
takes these matrices as input and produce the intersectionsof the subdomains. The CLooG input
and output forND 3 are listed in Fig. 5.5. The CLooG input shows the seven controlstatements
as matrices and the CLooG output shows the intersections of the subdomains. We use the SAAS
tool to generate the CLooG input and output. The CLooG softwareis included in the SAAS tool
and SAAS has a datamodel that represent the output generatedby CLooG. In left part of Figure
5.6 the iteration domain of each control statement is depicted. Input and output port domains are
seperated. The intersection is depicted in the right part. Bytaking the itersection, the iteration
domain ofND 3 gets divided into nine subdomains. In each subdomain the same function is
executed using different input and output ports to read and write data. Figure 5.7 list the active
input and output ports for the variants forND 3.

5.3. Detailed Example 35

Figure 5.4: ProcessND 3 iteration space with control statements for input and output ports,
selected for theVectorizefunction

36 Chapter 5. Working out

Figure 5.5: CLooG input and output forND 3 of QRvr.

5.3. Detailed Example 37

1

3

2

0

876

0 1 2 3 4 5 6

1

0

2

3

4

5

T=6

N=7

15 2 3 4 5 6 7 8

1

0

2

3

4

5

6

8

1

7

N=

0

5

6

8

4

7

1

0

2

3

4

5

6

8

7

N=

0 1 2 3 4 5 6 7 8

1

0

2

3

4

5

6

8

7

N=

0 1 2 3 4 5 6 7 8

1

0

2

3

4

5

6

8

7

N=

0 1 2 3 4 5 6 7 8

3

N=

2 0

4

Variant domains

k

j

k

j

k

j

j

k

j

k

V1

V2

V3

V4

V5

V6

V7

V8

V9
k

j

L1 − in0 arg list L2 − in1 arg list

L5 − out2 arg listL4 − out1 arg listL3 − out0 arg list

Argument lists

IPD1

IPD2

OPD2
OPD1

IPD4

OPD3

IPD3

Figure 5.6: Variants domains ofND 3

Figure 5.7: Variants ofND 3 with active input and output port domains

38 Chapter 5. Working out

Chapter 6
CellFlow

The CellFlow tool automatically maps streaming applications specified in Matlab onto the Cell
platform in the SCO format. In this section we describe the design of CellFlow and briefly
presents the components from which CellFlow is build. We alsoshow some sample code gener-
ated by CellFlow.

6.1 The CellFlow Tool

We have develop the CellFlow tool to automatically translatestreaming application written in
Matlab into SCO model specification. The SCO model is captured in the C-code generated. This
C-code is compiled using the GCC compiler chain available for the Cell. In Fig. 6.1 the design
flow of CellFlow is shown.

The CellFlow tool takes as input:

• the application specification in KPN format, which is a XML file.

• the mapping specification of the KPN on the Cell platform, which is also an XML repre-
sentation. This file contains mapping information of the processes that are mapped on the
processors of the Cell platform, for example which process ismapped on which processor.
The user can manually change this file if another mapping is desired.

• a communication library that provides the communication primitives for performing the
communication between processes that are mapped on the processor cores of the Cell.
This library implements all communication types possible in the mapping.

• a scheduler that evaluate and specify the execution order ofa process.

Taking these input files CellFlow generates C-code in SCO formatthat can be mapped on
the Cell. It creates a directory with Cells code. This directory contains two folders named ppu

39

40 Chapter 6. CellFlow

Figure 6.1: CellFlow design flow shows the process of translating Matlab code into SCO model
specification

and spu and files needed for the communication for both PPU andSPE. The ppu folder contains
code that is going to mapped on the PPU and the spu folder contains code for the SPEs. If more
than one SPE is occupied then the code for all SPE are includedin the spu folder. Since the PPU
controls the program that is executed on the SPEs, the ppu folder contains the main.cc file and
other files needed to perform the communication for PPU. The main.cc file contains the code for
all processes that are mapped on the PPU. On the other hand thespu folder creates an SPE.cpp
file for every SPE that is used. Beside these files, the spu folder contains the SPU communication
files. The working of CellFlow in speudo code is given in Fig. 6.2. First Matlab code is translated

generate KPN from Matlab;

foreach process P in KPN do

generate variants;

generate schedule using variants;

foreach link of P do

generate communication method;

end

end

Figure 6.2: Speudo algorithm used by CellFlow

into KPN specification using the compaan tool. The result is anetwork of processes connected

6.2. Code generated by CellFlow 41

by links. For each process, we generate variants using the CLooG tool. Next, we specify a
schedule for the process using these variants. And for each link that is connected to the process, a
communication function is generated. Finally, the schedule and communication part of a process
are combined in a while-loop to obtain the SCO model description of a process as shown in Fig.
6.3. The while-loop is then executed on the SPE or PPU, depending on the process type.

while(1) {

Schedule;

Communicate;

}

Figure 6.3: Code in SCO format

6.2 Code generated by CellFlow

The CellFlow tool generates C-code for the SPE and PPE processors of the Cell platform. In the
previous section, we saw a detailed description of processND 3 of the QRvr application. In this
section, we will describe the schedule code generated for processND 3 in more detail.

ProcessND 3 has a two dimensional iteration space (i.e,k and j). In the initLoopIndex
method the loop iterators that iterate over the iteration domain are initialized with the lowerbound
values from the KPN specification. The KPN specification contains all necessary information of
processes. To distinguish different processes when mapping on the same processor we append
the process name to each method generated for an process.

void initLoopIndex_ND_3() {

k = 1;

j = 1;

}

Figure 6.4: init method

TheselectVariantselects the proper variant from the CLooG’s output at run-time and assign
an ID to each variant. These ID will be used by thefireVariantmethod to identify the variant that
needs to be fired. CLooG uses for-loop to indicate the iteration domain for an variant. We trans-
late these for-loop into if-statements since we want to go ina function but always return. In fig
6.5 the different subdomains in which a variant is active is listed. For example, in iteration (1,1)
of Fig. 5.6 variantV1 is active according to the first if-statement of theselectVariantmethod.
For each iteration in the iteartion space, theselectVariantmethod list the variants that is active

42 Chapter 6. CellFlow

for that particular iteartion. The iteration space is partitioned in the number of variants that is
found, as illustrated in figure 5.6.

In the isDataPresentfunction, the data availability for a variant is checked. Ifall input
buffers of a variant have data and all output buffers of the variant have room, then the function
returns true otherwise false. Each variant uses different input and output buffers to read and write
data. This means that each variant has its ownisDataPresentfunction. TheisDataPresentis the
actual firing rule the scheduler checks. IfisDataPresentis true, the firing rule is satisfied and
the function can be executed. As an example we show theisDataPresentfunction of variantV1
of ND 3 as listed in Fig .6.6. TheisDataPresentfunction for variantV1 checks if data exists
at input buffersED 2 andED 4 and if the output buffersED 1 andED 10 have room by
using thehasDataandhasRoomfunctions. ThehasDatafunction is used to check for data in
input buffers andhasRoomto check for space in output buffers. BufferED 1 is a selfloop and
therefore a different function is generated called,hasRoomSelf.

Each variant has anexecutefunction. For example, processND 3 has nine variants, which
means that nineexecutefunctions have to be generated. Theexecutefunction for variantV1 is
given in Fig. 6.7. Within the execute method, the data checked by theisDataPresentfunction,
is read and pass to theVectorizefunction. The result of theVectorizefunction is written to the
output buffers. The read and write function are non-blocking. This is not needed as the scheduler
guarantees that data is present and that room is available towrite out the result.

After an execution is performed, the loop iterators needs tobe updated to indicate the next
iteration. This is done by theupdatemethod listed in Fig. 6.8. The loop-iteratorsj andk are used
to iterate over the iteration domain of processND 3. If the inner most loop iteratorj is smaller
than or equal to the upperbound then it is incremented. Otherwise, the outer most loop iterator
k is incremented if it is smaller than or equal to the upperbound defined for this iterator. In this
example both loop-iterators has the same upperbound, namely 5.

ThefireVariantmethod is used to fire variants. It test which variant needs tobe fired and calls
the associated methods needed for the firing. It structures the generatedisDataPresent, execute
andupdatemethods in such a way that if theisDataPresentreturns true then a variant can be
fired.

Combining theselectVariantandfireVariantmethod together, the schedule can be obtained.

6.2. Code generated by CellFlow 43

void selectVariant_ND_3() {

if (k-1 && j-1) {

v = 1;

}

else if (2 <= j && j <= 4) {

if (k-1) {

v = 2;

}

}

else if (k-1 && j-5) {

v = 3;

}

else if (2 <= k && k <= 4) {

if (j-1) {

v = 4;

}

else if (2 <= j && j <= 4) {

v = 5;

}

else if (j-5) {

v = 6;

}

}

else if (k-5 && j-1) {

v = 7;

}

else if (2 <= j && j <= 4) {

if (k-5) {

v = 8;

}

}

else if (k-5 && j-5) {

v = 9;

}

}

Figure 6.5: Algorithm to select variants

44 Chapter 6. CellFlow

bool isDataPresentV1_ND_3() {

if (hasData(ED_2) && hasData(ED_4) && hasRoomSelf(ED_1) &&

hasRoom(ED_10)) {

return true;

}

else

return false;

}

Figure 6.6: isDataPresent method

void executeV1_ND_3() {

unsigned int x1, x2 = 0;

unsigned int y1, y2 = 0;

read(ED_2, &x1);

read(ED_4, &x2);

Vectorize(x1, x2, &y1, &y2);

writeSelf(y1, ED_1);

write(y2, ED_10);

}

Figure 6.7: execute method

void update_ND_3() {

if (j <= 5) {

j++;

}

else if (j > 5) {

if (k <= 5) {

k++;

}

}

}

Figure 6.8: update method

6.2. Code generated by CellFlow 45

void fireVariant_ND_3() {

if (v3 == 1) {

if (isDataPresentV1_ND_3()) {

executeV1_ND_3();

update_ND_3();

}

}

else if (v3 == 2) {

if (isDataPresentV2_ND_3()) {

executeV2_ND_3();

update_ND_3();

}

}

.

.

.

}

Figure 6.9: fireVariant method

void schedule_ND_3() {

selectVariant_ND_3();

fireVariant_ND_3();

}

Figure 6.10: schedule method

46 Chapter 6. CellFlow

Chapter 7
Experiments & Results

In this section, we present the results of two implemented applications in the SCO model spec-
ification using CellFlow. The first application is a test application used to illustrate that we can
model an application in SCO model and map on the Cell. The secondapplication implemented
in SCO format is the M-JPEG application. The M-JPEG application is a real functional appli-
cation. All experiments are performed using the Cell architecture implemented in Playstation3
console.

7.1 Applications

Self-created application. The first application we evaluated is an application we have con-
structed to expose particular cases in the mapping step. Theprocess network of this application
consists of 5 processes and two channels between processes to connect them with each other.
The application and its mapping on the Cell are depicted in Fig. 7.1. Process P1 and P5 are
source/producer and sink/consumer processes and are mapped on the PPE. In our implemen-
tation, we have created only one thread in the PPE and all processes mapped on the PPE are
executed in this single thread. The rest of the processes aresimple transformers and are mapped
one-to-one on SPE’s. For the SPE, we have implemented three mappings. In the first mapping
indicated in Fig. 7.1 (A), we map process P2, P3 and P4 on different SPEs. For the second
mapping depicted in Fig. 7.1 (B), we map process P2 and P3 on thesame SPE and process P4 on
a different SPE. And in the thrird mapping process P2, P3, andP4 are mapped on the same SPE,
as shown by Fig. 7.1 (C). These mappings shows that merging multiple processes on a SPE is
possible with the CellFlow tool. The code that is executed on SPE0, where the number of tasks
vary for each mapping, is showed in Fig. 7.2. The left part shows the SPE code for the first
mapping where only process P2 is executed on SPE0. In the middel part we see that process P2
and P3 are executed simultaneously on SPE0. In the while loop, we see the Schedule of process
P2 and P3. From this construction we can conclude that eitherprocess P2 or P3 can fire or both

47

48 Chapter 7. Experiments & Results

can fire. Adding more tasks on a SPE affects the while loop by introducing more schedules for
the additional processes that are mapped on the SPE.

Each process has its own schedule and mapping more than one process on an SPE intro-
duce name overlapping. We need to distinguish different schudules by giving them a unique
name. We solve this problem by appending the process name to the functions name that are
generated for each process. For example, if process P1 and P2are mapped on one SPE, then
the functions generated for P1 are: initP1(), selectVariantP1(), isDataPresentP1(), executeP1(),
updateP1(), fireVariantP1() and scheduleP1(). And the functions generated for P2 are: initP2(),
selectVariantP2(), isDataPresentP2(), executeP2(), updateP2(), fireVariantP2() and scheduleP2().

The mapping specification in XML format for the three mappings is shown in Fig. 7.3. The
mapping specification shows which KPN process is mapped on which Cell processor and can
be modified manually. The difference between the three mapping specifications is that the left
mapping uses three SPE processor, the middel one two SPE and the right mapping uses only one
SPE.

Figure 7.1: Self created application with different SPE mappings.

Motion JPEG application. The second application we have evaluated is the Motion-JPEG
decoder (M-JPEG). We applied our approach to the M-JPEG application that is depicted in Fig.

7.1. Applications 49

Figure 7.2: Code that is executed on SPE0 for the mappings shown in Fig. 7.1

Figure 7.3: XML-Mapping specification for the mappings shown in Fig. 7.1.

7.4 and measure the throughput of different mappings for theCell. Fig. 7.5 depicts the different
mappings we implemented for the M-JPEG application on the Cell platform. The results derived
from the implemented mappings are given in Tabel 7.1. What we observe is that mapping 1 and
3 show the same throughput but different number of Cells resource usage. Mapping 1 uses 3
SPEs and each SPE execute a single task. This would be the mapping if only one task could be
mapped to a SPE (this would resemble the threaded mapping of M-JPEG). In mapping 3 we see
that 2 SPEs are occupied, SPE1 with a single task and SPE2 withtwo tasks. The results of these

50 Chapter 7. Experiments & Results

two mappings shows that we can obtain the same throughput while using less SPEs.
From the obtained results we can conclude that expressing streaming application in SCO

model, allows us to use Cells compute intensive resources in amany-to-one fashion. Fur-
thermore, the two applications described above are also good examples of the usability of our
CellFlow tool. Without CellFlow, it would have taken quite some effort to build equivalent ap-
plications, as all communication and scheduling have to be programmed manually.

Figure 7.4: M-JPEG Process Network

Mapping PPU SPE1 SPE2 SPE3 Throughput
1 VideoIn and VideoOut DCT Q VLE 19257625
2 VideoIn and VideoOut DCT and Q VLE - 23922134
3 VideoIn and VideoOut DCT Q and VLE - 19114574
4 VideoIn and VideoOut DCT, Q and VLE - - 32936404

Table 7.1: Throughput measurement using different mappingpossibilities for JPEG application.

7.1. Applications 51

(a) M-JPEG: mapping 1 (b) M-JPEG: mapping 2

(c) M-JPEG: mapping 3 (d) M-JPEG: mapping 4

Figure 7.5: Different mapping strategy for M-JPEG Application on Cell archicture

52 Chapter 7. Experiments & Results

Chapter 8
Conclusions and Future Work

We have presented SCO, a new programming model for streaming applications for the Cell BE
platform. One of the main contributions of this work is the possibility to map multiple processes
on the Synergistic Processor Element of the Cell BE platform. The new model shares the com-
puting power of SPEs by allowing many-to-one mappings on theCell BE platform. A further
step was the CellFlow tool itself, build upon the CELLCC tool that automatically map streaming
applications on the Cell BE platform using the KPN model of computation. The CellFlow tool is
a fully automated tool that can convert streaming applications written in Matlab into SCO format
by using the SBF dataflow model as an intermediate model. CellFlow provides some flexibility
when assigning processes to an SPE. We can map an arbitary number of processes on a SPE
using the CellFlow tool. The only limitation will be the memory (256 KB) of an SPE.

To prove the usability of CellFlow, we have implemented the M-JPEG application in SCO
format on the Cell. Since the M-JPEG application only has single channels between its processes,
we also implement an self created application with multiplechannels between its processes in
SCO model specification. We have executed these applicationson the target Cell platform and
presented the results of these experiments, which proved that the SCO model approach provides
facilities to map multiple processes onto one SPE with good throughput numbers.

For future work, the presented approach and results can be validated further by implementing
more applications in SCO format such as the QRvr application. Implementing other application
with the CellFlow tool will confirm the stability of the CellFlow tool. Another very interesting
work could be to specify multiple different applications inSCO format and map these multiple
independent applications on the Cell platform simultaneously. Further, the communication can
be optimized. Currently for each communication that needs tobe happen, we walk in a round
robin manner through all channels and perform the communication. This can be optimized by
only checking the neccessary channels needed for the concerned communication type. Since
the observe part of the SCO model was not investigated in this thesis, it can be implemented to
observe the stability of applications.

53

54 Chapter 8. Conclusions and Future Work

Appendix A
Code generated by saas for the schedule of
ND 3

void initLoopIndex_ND_3() {
k3 = 1;
j3 = 1;

}

bool isDataPresentV1_ND_3() {
if (hasData(ED_2) && hasData(ED_4) && hasRoomSelf(ED_1) && hasRoom(ED_10)) {

return true;
}
else

return false;
}

bool isDataPresentV2_ND_3() {
if (hasData(ED_2) && hasData(ED_3) && hasRoomSelf(ED_1) && hasRoom(ED_10)) {

return true;
}
else

return false;
}

bool isDataPresentV3_ND_3() {
if (hasData(ED_2) && hasData(ED_3) && hasRoomSelf(ED_1)) {

return true;
}
else

return false;
}

bool isDataPresentV4_ND_3() {
if (hasDataSelf(ED_1) && hasData(ED_4) && hasRoomSelf(ED_1) && hasRoom(ED_10)) {

return true;
}
else

return false;
}

55

56 Chapter A. Code generated by saas for the schedule of ND 3

bool isDataPresentV5_ND_3() {
if (hasDataSelf(ED_1) && hasData(ED_3) && hasRoomSelf(ED_1) && hasRoom(ED_10)) {

return true;
}
else

return false;
}

bool isDataPresentV6_ND_3() {
if (hasDataSelf(ED_1) && hasData(ED_3) && hasRoomSelf(ED_1)) {

return true;
}
else

return false;
}

bool isDataPresentV7_ND_3() {
if (hasDataSelf(ED_1) && hasData(ED_4) && hasRoom(ED_11) && hasRoom(ED_10)) {

return true;
}
else

return false;
}

bool isDataPresentV8_ND_3() {
if (hasDataSelf(ED_1) && hasData(ED_3) && hasRoom(ED_11) && hasRoom(ED_10)) {

return true;
}
else

return false;
}

bool isDataPresentV9_ND_3() {
if (hasDataSelf(ED_1) && hasData(ED_3) && hasRoom(ED_11)) {

return true;
}
else

return false;
}

void executeV1_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1, y2 = 0;

read(ED_2, &x1);
read(ED_4, &x2);
y1 = x1;
y2 = x2;
writeSelf(y1, ED_1);
write(y2, ED_10);

}

void executeV2_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1, y2 = 0;

read(ED_2, &x1);
read(ED_3, &x2);

57

y1 = x1;
y2 = x2;
writeSelf(y1, ED_1);
write(y2, ED_10);

}

void executeV3_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1 = 0;

read(ED_2, &x1);
read(ED_3, &x2);
y1 = x1;
writeSelf(y1, ED_1);

}

void executeV4_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1, y2 = 0;

readSelf(ED_1, x1);
read(ED_4, &x2);
y1 = x1;
y2 = x2;
writeSelf(y1, ED_1);
write(y2, ED_10);

}

void executeV5_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1, y2 = 0;

readSelf(ED_1, x1);
read(ED_3, &x2);
y1 = x1;
y2 = x2;
writeSelf(y1, ED_1);
write(y2, ED_10);

}

void executeV6_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1 = 0;

readSelf(ED_1, x1);
read(ED_3, &x2);
y1 = x1;
writeSelf(y1, ED_1);

}

void executeV7_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1, y2 = 0;

readSelf(ED_1, x1);
read(ED_4, &x2);
y1 = x1;
y2 = x2;
write(y1, ED_11);

58 Chapter A. Code generated by saas for the schedule of ND 3

write(y2, ED_10);
}

void executeV8_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1, y2 = 0;

readSelf(ED_1, x1);
read(ED_3, &x2);
y1 = x1;
y2 = x2;
write(y1, ED_11);
write(y2, ED_10);

}

void executeV9_ND_3() {
unsigned int x1, x2 = 0;
unsigned int y1 = 0;

readSelf(ED_1, x1);
read(ED_3, &x2);
y1 = x1;
write(y1, ED_11);

}

void update_ND_3() {
if (j3 <= 5) {

j3++;
}
else if (j3 > 5) {

if (k3 <= 5) {
k3++;

}
}

}

void selectVariant_ND_3() {
if (k3-1 && j3-1) {

v3 = 1;
}
else if (2 <= j3 && j3 <= 4) {

if (k3-1) {
v3 = 2;

}
} // end if j3
else if (k3-1 && j3-5) {

v3 = 3;
}
else if (2 <= k3 && k3 <= 4) {

if (j3-1) {
v3 = 4;

}
else if (2 <= j3 && j3 <= 4) {

v3 = 5;
} // end if j3
else if (j3-5) {

v3 = 6;

59

}
} // end if k3
else if (k3-5 && j3-1) {

v3 = 7;
}
else if (2 <= j3 && j3 <= 4) {

if (k3-5) {
v3 = 8;

}
} // end if j3
else if (k3-5 && j3-5) {

v3 = 9;
}
else

v3 = 0;
}

void fireVariant_ND_3() {
if (v3 == 1) {

if (isDataPresentV1_ND_3()) {
executeV1_ND_3();
update_ND_3();

}
}
else if (v3 == 2) {

if (isDataPresentV2_ND_3()) {
executeV2_ND_3();
update_ND_3();

}
}
else if (v3 == 3) {

if (isDataPresentV3_ND_3()) {
executeV3_ND_3();
update_ND_3();

}
}
else if (v3 == 4) {

if (isDataPresentV4_ND_3()) {
executeV4_ND_3();
update_ND_3();

}
}
else if (v3 == 5) {

if (isDataPresentV5_ND_3()) {
executeV5_ND_3();
update_ND_3();

}
}
else if (v3 == 6) {

if (isDataPresentV6_ND_3()) {
executeV6_ND_3();
update_ND_3();

}
}
else if (v3 == 7) {

if (isDataPresentV7_ND_3()) {
executeV7_ND_3();
update_ND_3();

60 Chapter A. Code generated by saas for the schedule of ND 3

}
}
else if (v3 == 8) {

if (isDataPresentV8_ND_3()) {
executeV8_ND_3();
update_ND_3();

}
}
else if (v3 == 9) {

if (isDataPresentV9_ND_3()) {
executeV9_ND_3();
update_ND_3();

}
}

}

void schedule_ND_3() {
selectVariant_ND_3();
fireVariant_ND_3();

}

Bibliography

[1] International Business Machines Corporation (IBM). “The Cell project at IBM Research”: http://www.research.ibm.com/cell/.

[2] Sander van der Maar. “Tomography mapped onto the Cell Broadband Processor”, 2007.

[3] Xin David Zhang. “A streaming Computation Framework for theCell Processor”, 2007.

[4] Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Christopher Leger, Andrew A. Lamb, Jeremy Wong, Henry
Homan, David Z. Maze, and Saman Amarasinghe. A Stream Compiler for Communication-Exposed Architectures. In ASPLOS, 2002.

[5] Edward Ashford Lee and David G. Messerschmitt. Static Scheduling of Synchronous Data Flow Programs for Digital SignalProcessing.
IEEE Transactions on Computers, 1987.

[6] Emanuele Cannella. “Performance Evaluation of Multi-threading Operating Systems in MPSoCs Generated by ESPAM”, 2007-2008.

[7] Leiden Institute for Advanced Computer Science (LIACS).“Compilation of Matlab to Process Networks (Compaan)”:
http://www.liacs.nl/ cserc/compaan/.

[8] Bart Kienhuis and Ed F. Deprettere. “Modeling Stream-Based Applications using the SBF model of computation”.

[9] Cedric Bastoul. “CLooG, A Loop Generator For Scanning Polyhedra”.

[10] Steven Derrien, Alexandru Trujan, Claudiu Zissulescu, Bart Kienhuis and ED F. Deprettere. “Deriving efficient control in Process Networks
with Compaan/Laura”.

[11] R.L. Walke, R.W.M. Smith, and G. Lightbody. 20GFLOPS QR processor on a Xilinx Virtex-e FPGA. In proceedings of SPIE advanced
signal, 1999.

61

