
Weather Forecasting on a Multicluster

M.E. van Casteren

Supervised by

Lex Wolters

Gerard Cats

LIACS

August 31, 2008

Contents

1 Introduction 1

1.1 Background . 1

1.2 Why this project? . 1

1.3 Goal . 1

1.4 What has been done? . 1

1.5 Overview of this report . 1

2 Hirlam 3

2.1 Domain Decomposition . 3

2.2 Performance Metrics . 4

3 Hardware & Middleware 5

3.1 DAS3 Hardware . 5

3.1.1 Overview . 5

3.1.2 Vrije Universiteit . 5

3.1.3 Leiden Institute of Advanced Computer Science 5

3.1.4 Universiteit van Amsterdam . 6

3.1.5 MultimediaN Consortium . 6

3.1.6 Technische Universiteit Delft . 6

3.1.7 Summary . 6

3.2 DAS3 Connectivity . 6

3.2.1 Inter-Cluster . 6

3.2.2 Internal . 7

3.3 Working with DAS3 . 8

3.3.1 General . 8

3.3.2 Reservation System . 8

3.4 MPI . 8

3.5 Pathscale . 8

4 Implementation 9

4.1 MPI . 9

4.1.1 Obtaining MPICH2-MX . 9

4.1.2 Compiling MPICH2-MX . 9

4.2 Hirlam . 10

4.2.1 Installing Hirlam . 10

4.2.2 Configuring Hirlam . 10

4.3 TAU . 11

i

5 Experiments & Discussion 13

5.1 Questions . 13

5.2 Experiments . 13

5.2.1 Hirlam configurations . 13

5.2.2 Cluster configurations . 14

5.3 Results . 14

5.3.1 Adding more processors . 15

5.3.2 Adding more clusters . 17

5.3.3 Communication overhead . 19

6 Conclusions 24

6.1 Future work . 25

Appendix A Hirlam on DAS-3 - Location LIACS 28

A.1 Introduction . 28

A.2 Cluster Access . 28

A.2.1 SSH identities . 28

A.2.2 Keychain . 29

A.2.3 NetCat Proxy . 29

A.3 Reservation System and MPI . 29

A.4 Installing MPICH2-MX . 30

A.5 Compiling & Configuring Hirlam . 33

A.5.1 Compiling Hirlam . 33

A.5.2 Configuring Hirlam . 35

A.5.3 Multicluster . 48

Appendix B TAU Profiling 50

ii

1 Introduction

1.1 Background

The Royal Netherlands Meteorological Institute (KNMI)[1] is the primary organization
responsible for weather forecasting in the Netherlands. The forecasting system that they
use is called Hirlam: High Resolution Limited Area Model[2]. As the name implies, this
system can make detailed predictions, and it is meant for a small region. The model is
not designed for the global wrap-around from east to west, and it cannot handle poles
because the width between meridians is 0 at the poles. Hirlam operates on a rectangular
region of grid points, usually encompassing Europe and Greenland. In addition to initial
measurements covering the local region to forecast, the model requires data input for the
edges of the region, which comes from a global, lower resolution simulation that is run by
a different institute.

1.2 Why this project?

KNMI is interested in the viability of running their forecasts on a cluster or grid, instead
of on their current supercomputer. The Leiden Institute of Advanced Computer Science
(LIACS)[5] is interested in the performance of their new cluster, the third version of the
Distributed ASCI Supercomputer (DAS3)[3]. Specifically, LIACS is interested in the per-
formance of the special LAN and WAN network hardware. These interests are combined
in this master project.

1.3 Goal

The goal of this project is to evaluate the performance of the Hirlam weather forecast
software on the DAS3 grid. Of special interest is the performance of Hirlam in a multiple
cluster situation, so the forecast can be run on a higher number of processors than on a
single cluster.

1.4 What has been done?

The Hirlam forecast system has been implemented to run on DAS3, on single or multiple
clusters. To evaluate the performance of Hirlam on DAS3, several experiments have been
run with Hirlam on the DAS3 grid in different configurations, and the statistics of these
tests have been collected and analyzed.

1.5 Overview of this report

This report consists of the following sections:

Hirlam Section 2 gives an overview of the process of running a forecast with the Hirlam
software.

Hardware & Middleware Section 3 details the DAS3 hardware, and the supporting soft-
ware that was used to allow Hirlam to run on DAS3.

Implementation Section 4 describes the process of configuring Hirlam and the supporting
software to run correctly on DAS3. It also describes workarounds and scripts that
were used in this process.

1

Experiments & Discussion Section 5 describes the experiments that were run with Hir-
lam on DAS3, and discusses the results of these experiments.

Conclusions Section 6 contains the conclusions drawn from sections 4 and 5.

Appendix A Appendix A describes in detail how to get Hirlam running on DAS3.

Appendix B Appendix B describes the installation and use of TAU libraries to profile
Hirlam, and the TAU paraprof program to analyze the profiles.

2

2 Hirlam

The Hirlam[2] project is a cooperation by the meteorological institutes of the following
countries: Denmark, Estonia, Finland, France, Iceland, Ireland, The Netherlands, Norway,
Spain and Sweden.

The goal of the project is to develop and maintain a short range weather forecasting
system for operational use by all participating countries.

A complete Hirlam run is managed by a software suite called Mini-SMS, a subset of
the Supervisor Monitor Scheduler (SMS)[26] suite. Mini-SMS starts, monitors, and cleans
up after the various tasks and steps for Hirlam. It collects the logs generated by all the tasks
and gathers them in HTML files. This is done according to a task file that describes all the
steps to Mini-SMS.

The forecast itself can be executed in a single process, or with many processes in a par-
allel environment, using the Message Passing Interface (MPI)[15], see 3.4. If the forecast is
executed in parallel, the total number of processes is divided into two sets: The Hirlam pro-
cesses, which do the actual forecast, and the Hirlam Grib Server (HGS) processes, which
do the input and output (I/O) for the Hirlam processes.

• The Hirlam processes do the actual weather forecast calculations. The forecast is
done in time steps, and the length of each time step depends on the physical distance
between the grid points on the world map. Each time step, each Hirlam process needs
to communicate with its neighbor processes to transmit information about the edges
of its rectangle to its neighbors. This is called local communication.

Also after each time step, there are a number of tasks that require global communi-
cation. The horizontal diffusion of atmospheric conditions1 requires communication
in both the longitude and latitude directions. Statistics collection and synchroniza-
tion requires communication from all processes to the master process. Additionally,
on specified time steps during the forecast, the Hirlam processes communicate their
data to the HGS processes, and request new input data from the HGS processes for
the boundaries of the map.

• The HGS processes read in the data needed for the forecast, and distribute it to the
Hirlam processes. On specified time steps2, they also collect the forecast data gener-
ated by the Hirlam processes and write the forecast state to disk.

2.1 Domain Decomposition

The weather data is represented as a 3D grid with data points that contain information about
wind speed, direction, pressure, temperature, etc. for various layers in the atmosphere, and
the surface. The grid that is used for all experiments, unless otherwise noted, has 582 data
points in the X direction (Longitude), 448 data points in the Y direction (Latitude) and
60 levels in the Z direction (Altitude). For this grid, the forecast uses time steps of 360
seconds, or 6 minutes. The grid is divided into smaller rectangles in the X-Y plane3, and
each Hirlam process does the calculations for its own rectangle. Because the data space
to work on is to be divided in 2D, the number of processes Hirlam can be run with must
also be defined in 2D. A number of processes for the X and Y direction determine how
big the rectangle is for each process. In addition, the number of processes to be used for
HGS must be defined. In the rest of this report, these will be referred to as nx, ny and ni/o

1This is done by solving a semi-implicit system with Helmholtz equations, for more information see [27] and
[28]. For detailed information about the communication for the diffusion, see [29].

2Typically every 3 hours of forecast time
3Each rectangle contains the full number of Z-layers.

3

respectively. The total number of processes used for the forecast is thus nx × ny + ni/o. It
has been observed[24] that for best performance, the values of nx and ny should be close
together, and nx must be smaller or equal to ny . These observations have been used as
guidelines for the experiments of this project.

2.2 Performance Metrics

The most direct way to measure and analyze the performance of Hirlam is to measure
the time it takes to complete a certain forecast in different situations. Although Hirlam
outputs the time it took to complete the forecast in its logs, this time is not measured
accurately enough, and does not include the time spent on the last I/O step. Besides, in a
parallel environment Total Time spent on the forecast can be split up into two main groups:
Computation Time and Communication Time. To measure accurately the time spent on the
forecast, as well as the Computation and Communication time, a software package called
Tuning and Analysis Utilities (TAU)[23] has been used.

TAU provides a library that can be linked to the program that needs to be profiled.
By itself the TAU library will measure separately the time spent on MPI calls and on the
profiled program. Though the MPI calls are part of the program, because they are sepa-
rately measured, TAU can measure Computation time by excluding the time spent in MPI
calls from Total time. Communication Time is calculated for this project by subtracting
Computation Time from Total Time. With additional code instrumentation it is possible to
measure the time spent on different program functions separately, but this feature was of
no interest, since the interest of this project lies with Hirlam’s Communication and overall
Computation Time.

Aside from the time measured by TAU, there is a derived metric that is of interest:
Comparing the time of different experiments to the time of a baseline run gives an idea of
the relative speedup compared to that baseline run, how well the forecast scales as more
processors and/or clusters are added.

In the experiments for this project, the following metrics have been used:

Total time Measured by TAU as TAUInclusive, this is the total time spent in the forecast
program, including all MPI calls.

Computation time Measured by TAU as TAUExclusive, this is the time spent on only the
forecast program, excluding all MPI calls.

Communication time Defined as TAUInclusive − TAUExclusive, this is the time spent on
MPI communication as a whole.

Relative Speedup A derived metric that can be calculated from either Total, Computation
or Communication time. If BaseTime is the Total, Computation or Communica-
tion time of a chosen baseline run, and Time is the time of a different run, then the
Speedup of the second run compared to the baseline run can be defined as BaseTime

Time .

Individual MPI routines TAU measures the time spent in all individual MPI routines.
These routines have names such as MPI_Wait, MPI_Send, MPI_Recv. The times for
the most significant of these routines have been used in the analysis.

4

3 Hardware & Middleware

3.1 DAS3 Hardware

3.1.1 Overview

DAS3 (Distributed ASCI Supercomputer)[3] is a grid that consists of five clusters at four
different universities:

• Vrije Universiteit (VU)[4]

• Leiden Institute of Advanced Computer Science (LIACS)[5]

• University of Amsterdam (UvA)[6]

• The MultimediaN Consortium (UvA-MN)[7] - Cluster located at UvA.

• Technical University Delft (TUD)[8]

The clusters were built by ClusterVision[9]. Each cluster has a head node which fulfills the
role of fileserver, and a number of compute nodes. The nodes are connected to each other
(LAN) and to the other clusters (WAN) via a large switch. The optical network hardware
used for this is produced by Myricom[11], and uses an American National (ANSI) Standard
called Myrinet[12].

The hardware used for the various clusters differs slightly. The following subsections
describe the hardware of each cluster in detail, and subsection 3.1.7 provides a quick table
overview.

3.1.2 Vrije Universiteit

The DAS3 cluster at the VU is equipped with Ethernet connections of 1 Gbit/s and 10
Gbit/s, as well as a 10 Gbit/s Myrinet interconnect.

Compute Nodes The VU cluster has 85 dual-CPU, dual-core compute nodes. The proces-
sor model is an AMD Opteron DP 280, with a clock speed of 2.4 GHz. Each node
has a total of 4 processor cores. Each node also has 4 GB of memory and 250 GB
hard drive space.

Head Node The head node at the VU also has a dual-CPU, dual-core AMD Opteron DP
280 processor with a clock speed of 2.4 GHz. However it has 8 GB of memory and
a RAID6 storage system with 10 TB of space.

3.1.3 Leiden Institute of Advanced Computer Science

The DAS3 cluster at LIACS is equipped with Ethernet connections of 1 Gbit/s and 10
Gbit/s, as well as a 10 Gbit/s Myrinet interconnect.

Compute Nodes The LIACS cluster has 32 dual-CPU nodes. The processor model is an
AMD Opteron DP 252, with a clock speed of 2.6 GHz. Each node also has 4 GB of
memory and 400 GB hard drive space.

Head Node The head node at LIACS has a dual-CPU, dual-core AMD Opteron DP 280
processor with a clock speed of 2.4 GHz. It has 8 GB of memory and a RAID6
storage system with 10 TB of space.

5

3.1.4 Universiteit van Amsterdam

The DAS3 cluster at the UvA is equipped with Ethernet connections of 1 Gbit/s and 10
Gbit/s, as well as a 10 Gbit/s Myrinet interconnect.

Compute Nodes The UvA cluster has 41 dual-CPU, dual-core nodes. The processor
model is an AMD Opteron DP 275, with a clock speed of 2.2 GHz. Each node
also has 4 GB of memory and 250 GB hard drive space.

Head Node The head node at the UvA has a dual-CPU, dual-core AMD Opteron DP 275
processor with a clock speed of 2.2 GHz. It has 8 GB of memory and a RAID6
storage system with 5 TB of space.

3.1.5 MultimediaN Consortium

The MultimediaN DAS3 cluster is equipped with Ethernet connections of 1 Gbit/s and 10
Gbit/s, as well as a 10 Gbit/s Myrinet interconnect.

Compute Nodes The MultimediaN cluster has 46 dual-CPU nodes. The processor model
is an AMD Opteron DP 250, with a clock speed of 2.4 GHz. Each node also has 4
GB of memory and 1.5 TB hard drive space.

Head Node The head node at MultimediaN has a dual-CPU, dual-core AMD Opteron DP
275 processor with a clock speed of 2.2 GHz. It has 16 GB of memory and a RAID6
storage system with 3 TB of space.

3.1.6 Technische Universiteit Delft

The DAS3 cluster at TUD is equipped with Ethernet connections of 1 Gbit/s and 10 Gbit/s,
but unlike the other clusters it has no 10 Gbit/s Myrinet interconnect.

Compute Nodes The TUD cluster has 68 dual-CPU nodes. The processor model is an
AMD Opteron DP 250, with a clock speed of 2.4 GHz. Each node also has 4 GB of
memory and 250 GB hard drive space.

Head Node The head node at TUD has a dual-CPU, dual-core AMD Opteron DP 280
processor with a clock speed of 2.4 GHz. It has 4 GB of memory and a RAID6
storage system with 5 TB of space.

3.1.7 Summary

Table 1 gives a quick overview of the hardware used on the various clusters.

3.2 DAS3 Connectivity

3.2.1 Inter-Cluster

The DAS3 clusters are interconnected via SURFnet[21], a country wide network that con-
nects academic and research institutions with one another. The Starplane [22] project pro-
vides the DAS3 clusters with dedicated light paths for intercluster communication, over the
SURFnet backbone.

Because the Myrinet protocol is not designed for use in segmented switching networks,
currently it is impossible to set up more than two MX links between two different clusters

6

VU LIACS UvA UvA-MN TUD
Nodes 85 32 41 46 68
CPUs 2 2 2 2 2

Cores per CPU 2 1 2 1 1
Clock Speed (GHz) 2.4 2.6 2.2 2.4 2.4

Memory (GB) 4 4 4 4 4
File Server disk space (TB) 10 10 5 3 5

Node disk space (GB) 250 400 250 1500 250
Myrinet Yes Yes Yes Yes No

Gbit Ethernet Yes Yes Yes Yes Yes

Table 1: DAS3 Hardware.

in an MPI program, since this communication has to go over the Starplane links between
the clusters, and there are only two logical links between each pair of clusters. Two direct
MX connections in MPI block further connections over the Starplane link, therefore it is
currently impossible to run a multicluster program with the MX protocol when the number
of required connections is higher than two. Consequently, medium and larger scale mul-
ticluster programs have to be run with the TCP/IP protocol, so the Starplane links can be
time-shared between all processes.

3.2.2 Internal

All DAS3 clusters except TUD are internally connected by a high speed 10 Gigabit/s optical
network and a Myrinet switch. Latency in myrinet mode between the nodes is 2.3 µs.

All nodes also have regular 1 Gbit/s Ethernet lines, connected to stackable Nortel[20]
5530 switches, as a second internal network. The head node has a 10 Gbit/s Myrinet
connection to the Myrinet switch and a 10 Gbit/s Ethernet connection to the Nortel 5530
switches. The Nortel switches also service a 10 Gbit/s Ethernet connection to the local
university’s network, while the Myrinet switch has 8 10 Gbit/s Ethernet connections to
SURFnet[21], specifically a Nortel OME 6500. These connections allow fast communica-
tion to the other DAS3 clusters.

Figure 1 gives a schematic overview of the internal connections of a DAS3 cluster.

������������	���

�����

���������

��	
���
����

�������
�����

���������
������
����

��������
������

�������	���������

��������	���������

��������	��������

��������
������	���

������������ ��

!����

Figure 1: Overview of the internal network connections of a DAS3 cluster.

For standard communication over the Myrinet hardware, the Myrinet drivers encapsu-
late the default TCP/IP protocol inside the Myrinet eXpress (MX)[12] protocol used on the

7

optical network. However, programs specially written for the myrinet hardware can also
use the MX protocol directly, avoiding the overhead of TCP/IP encapsulation.

3.3 Working with DAS3

All head and compute nodes run Scientific Linux[10] as their operating system. For user
home directories and scratch space, the compute nodes have access to the file structure of
the head node via the Network File System (NFS). This is transparent for the user; from
the user’s perspective, all compute nodes and the head node have a shared file system.

3.3.1 General

Users work on DAS3 with a secure shell (SSH) connection to the head node. Aside from
the user home directory /home/$user, users also have access to a scratch space located at
/var/scratch/$user that can be used as a temporary working directory for large amounts of
data.

3.3.2 Reservation System

To run jobs on the compute nodes of a cluster, users are expected to use DAS3’s reser-
vation system, the Sun Grid Engine (SGE)[13], to reserve a number of nodes. When the
reservation is granted, the job can begin to run on the nodes granted by the reservation.

For further details regarding DAS3’s usage policies and instructions, please refer to the
DAS3 Usage Policy[14].

3.4 MPI

MPI (Message Passing Interface) is a library specification designed to make it easier to
develop parallel programs where separate processes take on different tasks, but need to
communicate with each other. There are many implementations of MPI, the most promi-
nent at the time of writing are MPICH[16], MPICH2[17], and OpenMPI[18]. All three are
freely available, and open source.

Myricom has ported a special version of MPICH2, MPICH2-MX[19]. This version
can take advantage of a low-level implementation of the Myrinet-MX protocol for a cluster
equipped with Myrinet hardware. This enables MPICH2-MX to directly use Myricom’s
own Myrinet eXpress (MX)[12] protocol for MPI communication, thereby bypassing the
overhead created by the TCP/IP encapsulation.

For the experiments in this project, MPICH2-MX version 1.0.6 rc1 was chosen to be
able to perform experiment runs of Hirlam with both the MX protocol and the standard
TCP/IP protocol, so the differences could be compared.

3.5 Pathscale

LIACS has obtained a license for the proprietary PathScale[25] Compiler Suite. Pathscale
is a compiler for 64-bit Linux systems, and promises up to 40% performance improve-
ment for compiled programs over other compilers. This compiler has been used to compile
MPICH2-MX and Hirlam for the highest possible performance. The exact version as re-
ported by Pathscale is: QLogic PathScale(TM) Compiler Suite: Version
3.0.

8

4 Implementation

To implement Hirlam on DAS3, several challenges and obstacles had to be overcome.
This section will describe how these challenges and obstacles were overcome to achieve a
successful Hirlam installation on DAS3. For specific details on the scripts and commands
used, refer to appendices A and B.

4.1 MPI

Hirlam cannot be run on multiple nodes without an MPI library. DAS3 has an installation
of MPICH and OpenMPI available, however an alternative to these options is to manually
compile an MPI library in a local directory in the user home directory. Reasons for doing
this are:

• MPICH cannot be linked to a Pathscale compiled application without being compiled
by Pathscale itself.

• MPICH2-MX is a version of MPICH2 patched by Myricom to directly use the MX
protocol. This version offers the highest performance with the MX protocol.

• The manually compiled MPI library will be compiled with Pathscale, which will
offer increased performance of the MPI libraries during a Hirlam run.

Therefore, MPICH2-MX will be manually compiled for use with Hirlam.

4.1.1 Obtaining MPICH2-MX

MPICH2-MX is only available from Myricom per email request and on submission of a
valid Myrinet card serial number. Fortunately the MX libraries at DAS3 include a diag-
nostic tool that prints information about the Myrinet card of a node, including the serial
number.

4.1.2 Compiling MPICH2-MX

Due to the custom setup and Pathscale compiler that will be used, MPICH2-MX requires
some preparation to compile correctly.

To allow the use of the TotalView debugger, MPICH2-MX needs to be linked with
shared Python libraries. These are not available on DAS3, so Python was configured and
installed manually in the local directory. A problem with one of the configure scripts in
MPICH2-MX prevented it from picking up the Python installation, so this configure script
had to be patched. Although the use of the TotalView debugger was not necessary for this
project, this information is included for the benefit of future projects. For more information
about the use of TotalView with Hirlam, see [30].

MPICH2-MX also needs to link against the MX kernel bypass libraries, however the
original libraries installed at DAS3 produced a linker error. After some discussion about the
problem, DAS3 administration compiled a special version that worked with the manually
compiled MPICH2-MX.

To allow for working multi cluster runs, the recompiled MX library as well as the Path-
scale installation were copied to the local directory. This is because both the recompiled
MX library and Pathscale are only available on the cluster at LIACS. The local direc-
tory was synchronized to the other clusters after the installation process of MPICH2-MX,
Hirlam and TAU was complete.

9

The main Makefile template for MPICH2-MX used an old form of library inclusion
that the Pathscale compiler does not recognize, so this Makefile template also required a
patch.

To make it convenient to compile MPICH2-MX multiple times4, a wrapper script was
used. In this wrapper script the installation directory and compilation options can be easily
altered. The wrapper script is available in listing 7, appendix A.

After compilation is successful, the only further thing MPICH2-MX needs to function
is a secret passphrase for the ring daemons that facilitate the connections between MPI
processes. This passphrase is located in a file in the user’s home directory with owner-only
access rights. In multicluster runs, this file needs to be present on all file servers where
Hirlam processes will be run.

4.2 Hirlam

To obtain the Hirlam source code, an account to the Hirlam HexNet site is required.
The Hirlam source can be checked out from HexNet’s subversion repository with a valid
HexNet username/password.

4.2.1 Installing Hirlam

Hirlam’s main Makefile was edited to use the architecture most appropriate to DAS3,
linuxgfortran. However the linuxgfortran configuration file required some
editing for Hirlam to compile correctly.

Hirlam requires libraries from the HDF5 toolkit from the HDF group[37]. This library
was initially missing, but was later installed by DAS3 administration. The location of this
library was added to the linuxgfortran configuration file, as well as the inclusion of
the szip library that HDF was compiled with.

Furthermore, the linuxgfortran configuration file had to be edited to set the com-
piler to Pathscale and include the necessary MPI and MX libraries. The final version of the
linuxgfortran configuration file is available in listing 12, appendix A.

In Hirlam’s make process, the many fortran files are first preprocessed to new fortran
files, which are then subsequently compiled. However unlike the gnu compilers when
preprocessing a fortran file, Pathscale does not have an option to save the output code to a
new file, it will always be directed to stdout. Therefore this stdout had to be redirected to
the desired fortran file, which required a number of patches to Hirlam’s makefiles.

After all these preparations were complete, Hirlam could be compiled.

4.2.2 Configuring Hirlam

To run Hirlam, the user must set up an experiment directory. The basic files for this ex-
periment can be “checked out” from the Hirlam source directory with the Hirlam launcher
script.

The main configuration file for a Hirlam experiment is Env_system. In this configu-
ration file, the following environment variables were (re)defined:

• The COMPCENTRE variable was set to “DAS3”, which is used in Hirlam’s job sub-
mission script.

4This is useful to create multiple MPICH2-MX installations, one for the MX protocol, and one for TCP. In
combination with a symbolic link this allows for quick switching between the MX and TCP libraries.

5Hierarchical Data Format

10

• The scratch directory for Hirlam.

• Variables to control the number of processes Hirlam runs with.

• HGS_IO_RANKS, which controls the process ids to be used for HGS processes.
The HGS processes are run at the highest process ids by default, which puts them
on a secondary cluster in a multicluster run. Hirlam would not run with the HGS
processes located on a secondary cluster, so this variable keeps them on the primary
cluster in all configurations where the number of nodes on the primary cluster is at
least 2.

• The LAUNCH variable which influences how Hirlam launches a program.

The job submission script submission.db is used by Mini-SMS to submit the var-
ious steps in the Hirlam process. This script had to be adapted to work for the DAS3
COMPCENTRE, and to use the reservation script. The adapted version for DAS3 is avail-
able in listing 16, appendix A.

In the latest Hirlam version, some data preparation for the new Harmonie forecasting
model is done during the verification phase.. Due to a bug in the makefile, this part of the
verify script will cause Hirlam to fail. This can be solved either by patching the makefile,
or disabling this part of the verification phase. Since Harmonie was not used in this project,
the verification phase was disabled by modifying the Env_expdesc script.

Hirlam cannot make a forecast without input data. Because the process to generate
these input files necessary for a forecast on an arbitrary date is rather time consuming,
pregenerated files were used for one specific date to forecast. The directory structure that
these files need to be in is very specific and had to be deduced through trial and error. The
files were prepared in the correct directory structure in the experiment directory. A wrapper
script was used that copies the prepared directories to scratch space, then starts Hirlam. The
script is available in listing 18, appendix A.

To run Hirlam on multiple clusters, the multicluster reservation script was used. This
script is a wrapper around the DAS3 reservation system and is used by submission.db.
It can ask for reservations on multiple clusters in sequence and will cancel them after the
job is finished, but cannot guarantee the reservations on multiple clusters will be granted
simultaneously. The script can be edited to control the maximum number of nodes to
reserve on each cluster. The script is available in listing 15, appendix A.

The local directory that contains all custom libraries required for a Hirlam run had
to be synchronized to the other cluster. This was done with rsync, an ssh-based remote
synchronization tool.

The multicluster script was not designed for two simultaneous MPI runs, however if
there were enough nodes available, Mini-SMS would launch the Analysis Postprocess-
ing step and the Forecast step simultaneously, which both use the multicluster reservation
script. This would cause Hirlam to crash with no apparent error, so the Mini-SMS taskfile
hirlam.tdf was edited to make the Forecast depend on the completion of the Postpro-
cessing step. This ensured no two multicluster jobs would be launched simultaneously.

4.3 TAU

The TAU source can be obtained by submitting an email address and a comment to the
TAU website[23].

TAU was compiled with a wrapper script similar to the one used for MPICH2-MX. It
is available in listing 22, appendix B.

11

In order for TAU to intercept Hirlam’s MPI calls, the TAU libraries had to be linked
against Hirlam before the MPICH2-MX libraries, so the linuxgfortran configuration
file was edited to include the TAU libraries before those of MPICH2-MX.

In multicluster runs, the profile data generated by processes on secondary clusters had
to be synchronized back to the primary cluster. The multicluster reservation script was
edited to take care of this after the job was finished.

Finally, the TAU lib and bin directories were added to the environment, a directory
to contain the profile data was created and Hirlam was recompiled.

12

5 Experiments & Discussion

5.1 Questions

To evaluate the performance of Hirlam on DAS3, the primary questions that had to be
answered were:

1. How well does the performance of Hirlam scale up when adding more processors
for the same forecast? To evaluate this, several experiments with different processor
amounts are performed.

2. What is the performance impact on Hirlam when switching from a single cluster to
multiple clusters? To evaluate this, a single Hirlam experiment with the same amount
of processors is performed on different numbers of clusters.

3. What is the impact of adding more processors to the same forecast, but on a different
cluster? This is a more difficult question to answer, because the performance of
Hirlam is influenced by the chosen domain decomposition, see 2.1.

5.2 Experiments

5.2.1 Hirlam configurations

Table 2 shows the different Hirlam configurations that were used for the experiments. The
Total Nodes column shows the number of physical nodes the entire simulation will be run
on. Because each experiment was executed with two HGS processes and two processes per
node, Total Nodes is always:

Total Nodes =
Hirlam Processes + 2

2

Configuration nx ny Hirlam Processes Total Nodes
A 4 6 24 13
B 4 8 32 17
C 6 6 36 19
D 6 8 48 25
E 7 8 56 29
F 6 10 60 31
G 8 8 64 33
H 8 9 72 37
I 12 16 192 97

Table 2: The Hirlam configurations used for the experiments

All configurations used a forecast length of 12 hours. For configurations A through H,
the chosen Hirlam domain was: nlon = 582, nlat = 448, nlevels = 60, ∆t = 360.

Configuration I uses a different domain: nlon = 1158, nlat = 896, nlevels = 60,
∆t = 180.

13

Configuration 1 Cluster 2 Clusters 3 Clusters 4 Clusters
p1 n1 p2 n2 p3 n3 p4 n4

A 24 12 12 6 8 4 6 3
B 32 16 16 8 - - 8 4
C 36 18 18 9 12 6 - -
D 48 24 24 12 16 8 12 6
E 56 28 28 14 - - 14 7
F 60 30 30 15 20 10 - -
G - - 32 16 - - 16 8
H - - 36 18 24 12 18 9
I - - - - - - 48 24

Table 3: The number of Hirlam processes assigned to each cluster for runs with 1, 2, 3 or 4
clusters. The columns pi show the number of processes, the columns ni show the number
of nodes.

5.2.2 Cluster configurations

Table 3 shows how the Hirlam processes of a Hirlam configuration are assigned in runs
with one, two, three or four different clusters. The total number of Hirlam processes from
table 2 is always equally divided over the clusters that participate in the run. One extra
node is always used on the primary cluster for the two HGS processes.

For example, a run of configuration E, see table 2, would need 56 Hirlam processes. The
number of nodes required would thus be (56+2)/2 = 29 nodes. Suppose this configuration
E will be run on 4 clusters, see table 3. Each cluster would run 14 Hirlam processes on 7
nodes, with the primary cluster also running the two HGS processes. Therefore 8 nodes
would be reserved on the primary cluster, and 7 each on the three secondary clusters.

Configuration I was a special experiment. The purpose of this experiment was to ex-
amine the performance impact of using a very large amount of processors for a forecast.
This configuration was run on a grid with four times as many grid points as the standard
grid. Also, the timestep length was halved from 6 minutes to 3 minutes. This means the
total amount of calculations to be done is 8 times that of the other Hirlam runs. However,
the number of processors assigned to configuration I is 8 times that of a 24-processor run,
8 ∗ 24 = 192, so the amount of forecast calculations per processor is the same as that of
a 24-processor run. Therefore the time results of this configuration will be divided by 8,
and compared with runs from configuration A to examine the effect of using a very high
number of processors for the forecast.

To give an insight into the performance impact of using TCP/IP, the single cluster ex-
periments were run with both the Myrinet-MX protocol and the TCP/IP protocol.

When all these experiments were complete, the timing data from TAU was collected
and processed. With gnuplot, graphs were plotted from this processed data.

5.3 Results

In table 3, subsection 5.2.2, the different cluster setups for configurations A through I were
shown. For each of these cluster setups, an experiment was run. From the timing results, 6
relative speedup graphs were plotted for Total, Computation and Communication time, for
single and multi cluster runs. Two histograms showing the timings for the most significant
MPI functions were also produced from the detailed data that TAU has recorded. With
these graphs and histograms, the questions of subsection 5.1 can now be answered.

14

5.3.1 Adding more processors

Figures 2, 3 and 4 show the speedup graphs for Total Time, Computation Time and Com-
munication Time respectively for the single cluster experiments. They will be used to
answer question 1 of subsection 5.1: The performance of Hirlam when adding more pro-
cessors for the same forecast.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

7264605648363224

S
pe

ed
up

Number of Processors

Hirlam Single Cluster Total Time

MX
MX Relative Linear Speedup
TCP

Figure 2: Single cluster relative speedup plot of Hirlam Total Time. The base run used
for the y axis and the speedup line is the 24-processor MX run, with a Total Time of 1391
seconds

In figure 2 one can see that the single cluster MX series sinks slightly below the relative
linear speedup line with higher processor counts. At 48 processors, MX is at 1.85 speedup,
an 85% increase compared to 24 processors, and 92.5% of a linear performance. There is
also a gap between the MX and TCP runs. At 24 processors, the TCP run has a speedup
of 0.9, or 90% of the performance of the MX run. The 48-processor TCP run reaches
a speedup of 1.60, a 74% increase compared to 24 processors, and 85% performance of
it’s MX counterpart at 1.85 speedup. It appears the gap between the TCP and MX series
slightly increases with increasing processor counts.

Figure 3 shows that the Computation Time for both the MX and TCP runs speeds up
linearly. The TCP runs are only very slightly below their counterpart MX runs.

In figure 4, one can see that a large gap forms between linear speedup and actual Com-
munication Time with an increasing processor count. The Linear Speedup line in this figure
should be interpreted as the ideal Communication Time, if the communication overhead of
the forecast were a constant percentage. At 48 processors, MX performs at a 1.48 commu-
nication speedup, a 48% increase compared to the 24-processor run. TCP at 48 processors
on the other hand has 0.92 speedup, a 23% increase compared to the 24-processor TCP run
with 0.75 speedup.

The performance loss of TCP compared to MX is explained by the extra layers of
packet and connection handling that are necessary for TCP to function in segmented and
potentially unreliable networks such as the internet. MX in contrast is a protocol designed
for use in unsegmented and reliable cluster networks, and does not have this extra overhead.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

7264605648363224

S
pe

ed
up

Number of Processors

Hirlam Single Cluster Computation Time

MX
MX Relative Linear Speedup
TCP

Figure 3: Single cluster relative speedup plot of Hirlam Computation Time. The base run
used for the y axis and the speedup line is the 24-processor MX run, with a Computation
Time of 1144 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

7264605648363224

S
pe

ed
up

Number of Processors

Hirlam Single Cluster Communication Time

MX
MX Relative Linear Speedup
TCP

Figure 4: Single cluster relative speedup plot of Hirlam Communication Time. The base
run used for the y axis and the speedup line is the 24-processor MX run, with a Communi-
cation Time of 247 seconds.

16

To answer the question of adding more processors, it can now be said that on a single
cluster when doubling the number of processors from 24 to 48, Hirlam will gain approxi-
mately 85% performance increase with the MX protocol, and 74% increase with the TCP
protocol. The efficiency losses by MX and in particular TCP in figure 2 can be attributed
to the increased communication overhead. There is no significant loss in efficiency due to
scale by the forecast algorithm itself.

5.3.2 Adding more clusters

Figures 5, 6 and 7 show the speedup graphs for Total Time, Computation Time and Com-
munication Time respectively for the multi cluster experiments. They will be used to an-
swer both questions 2 and 3 of subsection 5.1: The performance impact of adding more
clusters to a single forecast, and the performance gain of adding more processors to the
same forecast, but on a different cluster.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

7264605648363224

S
pe

ed
up

Number of Processors

Hirlam Multi Cluster Total Time

1 Cluster
1 Cluster Relative Linear Speedup
2 Cluster
3 Cluster
4 Cluster
192 Processors, 4 Cluster

Figure 5: Multi cluster relative speedup plot of Hirlam Total Time. The base run used for
the y axis and the speedup line is the 24-processor single cluster TCP run, with a Total
Time of 1499 seconds. The time of the 192-processor run was divided by 8, see 5.2.

The multi cluster series in figure 5 have a curve that is not only significantly below the
single cluster curve, but also flatter. However, the multi cluster curves are close together.
At 24 processors the multi cluster runs have a speedup of 0.79-0.87, 79-87% performance
of the single cluster run. At 48 processors the single cluster run gains a speedup of 1.74,
a 74% increase compared to 24 processors, and 87% of a linear performance. The 2-
cluster run has a speedup of 1.34, an increase of 54% compared to 24 processors, and 77%
performance of the single cluster run. The 4-cluster run has a speedup of 1.23, an increase
of 56% compared to 24 processors, and 71% performance of the single cluster run.

To formulate an answer to question 3, adding more processors on a different cluster, we
will compare single cluster runs with multicluster runs that have a higher number of proces-
sors. At 48 processors, the 2-cluster run has a speedup of 1.34, a 34% increase compared
to the single cluster 24 processor run. Adding another 24 processors, the 72-processor run

17

has a speedup of 1.61, a 61% increase compared to single cluster, 24 processors. Looking
at 36 processors, single cluster has a speedup of 1.38, and the 72-processor 2-cluster run
has a speedup of 1.61, a 17% performance increase.

The 192-processor run is far below that of the comparable 24-processor runs at 0.45
speedup, which is at 57% performance compared to the 4-cluster 24-processor run with
0.79 speedup.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

7264605648363224

S
pe

ed
up

Number of Processors

Hirlam Multi Cluster Computation Time

1 Cluster
1 Cluster Relative Linear Speedup
2 Cluster
3 Cluster
4 Cluster
192 Processors, 4 Cluster

Figure 6: Multi cluster relative speedup plot of Hirlam Computation Time. The base run
used for the y axis and the speedup line is the 24-processor single cluster TCP run, with a
Computation Time of 1169 seconds. The time of the 192-processor run was divided by 8,
see 5.2.

Figure 6 shows that the Computation Time for both the single and multi cluster runs
speeds up linearly. The multi cluster runs are slightly below the single cluster runs, but
are just as steep as the linear speedup line. The 192-processor run also shows no perfor-
mance loss compared to the 24-processor runs. This demonstrates that with a larger grid,
distribution of the workload over a very high amount of processors is not a problem for the
computational part of the algorithm.

The slight loss of performance for the multi cluster runs can be explained by the fact that
the single cluster runs were all done at the LIACS cluster, which has the highest processor
clock speed. The other clusters have processors approximately 10% slower which becomes
visible as a slight performance loss in computation for multi cluster runs.

In figure 7, a large gap forms between linear speedup and single cluster Communication
Time with an increasing processor count. There is also a significant gap between the single
cluster runs and the multi cluster runs. While Communication Time for 48 processors on
a single cluster still gains a speedup of 1.23, the speedup for all multi cluster runs remains
between 0.52 and 0.68, showing no significant gain. Also an interesting observation is that
even within the Communication Time graph, the multi cluster runs perform very similarly.
The special 192-processor run has extremely poor performance, with a speedup of only
0.16.

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

7264605648363224

S
pe

ed
up

Number of Processors

Hirlam Multi Cluster Communication Time

1 Cluster
1 Cluster Relative Linear Speedup
2 Cluster
3 Cluster
4 Cluster
192 Processors, 4 Cluster

Figure 7: Multi cluster relative speedup plot of Hirlam Communication Time. The base run
used for the y axis and the speedup line is the 24-processor single cluster TCP run, with a
Communication Time of 330 seconds. The time of the 192-processor run was divided by
8, see 5.2.

To answer the question of adding more clusters for a single forecast, it can now be said
that there is a significant performance impact for switching from one cluster to multiple
clusters. At 24 processors, Total Time multi cluster performance is 79-87% of single clus-
ter performance, but the performance gap increases with higher processor counts. At 48
processors, Total Time multi cluster performance is 71-77% of single cluster performance.
However, there is no significant performance impact for adding more clusters to a forecast
that is already multicluster.

To answer the question of adding more processors to a single forecast, but on a dif-
ferent cluster, it can be said that there is less benefit to doing this when the initial number
of processors per cluster increases. Adding 24 more processors on a second cluster to a
24-processor run gives a 34% performance increase, and adding another 24 on a third clus-
ter gives a 61% increase. However, adding 36 more processors on a second cluster to a
36-processor run gives only a 17% performance increase, half the increase seen with 24
processors. There is a point where doubling the number of processors onto a second cluster
will no longer give a performance benefit. As the 36 processor run shows, this point is
already very close.

5.3.3 Communication overhead

From the previous subsections, it is now clear that the computational part of the forecast
algorithm scales close to linearly when more processors are added. It is the Communication
Time that causes the poor performance for multi cluster runs. Figure 8 and 9 show a stacked
histogram breakdown of the time spent by Hirlam processes in the 7 most significant MPI
communication functions for the experiments that have been run, in absolute time and in
percentages. These figures can give additional insight into which kind of communication
increases the most in multi cluster runs.

19

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

�����������	
�����

�����������	
������

�����������	
��

�����������	
��

����������	
��

����������	
��

����������	
��

����������	
��

����������	
��

� ��������� ��������� ��������� ��������� ��������� ���������

������������	�����

� !�"#��	������#�

� !$%�����& � !$%������ � !$���' � !$(��� � !$!
��) � !$%��� � !$����)	��

*
��+

Figure 8: Histogram breakdown of absolute time spent in MPI communication functions.
The 192-processor run has been omitted from this figure because it would marginalize the
other experiments in the graph too much.

20

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

����������	
��

����������	
�����

����������	
������

����������	
��

����������	
��

�����������	
�����

�����������	
������

�����������	
��

�����������	
��

����������	
��

����������	
��

����������	
��

����������	
��

����������	
��

�������������	
��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

������������	�����

 !"�#$��	������$��%!�����&

 !"'(�����) !"'(������ !"'���* !"'+��� !"'"
��, !"'(��� !"'����,	��

Figure 9: Histogram breakdown of percentage of time spent in MPI communication func-
tions.

21

Figure 8 shows again that the multi cluster runs spend significantly more time in com-
munication functions than the single cluster runs. However examination of figure 8 re-
veals a trend that is confirmed by figure 9: The multi cluster runs see an increased amount
and percentage of time spent in the MPI_Waitany and MPI_Waitall functions compared
to single cluster runs, with the other MPI functions becoming a smaller factor. It can be
observed that in multi cluster runs, the MPI functions MPI_Waitany and MPI_Waitall rep-
resent the bulk of the increased communication time, while the other MPI functions do
not change significantly. When looking at only multi cluster runs, it can also be observed
that MPI_Waitany time increases significantly as the number of clusters is increased, and
MPI_Waitall decreases significantly.

Examination of the Hirlam source code shows that the local communication step uses
only MPI_Waitany calls when waiting for another process. The global communication step
uses only MPI_Waitall calls to wait on another process. The HGS communication step uses
both MPI_Waitall and MPI_Wait calls to wait for another process, however as figure 8 and
9 showed, the time spent on MPI_Wait does not change significantly for the different runs.
These MPI wait calls are not used elsewhere in the code. MPI_Waitall time can thus be
attributed to communication of a global nature: HGS and the global communication step.
MPI_Waitany time can be attributed to the local communication step.

This information can be combined with the observation that as more clusters are added,
MPI_Waitany time increases percentually, while MPI_Waitall time decreases percentually.
In other words, when switching from 1 to 2 clusters, both local and global communication
increase by a large amount. When increasing the cluster count beyond 2, the local commu-
nication step increases again, but the global and HGS communication time decreases.

The Starplane project provides an abstraction from the SURFnet hardware that connects
the different DAS3 sites, and on a logical level, every cluster is connected to every other
cluster. This means that in two-cluster runs, there are two links in total, in three-cluster
runs, there is a total of 6 links, and in four-cluster runs, there is a total of 12.

To help understand the following conclusions, figure 10 depicts how the Hirlam pro-
cesses in a 24-processor run are spread out across the Hirlam domain, for two, three and
four clusters. The differently colored areas represent the different clusters the processes
run on. Any time a process of one color communicates with a process of another color, the
communication will have to go across the Starplane network.

��������	�
�������	� ��������	�

� � � � � � � � �

� � � � � � � � � � � �

� �
 � �
 � �

� � � � � � � � � � � �

� � �� � � � �� � � � �� �

�� �
 �� �� �� �
 �� �� �� �
 �� ��

Figure 10: Borders between the clusters for 24-processor runs

Now the following conclusions can be drawn regarding communication overhead:

• Introducing a Starplane link into the network of a Hirlam run (a two cluster run
compared to a single cluster run) greatly slows down the Local, Global and HGS
communication steps. The two links between the clusters have to be time-shared
by all processes for communication. In the figure 10 example, the yellow processes
now have to communicate via a Starplane link to the green processes. A plausible
explanation for this slowdown due to time-shared links is that TCP communication
over the Starplane network goes through a “queue” for encapsulation and transport,

22

causing increased MPI waiting times. MX connections between two clusters take up
an entire link, so these connections do not need to be time-shared, and no queues or
encapsulation would be necessary.

• Increasing the number of clusters above 2 increases the number of Starplane links in
the network between the nodes. For the Local communication step this is harmful,
since there are now more nodes that must transmit information to a neighbor via a
Starplane link. In the figure 10 example, the 4-cluster example shows many more
borders between the different processes than the 2-cluster example.

However, in the Global and HGS communication step, there was already a lot of
communication that had to cross the Starplane link, because of the All-to-one na-
ture of these steps. Because every cluster is connected to every other cluster, this
means that a smaller portion of this All-to-one communication has to go over each
individual Starplane link. In the figure 10 example with 4 clusters, yellow processes
communicating back to green communicate via a different Starplane link than cyan
or magenta processes.

To summarize, there are more Starplane links to share the burden of communication
between all the Hirlam processes, and this relieves part of the load on a single Star-
plane link during the Global and HGS communication steps. The decrease in global
communication approximately cancels out the increase in local communication, and
this is why increasing the number of clusters from 2 to 3 or 4 does not significantly
change the overall MPI communication overhead. This is likely a coincidence for
the small amount of clusters and processors used in experiments A through H, and
may change when the number of processors is increased6.

The Starplane link “queue” explanation given here could not be tested, since admin-
istrator access to the cluster and the Starplane hardware would be required to monitor the
state of the hardware and the “queues” during an experiment.

6For example, the 192-processor run (configuration I) has a different balance between local and global com-
munication than the other runs, as seen in figure 9.

23

6 Conclusions

In section 2 of this report we explained the Hirlam forecast model and how its performance
was measured. Section 3 gave an overview of the DAS3 clusters and supporting software
used in the experiments. Section 4 detailed the approach to implementing Hirlam on the
DAS3 clusters, for single and multiple clusters. Finally, section 5 discussed the Hirlam
experiments, their results, observations about these results and explanations for these ob-
servations. In this section we now draw the conclusions from the rest of the report:

• Hirlam performance scales well on a single cluster with the MX protocol. Doubling
the number of processors from 24 to 48 gives an 85% performance increase, with
92.5 efficiency of a linear scaling. Using TCP communication gives 92% perfor-
mance of MX at 24 processors, and 85% performance of MX at 48 processors.

• The computational part of the forecast algorithm is well suited to large scale paral-
lellization. Computation Time performance for runs with higher processor counts
scales linearly with the number of processors. The Computation Time result of the
192-processor run compared with the 24-processor runs shows that there is no Com-
putation Time performance loss for very high processor counts if a larger problem is
presented.

• The introduction of a second cluster in a Hirlam run causes both the local and global
communication step of the forecast algorithm to slow down considerably due to the
bottleneck presented by the Starplane link. At 24 processors the multicluster runs
have 79-87% of single cluster performance, but at 48 processors the multicluster
runs have 71-77% of single cluster performance.

• Although the Communication overhead introduced by switching from a single cluster
to two clusters is significant, increasing the number of clusters from 2 to 3 or 4 has
no significant performance impact. The increased number of Starplane links in the
network slows down the local communication step, but has a mitigating effect on the
global communication step. These two factors approximately cancel each other out.
In other words, for a fixed number of processes, there is no significant performance
difference between a two-, three- or four-cluster experiment.

• Adding more processors onto a second cluster to gain more speed gives less benefit as
the initial number of processors increases. Adding another 24 processors on a second
cluster to a 24-processor single cluster run gives a 34% performance increase, and
adding another 24 processors on a third cluster gives a 61% increase compared to
24 processors. However adding 36 processors on a second cluster to a 36-processor
single cluster run gives only a 17% increase. There is a nearby point where doubling
the number of processors onto a second cluster no longer gives a speed increase.

• Performance on a single cluster configuration with the MX protocol gains a far
greater speedup than that on a multi cluster configuration as the number of proces-
sors is increased. Doubling from 24 to 48 processors, MX increases in performance
by 85% while multicluster runs increase by 54-56%. At this time multicluster runs
have limited scalability in the number of processors, though good scalability in the
number of clusters. The limited scalability in the number of processors is due to the
bottleneck presented by the Starplane links, compounded by the inability to use the
Myrinet-MX protocol in multicluster runs.

• Because the job schedulers on the different clusters are not tied together, a reservation
script can never guarantee a reservation slot on multiple clusters at once, starting at
exactly the same time. This can lead to problems with starting a multi cluster job
when one or more of the clusters is heavily used. However, fixing these problems is
not feasible with such a reservation script, and is outside the scope of this project.

24

6.1 Future work

To improve the scalability in number of processors for multicluster runs, suggestions for
future work are:

• Gaining a better understanding of Hirlam communication across the Starplane links.
This would involve monitoring the state of the Myrinet hardware during a multiclus-
ter run, and finding more information about the way Starplane works, since detailed
hardware and software information about the Starplane project is not freely avail-
able. This will give a greater insight into the reason for the multi-cluster slowdown
compared to single cluster runs, and the reason why 4 cluster performance is not sig-
nificantly different from 2-cluster performance. The difficulty with monitoring the
state of the Myrinet hardware is that this requires root access to DAS3.

• Enabling the MX protocol for multicluster runs. MPICH2-MX failed with MX-runs
where more than 2 inter-cluster connections were required between the same pair of
clusters. DAS3 System Administration has said they were able to run a multicluster
application with the MX protocol with OpenMPI, however there were still severe
bugs.

25

References

[1] KNMI Website - www.knmi.nl

[2] The Hirlam Site - hirlam.org

[3] DAS3 Website - www.cs.vu.nl/das3

[4] Vrije Universiteit, Amsterdam - www.cs.vu.nl

[5] Leiden Institute of Advanced Computer Science, Leiden - www.liacs.nl

[6] Universiteit van Amsterdam, Amsterdam - www.science.uva.nl/research/cs

[7] MultimediaN Consortium, Amsterdam - www.multimedian.nl/en

[8] Technische Universiteit Delft - www.ewi.tudelft.nl

[9] ClusterVision - www.clustervision.com

[10] Scientific Linux - www.scientificlinux.org

[11] Myricom - www.myri.com

[12] Myrinet - www.myri.com/open-specs

[13] Sun Grid Engine - gridengine.sunsource.net

[14] DAS3 Usage Policy - www.cs.vu.nl/das3/usage.shtml

[15] Message Passing Interface - www-unix.mcs.anl.gov/mpi

[16] MPICH - www-unix.mcs.anl.gov/mpi/mpich1

[17] MPICH2 - www.mcs.anl.gov/research/projects/mpich2

[18] OpenMPI - www.open-mpi.org

[19] MPICH-MX - www.myri.com/scs/download-mpichmx.html

[20] Nortel - www.nortel.com

[21] Surfnet - www.surfnet.nl

[22] Starplane Project - www.starplane.org

[23] Tuning and Analysis Utilities - www.cs.uoregon.edu/research/tau/home.php

[24] Lotte Troen, Korneel Cats, Gerard Cats - Optimizing the Hirlam forecast model at
ECMWF
http://www.hirlam.org/open/publications/NewsLetters/47/Opt.pdf

[25] PathScale Compiler Suite - www.pathscale.com

[26] www.ecmwf.int/products/data/software/sms.html

[27] McDonald, A. - The HIRLAM two time level, three dimensional semi-Lagranian,
semi-implicit, limited area, grid point model of the primitive equations.
Norrköping, March 1995.

[28] McDonald, A. - Default horizontal diffusion coefficient in the reference system.
http://hirlam.org/open/publications/NewsLetters/31/AidanMcDonald.html

26

[29] Jan Boerhout - Reference HIRLAM Scalability Optimization Proposal
http://hirlam.org/open/publications/NewsLetters/44/HIRLAMOptNewsletter.pdf

[30] Cor Cornelisse - The Hirlam Weather Forecasting Model on Small Memory Systems
Leiden Institute of Advanced Computer Science, August 2008.

[31] Hirlam Progress Report for EWGLAM 2003 - HGS Introduction
http://srnwp.met.hu/Annual_Meetings/2003/creports/HIRLAM_EWGLAM_2003.pdf

[32] Leiden Institute of Advanced Computer Science
http://www.liacs.nl/

[33] Dutch ASCI Supercomputer - 3
http://www.cs.vu.nl/das3/

[34] TotalView Technologies’ main website
http://www.totalviewtech.com/index.htm

[35] TotalView Debugger website
http://www.totalviewtech.com/productsTV.htm

[36] Description on how to use Hirlam on Linux based machines
https://hirlam.org/trac/wiki/HirlamHowto/Install/LinuxPc

[37] HDF-Toolkit website, used to obtain the HDF Toolkit
http://www.hdfgroup.org

[38] Keychain, front-end to SSH-Agent
http://www.gentoo.org/proj/en/keychain/index.xml

[39] hackinglinuxexposed.com on NetCat-Proxy
http://www.hackinglinuxexposed.com/articles/20040830.html

[40] Sun Grid Engine
http://gridengine.sunsource.net

[41] Original DAS scheduler, PRUN
http://www.cs.vu.nl/das3/prun.1.shtml

[42] Python
http://www.python.org

[43] IBM Blue Gene/L - Programming and Operating Environment
http://www.research.ibm.com/journal/rd/492/moreira.pdf

27

Appendix A Hirlam on DAS-3 - Location LIACS

A.1 Introduction

This section will document the process of installing and configuring all the necessary tools
to properly run and develop Hirlam on the DAS-3 cluster at LIACS.

Before starting with Hirlam itself, some other topics will be discussed first, since they
are mandatory to have Hirlam running successfully on DAS-3. In the process of doing the
research required for this thesis a lot of things were stumbled upon, cases in which the local
installed applications on DAS-3 simply did not suffice.

Subsection A.2 describes the use of some basic tools to allow easy access to the DAS-3
fileserver node. Subsection A.3 describes the reservation system and the MPI implementa-
tion. Finally, subsection A.5 describes the installation and configuration of Hirlam.

A.2 Cluster Access

After an account for DAS-3 is created, it might be handy to setup a few tools making
authentication to DAS-3 considerably easier. First the default user password, received by
mail, is to be changed, therefore logon to fs0.das3.cs.vu.nl, this is sort of the head
node for the entire “grid”. The password should be changed there, password information
on fs0 will regulary be replicated7 to the other cluster sites. fs0 is not reachable from
just any IP address, an adress originating from inside the university should be used. Using
ssh through an university computer, for example ssh.liacs.nl, will also work.

Since most of the time spent on this project involved using a computer outside the
university, it was useful to setup ssh-key authentication and a keychain agent. This way
it is only necessary to type the password used to decrypt the private key once at system
startup, all other authentication is then performed by using ssh-keys. To save some addi-
tional trouble on first having to establish an ssh connection to ssh.liacs.nl manually,
before logging on to fs1.das3.liacs.nl a netcat-proxy is used. This simply uses
ssh.liacs.nl as an ssh relay machine.

A.2.1 SSH identities

First a public/private keypair needs to be generated, this is achieved by running the ssh key
generator. A passphrase should be entered and it is strongly suggested to do this. If the
private key gets compromised, access to all machines on which the public key has been
deployed gets compromised. Therefore it is wise to encrypt the key. After the keypair
is generated, the public key should be copied to the machines they will be used on. The
process concludes with appending the public key to the authorized_keys file on these ma-
chines. For detailed instructions see listing 1.

Listing 1: SSH Public/Private keypairs

ssh-keygen -f nameforyourkeypair -t rsa
scp nameofkeypair.pub ssh.liacs.nl:~/.ssh
scp nameofkeypair.pub fs1.das3.liacs.nl:~/.ssh
#On both machines
cat nameofkeypair.pub >> ~/.ssh/authorized_keys

7This does not happen immediately, if direct access to another cluster site is needed, manually changing the
password on that site to is mandatory! However the password set on fs0 will be the one replicated

28

A.2.2 Keychain

Keychain[38] is used as a front-end to the ssh-agent handling the key. The advantage of
having keychain is, a passphrase only needs to be typed once, at system start-up. Type
keychain nameofkeypair and add lines from listing 2 to the bashrc script in the
root of the user’s home directory.

Listing 2: /.bashrc update

keychain ~/.ssh/id_rsa
. ~/.keychain/‘hostname‘-sh

A.2.3 NetCat Proxy

The NetCat method, as described in an article at hackinglinuxexposed.com[39] is used to
bypass ssh.liacs.nl. Step one is to create a shell script containing the proxy, in this
case the proxy is nothing more than netcat. To create a netcat-proxy, add the file in listing
3 to the user’s homedirectory, and modifiy the ssh config script according to listing 4.

Listing 3: /.ssh/netcat-proxy.sh
#!/bin/bash
bouncehost=$1
target=$2
ssh $bouncehost -i ~/.ssh/nameofkeypair nc -w 1 $target 22

Listing 4: /.ssh/config
Host das3
Hostname fs1.das3.liacs.nl
HostKeyAlias fs1.das3.liacs.nl
ProxyCommand ~/.ssh/netcat-proxy.sh username@ssh.liacs.nl %h

To access fs1, type ssh username@das3, and authentication is handled auto-
nomously in the background.

A.3 Reservation System and MPI

Two scheduler/reservation systems are present on DAS-3. The first and most common one,
is the Sun Grid Engine[40]. The second reservation system is a port of the old scheduler
used on the original DAS cluster, prun[41].

One would assume the SGE would do the job best, however it is configured in such a
basic way that it is rendered useless when it comes to our needs. For example, running a
multi-cluster reservation is not possible, local SGE schedulers have no knowledge of the
existence of other clusters. The SGE scheduler submits MPICH jobs to the nodes without
X forwarding or compatibility with the biggest cluster debugging tool, the TotalView De-
bugger. All in all, the SGE scheduler is only useful for single cluster production jobs which
require no interaction from the user.

Prun does not suffer from these problems, since prun can be used to just reserve a
number of nodes for a specified time. Once the reservation is successful, a job ID can
be found in its list, and exclusive access to these nodes should8 be guaranteed. In this
case prun is nothing more than a very simple reservation system. Since prun is the only
alternative to SGE, it is the only choice. It is quite cumbersome to get an actual reservation,

8Although it is against policy, people can run jobs on DAS-3 without using the reservation system.

29

the preserve command used to reserve a number of nodes, directly returns, one has to
continuously poll using preserve -llist to see if the reservation is actually made!

Next is the MPI implementation, the DAS-3 cluster at LIACS is equipped with a state
of the art, super fast, Myrinet 10G network. All compute nodes are fitted with one Myrinet
10G board, tied together with a Myrinet 10G modular switch, leading to super fast, low
latency, high bandwidth networking, if configured properly.

DAS-3 has OpenMPI and MPICH installed, however the existing MPICH installation
on DAS-3 cannot be linked to Pathscale compiled applications. MPICH requires its li-
braries to be compiled with Pathscale in order to successfully link to any Pathscale com-
piled application. This leaves two alternatives:

• Accept the only remaining default, OpenMPI.

• Manually compile an MPICH version.

There is a Myrinet patched version of MPICH2 available from Myricom: MPICH2-MX.
This version promises high performance with the Myrinet hardware. A quick test with the
Intel MPI benchmark

showed the MPICH2-MX implementation outperforms openMPI9. Network perfor-
mance is of the essence in cluster computing, hence the term High Performance Computing,
therefore no second thought to openMPI was given, and MPICH2-MX was used!

The next task is to get MPICH2-MX to compile and install correctly on DAS-3 and
creating some decent scripts simulating some kind of reservation/scheduler system on top
of preserve.

A.4 Installing MPICH2-MX

Obtaining the Myrinet patched version of MPICH2 is not straightforward, the source is not
available directly from their website. If you contact Myrinet, requesting this particular soft-
ware, they require the serial number from one of their products. On the DAS-3 filesystem
the following directory can be found:
/usr/src/redhat/BUILD/mx-1.2.0e/tools
This directory contains an executable named mx_info. Executing this command results
in details on the installed Myrinet board, among this information is the serial number. After
supplying this to Myrinet, the source is sent.

Since quite a lot of additional tools are required in order to run HIRLAM, some organi-
zation on the installed tools is required. A local and src directory are created inside the
user’s home directory. The src directory will contain all extracted sources, together with
their configuration scripts, installations are done in the local directory.

TotalView support is required, one of the prerequisitories of the TotalView debugger
is an MPICH2-MX installation compiled with totalview support10. To enable TotalView
support for MPI, MPICH2-MX needs Python[42] shared libraries. One would expect these
to be present on the DAS-3 cluster, but nothing could be further from the truth, the produc-
tion oriented installation of DAS-3 does not supply shared-libraries for Python, so Python
is to be installed manually. Python can be obtained from the Python website, the source
is extracted in the src directory. The actual installation is performed by running configure,
build and install using the command sequence in listing 5.

9Using the Myrinet channel, not using TCP
10TotalView provides its own patches to the MPICH community

30

Listing 5: Configure and make Python

./configure --prefix=$HOME/local/python --enable-shared
make
make install

It is vital to configure with --enable-shared, since the shared libraries are the
one thing we require from the installation to compile MPICH2-MX successfully with To-
talView debugger support. Once the Python installation is complete, make sure the binary
and library path from the custom installation are added to respectively the PATH and LD_-
RUN_PATH environment variables in ˜/.bashrc.

MPICH2-MX links against an MX library, installed and compiled by the system ad-
ministrator at the time of compiling the Myrinet kernel module. The present library,
mx-1.2.0j-2.6.18-clustervision-136.1_cvos results in a load error at ap-
plication run time, due to mx_open_endpoint symbol issues. After discussing this with
the system administrator an alternative library was provided, which was compiled without
these additional symbols. This library is located on fs1 at:
/usr/local/Cluster-Apps/mx/mx-1.2.0j-2.6.18-clustervision-
136.1_cvos-no-compat-syms/lib

The library is copied to $HOME/local/mx/lib. The reason for doing so is because
of multi-cluster runs, since only fs1 has this custom library.

Compilation of MPICH2-MX will still fail due to a bug in one of the configure scripts.
This script checks in the wrong directory for the necessary Python libraries, it should check
in the manually installed Python installation directory residing in the home directory. This
is fixed by editing the file showed in listing 6.

Listing 6: $HOME/src/mpich2-version/src/pm/mpd/configure
#Change line number 2738 to contain
if test -f \$HOME/local/python/lib/\$pypgm/config/Makefile;

The Makefile.in residing in the root of the source directory also requires patching.
On lines 103, 106, 110 and 113, the snippet:
-ldflags ${LDFLAGS} -libs “${LIBS}”
Should be replaced with:
-ldflags ${LDFLAGS} ${LIBS}

To install MPICH2 a wrapper script was written, this script, with minor changes, can be
used in consecutive installations as well. To create an MPICH2 installation with the TCP
protocol11, change the installation directory:
installdir=$HOME/local/mpich2-mx to mpich2-tcp and change the compile
option -with-device=ch_mx to -with-device=ch3:sock. The script can be
found in listing 7.

Listing 7: MPICH2 Engage script
#!/bin/sh

#
MPICH2 - Myrinet Configure and install script for DAS-3
location Liacs (Leiden University) by Cor Cornelisse
#
based on a script written by Daniel Backlund in Dec2007
on the Rocks Discussion mailing list from SDSC
#
This script assumes AMD64 Opteron architecture and
mx + pathscale software present. Set the correct
paths below.
#

11A TCP-compiled version of MPICH2-MX is required for multicluster runs.

31

pathscale=$HOME/local/pathscale
mx=$HOME/local/mx

export PATH=${pathscale}/bin:${mx}/bin:${PATH}

libdir_pathscale=${pathscale}/lib/3.0
libdir_mx=${mx}/lib

export LD_LIBRARY_PATH=${libdir_mx}:${libdir_pathscale}

installdir=$HOME/local/mpich2-mx
mkdir -p $installdir

CC="pathcc"
CXX="pathCC"
CLINK="pathcc"
FC="pathf95"
F90="pathf95"
CFLAGS="-march=opteron -m64 -fno-second-underscore"
CXXFLAGS="-march=opteron -m64 -fno-second-underscore"
FFLAGS="-march=opteron -m64 -fno-second-underscore"
F90FLAGS="-march=opteron -m64 -fno-second-underscore"
LDFLAGS="-Wl,--rpath,${libdir_pathscale} \
-Wl,--rpath,${libdir_mx} -L${libdir_pathscale} \
-L${libdir_mx} -lpscrt"
MX="${mx}"

export CC FC CXX F90 CFLAGS CXXFLAGS FFLAGS F90FLAGS LDFLAGS
export RSHCOMMAND=ssh

./configure --prefix=$installdir \
--with-device=ch_mx \
--with-mx=${mx} \
--with-mpe \
--with-romio \
--enable-cxx \
--enable-compiler-optimizations \
--enable-fast \
--enable-debuginfo \
--enable-g=dbg \
--enable-totalview \
--enable-sharedlibs=gcc > logconfig 2>&1

make > logmake 2>&1

make install > logmakeinstall 2>&1

mv logconfig logmake logmakeinstall $installdir/
cp $0 $installdir/

This results in a working installation of MPICH2-MX. Be sure to create the symlink
to the mpich2 directory with cd ˜/local ; ln -s mpich2-mx mpich for an
installation with the MX protocol, or link to mpich2-tcp to use TCP. Switching between
the two libraries between Hirlam runs can be done simply by removing and recreating the
symlink, although for safety Hirlam should be recompiled after a switch. To conclude,
the library directory should be added to the LD_RUN_PATH environment variable. An
example is shown in listing 8.

Listing 8: /.bashrc

#LD_RUN_PATH should at least contain the following paths
LD_RUN_PATH=$HOME/local/python/lib:$HOME/local/mx/lib

:$HOME/local/mpich2/lib

The MPICH2-MX daemon, responsible for setting up a communication ring, requires
a passphrase for security purposes. A special file is created in the users homedirectory, the
rights on the file should be set to read-only for the owner, for example chmod 600. For
multicluster runs, this file should be copied to all fileservers where the Hirlam processes
need to run. The content of the file is shown in listing 9.

32

Listing 9: /.mpd.conf

#Passphrase to secure MPD communication
MPD_SECRETWORD=‘‘yourtopsecretpassphrase’’

A.5 Compiling & Configuring Hirlam

The first thing to obtain is the Hirlam source code, one needs an account to access the
Hirlam HexNet, this account can be used to obtain the source through subversion. With
development in mind, it might come in handy to store the source in a separate source direc-
tory. Therefore a ”Hirlam” directory is created under the ”src” directory already present in
the user’s home directory. The most recent version of hirlam can be found by checking the
following URL: https:///svn.hirlam.org/tags

The most recent version12 of the Hirlam forecasting software can be obtained by typing:
svn export https:///svn.hirlam.org/tags/hirlam-7.2rc313

To allow for more generic scripts and experimenting with different hirlam source trees, a
symbolic link is created, named “current“ which points to the 7.2rc3 directory. The bashrc
file should be updated again, the update can be found in listing 10.

Listing 10: /.bashrc update for Hirlam compilation

alias Hirlam=~/src/Hirlam/current/config-sh/Hirlam
export HIRLAMSOURCE=~/src/Hirlam/

A.5.1 Compiling Hirlam

Before attempting to compile Hirlam it is wise to check if the system meets the necessary
requirements for Hirlam. These requirements can be found on the Hirlam website[36]. The
LIACS file-server node of DAS-3 only missed the HDF14 toolkit from the HDF group[37].
The linuxgfortran configuration file in the Hirlam source directory should be updated to
include the correct paths to the HDF toolkit file locations. The actual paths can be found
in listing 12, because the HDF toolkit on DAS-3 has been compiled with szip support, the
proper szip library needs to be linked in during compilation as well.

Edit the Makefile in the root of the Hirlam directory, and change the ”ARCH” variable
to ”linuxgfortran”, this tells Hirlam what architecture to compile for. However linuxgfor-
tran is not entirely consistent with the setup on DAS-3, since Pathscale will be used instead
of the GNU C and Fortran compiler.

The Pathscale compiler is unable to just preprocess a file, and then leave it alone. In-
stead the option to preprocess the .F file and write the output to stdout should be used.
There is no way to automatically redirect this to a .f file, the only option left is patching the
makefile, redirecting the output to the desired .f file.

The following makefile templates should be adapted:

• makecma.mk

• makehir.mk

• makevar.mk
127.2rc3 at the time of writing
13Using “export“ instead of “checkout“ will download the source tree without creating all the subversion meta-

data. Since submitting patches to the repository is not required, ”export” is used.
14Hierarchical Data Format

33

Each file contains two lines, which should be adapted to look similar to the line showed in
listing 11.

Listing 11: Hirlam makefile patches

Patch 2 instances in the files makecma.mk, makehir.mk
and makevar.mk

%.o: %.F $(CPP) $(CPPFLAGS_CMA) $< > $(*F).f}

A SED expression to patch the main/src/Makefile

sed ’s/\$< *\([^]*\.f\)/\$< > \1/g’ <
Makefile > Makefile.new && mv Makefile.new Makefile

The Makefile residing in the main/src directory also requires patching, however, this
involves quite some lines, therefore a SED expression was written, it can be found in listing
11.

The “config.linuxgfortran“ file specifies the paths of include directories and libraries
needed by Hirlam to compile successfully. The adapted version of config.linuxgfortran
to enable compilation with Pathscale and the custom MPICH2-MX installation looks as
follows:

Listing 12: /src/Hirlam/current/config/config.linuxgfortran
This file contains the neccessary compiler arguments to compile
Hirlam on DAS-3 using the pathscale C and Fortran compiler.
#
This one is for little endian machines, the most common ones:
Intel Pentium family, Intel Itanium, AMD Opteron, Alpha, VAX.
For big endian machines, like HP PARISC, IBM POWER or IBM S390,
SGI MIPS or SUN SPARC,
change -DLITTLE_ENDIAN into -DBIG_ENDIAN.

Parallelization
Possible values -DMPILIB, -DSHMEMLIB, -DMPILIB -DMPI32TO64, <none>
#
PARLIB := -DMPILIB

Additional library paths
MPICH2 := $(HOME)/local/mpich2
TAU := $(HOME)/local/tau
MX := $(HOME)/local/mx
Define MPI include and library paths
MPIINCLUDES := -I$(MPICH2)/include
MPILIBDIRS := -L$(MPICH2)/lib -L$(MX)/lib
MPILIBS := $(MPILIBDIRS) -lmpich -lmyriexpress -ldl -lrt -lssl
#-fmpich

TAU variables
TAULIBPATH := -L$(TAU)/x86_64/lib
TAULIBS := $(TAULIBPATH) -lTAU -lmpichcxx

HGS
Possible values: IPC,MPI,NONE
#
HGS_TYPE := MPI

HDF definitions correct for Debian GNU/Linux.

HDFPATH := /usr/local/hdf/hdf4.2r1.amd.64bit
HDFINCLUDES := -I$(HDFPATH)/include
HDFLIBPATH := -L$(HDFPATH)/lib -L/usr/local/hdf/lib
HDFLIBS := $(HDFLIBPATH) -lmfhdf -ldf -ljpeg -lz -lm -lsz

LAPACKLIBS := -llapack -lblas

FFT := -DFFTW3
FFTPATH := /usr/local/Cluster-Apps/fftw/gcc/64/3.1.1
FFTINCLUDES := -I$(FFTPATH)/include

34

FFTLIBPATH := -L$(FFTPATH)/lib
FFTLIBS := $(FFTLIBPATH) -lfftw3

MACHINECPP := -DLINUX -DLITTLE_ENDIAN -DHIRLAM -DPREC32 -DUSEWALLTIME \
-DHAS_BLAS -DHAS_LAPACK -DGRIB32 $(MPIINCLUDES) \
$(FFTINCLUDES) $(HDFINCLUDES) -DTIMING

CRAYDEF := -DNONCRAYF

CPP := pathcc -traditional -P -E
CC := pathcc
CCFLAGS := -march=opteron -g -O2 $(MACHINECPP)
$(MPILIBS) $(HDFLIBS) $(TAULIBS)

FC := pathf95 -march=opteron -fno-second-underscore

#--
FCFLAGS: single precision reals ->double but double remain as double;
inline compile directives recognised (!OPTIONS);
module information file is .mod - sought under -I dir;
optimized;
Fortran 90 language (-X9);
Fixed source form of Fortran 90 (-Fixed).
Checks for conformity with F90 standard (-v9).
Recursive functions allowed ??
#
gfortran: -ffixed-form => fixed form;
-ffree-form => free format (F90);
-fdefault-real-8 -fdefault-double-8
=> single precision reals->double; double unchanged
#--

LINK_DEBUG :=

FCFLAGS := -g -O2 #-ffpe-trap=invalid,zero,overflow

FCFLAGS_CMA = $(FCFLAGS) -module $(ROOTDIR)/$(ARCH)/cmamod -ffixed-form -r8
FCFLAGS_CMA90 = $(FCFLAGS) -module $(ROOTDIR)/$(ARCH)/cmamod -freeform -r8
FCFLAGS_VAR = $(FCFLAGS) -module $(ROOTDIR)/$(ARCH)/varmod -ffixed-form -r8
FCFLAGS_VAR90 = $(FCFLAGS) -module $(ROOTDIR)/$(ARCH)/varmod -freeform -r8
FCFLAGS_HIR = $(FCFLAGS) -module $(ROOTDIR)/$(ARCH)/hirmod -ffixed-form
FCFLAGS_HIR90 = $(FCFLAGS) -module $(ROOTDIR)/$(ARCH)/hirmod -freeform

xlf (IBM/AIX), ifort (Intel/Linux) (and others) always produce
a lower-case module name; GNU Fortran does too.

MODNAME = $(shell echo $(*F) | tr "[:upper:]" "[:lower:]")
MODEXT := mod

LD := $(FC)
LD_MPP := $(FC)

LDFLAGS := -g

LDFLAGS_VAR := $(LDFLAGS) $(MPILIBS) $(LAPACKLIBS) $(FFTLIBS)
LDFLAGS_CMA := $(LDFLAGS) $(MPILIBS) $(LAPACKLIBS)
LDFLAGS_HIR := $(LDFLAGS) $(MPILIBS) $(LAPACKLIBS) $(FFTLIBS)

AR := ar
ARFLAGS := rv
MV := mv
RM := rm -f
MKDIR := mkdir
RMDIR := rmdir

A.5.2 Configuring Hirlam

It is time to setup an experiment directory, so create the new directory $HOME/hl_-
home/experiment. To fill this directory with some of the necessary Hirlam basic files
the following command is issued:
Hirlam setup -d $HIRLAMSOURCEh -r current -h LinuxPC

Inside the new Hirlam experiment directory resides a file called Env_System, this file
contains information on where Hirlam can find its files. An adapted version which should
suffice on DAS-3 is shown in listing 13.

35

Listing 13: Env_System
#<title>config-sh.LinuxPC: Describe simple LinuxPC hard/
#software system</title>

1. Identify and describe your system

export COMPCENTRE
COMPCENTRE=DAS3 # computer centre
export SCRATCH
SCRATCH=/var/scratch/$USER

1.0 define hosts and the location of this file on each host

lvfs: large volatile file system, should be fast
HOST0=‘hostname‘ export HOST0
: seperated list where the system will be needed
HOST_INSTALL=0
name of a large, volatile, file system on HOST 0
lvfshost0=$SCRATCH
export HOST_INSTALL

SMSHOST=${SMSHOST-$HOST0} # default is to run on HOST0

1.1 Set system hard/software

export LSERIAL NHORPH NAMLIS_E MAXFACT235711

.false. for non-vector pc, .true. for vector
LSERIAL=.false.
vectorlength, don’t use on non-vector machines
NHORPH=
string to end a namelist
NAMLIS_E=’/’
maximum no. of factors in FFT factorization
MAXFACT235711="99,99,99,0,0"

1.3 Root directories of HIRLAM experiments

mass storage system. Access by script Access_lpfs
export HL_ARC
Archive root, in LPFS
HL_ARC=$SCRATCH/hl_arc
home of experiments runs, in FPFS
home=$HOME

2. Set HIRLAM variables, and, if for installation,
extract export system

2.1 HIRLAM system location

export HL_REF_FS HL_SDOC HL_DOC HL_HTML
export HIRLAM_CONFIG
export HL_CLDATA HL_CLDATA_MODE

HIRLAM_CONFIG=linuxgfortran # GNU-make (FFLAGS, etc)
location of climate files directories
HL_REF_FS=$SCRATCH
directory with (support) information
HL_SDOC=
HL_DOC=https://hirlam.org/UG/HL_Documentation # HIRLAM documentation
climate data directory
HL_CLDATA=$SCRATCH/hl_cldata/dat
mode of the that directory
HL_CLDATA_MODE=a+rx

HL_HTML=$hl_home/hirlam-doc # directory for html documentation

2.3 Experiment identifier and directories

export HL_DATA HL_EXP HL_LIB

EXP=${EXP?"Give ’experiment’ identifier EXP \
before running this script"}
HL_DATA=$lvfshost0/hl_home/$EXP # HL_DATA on main HIRLAM host

dir for scripts, objects, executables
HL_LIB=$HL_DATA/lib
export BUFRTAB_DIR
BUFRTAB_DIR=$HL_LIB/data/bufrtables # directory with BUFR tables

36

HL_EXP=$HL_ARC/$EXP # experiment archive directory in LPFS
hl_CMODS=$home/hl_common_mods # user mods to all exps, in FPFS

3. Path

export PATH

add HIRLAM to the path

PATH=$PATH:$HL_LIB/$HIRLAM_CONFIG/bin:$HL_LIB/scripts

4. Utilities

4.1 for the main unix platform

export MAKE MKDIR WHENCE
MAKE=make
MKDIR="mkdir -p"
WHENCE=which

4.2 For (mini-)SMS

export SMSMETER CDP
SMSMETER=${SMSMETER-$HL_LIB/scripts/smsmeter}
CDP=${CDP-$HL_LIB/scripts/sms_cdp}

export PERL_TK # Perl with Tk
PERL_TK=perl

5. Preparative actions

6. Operating system dependants

6.1 To run scripts

6.2 System libraries

export ECLIB SCILIB
${EMOSLIB-~emos/lib/libemos.R32.D64.I32.a}
probably never used!
ECLIB=
/usr/lib/libveclib.a
libs with BLAS/EISPACK, space separated
SCILIB=
only used if relevant cpp options are set

6.3 HDF

export HDFINCLUDE HDFLIBS
if [$COMPCENTRE = ECMWF]; then
done in config.ibmecmwf
export _HDF_=_HDF_ # need an underscore when invoking HDF routines
ilp=LP64
hdf=/usr/local/lib/hdf/HDF4.1r5_${ilp}_extname

: continue
else
better be done in the appropriate configuration file
hdf=
HDFINCLUDE=-I$hdf/include
HDFLIBS="-L $hdf/lib -lmfhdf -ldf -ljpeg -lz"
export HDFINCLUDE HDFLIBS

: continue
fi

6.4 MPI

export NODES=29 # The number of nodes to reserve.
export TASKS_PER_NODE=2 # Defines the number of processes per node.
export NPROCX=7 # Processes in the X direction
export NPROCY=8 # Processes in the Y direction
export NPROC_HGS=2 # Processes to be used for I/O

For Cor Cornelisse’s implementation of HGS on low memory systems
#export HGS_MASTERS=2 # Number of master HGS processors
#export HGS_SLAVES=2 # Number of slaves per master

An increasing list of the process ranks you want to use for
the HGS processes. There must be at least NPROC_HGS items here!
This is useful to control on which cluster the HGS processes

37

will run in a multi cluster run.
#export HGS_IO_RANKS="1 2"

export LAUNCH="mpiexec -tvsu -np $[$NODES * $TASKS_PER_NODE]"

6.5 mini-SMS

export PERLTKDIR # the directory of the Perl-Tk toolkit
PERLTKDIR=
export JOBOUTDIR # directory of job stdout/stderr files
JOBOUTDIR=$HL_DATA

6.6 Asynchronous I/O (HIRLAM Gribfile Server)

export HGS_TYPE
HGS_TYPE=MPI # NONE,IPC,MPI

8. Derived environment variables

9. Obsolescing

export HL_COMDAT
HL_COMDAT=$HL_DATA/..

10. Debugging
To enable debugging, uncomment the following line:
export HGS_DEBUG=2

To create an actual reservation on the reservation system a special script was developed.
The script is a wrapper around prun and the manually installed MPICH2-MX version. Two
versions are availabe, one for single cluster runs, another for the use of multicluster runs,
in listings 14 and 15 respectively. A symbolic link called reserve.sh, which points to either
of the two versions, is created. The symbolic link, along with the scripts are stored in the
scripts subdirectory of the experiment. This directory might need to be created if it is
not there yet, everything contained in the experiment directory is copied to scratch at run
time. This takes care of having the reserve script among other scripts available everywhere,
though the reserve script will only be used by one file server, which is the one used to start
Hirlam.

Listing 14: reserveSingle.sh
#!/bin/sh

#
Script to bypass SGE and launch job manually after reserving
nodes properly through the reservation system.
#
It will use preserve to make a reservation and then wait
untill these nodes become available for use. Once they are
available the MPD (MPICH2) daemons will be started on
all compute nodes after which the actual job is launched. Once
it finishes, or the reserved time elapses the MPD daemons
will be shutdown and the reservation is cancelled
#
By Cor Cornelisse - LIACS (Leiden University)
#

First parameter is number of nodes
Second parameter is the number of tasks (CPUs) per node
Third parameter is the Number of HGS Data Processors
Fourth parameter is the Environment System of Hirlam
Fifth parameter is the actual program to be executed
Sixth parameter is where the stdout should be redirected to

cpusPerNode=$2
totalCPUs=$((${1}*${2}))
dataProcessors=$3
Env_system=${4}
machineFile=/var/scratch/$USER/machineFile
mpiRunCommand=${5}
logFile=${6}
experimentName="experiment"

echo Number of processors to be reserved: $totalCPUs

38

Reserve a given number of nodes for a specified time
reserve=‘preserve -e ~/nodelist -1 -# ${1} -t 00:15:00‘
Grep our reservation ID
reservationID=‘echo $reserve | sed \
’s/Reservation number \([0-9]*\).*/\1/’‘
echo Reservation ID = $reservationID

machineFile=$machineFile$reservationID

Now we’ll start waiting for the nodes to get assigned to us
echo -ne Waiting
Store nodes in nodeList once the reservation is made
nodeList="-"
while ["$nodeList" = "-"]; do

nodeList=‘preserve -llist | grep $reservationID | sed \
’s/.*[0-9][0-9]:[0-9][0-9]\t[a-z]*\t[\0-9]*\t\(.*\)/\1/’‘
echo -ne .

done

echo $’\n’$’\n’The Following nodes have been reserved and await \
further instructions: $nodeList

nodeSuffix=".das3.liacs.nl"

Time to create a machinefile
touch $machineFile
for i in $nodeList;
do

echo "inodeSuffix" >> $machineFile
done;

echo Machine file created, displaying contents:
cat $machineFile

Set the correct start node (first node in the nodeList)
set $nodeList
startNode=1nodeSuffix
echo Starting from: $startNode

Remove first node from machineFile (otherwise it will try to start
MPD twice on the same node and fail).
sed -i ’1d’ $machineFile

The Nodes ar reserved for our use, let’s launch our own MPD daemons
ssh -Y $startNode ’mpdboot --totalnum=’$((${totalCPUs}/2))’ \
--file=’$machineFile

Check our MPD ring is established and working
ssh -Y $startNode mpdtrace

Make a copy of the original Environment since we are going to modify
the launch parameter, and would like to restore this after the
run
echo Environment file: $Env_system

Add the nodelist to the mpirun command
Be carefull with this sed expression, it looks for "-np $[" in
the LAUNCH variable present in the Env System. This is defined in
the hl_home/config/config.LinuxPC. It adds "--debug and the machine
list
sed ’s/\(\-n \$\[.*]\)/\1 \-env NPROC_HGS ’$dataProcessors’/g’ \
$Env_system > /var/scratch/$USER/hl_home/$experimentName/lib/Env_system

Let’s ROCK
echo Launching: $mpiRunCommand
echo Logfile is $logFile
ssh -Y $startNode ’source ~/.bash_profile && ’$mpiRunCommand’’ \
> $logFile
echo DONE....

We are done, shutdown MPD daemons on the used nodes
ssh $startNode mpdallexit

Restore original Env_system
cp $Env_system \
/var/scratch/$USER/hl_home/$experimentName/lib/Env_system

Remove the reservation
preserve -c $reservationID

39

rm $machineFile

Listing 15: reserveMulti.sh
#!/bin/bash

#
Script to bypass SGE and launch job manually after reserving
nodes properly through the reservation system.
#
It will use preserve to make a reservation and then wait
untill these nodes become available for use. Once they are
available the MPD (MPICH2) daemons will be started on
all compute nodes after which the actual job is launched. Once
it finishes, or the reserved time elapses the MPD daemons
will be shutdown and the reservation is cancelled
#
By Cor Cornelisse
and Maarten van Casteren
LIACS (Leiden University)
#

First parameter is number of nodes
Second parameter is the number of tasks (CPUs) per node
Third parameter is the Number of HGS Data Processors
Fourth parameter is the Environment System of Hirlam
Fifth parameter is the actual program to be executed
Sixth parameter is where the stdout should be redirected to

cpusPerNode=$2
totalCPUs=$((${1}*${2}))
dataProcessors=$3
Env_system=${4}
machineFile=/var/scratch/$USER/machineFile
mpiRunCommand=${5}
logFile=${6}
reservationTime="01:30:00"
mpdListenPort=37832
experimentName="experiment"

Make a copy of the original Environment since we are going to modify
the launch parameter, and would like to restore this after the
run
echo Environment file: $Env_system

Add the nodelist to the mpirun command
Be careful with this sed expression, it looks for "-np $[" in
the LAUNCH variable present in the Env System. This is defined in
the hl_home/config/config.LinuxPC. It adds "--debug and the
NPROC_HGS environment variable.
sed ’s/\(\-np \$\[.*]\)/\1 -env NPROC_HGS ’$dataProcessors’/g’ \
$Env_system > /var/scratch/$USER/hl_home/$experimentName/lib/Env_system

numberOfClusters=0
multiClusterRun=1
function declareCluster {

numberOfClusters=$((${numberOfClusters}+1))
fileServers[${numberOfClusters}]=$1
suffices[${numberOfClusters}]=$2
maxNodes[${numberOfClusters}]=$3

}
Declare new clusters as below. NOTE: The first cluster defined must
be the cluster from which the program should be started!
#declareCluster "fileserver.suffix.com" ".suffix.com" maxNumberOfNodes
declareCluster "fs1.das3.liacs.nl" ".das3.liacs.nl" 25
declareCluster "fs0.das3.cs.vu.nl" ".das3.cs.vu.nl" 24
declareCluster "fs2.das3.science.uva.nl" ".das3.science.uva.nl" 24
declareCluster "fs4.das3.science.uva.nl" ".das3.science.uva.nl" 24

Calculate nodes per cluster, and any remainder.
nodeRemainder=${1}
for i in ‘seq 1 $numberOfClusters‘; do

if [${maxNodes[${i}]} -ge ${nodeRemainder}]; then
nodesToReserve[${i}]=${nodeRemainder}
nodeRemainder=0
echo "Nodes to be reserved on ${fileServers[${i}]}:" \
" ${nodesToReserve[${i}]}"
echo "All processes assigned to $i clusters."
break

40

else
nodesToReserve[${i}]=${maxNodes[${i}]}
nodeRemainder=$((${nodeRemainder}-${maxNodes[${i}]}))
multiClusterRun=$((${multiClusterRun}+1))
echo "Nodes to be reserved on ${fileServers[${i}]}:" \
" ${nodesToReserve[${i}]}"

fi
done
if [${nodeRemainder} -ne 0]; then

echo "There are not enough nodes available across all" \
" clusters to run this job!"

exit 1
fi

echo Number of processors to be reserved: $totalCPUs

Reserve a number of nodes for a specified time, on the first cluster.
reserve=‘preserve -1 -# ${nodesToReserve[1]} -t $reservationTime‘
Grep our reservation ID
reservationID=‘echo $reserve | \
sed ’s/Reservation number \([0-9]*\).*/\1/’‘
echo Reservation ID = $reservationID

Now we’ll start waiting for the nodes to get assigned to us
echo -ne Waiting
Store nodes in nodeList once the reservation is made
tempNodeList="-"
while ["$tempNodeList" = "-"]; do

tempNodeList=‘preserve -llist | grep $reservationID | \
sed ’s/.*[0-9][0-9]:[0-9][0-9]\t[a-z]*\t[\0-9]*\t\(.*\)/\1/’‘
echo -ne .

done
for i in $tempNodeList; do

nodeList="$nodeList i{suffices[1]}"
done

Reserve all nodes on secondary clusters.
if [${multiClusterRun} -gt 1]; then
for i in ‘seq 2 $multiClusterRun‘; do

rsync -az --delete --force \
$SCRATCH/hl_home ${fileServers[${i}]}:$SCRATCH
rsync -az --delete --force \
$SCRATCH/dat ${fileServers[${i}]}:$SCRATCH
rsync -az --delete --force \
$SCRATCH/hl_arc ${fileServers[${i}]}:$SCRATCH
ssh ${fileServers[${i}]} "rm ~/profileData/*"
tempNodeList=\
‘ssh ${fileServers[${i}]} \
"source ~/.bash_profile && secondaryReserve.sh \
${nodesToReserve[${i}]} $reservationTime"‘
for j in $tempNodeList; do
nodeList="$nodeList j{suffices[${i}]}"

done
done
fi

echo $’\n’$’\n’The Following nodes have been reserved \
and await further instructions: $nodeList

Time to start the MPD’s
for i in $nodeList;
do

myriAddress=‘ssh $i /sbin/ifconfig myri0 | grep \
inet | sed ’s/^.*inet addr://;s/ .*$//’‘
ssh $i "source ~/.bash_profile ; mpd $previousHost \
--ncpus=$cpusPerNode --ifhn=$myriAddress --daemon \
--listenport=$mpdListenPort"

mpdexit localmpd > /dev/null
sleep 0.5
echo "Starting on $i: mpd $previousHost \
--ncpus=$cpusPerNode --ifhn=$myriAddress \
--daemon --listenport=$mpdListenPort"

previousHost="--host=$i --port=$mpdListenPort"
previousHost="--host=$myriAddress --port=$mpdListenPort"

done;

Set the correct start node (first node in the nodeList)
set $nodeList
startNode=$1
echo Starting from: $startNode

41

echo Starting MPD\’s successful
ssh -Y $startNode "source ~/.bash_profile && mpdtrace"

Let’s ROCK
echo Launching: $mpiRunCommand
echo Logfile is $logFile
ssh -Y $startNode "source ~/.bash_profile && $mpiRunCommand" > $logFile
echo DONE....

We are done, shutdown all MPD daemons
ssh $startNode "source ~/.bash_profile && mpdallexit"

Remove the reservations
Rsync all the tau profiles from the secondary clusters
to the primary cluster.
preserve -c $reservationID
if [${multiClusterRun} -gt 1]; then
for i in ‘seq 2 $multiClusterRun‘; do

ssh ${fileServers[${i}]} "source ~/.bash_profile && \
secondaryReserveCancel.sh"
rsync -az ${fileServers[${i}]}:$HOME/profileData $HOME

done
fi

Restore original Env_system
cp $Env_system /var/scratch/$USER/hl_home/experiment/lib/Env_system

Hirlam is controlled by Mini-SMS, and it needs know how to submit a job. This is done
in a file called submission.db. Since the compcentre variable declared in Env_System
is changed to DAS3, we now have to tell Mini-SMS what to do in case of DAS-3. A tem-
plate submission.db can be checked out using the following command:
cd ˜/hl_home/experiment && Hirlam co scripts/submission.db
However a customized version suited for DAS-3 can be used instead of adapting the tem-
plate, see listing 16.

Listing 16: submission.db
$Id: submission.db 5783 2008-03-18 15:17:19Z ovignes $
define the jobs and their submission sequences
#--

Gerard Cats, July 2004

$instructions = <<EOI;
This file is the data file to be used by "Submit.pl".
A job file will be constructed and this job file will be submitted
with the string $submit (in which the title of the job file to be
submitted must be $jobfile-q).
Both the job file title and $submit will be edited according to
the hash in %edit (strings of the form %$key% will be replaced by
$value. This currently will not be done recursively).
The constructed job file will look like:

headers
input job file (with substituted export variables)
trailers

headers and trailers are given below. They are also edited according
to %edit.
headers and trailers are constructed by a subroutine because
they are multi-line and perhaps multi-complex.

You are allowed to change the environment variables. E.g. if COFLAGS
is exported in the input job file by a line exactly matching:
COFLAGS="-d 2004/12/31" export COFLAGS
then assigning $COFLAGS = "\"-d 2004/12/30\"" will result in the line
COFLAGS="-d 2004/12/30" export COFLAGS
in the $jobfile-q file. Note that you have to explicitly set the
surrounding quotes by including quoted quotes (\") when you set
$COFLAGS. This, of course, is needed for all environment variables
of which the value contains shell metacharacters.

First a set of defaults for $submit, %edit, etc. will be given,
then overrides per job are allowed. For this, jobs are identified by
$SMSNAME.

42

EOI

the following jobs can be skipped

Task Execute with empty SCRIPT:
if ($SMSNAME =~ m~/Execute$~ && $SCRIPT =~ m~/^\s*$~) {

$complete = 1; exit;
}

replace a directory structure by a long title,
separated by % - signs:
$smsname = $SMSNAME; $smsname =~ s~/~%~g;

information about ensemble mode
$ENSSIZE = $ENV{ENSSIZE};
$ENSSIZE = -1 if (not defined $ENSSIZE);
$ENSSIZE = sprintf "%d", $ENSSIZE; # assure decimal numeric

defaults:

$host = 0; # run on this host ($host is the host number)

The following jobs are not submitted through (mini-)SMS:
if ($SMSNAME =~ m~BoundariesChild~) {

$__mSMS__ = 0;
$__SMS__ = 0;

}

default jobout title
unless (defined $jobout) {

$jobout = "$smsname.$SMSTRYNO";
}

For LSMIX runs, skip reruns at intermediate hours
and on first cycle if started with RUN=1
if ($ENV{LSMIX} eq ’yes’) {

my $dtg = sprintf("%08d%02d",$YMD,$HH);
#intermediate hour
$complete = 1 if ($RUN > 1 and ($HH % $ENV{MIXINT}));
$complete = 1 if ($dtg eq $ENV{DTGBEG}

and $RUN > $ENV{StartRUN});
$complete = 1 if ($dtg ne $ENV{DTGBEG}

and $RUN > 1 and $SCRIPT eq ’VARan’);
exit if $complete;

}

override defaults at DAS3

if ($COMPCENTRE eq "DAS3") {

no COMPCENTRE given: run everything in the background
} else {

$bckgrd = 1;
}

The number of tasks GNU-make is allowed to spawn in parallel:
$nparallel_make = 8;
$JMAKE="-j$nparallel_make";

several jobs have deviating properties:

if ($COMPCENTRE eq "DAS3") {
$SMSHOST = $SMSNODE;
$host= 0;

NSLOTS equals the number of computational nodes
NTASKS equals the number of tasks per node

#Default 1 slot with 1 cpu;
$NSLOTS = 1;
$NTASKS = 1;
$NPROC_HGS = 0;

#Default nprocx, nprocy, nproc_hgs;
$nprocx = 1;
$nprocy = 1;
$nproc_hgs = 0;

Standard job submit, running on 1 cpu on 1 node

43

$submit = "reserve.sh $NSLOTS $NTASKS $NPROC_HGS \
$Env_system $jobfile-q $jobout &";

if ($SMSNAME =~ m~/PpAn/Execute~ and $SCRIPT =~ m~Postpp~)
{

$NSLOTS = $ENV{NODES};
$NTASKS = $ENV{TASKS_PER_NODE};
$NPROC_HGS=0;

$nprocx = $ENV{NPROCX} || $nprocx;
$nprocy = $ENV{NPROCY} || $nprocy;
$nproc_hgs = $ENV{NPROC_HGS} || $nproc_hgs;

$submit = "reserve.sh $NSLOTS $NTASKS $NPROC_HGS \
$Env_system $jobfile-q $jobout &";

$jobclass = "parallel";
#Mark procx * nprocy must match nr of compute processors
$nprocxy = 1;

}
elsif ($SMSNAME =~ m~/Forecast/Execute~ and $SCRIPT =~ m~Prog~)
{

$NSLOTS = $ENV{NODES};
$NTASKS = $ENV{TASKS_PER_NODE};
$NPROC_HGS= $ENV{NPROC_HGS};

$nprocx = $ENV{NPROCX} || $nprocx;
$nprocy = $ENV{NPROCY} || $nprocy;
$nproc_hgs = $ENV{NPROC_HGS} || $nproc_hgs;

$submit = "reserve.sh $NSLOTS $NTASKS $NPROC_HGS \
$Env_system $jobfile-q $jobout &";

$jobclass = "parallel";
mark procx * nprocy must match nr of compute processors
$nprocxy = 1;

}

if (defined($nprocxy))
{

unless ($nprocx * $nprocy + $nproc_hgs ==
$ENV{ NODES } * $ENV{ TASKS_PER_NODE})
{

print STDERR "NPROCX * NPROCY + NPROC_HGS is not equal to" .
" NODES * TASKS_PER_NODE:\n";

print STDERR "$nprocx * $nprocy + $nproc_hgs !=" .
"$ENV{NODES} * $ENV{TASKS_PER_NODE}\n";

exit 1;
}

}

} else {
default nprocx, nprocy, nproc_hgs:

$nprocx = 1;
$nprocy = 1;
$nproc_hgs = 0;

if ($SMSNAME =~ m~/PpAn/Execute~ and $SCRIPT =~ m~Postpp~) {
$nprocx = $ENV{ NPROCX } || $nprocx;
$nprocy = $ENV{ NPROCY } || $nprocy;
$nproc_hgs = $ENV{ NPROC_HGS } || $nproc_hgs;

} elsif ($SMSNAME =~ m~/Forecast/Execute~ and
$SCRIPT =~ m~Prog~) {

$nprocx = $ENV{ NPROCX } || $nprocx;
$nprocy = $ENV{ NPROCY } || $nprocy;
$nproc_hgs = $ENV{ NPROC_HGS } || $nproc_hgs;

} elsif ($SMSNAME =~ m~CheckOptions/Execute~ and
$SCRIPT =~ m~Checkoptions~) {

$nprocx = $ENV{ NPROCX } || $nprocx;
$nprocy = $ENV{ NPROCY } || $nprocy;
$nproc_hgs = $ENV{ NPROC_HGS } || $nproc_hgs;

} elsif ($SMSNAME =~ m~/FCinput/Execute~ and
$SCRIPT =~ m~FCinput~) {

$nprocx = $ENV{ NPROCX } || $nprocx;
$nprocy = $ENV{ NPROCY } || $nprocy;
$nproc_hgs = $ENV{ NPROC_HGS } || $nproc_hgs;

} elsif ($SMSNAME =~ m~/AnUA/Execute~ and
$SCRIPT =~ m~PertAna~) {

$nprocx = $ENV{ NPROCX } || $nprocx;
$nprocy = $ENV{ NPROCY } || $nprocy;

44

$nproc_hgs = $ENV{ NPROC_HGS } || $nproc_hgs;
} elsif ($SMSNAME =~ m~/Boundaries~) {

$edit{ LL_MEMORY_LIMIT } = "1500mb";
} elsif ($SMSNAME =~ m~/AnSFC~) {

$edit{ LL_MEMORY_LIMIT } = "2500mb";
} elsif ($SCRIPT =~ m~Climate~) {

$edit{ LL_MEMORY_LIMIT } = "1500mb";
}

}
InitRun and LogProgress must be run on the local host,
in the background
A number of extra processes qualify for this as well.
if ($SMSNAME =~ m~InitRun|MakeVerif|LogProgress|CheckOptions/Execute|

BuildOthers/Build|BuildClimate/Build~) {
$bckgrd = 1;

}

if ($bckgrd) {
$SMSHOST = $SMSNODE;
$submit = "$jobfile-q > $jobout 2>&1 &";
$host = 0;

}

create jobout directories
@joboutdir=split(’/’, $jobout);

last element in path is the filename, not a directory
$#joboutdir -= 1;
foreach (@joboutdir) {

$j_h .= $_ . ’/’;
unless (-d $j_h) {

undef $!;
mkdir $j_h, 0755;
if ($!)
{print STDERR "Could not mkdir $j_h: $!\n"; exit 1}

}
}

Env_system and PseudoEnvironment for this host
$Env_system = ${"HL_LIB$host"} . "/Env_system";
$SETENV = ${"HL_LIB$host"} . "/config-sh/PseudoEnvironment";

create headers

$headers = &Headers ($SMSNAME);

Don’t queue this job if it is a boundary interpolation job
that has nothing to do
if ($SMSNAME =~ m~/LBCn/LBC(\d+)/~) {

$bdint = $ENV{BDINT} || 6;
$bdll = $1 * $bdint;
$bdlast = int(($LL + $bdint - 1)/$bdint) * $bdint;
if ($bdll > $bdlast) {

$complete = 1;
exit;

}
}

create trailers

$trailers = &Trailers($SMSNAME);

1; # to succeed do file

sub Headers{
Headers: template for headers
synopsis: $jobheaders = Headers($JOB)
author: Gerard Cats, 15 April 2004

my $job = shift;
my $HH=sprintf "%2.2d", $HH;
my $lines = "";
$lines .= <<EOH;

#!/bin/sh
EOH

include the mini-SMS headers
if ($__mSMS__) {

if ($SMSHOST eq $SMSNODE) { # runs on the local node
$lines .= <<EOH;

smsinit()

45

{ echo > $SMSHOME/$smsname.active; }
smsabort()
{ echo > $SMSHOME/$smsname.aborted; echo ’SMS-> aborted’; }
smscomplete()
{ echo > $SMSHOME/$smsname.complete; echo ’SMS-> complete’; }
EOH

on a remote host: rcp to SMSNODE:SMSHOME
} else {
$lines .= <<EOH;

smsinit()
{ echo > $smsname.active; $RCP $smsname.active \

$SMSNODE:$SMSHOME; rm -f $smsname.active; }
smsabort()
{ echo > $smsname.aborted; $RCP $smsname.aborted \

$SMSNODE:$SMSHOME; rm -f $smsname.aborted
echo ’SMS-> aborted’; }

smscomplete()
{ echo > $smsname.complete; $RCP $smsname.complete \

$SMSNODE:$SMSHOME; rm -f $smsname.complete
echo ’SMS-> complete’; }

EOH
}

}
$lines .= <<EOH;

ulimit -S -s unlimited || ulimit -s
ulimit -S -m unlimited || ulimit -m
ulimit -S -d unlimited || ulimit -d

ulimit -a
EOH

a sample algorithm (how to vary LL with time of day:
long forecast at main hours only)
note that still LL may be overwritten by a
command-line argument

$llmain = $ENV{LLMAIN} || $ENV{LL} || ’48’;
if ($ENV{FGAT} eq ’yes’) {

$llshort = sprintf("%02d", $ENV{FCINT}+int($ENV{FCINT}/2));
} else {

$llshort = sprintf("%02d", $ENV{FCINT});
}
if ($ENV{ANALYSIS} eq ’3DVAR’ and $ENV{FCINT} < 06) {

$llshort = 06;
}
if ($ENV{LSMIX} eq ’yes’ and $RUN > 1) {

if ($ENV{ANALYSIS} eq ’4DVAR’ && $ENV{$DTG} ne $ENV{$DTGBEG}) {
$obscut = $ENV{OBSCUT} || ’0130’;
$LL = sprintf("%02d", int($obscut/100 + 1));

} else {
$LL = $llshort;

}
} else {

if ($HH % 12) { $LL = $llshort; } else { $LL = $llmain; }
}
if (int $ENV{ENSMBR} >= 0) {

if ($ENV{ENSDA} =~ /:$ENV{ENSMBR}:/ &&
$ENV{EnsCycle} !~ /:$HH:/) {

$LL = $ENV{ENSDALL};
}

}

experiment ref has LL=06 by default
if ($EXP eq ’ref’) { $LL = ’06’ }
$lines .= "LL=$LL export LL\n";

set NPROCX, NPROCY, NPROC_HGS
$lines .= "NPROCX=$nprocx export NPROCX\n";
$lines .= "NPROCY=$nprocy export NPROCY\n";
$lines .= "NPROC_HGS=$nproc_hgs export NPROC_HGS\n";

return $lines;
}
--
sub Trailers{
Trailers: template for trailers
synopsis: $jobheaders = Trailers($JOB)
author: Gerard Cats, 15 April 2004

my $job = shift;
my $lines = "";

46

code to wait for completion
but under (mini-)SMS, (mini-)SMS will do it

unless ($__mSMS__ or $__SMS__) {
if ($LOADLEVELER eq ’yes’) {

LoadLeveler ---------------------
LoadLeveler needs a list in JOBID
$lines .= <<\EOH;

MAXWAIT=${MAXWAIT-10800}
for job in $JOBID; do

maxwait=0
[$maxwait -ge $MAXWAIT] && { llcancel $job; continue; }

while [1]; do
llq "$job" -r %%st %%c >job_ll || { llcancel $job; break; }
[‘egrep -c "\!" job_ll‘ -le 0] && break
sleep 10
maxwait=‘expr $maxwait + 10‘
[$maxwait -ge $MAXWAIT] && { break; }

done

rm -f job_ll
done
EOH

} else { # non-LoadLeveler: wait for the background jobs
$lines .= <<EOH;

wait
EOH
}

} else { # (mini-)SMS code
$lines .= <<EOH;

smscomplete
trap - 0
EOH

}
return $lines;

}

In the latest version of Hirlam, during the verification phase, some data preparation for
the Harmonie weather forecasting model is done. Due to a bug in the makefile, this part
of the verify script will cause Hirlam to fail. This can be solved two ways: the first is
patching the makefile, the second is to disable this part of the verification phase. There is
no need to have any Harmonie related data on the system, so the latter solution should do
fine. Instructions to bypass this verification are shown in listing 17.

Listing 17: Verify phase patch

#Check out the Env_expdesc script from the Hirlam repository
#to the experiment directory with:

Hirlam co scripts/Env_expdesc

#Edit this script and replace the line
#VERIFY:ve:vf: by the line VERIFY=:ve:

Without proper input data there can be no experiment, therefore the input data should
be copied to the appropriate directories, a special script is created to automate this. The
script prepares the following directories:

• /var/scratch/$user/hl_arc

• /var/scratc/$user/hl_dat

The original template directories reside in the experiment directory15. The script re-
sponsible for copying this data is also used to start the Hirlam experiment itself, the script
can be found in listing 18.

15They should be copied there from the accompanying CD

47

Listing 18: Script to start Hirlam experiment
#!/bin/sh
source ~/.bash_profile
SCRATCH=/var/scratch/$USER
if [-d $SCRATCH/hl_arc]
then

echo "Experiment already has a hl_arc directory,"
"not copying premade_hl_arc..."

else
echo "Starting a new experiment, copying over premade_hl_arc."
cp -R premade_hl_arc $SCRATCH
mv $SCRATCH/premade_hl_arc $SCRATCH/hl_arc

fi
if [-d $SCRATCH/dat]
then

echo "Data directory already exists."
else

echo "Data directory does not exist, copying over premade_dat."
cp -R premade_dat $SCRATCH
mv $SCRATCH/premade_dat $SCRATCH/dat

fi
Hirlam start DTG=2007011600 DTGEND=2007011600 LLMAIN=12

Make sure the ssh session to the file-server was established using X forwarding, oth-
erwise Hirlam won’t be able to supply visual progress information on the forecast through
Mini-SMS.

A.5.3 Multicluster

To run Hirlam on multiple clusters, the multicluster reservation script in listing 15 must
be used in the user’s experiment directory. In your hl_home/experiment/scripts
directory, remove the reserve.sh symbolic link and make a new one with:
ln -s reserve-multicluster.sh reserve.sh
Edit reserve.sh and change the commands in listing 19 to control how many nodes the
reservation script may use for each cluster.

Listing 19: Editing the nodes available per cluster
Edit k, l, n, m to control assignment of processes on each cluster.
declareCluster "fs1.das3.liacs.nl" ".das3.liacs.nl" k
declareCluster "fs0.das3.cs.vu.nl" ".das3.cs.vu.nl" l
declareCluster "fs2.das3.science.uva.nl" ".das3.science.uva.nl" n
declareCluster "fs4.das3.science.uva.nl" ".das3.science.uva.nl" m

Furthermore, there are some additional caveats that must be dealt with.

The Pathscale compiler is only present on the LIACS location. An application com-
piled by Pathscale uses dynamic linking against a Pathscale library, which cannot be found
on other clusters. To fix this, one should copy /usr/local/pathscale to
˜/local/pathscale, add $HOME/local/pathscale/lib/3.0 to
LD_RUN_PATH and add $HOME/local/pathscale/bin to PATH, as well as update
the pathscale library paths in config.linuxgfortran and the MPICH2-MX engage script. Af-
ter this is done, MPICH2-MX and Hirlam need to be recompiled.

MPICH2-MX requires public/private key authentication to the other clusters for a mul-
ticluster run. Add your ssh key from ˜/.ssh/id_dsa.pub to the
˜/.ssh/authorized_keys file of all other clusters.

The ˜/local directory as well as your ˜/.bashrc and ˜/.mpd.conf files must
be synchronized to all other clusters so the necessary environment variables and libraries
are present for the multicluster run. Do this with the commands in listing 20, for each of
the fileservers of the secondary clusters.

Listing 20: Synchronizing your home directory with other clusters

48

Replace fs0.das3.cs.vu.nl with the other fileservers you
need to sync to.

cd
rsync -az --delete --force local fs0.das3.cs.vu.nl:
scp .bashrc fs0.das3.cs.vu.nl:
scp .mpd.conf fs1.das3.cs.vu.nl:

Hirlam will crash if the HGS processes of the forecast do not run on the primary cluster.
Edit Env_system and uncomment the following line:
export HGS_IO_RANKS="2 3"
This will run the HGS processes on ids 2 and 316, which be run on the primary cluster as
long as there are at least 2 nodes assigned to the primary cluster in the reservation script.

If the number of nodes used for a Hirlam run is less than half of the total nodes available
to the cluster’s reservation system, Mini-SMS will attempt to start the Analysis Postpro-
cessing and the Forecast steps at the same time. The multicluster reserve script is not
designed to handle simultaneous MPI runs, therefore Hirlam will crash without an appar-
ent explanation. In your experiment directory, check out the Mini-SMS task description
file with Hirlam co scripts/hirlam.tdf and edit the file according to listing 21.
This will make the Forecast dependent on the Postprocessing step, so Mini-SMS will no
longer try to launch these steps simultaneously.

Listing 21: Making the Forecast depend on the Postprocessing step

Around line 626, replace this line:
trigger ((AnUA/Listen2AnUA == complete) && \
by this line:
trigger ((PpAn/Listen2PpAn == complete) && \

16Add more ids in ascending order if you need more HGS processes.

49

Appendix B TAU Profiling

This appendix will describe how to compile and link TAU against Hirlam.

Download the TAU sources from the following URL:
http://www.cs.uoregon.edu/research/tau/downloads.php
You will have to enter your name, email address and a small comment. Place the source
tarball in ˜/src and extract the source. Compile and install TAU with the script in list-
ing 22.

Listing 22: TAU Engage script
#!/bin/sh

#
TAU - MPI Profiling Tool Configure and install script for DAS-3
location Liacs (Leiden University) by Cor Cornelisse
#
This script assumes AMD64 Opteron architecture and
mpich2 + pathscale software present. Set the correct
paths below.
#

mpich2=${HOME}/local/mpich2

libdir_mpich2=${mpich2}/lib
includedir_mpich2=${mpich2}/include

export LD_LIBRARY_PATH=${libdir_mpich2}

installdir=$HOME/local/tau
mkdir -p $installdir

./configure -prefix=$installdir \
-arch=x86_64 \
-c++=pathCC \
-cc=pathcc \
-fortran=pathscale \
-mpiinc=${includedir_mpich2} \
-mpilib=${libdir_mpich2} \
-mpilibrary="-lmpich -lmpichcxx -lmpichf90" > logconfig 2>&1

make > logmake 2>&1

make shared > logmakeshared 2>&1

make install > logmakeinstall 2>&1

mv logconfig logmake logmakeshared logmakeinstall $installdir/
cp $0 $installdir/

In ˜/.bashrc, add
$HOME/local/tau/x86_64/bin to PATH, and add
$HOME/local/tau/x86_64/lib to LD_RUN_PATH. TAU needs to know where to
store profiled data, so also add the following line to ˜/.bashrc:
export PROFILEDIR=”$HOME/profileData“. Of course this directory needs to
be present, so execute mkdir ˜/profileData to create it.

The necessary variables in the Hirlam config.linuxgfortran for the TAU li-
braries and libdirs have already been set. However the TAU libraries need to actually be
linked to hirlam now. Edit the file as shown in listing 23.

Listing 23: Adding TAU libraries to config.linuxgfortran

The following 3 lines are to be replaced:
LDFLAGS_VAR := $(LDFLAGS) $(MPILIBS) $(LAPACKLIBS) $(FFTLIBS

)
LDFLAGS_CMA := $(LDFLAGS) $(MPILIBS) $(LAPACKLIBS)
LDFLAGS_HIR := $(LDFLAGS) $(MPILIBS) $(LAPACKLIBS) $(FFTLIBS

)

50

At line 96, replace the above 3 lines with the following:
LDFLAGS_VAR := $(LDFLAGS) $(TAULIBS) $(MPILIBS) $(LAPACKLIBS

) $(FFTLIBS)
LDFLAGS_CMA := $(LDFLAGS) $(TAULIBS) $(MPILIBS) $(LAPACKLIBS

)
LDFLAGS_HIR := $(LDFLAGS) $(TAULIBS) $(MPILIBS) $(LAPACKLIBS

) $(FFTLIBS)

Recompile hirlam with the following command:
cd ˜/src/hirlam/current ; make clean && make
Now your TAU profiles will appear in the ˜/profileData directory after a forecast.
The included TAU program Paraprof can be useful in examining the profile data. With the
TAU bin directory in your $PATH, Paraprof can be launched on the file server from a
terminal with X forwarding enabled.

51

