
Data mining on grids.

Maarten Altorf

maltorf@yahoo.com

Universiteit Leiden

August 2007

Contents

1 Introduction 3

2 Data mining 4
2.1 KDD . 4
2.2 Data mining tasks . 6
2.3 Models and Algorithms . 8

3 Grid computing 13
3.1 Globus Toolkit . 15
3.2 Techniques . 16

4 Overview of existing data mining applications on the grid 17
4.1 GridMiner . 19
4.2 WekaG . 26
4.3 Weka4WS . 27
4.4 DataMiningGrid . 30
4.5 GridWeka 2 . 32

5 Grid enabled frequent itemsets algorithm 35
5.1 Apriori Algorithm . 35
5.2 Depth-first Apriori . 36
5.3 DF-Apriori using MPI . 37
5.4 Experiments . 40

6 Conclusion and Future work 45

Appendices 47

A Depth-First Apriori MPI sourcecode 47

2

1 Introduction

Data mining is a hot topic. More and more companies, government institutions
and educational institutions gather large amounts of data each day with the
intention to find useful information. For extracting useful information and pat-
terns out of this data data mining is used. But with the ever growing databases
with data it takes more and more time to mine the data; many different or-
ganizations are working together, such as university research groups, data is
more spread out over multiple locations. Most of these organizations have good
network connections and sending over small amounts of data or information is
not a problem, however sending over a dataset as large as a Terabyte might be
a problem. For this type of problems computational grids are used: there is
much more computer power if a thousand computers are used instead of just a
few and this can reduce time for the data mining process. Another advantage
of grids is that they can cope with distributed data. In this thesis we would like
to test grid enabled data mining applications, and see if these applications can
speed up the data mining process as well as deal with data distributed among
multiple sites.

The thesis is organized as follows. Section 2 gives an introduction on data
mining. It describes knowledge discovery in databases, and in more detail the
data mining process including the tasks, models and algorithms. Section 3 de-
scribes grid computing and the Globus toolkit, a grid computing framework. In
section 4 we discuss several grid enabled data mining application. The follow-
ing applications are taken into consideration: GridMiner, WekaG, Weka4WS,
DataMiningGrid and GridWeka 2. Section 5 is used to describe an algorithm
that we grid enabled, the Depth-First Apriori frequent itemset algorithm. The
last section contains the conclusions.

3

2 Data mining

Lets start with the word data: data literally means ”that which is given” and it
refers to raw facts, measurements, numbers, etc. We would like to transform the
data into something that is more useful: information (knowledge and concepts).
Information is the result of processing, manipulating and organizing data in
a way that it creates meaning and hopefully knowledge for the person who
receives it. Data mining can therefor be defined as: ”The nontrivial extraction
of implicit, previously unknown and potentially useful information or patterns
from data”[10]. This data resides most of the time in very large databases, a
database is an organized collection of information records stored on a computer
so that its contents can easily be accessed, managed and updated. The data
mining definition begins with nontrivial extraction which means that we extract
information from the data in an intelligent way and not in a way that we end up
with obvious information. It goes on by saying that the information has to be
implicit which means that we are looking for information that is not explicitly
stated in the data. We are looking for previously unknown information because
most of the time it is useless to look for something we already know. Finding
previously known patterns can help to improve the confidence of the algorithm
and can also be useful when you are not completely sure about the information
you gathered before. And last but not least we are hoping to find potentially
useful information, we are not looking for useless information that we do not
want, but sometimes it is not clear beforehand if the information that will be
found will be useful.

Companies, governments, research and educational institutions collect vast
amounts of data in many different areas. Areas like marketing, business pro-
cesses, medical environments, consumer behavior, astronomy and many others.
Data mining looks for patterns in these different kinds of data. Let us take the
consumer behavior as an example. Most people are familiar with the concept
of bonus cards, discount cards, air-miles cards, club cards. Companies collect
this information using these cards because they want to know a lot: what you
buy, when you buy it, where you buy it, etc. With all this data these companies
are hoping to get some useful information which they can use to improve their
products, advertisement and sales. Useful information for these companies can
be: which products are sold most, in which part of the country do people buy
one particular kind of product, which products are often sold together, what are
the results of advertisements and discounts, etc. Getting this useful informa-
tion can be done by applying data mining techniques on the raw data to look
for interesting patterns. How this can be done is explained in the rest of the
chapter.

2.1 KDD

Data mining algorithms are not the only thing involved in the data mining
process. There is a lot of work to be done before and after the actual mining of
the data. Most of the time the actual data mining part is done in 10% of the

4

total time of the process, the other aspects take up the rest of the time. Because
the process is more extensive than only data mining the process is often refered
to as knowledge discovery in databases (KDD).

Figure 1: Knowledge Discovery Process

Figure 1 shows the different tasks in the KDD process. Note that there
are arrows back from Pattern Evaluation and from Knowledge Presentation:
it means that at the end of the process when you see the results, it might be
necessary to go back and change some of the steps. For example if the results
are not very interesting, then one could change the data mining algorithm and
see if another one finds something more valuable.

We next discuss the steps of the KDD process in more detail:

• Data selection is the step where relevant data for the analysis task is
selected from the data source to form the subset that is to be mined. In
many cases it is not necessary to use all the variables available, blindly
including all the columns can lead to incorrect models. First take a look
at the variables and what they mean and then a better judgment can be
made whether or not to include it in the analysis. For example when
predicting age the variable date of birth is the perfect predictor but it is
not a very useful predictor. If the data source is very large it might be
necessary not to use all the variables and all the rows, otherwise it would
take too much time to do the analysis.

• Data cleaning is the process of altering the raw data in order to make
it as clean as possible. Clean data depends on the features relevant for
the study, so for multiple studies one data set can be clean in different
ways. Data cleaning can take between 60% and 80% of the total time of
the KDD process [11]. The process copes with:

– Errors in the data, e.g. values are entered with errors, names are
spelled incorrectly, noise (outliers) in the data.

5

– Duplicated data with inconsistencies. The first case is data that is
entered repeatedly and possibly with different values. The second
case is when a real world entity is entered twice but with different
values, this problem is not easy to detect because it looks like two
different entities.

– Missing values in the data where values are expected.

– Heterogeneities in data, this arises when two or more systems are
brought together to form one system. In one case the meaning of the
same data is different in various systems. The other case is when the
structure or schema of the systems that are put together are different.

– Irrelevant data that is to be denied when the data mining algorithms
are applied to the data. Thus removing data from the data set which
the user does not want to use for the experiment.

• Data integration is the stage in which multiple, often heterogeneous,
data sources are integrated into one common source.

• Data transformation is the stage where the data is transformed to the
appropriate format for the analysis, e.g. numbers can be transformed from
integers to reals.

• Data mining is the step where the actual data mining is done. Intelligent
and non-intelligent(simple) methods are applied to extract patterns from
data source(s); more information will be given in the next section.

• Pattern evaluation is the phase where the interestingness of discovered
patterns is identified and measured. There are some concrete methods
available like measuring the support and the confidence of a pattern. One
weakness of these objective measurements is the lack of (human) back-
ground knowledge, the so called domain knowledge. It is possible that by
a concrete measurement a pattern does not look interesting while in fact
it is an interesting pattern if a user with domain knowledge looks at it.

• Knowledge presentation and visualization are at the end of the KDD
process. In this stage knowledge is presented to the users, and good data
visualization is important for the user to be able to understand and in-
terpret the outcomes of the process. Presentation and visualization can
be done in many different ways; for some studies one way of presenting
is useful while for other studies a different way of presenting the data is
desirable.

2.2 Data mining tasks

We list a number of different data mining tasks:

• Summarization data mining maps data into groups with some common
description and characteristics. This can be used as a first step of data

6

mining. First gather some simple information like averages, standard de-
viation, frequency distribution etc. Then use this information to continue
the analysis with some other task.

• Clustering, a more advanced method of summarizing data, divides a data
source into groups that are not known beforehand (unlike Classification).
The goal of clustering is to determine the intrinsic grouping in a data
set, in other words to find groups that are different from each other and
members within one group to be similar. Training data is used to build or
train a model, clustering is a form of Unsupervised learning, the training
data does not specify beforehand what we are trying to learn. Clustering
is used to visualize the data, to get a feeling of how the data looks like.
Clustering can be used as a stand alone data mining task, but it can also
be used as the data preprocessing step on which to build predictive data
mining models.

• Predictive data mining. There are two techniques that are often used
for predictive data mining: one is classification and the other is regression.
Classification is a technique that can be used to predict in what class a
case falls. Regression is a technique that can be used to predict what
value a variable will have. Predictive data mining is a form of supervised
learning, the training data has to specify what we are trying to learn. The
prediction is based on a model, and the model is generated/build by an
algorithm. The algorithm builds up a model using training data of which
the value or class is already known. A test data set is used to test the
model; the test data set is dependent of the training data. The resulting
models are used to predict data of which the class or value is not yet
known. The most common models used for prediction are decision trees,
neural networks, general linear models, classification rules and Instance
based learning.

• Link analysis is an approach to find relationships among data. Market
basket analysis is a common example in link analysis. Link analysis in the
market basket case means searching for relationships in data of shops like
supermarkets or (online) bookshops. A relationship that could be found
is ”If people buy bread they also buy butter” or ”If people buy beer and
chips they also buy peanuts”. These rules are examples of rules that can
be found by association discovery. The other link analysis technique is
sequence discovery, this technique looks for sequential patterns in data,
e.g. shopping patterns, phone call patterns and DNA sequence patterns.
In the market basket analysis case a sequence means the subsequent pur-
chase of a product given a previous buy. For example buying a dvd player
following the purchase of a tv.

• Outlier analysis is the discovery of rare or unusual events or objects in
data. It searches for objects that do not comply to the general behavior
of the data. These events or objects can be considered as noise in some

7

data sets, but they can be important in rare events analysis such as fraud
detection. The general approach for finding these outliers is the use of
distribution and deviation analysis.

2.3 Models and Algorithms

We next address the question of how a data mining technique can get useful
information out of a big pile of data. There are several kinds of data mining
techniques but basically all try to find patterns and regularities that frequently
occur. Next we will describe a number of output representations, each with an
example algorithm.

Figure 2: A decision tree (made with Weka J48 zoo)

Decision trees are a way of representing the output as a series of rules that
lead to a class or value. Decision trees can be used for classification as well as
for regression. The internal nodes of a tree test the attributes; an attribute can
be tested with a constant value and they can be tested with other attributes.
These internal nodes can test nominal and numeric values. With nominal values
it usually branches for each value of the attribute. For numeric values it is
common to branch into two ways, greater or less than a value. Generally the
nominal attributes are tested only once in a branch while numeric attributes can
be tested more often to make a further split. The leaf nodes of a tree represent
the class or the value of all the instances that reach that leaf. To reach a leaf an
instance needs to start at the root of the tree and go down the tree according
to the nodes it passes. Examples of algorithms that build up a tree are J48,
CART, C5.0 and CHAID.

Classification rules make predictions according to rules. A rule set may
look like this:

8

If a then b
If c and d then e

The preconditions of a rule is a set of tests just like the internal nodes of
a decision tree. And the conclusion of the rule is a class or value just like the
leaves in a decision tree. It is easy to transform a decision tree into a set of rules,
you generate one rule for each leaf. The other way round is more complicated
because trees are not good at separating two rules. Here is an example of this
complication.

If a and b then x
If c and d then x

These rules can be translated into a tree but not in a straightforward and
efficient way. This is because a tree has to start with an attribute to compare,
lets say a. If a is not true the tree can go on with the second rule, if a is true is
must test b. If b is true then x is true, but if b is not true then c & d has to be
tested just as in the first breach of the root node. This way there arises a tree
with two identical subtrees, see figure 3.

Figure 3: Two identical subtrees

Translating this tree into rules one obtains the following rule set; as one can
observe there is one extra rule regarding the original rule set.

If a and b then x
If a and not b and c and d then x
If c and d then x

Examples of classification algorithms are Bayes, OneR and ZeroR [9].
Association rule discovery is a form of link analysis. Association rules are

almost the same as classification rules except that they can predict attributes
instead of classes. An association rule tells us something about the association
between two or more attributes; it can predict one or more attributes. Here are
some examples of association rules:

9

If milk and butter then cheese and bread
If chocolate custard then whipping cream
If Harry Potter 1 and Harry Potter 2 and Harry Potter 3 then Harry Potter

4 and Harry Potter 5

Rules in one association rule set do not express similar regularities in the data
set. We can filter out the more interesting and useful rules by calculating the
support and the confidence and setting threshold for these values. The support
of a rule is the number of instances it predicts correctly. The confidence is
the proportion of instances it predicts correctly given the correct preconditions.
Apriori is the best known association rule algorithm that finds rules above a
given support and confidence, we will discuss the Apriori algorithm in more
detail in chapter 5.

Instance bases learning is completely different from the methods we have
seen before. This learning does not compute or produce a model; the instances
themselves form the model. Instance base learning is a way of lazy learning, it
starts the work when it is needed, the moment there is a new instance. Opposed
to eager learning what the other methods of representation do, they produce
the model as soon as the data has been seen. Instance base learning searches
for the training instance that mostly resembles the new instance and then as-
sign the class or the value of that instance to the new one. Which training
instance mostly resembles the new one is computed using a distance metric like
the standard Euclidean distance. The distance can be computed for one or more
attributes. If the attributes are nominal the distances are not so obvious. What
is the distance between a bird and a fish? Frequently the distance between two
nominal attributes is 0 when they are the same and 1 if they are different. Ex-
amples of instance based learning algorithms are IB-K and K-nearest neighbor
[9].

Clusters represent the data in a form of a diagram with the instances di-
vided into clusters. Figure 4 shows a simple case in which each instance is
assigned precisely one cluster. Some clustering algorithms allow instances to be
assigned to one or more clusters; this output is represented as a Venn diagram,
see figure 5. In a Venn diagram each ellipse represents one cluster. As you can
see there are instances such as a and k that are assigned to only one cluster,
some are assigned to two such as i and j and then there are instances that are
assigned to all three clusters such as d.

There are also algorithms that give each instance a probability measure of
membership for each cluster. This means that an instance can have a probability
of 0.5 to belong to one cluster, 0.3 to a second cluster and so on. Dendrograms
are generated by the last sort of clustering algorithms, figure 6 is an example of
a dendrogram.

Dendrograms show the order of the clusters hierarchical. The algorithms
divides the instances first in a few clusters, and goes on by dividing these clus-
ters into smaller cluster. Instances that are in one cluster on the bottom of the
dendrogram are very similar while instances that are in different clusters in the
top of the dendrogram are most different from each other. Examples of clus-

10

Figure 4: Example of a cluster output (Weka, k-means, 3 clusters, balance-scale
dataset)

Figure 5: Example of a Venn diagram

tering algorithms are K-means, Kohonen self organizing maps and Hierarchical
clustering.

Neural networks are inspired by the human brains in that it mimics inter
neuron connection strengths known as synaptic weights. A neural network ac-
quires knowledge trough learning. We discuss here only a so-called feedforward
architecture. The input training data with the corresponding desired output is
put on a neural network over a number of epochs(iterations); this enables the
network to learn the classification or value of the training data. Each epoch the
networks synaptic weights are adjusted to optimize the network. The final goal
of the network is to correctly classify or assign the correct value to instances of

11

Figure 6: Example of a dendrogram

which the class or value is unknown. Figure 7 is an example of a feedforward,
multilayer neural network made within Weka.

Figure 7: Example of a neural network (Weka, weather data set)

12

3 Grid computing

The idea behind grid computing is that one can plug one’s computer into the
wall and have access to computational and data resources without knowing
where they are or who owns these resources. The term grid is stemming from
the field of electricity network which provides a power grid one can use by
plugging a power cable into the wall socket, this way getting the electricity that
is needed without knowing where it comes from. Grid computing, simple stated,
is taking distributed computing to the next level. So first a short definition of
distributed computing followed by the definition of grid computing. Distributed
computing means dividing tasks among multiple computer systems instead of
doing the tasks on one centralized computer system. Distributed computing
is a subset of grid computing, grid computing encompasses much more. Grid
computing provides coordinated sharing of geographically distributed hardware,
software and information resources, this sharing is highly controlled defining
clearly what is shared, who is sharing and the conditions of the sharing, it
provides a service oriented infrastructure and uses standardized protocols to
accomplish this sharing. The set of individuals or organizations defined by
these sharing rules is called a Virtual Organizations (VO)[1]. The essence of
grid computing is captured by the following three point check list of Foster [1]:

1. A grid is a system that coordinates shared resources that are not under
centralized control. It coordinates and integrates resources that are in
different domains and together they form a VO.

2. A grid is a system that uses standard, open, general-purpose protocols,
interfaces, API’s and tools that address fundamental issues such as au-
thentication, authorization and resource access. By using these standards
it is easy to be adopted by other application.

3. A grid is a system that delivers nontrivial qualities of service. Which
means that the system delivers various qualities of service, such as secu-
rity, response time, throughput and availability so that the utility of the
combined systems is greater than the sum of its parts.

A grid needs to have some basic functionalities in order to be qualified as a
grid by Foster’s checklist:

• Resource discovery and information collection & publishing. Re-
source publishing is the act of letting the grid know that a particular re-
source is online and that it can be used. When a client request service from
the grid the resource discovery process locates the resources that satisfy
the resource requests of the users. To locate these resources the discovery
process uses the so called resource catalogues or registries which contain
information about all the available resources. Most of the information in
these catalogues is metadata, data about data. In grid computing meta-
data is the information that describes a resource when it is published; the

13

minimum information that must be specified of a resource in the metadata
is its name, physical location and ownership.

• Data management on and between resources. The grid must provide
ways to manage the resources across multiple, heterogeneous environments
and must ensure that the catalogues are always available and up to date.
Data management must also take care of backing up and recovering of
data sources without loss of service [13].

• Process management on and between resources. This is the creation,
monitoring, execution and management of processes; a process is the use
of the grid by a user.

• Process and session recording/accounting. Recording all processes
and sessions can be important for accounting purposes, especially when
there is a charge for using the grid, either for storing, accessing, doing
computations or other functionalities of the grid.

• Security mechanisms underlying the above functionalities. General secu-
rity issues include protection against hackers and viruses, authentication,
authorization, privacy, data integrity (backups) etc.

The architecture of grids is often described in terms of layers. The lower
layers being the computers and the networks and the higher layers being more
focused on the user and the applications.

Figure 8: Architecture of the grid

Figure 8 shows the grid architecture in layers. These layers will be described
below (starting from the lower levels).

14

The fabric layer provides the local resource specific operations on resources
that are shared on the grid, e.g. computational, network, catalogues and storage
resources.

The connectivity layer provides the core communication and authentica-
tion protocols. It enables save and reliable data exchange between fabric layer
resources.

The resource layer enables resource sharing, it builds on the connectivity
layer to control and access resources. It uses information protocols to obtain
information about resources, and it uses management protocols to negotiate
access to shared resources.

The collective layer coordinates interactions between multiple sources, it
ties multiple sources together. E.g. it can combine data sources from multiple
sites into one virtual data source, it can perform computations on multiple sites
and return the results back to the user.

The application layer holds the application of the user, this layer uses the
connectivity layer, the resource layer and the collective layer to perform grid
operations in virtual organizations.

The connectivity, resource and collective layer are often called the middle-
ware layer and are implemented by middleware software. Middleware is software
that connects software components or applications, it is often used for complex,
distributed applications and can be seen as the intelligence that brings all the
elements together. A very well known implementation of grid middleware is the
Globus Toolkit.

3.1 Globus Toolkit

Globus is a community of organizations, users and developers that work to-
gether on the use and development of fundamental technologies behind grids
and the associated documentation. The Globus Toolkit (GT)[14] is an open-
source software toolkit for developing service oriented grid infrastructures and
applications. The GT is one of the most widely used toolkits for developing grid
applications, some of the more extensive projects are Teragrid, Open Science
Grid, LHC Computing Grid and China Grid. The first GT was designed to meet
the demands of Virtual Organizations, especially in science. The newer version
of the GT is not only designed for science, as commercial applications are be-
coming more important nowadays. The GT is designed to make applications
be able to combine resources from distributed sources, resources like computers,
storage, data, sensors, software, services, networks etc. Combining resources is
motivated by the fact that it is not always possible to replicate resources locally,
e.g. a large volume of data that is needed is located on a different geographic
location then where the user is working, a scientist needs to do experiments
on remote equipments, a scientist needs to do some computation for which he
needs computer power much more than what is available at his geographic lo-
cation. These examples show that every application has its own requirements
but that there are some functions that grid application frequently need, which
are stated in the previous section. It is important for interoperability reasons

15

that these implementations are widely adopted. Interoperability means that
different systems are able to communicate, e.g. a relational database and an
object database. Globus implements these common functions and uses an open
source model to encourage contributions and adoptions.

3.2 Techniques

OGSA The Open Grid Services Architecture defines grid services as an ex-
tension of web services for a standard model to use grid resources [17]. Every
resource is represented as a grid service: a Web Service that conforms to stan-
dard conventions and supports standard interfaces. A Web service is a software
system designed to support interoperable machine-to-machine interaction over a
network, focusing on simple internet based standards such as the Simple Object
Access Protocol (SOAP) and the Web Services Description Language (WSDL).
OGSA provides a well defined set of basic interfaces for the development of in-
teroperable grid systems. OGSA is an implementation of the service oriented
architecture (SOA) model within the grid context [17]. SOA is a programming
model to build flexible, modular and interoperable applications. The emphasis
of grid computing shifted from intensive computing tasks to data intensive tasks.
That is one of the reasons that OGSA-DAI was created, it is the database access
and integration service. It allows data sources to be accessed via web services
and it makes it possible to integrate data from various sources.

WSRF, Web Service Resource Framework The WSRF defines a stan-
dard specification to merge grid and web technology, this way building a bridge
between the grid and the web[17]. OGSI was the predecessor of WSRF, it was
accepted by the grid community but not by the Web Service community because
it does not work well with existing Web Services, and therefore a new standard
was developed. WSRF defines specifications to access and managing stateful
resources using web services[18]; a stateful resource is a resource that can keep
track of its state for multiple clients. The Globus Toolkit 4 contains Java and
C implementations of WSRF, while GT3 contained OGSI implementations.

16

4 Overview of existing data mining applications
on the grid

Data mining on Grids is an interesting and very promising research area. Data
mining is already in a mature phase and more and more companies and scientists
are using it on ever growing data sets. Grid technology is also getting to a more
mature phase, the two techniques combined is a promising research area. Why
data mining on a grid? One reason is that data mining is used on very large
data sets and the time to execute a data mining technique on such a large set is
taking more and more time, the execution time can become less when using a
grid to do the computations on instead of a single computer. The second reason
is when data mining is done on data sets residing on different geographical
locations, a grid can be used to integrate the data sources into one virtual data
set and then perform the data mining algorithm on it. There have already been
studies in this new research area and there have been some programs developed
that can perform data mining tasks on grids. Here is a list of the requirements
for an application for distributed data mining on the grid [5].

• The application must be based upon an open architecture such as OGSA,
this makes the application more extensible for the community.

• The application must be able to cope with distributed data, large data
sizes, highly dimensional data sets (each item has many features) and
heterogeneity data sets (data sets with different formats or schema’s).

• It must be compatible with existing grid infrastructure. The (higher levels
of the) application must use the basic grid techniques to be compatible
with other grids.

• The application must be open to new data mining techniques and algo-
rithms, so that it is easy to integrate new ones.

• Scalability of the application in terms of the number of users that can use
the application and the resources at the same time, e.g. the number of
nodes on which the computations are done.

• End users of the application do not have to worry or know any details
about the underlying techniques of the grid, the network and the physical
locations of the data sources.

• Security is a very important issue in the area of data mining, because very
often the data that is mined is sensitive, personal and expensive data, e.g.
data of patients in a hospital. The basic grid architecture takes care of
many security issues such as how to send data over a network in a secure
way. But the application has to take care of more application/subject
specific security measurements. Such as filtering sensitive data, one user
can see one part of the data and another user can not see that part of
the data, and authorization, which user is authorized to work with which
data sets.

17

• It must support OLAP (On Line Analytical Processing) and data ware-
housing. OLAP is an approach to quickly (within seconds) answer ana-
lytical questions; it involves large amounts of diverse data. OLAP is used
to tell you what happened and data mining answers the question why
it happened and then can be used to predict the future. Data mining
and OLAP together can be used to answer the what and why questions.
A data warehouse is a single database that integrates data from differ-
ent sources, and is designed to support management information, analysis
and answering business questions. It is a decision support database and
it is not the same as the operational database of an organization. Often
OLAP operations are done on the data warehouse instead of the normal
database. Data mining, data warehousing and OLAP are complementary
methodologies and can often strengthen one another.

18

4.1 GridMiner

The GridMiner application [4, 5, 6, 7, 8] is made for the development and
runtime execution of data mining processes and data mining preprocessing on
grids. It is a Service oriented grid application that integrates all aspects of the
data mining process: data cleaning, data integration, data transformation, data
mining, pattern evaluation, knowledge presentation and visualization. Goal of
the GridMiner application: an easy to use tool for an expert data miner to ease
the process of data mining on a grid system.

Figure 9: Global Architecture of the GridMiner application

In this chapter we will describe the GridMiner application according to fig-
ure 9. This figure shows the architecture of the application divided in three
layers: the user interface, the web and the grid layer. The most important and
interesting layer is the grid layer; we will describe this layer first and proceed
with the other layers.

Grid Layer

The grid layer takes care of the execution of the data mining algorithms, the
data preprocessing and the OLAP services. The execution is directed by the
workflow engine and is supported by services such as the mediation service, se-
curity service and the file and database access service. These and more services,
see figure 10, will be discussed in the remainder of this section.

The workflow service is an important part of the GridMiner application. A
workflow is a component that combines different KDD activities into one job. It
is used to ease the KDD process, especially for long running and complex jobs.
Figure 11 is an example of such a workflow.

The GridMiner Orchestration service acts as workflow engine that executes
the steps of the workflow sequential or in parallel[5]. The service is responsi-
ble for the creation of workflows, the handling of failures and interacting with
optional components such as the resource broker and replica management.

The Dynamic Service Control Engine (DSCE) processes the workflow ac-
cording to the DSCL file. DSCL is the Dynamic Service Control Language and
it is used for the description of workflows, DSCL is easy to use and based on
XML. This is an example of such a file:

19

Figure 10: The grid layer of the GridMiner Architecture.

<dscl>

<variables>
<variable name="PERFORM_DOCUMENT">
<value>
<gds:gridDataServicePerform>
<gds:sqlQueryStatement name="myQuery">
<gds:expression>select * from test</gds:expression>
<gds:webRowSetStream name="myQueryOutput"/>
</gds:sqlQueryStatement>
</gds:gridDataServicePerform>
</value>
</variable>
<variable name=PERFORM_RESULTS"/>
</variables>

<composition>
<sequence>
<createService activityID="START"
factory-gsh=http://localhost:89/ogsa/services/ogsadai/GDSF/>
<invoke activityID=DAI001" operation="perform">
<parameter variable="PERFORM_DOCUMENT"/>
<result variable="PERFORM_RESULTS"/>
</invoke>
</sequence>
</composition>

The GridMiner Core is implemented on top of middleware [7], in this case
the service oriented Globus Toolkit.

• GMPPS, GridMiner PreProcessing Service. Data mining preprocessing

20

Figure 11: Screenshot of the GridMiner GUI with an example workflow.

tasks are all the tasks before the actual data mining task such as data
selection, cleaning and integration. See 2.1.

• GMDMS, GridMiner Data mining service, performs several data mining
tasks

– Each data mining service is implemented as a grid service specified
by OGSA.

– The input is in the XML WebRowSet1 (javax.sql.rowset.WebRowSet)
format. WebRowSet is used to communicate with a database and can
be used to easily transform data from databases to XML files and
vice versa.

– All the results are in the Predictive Model Markup Language (PMML).
PMML is an XML based language developed by the Data mining
Group2, it provides a way for applications to share models. This
means a user can use one application to make a model and output it
in PMML, and use another application to visualize and analyze the
model.

– Currently implemented data mining services:

∗ Sequential Clustering Service (SimpleKMeans)
∗ Sequential Sequence Service (SPADE)
∗ Distributed Decision Rules Service (SPRINT)

1http://www.forteach.net/Java/JDo/200611/33688.html
2http://www.dmg.org

21

• GMOMS, GridMiner OLAP Mining Service.

– Parallel OLAP

– Sequential Association Rule Mining in OLAP cubes

• GMPRS, GridMiner Presentation Service, can present the model in dif-
ferent representations such as charts, trees and association rules.

• GMDIS, GridMiner Data Integration Service (see) [8]. The integration
service is responsible for the secure, reliable and efficient data transfers
within a grid environment.

• GMDT, GridMiner Data Transformation, is responsible for transforming
data from one format to another.

GridMiner Base

• GMRB, GridMiner Resource Broker, receives a request with the specifi-
cations of a resource. The service responds with the Grid Service Handles
(GSH) that matches the requirements.

• GMIS, GridMiner Information Service, collects and combines information
about all the available grid services and provides a way to query this
information.

• GMLB, GridMiner Logging and Bookkeeping, is a service that collects
all information about jobs, resource reservation and allocations as well
logging error messages.

• GMMS, GridMiner Mediation Service, is used to integrate data from mul-
tiple data sources into one virtual data source. A virtual data source is a
uniformly organized data source of which the subsets, the individual data
sources, still reside at their original site.

There are different ways in which multiple data sources can be partitioned[5].
If the mediator has to combine several data sources it is possible that they
are horizontal partitioned, vertical partitioned or both horizontal and ver-
tical partitioned.

– Horizontal. The different data sources use the same column formats
and the difference between the data sources is that they have dif-
ferent sets of rows. The task of the mediator is to do a union on
the data sources so that the data sources are virtually put together
(underneath each other).

– Vertical. The database tables that has to be combined do not have
the same attributes but they do have a common attribute. The
task of the service is to join these tables into one virtual table(data
source).

22

The GridMiner mediation service is based on the Grid Data Mediation
Service (GDMS), which itself is based on the Grid Data Services: OGSA-
DAI[6].

• GMCMS, GridMiner Cube Management Service, is the service that cre-
ates OLAP cubes. A typical workflow of an OLAP process is as follows:
preprocessing, cube management, OLAP mining service, presentation. In
the process cube management creates the cubes and the OLAP mining
service is used to perform data mining on these cubes.

The Grid Core is implemented by middleware, in the GridMiner case by the
service oriented Globus Toolkit. This means that these services are not a part
of the research of the GridMiner project.

• Replica Management is used for the management, creation and deletion,
of file copies (replicas). Replicas are created for several reasons such as
better performance on the new storage location and better availability on
the new location for a specific site. Replica selection is responsible for
finding the replica that is best used in a specific case, e.g. find the closest
replica available.

• Security, as said before, is very important and is largely implemented by
the grid middleware.

• Grid core services implemented by OGSA.

• File and database access service. The access service is concerned with
accessing data sources, which can be relational databases, XML databases,
raw files or other formats, and providing meta-data and mechanisms for
querying those data sources. Meta-data is information about the actual
data such as the query language that has to be used, the physical location
of the data, states, workload, etc. This access service is implemented by
reusing the implementation of the OGSA-DAI services [6]. A wrapper is
used to query the data sources [5].

The Fabric layer is responsible for local, resource specific operations.

• Grid resources, such as distributed hardware and software.

• Data sources, such as databases or data files.

Web layer

The Web Layer is the layer between the Graphical User Interface (GUI) and
the grid, it consists of the following:

• Knowledge Base (KB) is used to store and share all information needed
by the other components in the process of knowledge discovery, it is made
up of the following components:

23

– Ontologies: describing data mining domain, data sources and activ-
ities. The ontologies are written in OWL3. Owl is a web ontology
language and is written specifically for the world wide web.

– Metadata: information about the data.

– Rules: discovered rules of the data mining process.

– Facts: explicit knowledge generated from the discovered rules.

– Central registry: information about services and their locations and
informations about users and projects

• Service configuration is a set of web applications that makes it possible
for the users to interact with the GridMiner application. It consists of the
following procedures:

– It is used for configuring services such as selecting the data mining
application.

– Setting up of the input parameters.

– Prepare the workflow parameters in a DSCL document.

• The Dynamic Service Control Engine Client is the bridge between the grid
and the Web environments. The DSCE client is used for the following:

– To start up the engine, DSCE.

– Control the execution of the process.

– Sending messages from the services to the client, such as intermediate
results.

• Data exploration and visualization are the other processes that are part
of the web layer. These are responsible for the throughput from the grid
to the GUI for the data.

Graphical User Interface

The GUI acts as the visualization layer. Allowing the user to interact with the
system in the following way:

• Interactively construct workflow descriptions at a high abstraction level.

• Visualizing data mining results.

• The GUI is based on Java Web Start, which is platform independent and
light weighted. There is no real work done here, everything is delegated
to the other layers.

3www.w3.org/2004/OWL/

24

Design characteristics

• GridMiner resource specification language (GM-RSL) is the language to
describe all the different types of resources. The first prototype of the
GMRSL is based on hard wired XML for simplicity and to deliver a quick
prototype of the GridMiner application.

• The GridMiner data mining service (GMDMS) is a container that dele-
gates the actions to an implementation of the function. This way it is easy
to extend the functionality of the application. The input to this container
is an XML configuration file. The output can be any desirable format,
even multiple output formats is possible. But it is desirable to use one
standard format like PMML.

Prototype

At the time of writing the developers of the GridMiner application developed a
prototype of the program with the following characteristics:

• It uses the Globus toolkit 3.0.

• Completely OGSA 1.0 compliant

• Written in Java.

• The messages that are send are SOAP over http.

• API’s are available that can be used by data mining techniques for common
operations.

• The framework can be deployed in a Jakarta Tomcat servlet with prede-
ployed Globus Toolkit 3.0 or in a Globus Toolkit 3.0 standalone container.

25

4.2 WekaG

WekaG [15] is an application that performs data mining tasks on a grid, it ex-
tends the open source data mining toolkit Weka [9]. WekaG implements a verti-
cal architecture called Data mining Grid Architecture (DMGA), which is based
on the data mining phases: preprocessing, data mining and post-processing.
The application implements a client/server architecture. The server side is re-
sponsible for a set of grid services that implement the different data mining
algorithms and data mining phases. The client side interacts with the server
and provides a user interface which is integrated in the Weka interface (without
modifying Weka itself). WekaG is implemented to include at least the follow-
ing features: coupling data sources, authorization access to resources, discovery
based on metadata, planning and scheduling tasks and identifying the available
and appropriate resources.

With the first prototype only the Apriori algorithm is implemented to be used
on the grid, but unfortunately there are no performance or efficiency issues and
results available. The prototype of the application uses the Globus Toolkit 3 as
the grid middleware, GridFTP to transfer data to the server nodes, the Open
Grid Service Infrastructure (OGSI) which is the predecessor of WSRF which is
included in GT4. As future work the application will be extended by all the
data mining algorithms included in Weka, also implementation of grid services to
provide more data mining services and at last the performance will be evaluated
[15].

26

4.3 Weka4WS

Weka4WS [16] is an application that extends Weka to perform data mining tasks
on WSRF enabled grids. The first prototype of Weka4WS has been developed
using the Java WSRF library provided by GT4. The goal of Weka4WS is
to support remote execution of data mining algorithms in such a way that
distributed data mining tasks can be concurrently executed on decentralized
nodes on the grid, exploiting data distribution and improving performance.
Each tasks is managed by a single thread and therefor a user can start multiple
tasks in parallel, taking full advantage of the grid environment. There are three
types of nodes in Weke4WS: local nodes (or user nodes) with Weka4WS client
software, computing nodes that provide the Weka4WS Web Services and storage
nodes which provide access to data to be mined. Data can be located on the
local, the computing and the storage nodes as well as on third party nodes. If
the data that is to be mined is not on a computational node it can be uploaded
using the GT4 data management services (GridFTP). The other steps in the
process, data-preprocessing and visualization, are still executed locally.

Figure 12: Weka4WS architecture

The Graphical User Interface of Weka is extended with a method to do
remote data mining tasks. If a user wants to perform local data mining tasks it
can click the start button on the local pane, and the task is done as usual using
the local Weka Library. If the user wants to execute remote data mining tasks it
can choose the available remote Web services and use the remote start button to
begin the process. The Client Module of the user node acts as an intermediary
between the GUI of the user and the Web Services of the computing node. The

27

results of both the local and the remote data mining tasks are visualized in
the standard output pane. The computing nodes use the WSRF web service
to expose all the data mining algorithms on that node provided by the Weka
Library. All data mining algorithms provided by the Weka toolkit are exposed
as Web Service and can be easily deployed.

Execution Steps

This section describes the steps Weka4WS performs to execute a data mining
task on the grid [18]. In this example we assume that the data to be mined
resides on the user node and not on the computing node.

The first step is the creation of a resource. The client module invokes a cre-
ateResource operation, so it sends a message to the web service of the computing
node. This resource is used to maintain the state (as property of the resource)
of the subsequent clustering analysis. In the end the web service returns an
endpoint reference back to the client.

The next step is a notification subscription. Whenever the model changes or
has been computed the web service will send a notification to the client module
with the value of the model resource property, which represents the result of the
data mining task.

The third step is the task submission step. In this step the client module
invokes the data mining operation with its arguments, among which are the url
of the data set, the name of the algorithm to be used and the arguments of the
algorithm.

Next is the file transfer step, if the dataset is already located on the comput-
ing node this step is skipped. The file transfer in managed by the GT4 Reliable
Field Transfer (RFT) which resides on the computing node. The transfer is
done by the GridFTP server running both on the user and on the computing
node.

Next is the most important step, it is the data mining step. The data mining
task is started by the web service which invokes the appropriate data mining
algorithm that is located in the Weka library on the computing node. The result
of the computation is stored in the model property of the resource which was
created in step 1.

The sixth step is the notification of the result. Whenever the model property
has been changed the new value is notified to the client module. This allows for
asynchronous delivery of the results.

The final step is the destruction of the resource. The client module invokes
the destroy operation which deletes the resource that was created in the first
step.

Performance analysis

This performance analysis was carried out by the developers of Weka4WS [18].
They evaluated the execution times of the different steps of the process. The
main goal was to analyze the overhead of the WSRF mechanisms: resource

28

creation, notification subscription, task submission, result notification and re-
source destruction. The other steps in the process are the file transfer and data
mining step, which are the ones that are likely to be the largest steps. The data
sets used range from 2 to 10 MB, they performed a classification with the J48
algorithm and a 10 fold cross-validation. The task was executed in two network
scenarios. One is the local area grid with a high bandwidth and a low round-trip
time (RTT is the time it takes for a package to travel from one computer to
another computer over a network, and back), the other is a wide area grid with
a lower bandwidth and a higher round-trip time. The results of the analysis:

• Local area grid

– Small data size: Most of the execution time is consumed by the data
mining task itself. About 9% percent is taken up by the WSRF
mechanisms; the tranfer time is negligible.

– Large data size: Almost all of the time is consumed by the data
mining tasks. Less then half a percent is taken up by the WSRF
mechanisms and the file transfer task.

• Wide area grid

– Small data size: The data mining task and the file transfer both take
up around 47%. The WSRF mechanisms take up about 6% of the
total time.

– Large data size: The data mining task again consumes most of the
time, around 83%. File transfer time is around 16% and the WSRF
mechanisms take up almost nothing.

The conclusion of the analysis is that the WSRF mechanisms with large data
sets take up an almost negligible amount of time and with smaller data sets just
a small percentage of time. Small data sets, smaller then around 8MB, should
be computed on the node on which this data set resides. Otherwise a lot of
overhead is generated by the transfer of the files. Our conclusion is that the
grid must only be used if the data mining task takes up most of the time, or if
the dataset resides on another node then the user node. The major reasons to
execute data mining tasks on the grid are the increasingly large data sets, the
faster networks and the distribution of data around the world. For future work
we would like to test this program (and the other ones) on much larger datasets,
on a network like the www because we are looking at grids in the future with
nodes all around the world, and not only at one location.

29

4.4 DataMiningGrid

The DataMiningGrid4 system is developed for generic and sector independent
data mining interfaces and tools to be exploited on the grid. The DataMin-
ingGrid consortium comprises of five members: Fraunhofer Institute, Daimler
Crysler, University of Ulster, University of Ljubljana and the Technion Institute
of Technology. The project composed the following requirements: handling of
massive and distributed data, distributed operations, data privacy and secu-
rity, user friendliness and resource identification and metadata. Following these
requirements the main objectives of the project are the development of grid
interfaces that could be used by data mining tools, a user friendly workflow
editor for configuration, text mining and ontology learning services, a testbed
with some demonstrator applications and the last objective is to develop all of
this with emerging grid standards.

At the moment of writing the software is in the beta testing stage and it
should be possible to test the DataMiningGrid software as an external user.
There are two ways of doing this. One is joining the testbed and the other
is an end user installation. To join the DataMiningGrid testbed the user will
need a machine, preferably linux, but it can also be a windows machine on
which core GT4 services will have to be installed. For that a fully qualified
DN (distinguished name) is also needed. Depending on the experience of the
user the set up procedure to join the test bed can take anything from a day to
a week. To join the test bed the DataMiningGrid group also needs an official
letter from the organization of the user. Other questions concerning the testbed
are if the organizations network is behind a firewall and if the user is able
to open a range of ports. The other option to test the software is by end-
user installation. In order to actually use the DataMiningGrid system it is
not necessary to join the test bed. The end-users installation takes about 30
minutes all together (first the user has to obtain a DataMiningGrid certificate).
The DataMiningGrid would prefer the user to through both steps, testbed and
end user installation, and provide them with feedback, especially comments and
feedback on the installation and other instructions.

Joining the testbed was not possible because some files were missing and we
started to get the end user installation working first. Here is a short description
on how to get the client side of the DataMiningGrid working on a windows
machine. First install Java5 if it was not installed yet and set Java variables
correct:

set JAVA HOME=C:\java
set PATH=C:\java\bin

4www.datamininggrid.org
5java.sun.com

30

Next install Ant6 and set the Ant variables as below; also add the line
C:\ant \bin to the system variables → Path.

set ANT HOME=C:\ant

You need to install Triana7 and correctly set the path. Triana is a graphical
environment that the DataMiningGroup uses for its interaction with the user. It
is used as a workflow composer, which can build, execute and manage large and
complex data mining processes in a grid environment. Here is how to correctly
set the path if Triana is installed on C:

set TRIANA=C:\triana

After these actions unzip the DataMiningGrid zip file in the home directory
of the Triana application. A certificate is needed to get access to the Kanin
server of the Fraunhofer Institute. How to get a certificate is stated on the
website of the DataMiningGrid. This certificate has to be put in a .globus di-
rectory, this directory has to be created by the user. And a certificate from the
certificate authority (CA) has to be put in the subdirectory certificates of the
.globus folder. To run the application go to the directory of triana/bin and run
triana.bat. After the startup of Triana there will be a folder DataMiningGrid
on the left of the screen. To start up do a CredentialsGenerator from DataMin-
ingGrid → security and then run the ApplicationExplorer. However, after a lot
of hard work we did not get it working because of firewall restrictions both on
our side and on the Fraunhofer institute.

6ant.apache.org
7www.trianacode.org

31

4.5 GridWeka 2

Another grid enabled data mining application is GridWeka2. The difference
between the original Weka and GridWeka2 is the option to run cross valida-
tion in parallel and distributed over several machines. Here is the way to run
GridWeka2 on the DAS-2 8.

1. To work on the DAS-2 it is sometimes convenient to first reserve some
nodes before using them. This can be done with the next command when
you are logged on to one of the DAS-2 fileservers:

preserve -e node100.das2.liacs.nl:7 900

This will reserve seven nodes on the DAS-2 for 900 second, only available
nodes will be selected. It is not necessary to do a reservation, but when
the DAS-2 is very busy it is more convenient.

2. The next step is the startup of the server(s). If you have reserved some
nodes these nodes can be used to be running a server. On the DAS-2
the reserved nodes can be checked with the command preserve -llist. The
startup of the servers can be done with the next command:

rsh node108.das2.liacs.nl java -classpath /home/username/gridweka2/
GridWeka2.jar weka.ucd.WekaServer 6700 3

This will start one server on the node 108 on port 6700. This server will
be able to process three concurrent requests at the same time.

3. Before starting GridWeka2 it is necessary to tell GridWeka2 where the
servers of the grid are located. This is done by creating a servers.csv file
within the same directory as where GridWeka2 is located. This file should
look like this:

node100.das2.liacs.nl,6700,-,-

node101.das2.liacs.nl,6700,-,-

node102.das2.liacs.nl,6700,-,-

In this case there are 3 servers (node100.das2.liacs.nl, node101.das2.liacs.nl,
node102.das2.liacs.nl) each with the same port number (6700). The last
two options are empty, but will be used in the future.

4. To start the client of GridWeka2 type the following line in your command
prompt(windows) from the directory where GridWeka2.jar is located:

java -cp GridWeka2.jar weka.gui.GUIChooser

This will open the Weka GUI chooser, which is the same as the original
Weka GUI chooser. GridWeka2 does not work in command line interface
(CLI) but it works in both the Explorer as well as the Experimenter mode.
Furthermore in these two modes it works in the same way as the original
Weka for as long as the user is concerned. GridWeka2 uses the servers.csv

8http://www.cs.vu.nl/das2/

32

Datasets Algorithms Computers Time
zoo, lymph J48, KNN(1) 3 nodes 4:01
zoo, lymph J48, KNN(1) 2 nodes 3:36
zoo, lymph J48, KNN(1) 1 node 3:49
zoo, lymph J48, KNN(1) laptop 0:09
zoo J48 3 nodes 1:15
zoo J48 2 nodes 0:50
zoo J48 1 node 0:49
zoo J48 laptop 0:03
Waveform-5000 J48 3 nodes 2:58
Waveform-5000 J48 2 nodes 2:43
Waveform-5000 J48 1 node 4:34
Waveform-5000 J48 laptop 18:58

Table 1: Experiments with GridWeka2

file to connect to the available servers to perform the cross validation in
parallel.

Experiments

Table 4.5 shows the experiments we have done with the GridWeka2 experi-
menter. All experiments were done with 10 repetitions and 10 fold cross-
validation. Three data sets were used zoo, lymph and waveform, the sizes of
these data sets are respectively 15 kb, 22 kb and 1 mb. The experiments were
done on one laptop (800mhz, 512 mb) or on the same laptop in combination
with 1, 2 or 3 nodes of the DAS-2. The DAS-2 is a Distributed ASCI Supercom-
puter; it consists of five cluster among which is the cluster at the university of
Leiden. The cluster at the university of Leiden has 32 nodes each with 2 1-Ghz
Pentium III processors, 1.5 GB RAM and a 80 GB harddisk.

The results from the experiments show us one important issue of data mining
on grids. When the data set used is not big enough there will not be any
improvement on execution time. On the contrary if the data set is very small
it is much faster to execute the data mining on one single computer. That is
because the overhead of transferring the data and the results is too big with
smaller sets. But as you can see when a data set is used of 1 mb, the Waveform-
5000 data set, the speedup when using 1, 2 or 3 nodes is significantly. And
because it is not uncommon to have data sets larger then 1 mb the GridWeka2
can significantly improve the execution time.

We also tried the algorithms J48, KNN(1), NaiveBayes, ZeroR and Simple
Linear Regression at the same time on the dataset Waveform-5000 with 1, 2
and 3 nodes but unfortunately both the DAS-2 and the notebook ran out of
memory.

The adjustments made to Weka do not make GridWeka2 a grid enabled

33

application (cf. three point check list). Each server of GridWeka2 has to be set
up manually. It is not the case that when one server is set up on the grid that
the server looks for available nodes on the grid. The server only runs on one
node and if more then one node wants to be used the other ones has to be set
up manually as well. This is not what a grid enabled application should look
like. The name, GridWeka2, suggests that it is a grid enabled application but
on the contrary it is an application that can use multiple computing sources in
parallel.

34

5 Grid enabled frequent itemsets algorithm

By the absence of a good test of a grid enabled data mining application we
have decided to do some work ourselves. The idea was to rewrite a data mining
algorithm to have it work on a grid. We took a depth-first implementation (the
so called Apriori algorithm) from dr. W. Kosters of the Liacs (Leiden Institute
of Advanced Computer Science) and used MPI (Message Passing Interface) to
make it grid-enabled.

5.1 Apriori Algorithm

The Apriori algorithm is an association rule algorithm that finds frequent item-
sets in a data set. A set is a frequent itemset if the set is contained in at least
the threshold number of transactions in the data set. The threshold is called
the minimal support and should be known in advance. Thus the Apriori looks
in a data set of transaction for sets of items that are often together in one
transaction. Take a look at the following data set of transactions. There are
transactions with 3 and 4 items.

1. a, c, d

2. b, c, d, e

3. a, b, e

4. a, c, d, e

5. a, c, d

As one can see the set {c, d, e} has a support of 2. This set is called a
3-itemset because it contains three items. The support is two because there are
two transactions containing this set, namely itemset 2 and 4. The 1-itemsets
{a} and {c} both have a support of 4. The minimal support is used to narrow
down the outcome of the algorithm and to find only the bigger sets. In this ex-
ample if the minimal support would be 3 the itemsets that pass this threshold
would be: {a}, {c}, {d}, {e}, {a,c}, {c,d} and {a, c, d}.

Now lets look at how the Apriori algorithm works and finds these frequent
itemsets. The Apriori algorithm is based on the fact that all subsets of a fre-
quent item set are also frequent itemsets. The algorithm generates the frequent
itemsets in a breadth first way. This means that it first finds all the frequent
1-itemsets, next all the frequent 2-itemsets, all 3-itemsets, etc. Until the gen-
erated itemsets do not contain any more frequent itemsets. Apriori uses the
frequent k-itemsets to generate the frequent k+1itemset. The next table is the
flow of the frequent itemset generation with the Apriori algorithm.

35

1-itemsets support frequent generated support
1-itemsets 2-itemsets

a 4 a a, c 3
b 2 a, d 3
c 4 c a, e 2
d 4 d c, d 4
e 3 e c, e 2

d, e 2

frequent generated support frequent
2-itemsets 3-itemsets 3-itemsets

a, c a, c, d 3 a, c, d
c, d

5.2 Depth-first Apriori

The Depth-First (DF) Apriori [21] algorithm is a form of the Apriori algorithm
but instead of building the itemsets breadth first is does it depth first. Which
means that it does not generate layer by layer. The trees below show the flow
of the depth-first Apriori algorithm.

1

c d
|
d

2

a c d
| |

c d d
|
d

3

e a c d
| | |

a c d c d
| | |
c d d
|
d

The algorithm works as follows. First find all the 1-itemsets in the data set.
Remove the itemsets with a support lower then the minimal support and arrange
the items by increasing frequency. In our example this means: e, a, c, d. We
start with the last item and work backwards, say we have itemsets i1 .. in. We
start building the tree by putting in as a node of the tree, at this point this is
the only node of the three. The next step is putting in-1 next to the top node
and copy the old tree beneath this new node. For our example this means we
put the c next to the d and put the old tree, which consist of only d, beneath
the c. After this step we count the support of each new itemset. In our case this
means the itemset {c, d}, which is frequent and therefor stays. If the itemset
{c, d} was not frequent we would have pruned it by removing the d beneath the
c. This will lead us to the first tree and we begin again by putting in-2 next to
the top nodes and the old tree beneath it. Until all the 1-itemsets have been
placed in the tree.

36

5.3 DF-Apriori using MPI

MPI stands for Message Passing Interface and is used for parallel computing.
We intend to use MPI to make the DF-Apriori algorithm a parallel algorithm
so that is can be used on a grid. The algorithm uses both domain decomposi-
tion and functional decomposition. In domain decomposition data are divided
into smaller sets of data and are mapped on multiple processors. In the case of
data mining algorithms this means to divide the dataset into smaller datasets
and perform data mining processes on each of them in parallel. Functional
decomposition is used to allocate tasks to slave processes and managed by a
master process. In data mining this can be beneficial because it is not useful
to perform data mining only on the smaller data sets, we want to combine the
results of the smaller sets into a final result. Thus in the new algorithm we use a
mix of domain and functional decomposition which are both implemented using
MPI. MPI consists of a library of functions that you can include in your code
to communicate between processes. The communication between the different
processes is done by message passing which in turn is done by library calls. Four
classes of calls can be distinguished. The first class of calls is used for initial-
ization, starting communication, identifying the number of processors, creating
subgroups of processors and managing the communication. The second is used
for point-to-point communication, this is the communication between two pro-
cessors. Communication consists of a send and a receive, without one of them
the communication will fail. The third library class provides communication
and synchronization among groups of classes. And the last class is used for the
creation of complicated data structures.

We used MPI to make the DF-Apriori algorithm grid enabled. As said be-
fore domain and functional decomposition is implemented to accomplish this.
We will now describe the algorithm in more detail and describe the techniques
used to make it grid enabled. The algorithm starts with initializing basic MPI
commands.

MPI Init (&argc, &argv);

MPI Comm rank (MPI COMM WORLD, &my rank);

MPI Comm size (MPI COMM WORLD, &ps);

MPI Init is the initial mpi command, rank gives every processor a rank num-
ber and size determines the number of processors the in MPI COMM WORLD
group.

The algorithm starts of with four steps of preprocessing. The first pass it
computes the minimal and maximum item numbers. Later in the algorithm
an array is used to keep track of the frequency of all the 1-itemsets. Say that
the items in the dataset start from 10000, it is more efficient to have the array
start from that point instead of having the first 10000 array elements containing
nothing. This function reads the entire dataset and computes the minimum and
maximum item numbers. MPI is used to have the computation done in parallel.

37

Every processor computes the minimum and maximum item number of a small
part of the dataset. After it has computed this it will send its result back to
the master process, which is realized with the following command:

MPI Reduce (&min itemnr, &mini, 1, MPI INT, MPI MIN, 0, MPI COMM WORLD);

The reduce command is used to perform a global operation on all processors
of a group. Here the reduce actions will cause all the group members to send
their minimal item number to the master process (0). The master process will
reduce all the numbers to one with the operator that is given, in this case it
is MPI MIN which computes the minimum. The following action is to send
these numbers back to all the processors which is accomplished by the following
command:

MPI Bcast (&mini, 1, MPI INTEGER, 0, MPI COMM WORLD);

It broadcasts the minimal item number from the master process to all the
other members of the group. The same is done with the maximum item number.

In the second pass of the dataset the number of frequent 1-items is counted.
Each processor computes the frequency of a part of the dataset. For example,
assume we have three processors and each of them has computed the following
frequency of their part of the dataset.

Proc / Item 1 2 3 4 5 6 7 8 9 10
1 1 0 1 3 7 0 1 6 6 4
2 2 0 0 1 2 10 7 6 0 3
3 3 0 0 1 3 1 2 0 1 7

After the processors have computed their data it is send to all other proces-
sors, each processor receives all other data and adds it to their own. Which
ends up in the situation where each processor has the following data:

Item: 1 2 3 4 5 6 7 8 9 10
Frequency: 6 0 1 5 12 11 10 12 7 14

Now the frequent 1-items are computed with a minimal support of 6. This
is also done in parallel, followed by a reduce and a bcast. So in the end each
processor ends up with the number of frequent items which is 7.

The third pass is used to compute the number of relevant transactions which
are the ones that contain at least two frequent 1-itemsets. Again this is done
in parallel. Each processor computes the number of relevant transactions of a
part of the dataset. A reduce adds these computed numbers and a bcast sends
them back to each of them.

Next is the sorting step, which sorts the 1-items with respect to the support
and renumbers them. The sorting step is used for efficiency purposes, the fastest
execution time is achieved when the items are sorted with increasing frequency
[21]. The frequency list that was computed previously is split among the pro-

38

cessors. Each processor starts with sorting its list. At this point each processor
has a sorted list and these ones should be combined and sorted again. We have
solved this issue as follows:

while number of remaining processors (n) > 1 do
if number of remaining processors = EVEN then

ReceivingProcessor = 0
for i = n to n/2 do

Processor i sends to ReceivingProcessor
ReceivingProcessor++

end for
end if
if number of remaining processors = ODD then

ReceivingProcessor= 0
for i = n to n/2 do

Processor i sends to ReceivingProcessor
ReceivingProcessor++

end for
Processor n/2 sends to Processor n/2 -1

end if
Each processor that receives a list combines it with its own list and sorts
it directly using mergesort
Number of remaining processors n is n/2

end while

Following this the master processor has the sorted list and broadcasts it to all
the other processors.

The next step of the algorithm is to build the FP tree. This FP tree is later
used to count the frequent items. The whole file is read again in this phase.
Each processor, except for the master processor, reads a part of the dataset and
computes the number of frequent 1-itemsets in each transaction. If a transac-
tion contains two or more frequent items then this transaction is send to the
master processor. The master processor adds these transactions to the FP tree.
This sounds easier then it is, because the master processor has to know whether
there are remaining transactions or not (all transactions are already added to
the tree). So we implemented this as follows: all processors send a finished mes-
sage to a second master processor, as soon as this second master processor has
received all finish messages it will send a finish message to the primary master
processor. We used MPI Probe for the master processor to check whether the
incoming message is a finished messaged or a new transaction message.

MPI Iprobe(MPI ANY SOURCE, 1 or 2, MPI COMM WORLD, &flag, &status);

If it is neither of them, which means that there is no message, then it will
loop until there is a message. If the message is a finished message the master

39

processor will stop with the receiving loop and will continue with the next step of
the algorithm. And if the message is a receive message it will add the transaction
to the FP tree and send a continue message back to the sender to communicate
that it continue with the next transaction. A sending processor will not continue
its loop through the transactions until it receives this continue message. This
mechanism makes sure that the processors that send the transactions to the
master processor will not send too much. Which, on the processor side, can
cause a memory problem. And this in turn can result in loss of data.

The last step of the algorithm is the counting step. This step builds the
Depth-First tree and counts the frequent itemsets. The building is done using
the ordered 1-itemsets. This step of the algorithm works as described as before:
adding an itemset, constructing the tree, counting the frequencies, pruning the
tree and copying the tree. We did not parallelize this step of the algorithm.

5.4 Experiments

We implemented the new algorithm on the DAS-2 using MPI. The source code
is included in Appendix A. Compiling the code is done with the following com-
mand:

mpiCC -Wall -O3 -o fim all current.cc

MpiCC is the MPI compiler for c code, fim all is the target application and
current.cc is the sourcecode. To start the application on the DAS-2 a script
must be submitted to the DAS-2. Such a script looks as follows:

#!/bin/sh
#$ -S /bin/sh
#$ -cwd
#$ -N fim_all
#$ -l h_rt=11:55:00
#$ -pe mpi 15

PROG=fim_all
ARGS=""

/usr/local/mpich/mpich-gm-gcc/bin/mpirun \
-np $NSLOTS -machinefile $TMPDIR/machines $PROG $1 $2 $3

This script states the number of processors to be used, in this example 15.
It also states the program’s name, which mpi to use and the parameters. The
parameters are the programs name and three other arguments which are stated
in the command to submit the script to the DAS-2. The next is example of such
a submit:

40

qsub start.sge retail 12 uit

Qsub is the submit command and start.sge is the starting script as shown
before. Input of the program are the dataset, minimal support and output
filename, in the example these are respectively the retail dataset, 12 and uit.

Next are the tables with data of the experiment. There are five columns.
Processor is the number of processors used, Or means original. This is the
original algorithm and it is also submitted to the grid but is uses only one
processor. Minsup is the minimal support. Reading is the time used for the
first phase of the algorithm. FP is the time to build the FP-tree. And counting
is the time it takes to build the Depth-first tree and to count the frequent items
in this tree. In some cases there there is no outcome, this is stated in the tables
with an X. There are also custom dataset used for the experiments, these are
generated with a java application. For example Custom 12000-1000 is a custom
dataset with 12000 attributes and 1000 transactions.

Processor Minsup Reading FP Counting
3 12 2 12 20
4 12 1 11 21
5 12 1 11 21
6 12 1 12 20
10 12 1 12 21
15 12 2 13 21
Or 12 2 8 19

Table 2: Retail dataset, approximately 4 Mb.

Processor Minsup Reading FP Counting
Or 12 12 7 X
2 12 13 24 X
3 12 13 12 X
4 12 13 9 X
5 12 13 8 X
10 12 12 6 X
15 12 13 6 X

Table 3: Accidents dataset, approximately 34 Mb.

41

Processor Minsup Reading FP Counting
Or 2 11 6 X
5 2 10 4 X
10 2 10 3 X
15 2 12 4 X
Or 4 12 5 X
5 4 10 4 X
10 4 10 3 X
15 4 12 3 X
Or 977 9 4 19
5 977 11 2 19
10 977 10 3 19
15 977 12 4 18

Table 4: Custom dataset with 12000 attributes and 1000 transaction, approxi-
mately 300 Mb.

Processor Minsup Reading FP Counting
Or 4 28 14 X
3 4 24 12 X
10 4 28 8 X
15 4 26 7 X
Or 2 26 15 X
10 2 25 8 X
15 2 25 7 X
Or 1500 25 12 X
5 1500 26 8 X
10 1500 25 7 X
15 1500 29 8 X
Or 2450 24 9 2
5 2450 25 7 2
10 2450 25 7 1
15 2450 25 7 2

Table 5: Custom dataset with 12000 attributes and 2500 transaction, approxi-
mately 750 Mb.

The results of the experiments with the retail dataset show us that using a
grid for data mining is not useful when a relatively small dataset is used. The
time it takes to read the dataset using only one node or using 15 nodes is equal.
Computing the FP-tree takes 50% more time when doing this on more then
one node. These negative results can be caused by a bad algorithm or by the
extra time it takes to send the data and the intermediate results over the grid.

42

Processor Minsup Reading FP Counting
Or 4 20 8 X
5 4 20 7 X
10 4 20 6 X
15 4 20 6 X
Or 500 21 9 X
5 500 21 6 X
10 500 20 5 X
15 500 20 5 X
Or 990 20 6 X
5 990 20 7 X
10 990 19 7 X
15 990 19 7 X

Table 6: Custom dataset with 22000 attributes and 1000 transaction, approxi-
mately 625 Mb.

Processor Minsup Reading FP Counting
Or 12 82 13 X
5 12 24 X X

Or 100 58 13 X
5 100 28 X X
10 100 23 X X
15 100 X X X
Or 400 25 9 X
5 400 24 7 X
10 400 24 6 X
15 400 X X X
Or 497 24 8 0
5 497 24 7 0
10 497 23 7 0
15 497 X X X

Table 7: Custom dataset with 50000 attributes and 500 transaction, approxi-
mately 715 Mb.

When looking at the experiments done on the accidents dataset it shows us a
reading time which is equal for each number of processors used. It also shows
us that the time used for building the FP-tree decreases when increasing the
number of processors except for the fact again that using only one node is still
almost as fast as when using 15 nodes. The reading time in the experiments
with the custom datasets, 12000-1000 12000-2500 22000-1000, show no decrease
when using more nodes. The FP phase shows an increase in speed of maximum

43

50% in case of a small minimal support and almost no increase in case of a large
minimal support. For the biggest dataset, custom 50000-500, it is shown that the
reading time for small minimal supports could be decreased with a maximum
of 3.4 times. This increase in speed opposed to the other experiments with
almost no increase is caused by the following. This dataset has a large amount
of attributes, which means that there is more work to be done because there
are more different frequent items. The increase in speed is decreasing when the
minimal support increases. As before this can be explained by the fact that if
the number of frequent items decreases the amount of work and the speedup
also decreases. It is a pity that we can not use bigger datasets on the Das-
2 then approximately 750 Mb. Some experiments were partially unsuccessful,
in the table denoted by an X. We assume that these failures were caused by
limitations of the Das-2 because even the original algorithm is not finished on
some occasions. In the end of the experimenting phase using 15 nodes did not
work anymore. We assume again that this is caused by the Das-2, maybe some
nodes are not running anymore.

Concluding our experiments with the grid enabled Apriori algorithm, when
using relatively small datasets there is no use for a grid. Grids should be used
when dealing with large enough datasets, in the order of gigabytes. The algo-
rithm can be further optimized for better performance by analyzing the time
each phase of the algorithm uses. Also much of the same work is done on all
sites. These flaws are probably caused by us when trying to make the algorithm
work instead of trying to make it work in an optimal way. Future work can be
spend on optimizing the algorithm for (much) better performance.

44

6 Conclusion and Future work

In this thesis we have described the work that has been done on grid enabling
data mining. Also we have described our own work on grid enabling one data
mining algorithm.

The GridMiner application is a well documented and structured application.
It integrates all the data mining processes and it supports OLAP. Thanks to
the workflow service it should be an easy to use application; a scientist does
not need to know about all the technical details. GridMiner is able cope with
distributed data (virtual data sources). It is based on OGSA and the Globus
toolkit which are open and extensible architectures. Globus also takes care
of most of the security issues. Furthermore the application can also create
OLAP cubes. According to the list at the beginning of chapter 4 the GridMiner
application is a very complete application. The only problem is that we can not
download the program and test it ourselves.

WekaG is not as well documented as the GridMiner application. It has not
yet finished being developed and therefor it could not be tested. The positive
side is that the application uses open architectures such as OGSI and the Globus
Toolkit. It can cope with distributed dated thanks to coupling data sources. As
it is an extension of the open source Weka tool it can be further extended with
data mining techniques and algorithms when needed. WekaG also implements
authorization access to resources, combined with the security measurements
of the Globus toolkit it forms the important security issues. Unfortunately it
does not support OLAP and there is little known about the scalability of the
application.

The third application we looked at was Weka4WS. We wanted to try this
program on the Das-2 because it makes use of the newest Globus toolkit and all
algorithms of the original Weka can also be executed on the grid. Furthermore
this application is open source just as WekaG, because Weka is open source, so
it can be extended when needed. Weka4WS can also cope with distributed data,
it can be located on either three kinds of nodes and even on third party nodes.
To run Weka4WS on a grid it has some requirement. First a list of programs
need to be running on each node, among which is Globus Toolkit 4. Problem is
that on the Das-2 the GT 4 is not installed yet. Another issue with the Das-2
and Weka4Ws is that on every machine there should be web services running
and the Das-2 does not allow web services. This way it is impossible to test the
program on the DAS-2.

The DataMiningGrid from the Fraunhofer institute began their research by
describing the requirements for a grid enabled data mining application. These
requirements strongly resemble the requirements stated at the beginning of
chapter four. An advantage of the DataMiningGrid is the use of Triana to
compose workflows. These workflows can be used to ease and to minimize the
time needed for the kdd process. Unfortunately there are not many specifi-
cations of the program and as described before the application could not be
tested.

GridWeka2 is the last grid enabled data mining application we looked at.

45

This was finally a program that we could test ourselves. As stated in chapter
4.5 this is not a grid enabled application according to the three point check from
Foster [1]. Also it does not satisfy all the requirements stated at the beginning
of chapter 4. The application is not based on an open architecture, the users do
need to know about the details, security is not taken care of and OLAP is not
supported. Ultimately it is a program that can benefit of multiple processors
but it is not a grid enabled data mining application.

The FP-tree Apriori algorithm that was made grid enabled is not a grid
enabled data mining application that we wished to test. But to do some real
work and test a grid enabled algorithm was also a challenge. As it worked out
we were partly satisfied, although it did not speed up the time to execute the
algorithm that much. It probably was not the best algorithm to grid enable.
Too much time was spend on minor details because the implementation of the
original algorithm was really difficult to understand. It was not easy to grid
enable this complicated algorithm, the reason for this besides the complicated
algorithm was the way to test it on the Das-2. If there was a flaw in the
implementation is was hard to find it in the source code because of the use of
multiple processors, it often led to ’hanging’ of the program at some seemingly
random place. Looking back it would have been more efficient to first make
state diagrams to make to sure there was no deadlock or other multi processor
misapprehension. For future work there are steps of the algorithm that need to
be grid enabled and there is plenty of room for improvement and fine tuning on
the parts that were already grid enabled. More work can be done on the grid
enabled applications. Some of the programs need to be tested and some can be
tested more thorough full.

46

Appendices

A Depth-First Apriori MPI sourcecode

#define i npu t f i l ename argv [1]
// (abso lu te) va lue of minsup :
#define macro minsup a t o i (argv [2])
// name ou t p u t f i l e :
#define output f i l ename argv [3]

#include <iostream>
#include <fstream>
#include <c s td io >
#include <c l im i t s >
#include <c s td l i b >
#include <ctime>
#include ”mpi++.h”
us ing namespace std ;

const int MAXDEPTH = 100 ; // maximal depth of t r i e (for pr in t ing)

int minsup ; // minimum support
int mini , maxi , ps , my rank ;
c l a s s i n i t i a l c o u n t s
{

pub l i c :
i n i t i a l c o u n t s (char ∗ inputdata) ;

stat ic int ∗ i t emsorder ;
stat ic int ∗ i t emsorder2 ;

stat ic int ∗ i t ems f r equency ;
stat ic int ∗ i t ems f r equency2 ;

stat ic int ∗ ranking ;
stat ic int min itemnr , max itemnr ;
stat ic int number transact ions , number freq items , l i n e s , l a s t ;

p r i va t e :
void f i r s t p a s s () ;
void second pass () ;
void t h i r d pa s s () ;
void i n i t i a l s o r t () ;
void swap (int ∗ , int ∗) ;
void s o r t (int [] , int , int , int []) ;
void mergesort (int [] , int , int) ;

char ∗ i n f i l ename ;
int ∗ i n i t i t ems f r e qu en cy ,∗ i n i t i t em s f r e qu en cy 2 ;

} ;

int ∗ i n i t i a l c o u n t s : : i t ems f r equency = NULL;
int ∗ i n i t i a l c o u n t s : : i t ems f r equency2 = NULL;

int ∗ i n i t i a l c o u n t s : : i t emsorder = NULL;
int ∗ i n i t i a l c o u n t s : : i t emsorder2 = NULL;

int ∗ i n i t i a l c o u n t s : : ranking = NULL;
int i n i t i a l c o u n t s : : number transact ions = 0 ;
int i n i t i a l c o u n t s : : l i n e s = 0 ;
int i n i t i a l c o u n t s : : number f req i tems = 0 ;
int i n i t i a l c o u n t s : : min itemnr = 0 ;
int i n i t i a l c o u n t s : : max itemnr = 0 ;
int i n i t i a l c o u n t s : : l a s t = 0 ;

47

// constructor
i n i t i a l c o u n t s : : i n i t i a l c o u n t s (char ∗ inputdata)
{

i n f i l ename = inputdata ;
f i r s t p a s s () ;
s econd pass () ;
t h i r d pa s s () ;
i n i t i a l s o r t () ;

}// i n i t i a l c o un t s : : i n i t i a l c o un t s

// computes minimal and maximal item number tha t occur in the database ;
// i f these are known in advance , t h i s funct ion can be e a s i l y adapted
// funct ion reads whole f i l e !
void i n i t i a l c o u n t s : : f i r s t p a s s ()
{

int i temnr ;
bool f i r s t = true ;
i f s t r e am f i n (i n f i l ename) ;
i f (! f i n)

cout << ”No such f i l ename ” << endl ;
char c ;
int pos ;

MPI Comm rank(MPI COMM WORLD,&my rank) ;
MPI Comm size (MPI COMM WORLD,&ps) ;

do
{
do // per r e g e l

{
i f (l i n e s % ps == my rank)
{

f i n . get (c) ;
itemnr = 0 ;

pos = 0 ;
while ((c >= ’ 0 ’) && (c <= ’ 9 ’) && ! f i n . e o f ())

{
i temnr = 10∗ i temnr + (int) (c) − (int) (’ 0 ’) ;
pos++;

f i n . get (c) ;
}//whi le
i f (pos)

{
i f (f i r s t)

max itemnr = min itemnr = itemnr ;
f i r s t = f a l s e ;

i f (itemnr < min itemnr)
min itemnr = itemnr ;

else i f (itemnr > max itemnr)
max itemnr = itemnr ;

}// i f
}// i f
else
{

f i n . get (c) ;
while ((c >= ’ 0 ’) && (c <= ’ 9 ’) && ! f i n . e o f ())

{
f i n . get (c) ;

}//whi le
}// e l s e

} while (c != ’\n ’ && ! f i n . e o f ()) ;
l i n e s++;

} while (! f i n . e o f ()) ;

l i n e s −−; // Because of the do/whi le i t goes one to far .

48

f i n . c l o s e () ;

MPI Barrier (MPICOMMWORLD) ;
MPI Reduce(&min itemnr , &mini , 1 , MPI INT , MPI MIN, 0 ,MPI COMMWORLD) ;
MPI Reduce(&max itemnr , &maxi , 1 , MPI INT , MPI MAX, 0 ,MPI COMMWORLD) ;

MPI Barrier (MPICOMMWORLD) ;
MPI Bcast(&mini , 1 ,MPI INTEGER,0 ,MPICOMMWORLD) ;
MPI Bcast(&maxi , 1 ,MPI INTEGER,0 ,MPICOMMWORLD) ;

MPI Barrier (MPICOMMWORLD) ;
min itemnr = mini ;
max itemnr = maxi ;

MPI Barrier (MPICOMMWORLD) ;
MPI Barrier (MPICOMMWORLD) ;

}// i n i t i a l c o un t s : : f i r s t p a s s

void i n i t i a l c o u n t s : : s econd pass ()
{

int k=0;
int n f i =0; // l o c a l number of f requent items

MPI Status s t a tu s ; // Return s ta tu s of the rece i ve
i f s t r e am f i n (i n f i l ename) ;

i f (! f i n) cout << ”No such f i l ename ” << endl ;
int i temrange = max itemnr−min itemnr+1; // for op t imi l i za t i on , i f the f i r s t item i s item 238734 , then

// you s t a r t with tha t ins tead of an array from 0.
i n i t i t em s f r e qu en cy 2 = new int [i temrange] ; // Array with a l l the items and t h e i r frequencies , array [67]=

// 12 means , item 67(or minimum item number + 67) appears
// 12 times in the datase t

i n i t i t em s f r e qu en c y = new int [i temrange] ;

for (k = 0 ; k < i temrange ; k++)
{

i n i t i t em s f r e qu en cy 2 [k] = 0 ;
i n i t i t em s f r e qu en c y [k] = 0 ;

}
char c ;
int item , pos ;
k = 0 ;
do
{

do
{
i f (k % ps == my rank){ // each processor computes : #l i n e s/#processors t ransac t ions .

f i n . get (c) ;
item = 0 ;

pos = 0 ;
while ((c >= ’ 0 ’) && (c <= ’ 9 ’) && ! f i n . e o f ())

{
item = 10∗ item + (int) (c) − (int) (’ 0 ’) ; // Asci i renumbering
pos++;
f i n . get (c) ;

}//whi le
i f (pos)
{

i n i t i t em s f r e qu en c y [item−min itemnr]++;
}

}// i f
else
{

f i n . get (c) ;
while ((c >= ’ 0 ’) && (c <= ’ 9 ’) && ! f i n . e o f ())

{
f i n . get (c) ;

}//whi le

49

}
} while (c != ’\n ’ && ! f i n . e o f ()) ;
k++;

} while (! f i n . e o f ()) ;

f i n . c l o s e () ;
MPI Barrier (MPICOMMWORLD) ;

int bu f f [(i temrange∗ s izeof (int) + MPI BSEND OVERHEAD)∗ ps] ;
MPI Buffer attach (buf f , (i temrange∗ s izeof (int) + MPI BSEND OVERHEAD)∗ ps) ;

// Send the frequency array to a l l the other processors , not your s e l f
for (int i = 0 ; i<ps ; i++){

i f (my rank != i){
MPI Bsend (i n i t i t ems f r e qu en cy , itemrange , MPI INT , i , 0 ,MPICOMMWORLD) ;

}
MPI Barrier (MPI COMMWORLD) ;

}

MPI Barrier (MPICOMMWORLD) ; //Wait , otherwise you can erase your own computated data .

// Receive a l l the f requenc ies from the other processors and add them to your own frequency .
for (int source = 0 ; source<ps ; source++){

i f (my rank != source){
MPI Recv (i n i t i t ems f r e qu ency2 , itemrange , MPI INT , source , 0 ,MPI COMM WORLD,& s ta tu s) ;
for (int i = 0 ; i<i temrange ; i++){

i n i t i t em s f r e qu en c y [i] = i n i t i t em s f r e qu en cy 2 [i] + i n i t i t em s f r e qu en c y [i] ;
}

}
}

MPI Barrier (MPICOMMWORLD) ;

int s i z e = (itemrange∗ s izeof (int) + MPI BSEND OVERHEAD)∗ ps ;
MPI Buffer detach (buf f , &s i z e) ;

for (k = 0 ; k < i temrange ; k++)
{
i f (k % ps == my rank) // Sp l i t the counting in ps p ieces
{
i f (i n i t i t em s f r e qu en c y [k] >= minsup)
{

n f i++; // Number of f requent items at one processor
}

}
}
MPI Barrier (MPICOMMWORLD) ;
MPI Reduce(&nf i , &number freq items , 1 , MPI INT , MPI SUM, 0 , MPICOMM WORLD) ; // Sum the n f i from a l l

// the processors

MPI Bcast(&number freq items , 1 ,MPI INTEGER,0 ,MPICOMMWORLD) ; // Broadcast the number freq items

MPI Barrier (MPICOMMWORLD) ;

i f (0 == my rank) p r i n t f (”Number o f f r equent items : %d\n” , number f req i tems) ;
}// i n i t i a l c o un t s : : second pass

void i n i t i a l c o u n t s : : t h i r d pa s s ()
{

number transact ions = 0 ;
int nt = 0 ; // a l o c a l va lue of number of t ransac t ions
i f s t r e am f i n (i n f i l ename) ;
i f (! f i n)

cout << ”No such f i l ename ” << endl ;
char c ;
int item , pos , i t ems in t r an s , l =0; // l for l i n e

50

do
{

i t em s i n t r a n s = 0 ;
do
{
i f (l % ps == my rank){ // each processor computes : #l i n e s/#processors t ransac t ions .

f i n . get (c) ;
item = 0 ;

pos = 0 ;
while ((c >= ’ 0 ’) && (c <= ’ 9 ’) && ! f i n . e o f ())

{
item = 10∗ item + (int) (c) − (int) (’ 0 ’) ;
pos++;

f i n . get (c) ;
}//whi le
i f (pos && in i t i t em s f r e qu en c y [item−min itemnr] >= minsup)
i t ems i n t r an s++;

}
else
{
f i n . get (c) ;

while ((c >= ’ 0 ’) && (c <= ’ 9 ’) && ! f i n . e o f ())
{

f i n . get (c) ;
}//whi le

}
} while (c != ’\n ’ && ! f i n . e o f ()) ;

l++;

i f (i t em s i n t r an s >= 2)
nt++;

} while (! f i n . e o f ()) ;

MPI Barrier (MPICOMMWORLD) ;
MPI Reduce(&nt , &number transact ions , 1 , MPI INT , MPI SUM, 0 ,MPI COMM WORLD) ;

MPI Barrier (MPI COMMWORLD) ;
MPI Bcast(&number transact ions , 1 ,MPI INT , 0 ,MPICOMMWORLD) ;

MPI Barrier (MPI COMMWORLD) ;

i f (0 == my rank) p r i n t f (”Number o f r e l e van t t r an s a c t i on s : %d\n” , number transact ions) ;
i f (0 == my rank) p r i n t f (”Number o f l i n e s : %d\n” , l i n e s) ;

f i n . c l o s e () ;
}// i n i t i a l c o un t s : : t h i rd pas s

void i n i t i a l c o u n t s : : swap (int ∗a , int ∗b)
{

int t=∗a ; ∗a=∗b ; ∗b=t ;
}
void i n i t i a l c o u n t s : : s o r t (int ar r [] , int beg , int end , int order [])
{

i f (end > beg + 1)
{

int piv = arr [beg] , l = beg + 1 , r = end ;
while (l < r){

i f (a r r [l] <= piv)
l++;

else
{

r−−;
i n i t i a l c o u n t s : : swap(&arr [l] , &ar r [r]) ;
i n i t i a l c o u n t s : : swap(&order [l] , &order [r]) ;

}
}
l−−;

51

i n i t i a l c o u n t s : : swap(&arr [l] , &ar r [beg]) ;
i n i t i a l c o u n t s : : swap(&order [l] , &order [beg]) ;

i n i t i a l c o u n t s : : s o r t (arr , beg , l , o rder) ;
i n i t i a l c o u n t s : : s o r t (arr , r , end , order) ;

}
}

// sor t items with respec t to support − and renumber
void i n i t i a l c o u n t s : : i n i t i a l s o r t ()
{

MPI Status s t a tu s ; // Return s ta tu s of the rece i ve

int i temrange = max itemnr−min itemnr+1;
ranking = new int [i temrange] ;

for (int k = 0 ; k < i temrange ; k++)
{

ranking [k] = −1;
}

i t emsorder = new int [number f req i tems] ;
i t emsorder2 = new int [number f req i tems] ;
int itemsorderTemp [number f req i tems] ;

i t ems f r equency = new int [number f req i tems] ;
i t ems f r equency2 = new int [number f req i tems] ;
int items frequencyTemp [number f req i tems] ;

for (int r = 0 ; r<number f req i tems ; r++)
{

i t ems f r equency [r] = −1;
i t ems f r equency2 [r] = −1;
items frequencyTemp [r] = −1;

i t emsorder [r] = −1;
itemsorderTemp [r] = −1;
i t emsorder2 [r] = −1;

}

int s t a r t = 0 , end = 0 ; // Used for the s t a r t and end of the t ransac t ions one processor ge t s to do .
int l a s t = −1; // The item a f t e r the l a s t item .

// Each processor takes a part of the array : in i t i t ems f r e quency
s t a r t = itemrange /ps ∗ my rank ; // Number of the transact ion where to s t a r t for t h i s processor
end = (itemrange /ps ∗ (my rank+1)) −1; // Which i s the l a s t t ransact ion for t h i s processor
i f (my rank == ps−1) end = itemrange −1; // For the l a s t processor to do the l a s t few tha t were not

// tak ing be fore because of rounding down .
int i =0;

// Put the frequent items in a i tems frequency array , and keep the pos i t i on with the itemsorder2 array
MPI Barrier (MPICOMMWORLD) ;

for (int x=s t a r t ; x<=end ; x++)
{

i f (i n i t i t em s f r e qu en c y [x]>= minsup)
{

i t ems f r equency2 [l a s t +1]= i n i t i t em s f r e qu en c y [x] ;
i t emsorder2 [i]=x + min itemnr ; // + min itemnr i s a patch , dont knwo pr e c i s e l y why .
i++;
l a s t++;

}
}

// Sort the items frequency , sor t ing for the f i r s t time
i n i t i a l c o u n t s : : s o r t (i t ems f requency2 , 0 , l a s t +1, i t emsorder2) ;

52

int psa = ps ; // Processors s t i l l a v a i l a b l e

// Send the i tems frequenc ies2 and itemsorder2 and rece ive them in i t ems f requenc ie s and itemsorder
while (psa >1)
{

int x , y , source ;
// −− SENDING −−EVEN −− //
i f (psa %2 ==0)
{

for (x=0; x < psa /2 ; x++)
{

i f (psa−x−1==my rank)
{

MPI Send (i tems f requency2 , number freq items , MPI INT , x , psa ,MPI COMMWORLD) ;
MPI Send (itemsorder2 , number freq items , MPI INT , x , psa+10, MPI COMMWORLD) ; // Send to x with

// f l a g −psa−1
psa=0;

} // i f
} // for

// −− RECEIVING −− MERGING −− SORTING −− //
for (source=psa ; source > psa /2 ; source−−)
{

i f (psa−source==my rank)
{

MPI Recv (i tems f requency , number freq items , MPI INT , source −1,psa ,MPI COMM WORLD,& s ta tu s) ;
MPI Recv (i temsorder , number freq items , MPI INT , source −1,psa+10,MPI COMM WORLD,& s ta tu s) ;
x = 0 ;
y = 0 ;
bool done = f a l s e ;
while (not done)
{

i f (x<number f req i tems)
i f (y<number f req i tems)

i f (i t ems f r equency [x]!=−1)
i f (i t ems f r equency2 [y]!=−1)

i f (i t ems f r equency [x] > i t ems f r equency2 [y])
{

items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else
{

items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
else
{

items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
else i f (i t ems f r equency2 [y]!=−1)
{

items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else done = true ;

else i f (i t ems f r equency [x]!=−1)
{

items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}

53

else done = true ;
else i f (y<number f req i tems)
{

i f (i t ems f r equency2 [y]!=−1)
{

items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else done = true ;

}
else done = true ;

}
}

}
// Put the items frequencyTemp into the i tems frequency2
for (int x = 0 ; x < number f req i tems ; x++)
{

i t ems f r equency2 [x] = items frequencyTemp [x] ;
i t emsorder2 [x] = itemsorderTemp [x] ;

}
psa = psa /2 ; // After sending and rece i v ing there are only ha l f o f the processors for the next round

} // i f
else { // ODD number of processors l e f t

// SEND: l a s t to 0 l a s t −1 −> 1 l a s t −2 −> 2
for (x=0; x < (psa −1)/2; x++) // i f psa =13 then 6 processors do t h i s round .
{
i f (psa−x−1==my rank)
{

MPI Send (i tems f requency2 , number freq items , MPI INT , x , psa ,MPI COMMWORLD) ;
MPI Send (itemsorder2 , number freq items , MPI INT , x , psa+10,MPI COMMWORLD) ;
psa=0;

} // i f
} // for

// SEND THE ODD ONE: The odd one with psa = 9 i s [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8]
4 and i s send to 3

i f ((psa−1)/2==my rank)
{

MPI Send (i tems f requency2 , number freq items , MPI INT , my rank−1, psa ,MPICOMMWORLD) ;
MPI Send (itemsorder2 , number freq items , MPI INT , my rank−1, psa+10,MPICOMMWORLD) ;
psa=0;

}

// −− RECEIVING −− MERGING −− SORTING −− //
// Fir s t for the normal ones , a f t e r t h i s for the odd one
for (source=psa ; source > (psa +1)/2; source−−)
{
i f (psa−source==my rank)
{

MPI Recv (i tems f requency , number freq items , MPI INT , source −1,psa ,MPI COMM WORLD,& s ta tu s) ;
MPI Recv (i temsorder , number freq items , MPI INT , source −1,psa+10,MPI COMM WORLD,& s ta tu s) ;
//mergesort

x = 0 ;
y = 0 ;
bool done = f a l s e ;

while (not done)
{
i f (x<number f req i tems)

i f (y<number f req i tems)
i f (i t ems f r equency [x]!=−1)

i f (i t ems f r equency2 [y]!=−1)
{

i f (i t ems f r equency [x] > i t ems f r equency2 [y])
{

54

items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else
{
items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
}
else
{

items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
else i f (i t ems f r equency2 [y]!=−1)

{
items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else done = true ;

else i f (i t ems f r equency [x]!=−1)
{
items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
else done = true ;

else i f (y<number f req i tems)
{

i f (i t ems f r equency2 [y]!=−1)
{

items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else done = true ;

}
else done = true ;

}// whi le

// Put the items frequencyTemp into the i tems frequency2
for (int x = 0 ; x < number f req i tems ; x++)
{

i t ems f r equency2 [x] = items frequencyTemp [x] ;
i t emsorder2 [x] = itemsorderTemp [x] ;

}
} // i f

} // for

// Receive the ODD one i f there i s an odd number of processors l e f t
source = (psa −1)/2;
i f (source−1==my rank)
{

MPI Recv (i tems f requency , number freq items , MPI INT , source , psa ,MPI COMM WORLD,& s ta tu s) ;
MPI Recv (i temsorder , number freq items , MPI INT , source , psa+10,MPI COMM WORLD,& s ta tu s) ;
//mergesort
// −− RECEIVING −− MERGING −− SORTING −− //
x = 0 ;
y = 0 ;
bool done = f a l s e ;
while (not done)
{

i f (x<number f req i tems)
i f (y<number f req i tems)

55

i f (i t ems f r equency [x]!=−1)
i f (i t ems f r equency2 [y]!=−1)

i f (i t ems f r equency [x] > i t ems f r equency2 [y])
{
items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else
{
items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
else
{

items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
else i f (i t ems f r equency2 [y]!=−1)

{
items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else done = true ;

else i f (i t ems f r equency [x]!=−1)
{
items frequencyTemp [x+y] = i t ems f r equency [x] ;
itemsorderTemp [x+y] = itemsorder [x] ;
x++; // Only t i l l the end of x

}
else done = true ;

else i f (y<number f req i tems)
{

i f (i t ems f r equency2 [y]!=−1)
{

items frequencyTemp [x+y] = i tems f r equency2 [y] ;
itemsorderTemp [x+y] = itemsorder2 [y] ;
y++; // T i l l end of y

}
else done = true ;

}
else done = true ;

}
// Put the items frequencyTemp into the i tems frequency2
for (int x = 0 ; x < number f req i tems ; x++)
{

i t ems f r equency2 [x] = items frequencyTemp [x] ;
i t emsorder2 [x] = itemsorderTemp [x] ;

}
}

psa = (psa −1)/2;
} // e l s e

} // whi le

// Send the i tems frequency2 & itemsorder2 from processor 0 to the r e s t
i t emsorder = itemsorder2 ;
i t ems f r equency = i tems f r equency2 ;

MPI Bcast (i t ems f requency , number freq items ,MPI INTEGER,0 ,MPICOMMWORLD) ;
MPI Bcast (i temsorder , number freq items ,MPI INTEGER,0 ,MPICOMMWORLD) ;

for (int w = 0 ; w<number f req i tems ; w++)
{

56

ranking [i t emsorder2 [w]−min itemnr] = w;
}

MPI Barrier (MPICOMMWORLD) ;
}// i n i t i a l c o un t s : : i n i t i a l s o r t

//===
//
// FP BUILDING

template <c l a s s T>
struct FPtreenode {

unsigned short i n f o ;
T count ;
unsigned short mark ;
FPtreenode<T> ∗ ch i l d ;
FPtreenode<T> ∗brother ;
FPtreenode<T> ∗nextsame ;
FPtreenode<T> ∗ f a t h e r ;

} ;

template <c l a s s T>
c l a s s FP
{

pub l i c :
FPtreenode<T> ∗FProot ;
FPtreenode<T> ∗∗ l a y e r ;
FP () { FProot = NULL; }
void buildFP (char ∗ i n f i l ename) ;
void r e c e i v eTran sa c t i on s () ;

p r i va t e :
void updateFPtree (bool ∗ nex t t r an sa c t i on) ;

} ;

template <c l a s s T>
void FP<T> : : r e c e i v eTran sac t i on s ()
{

MPI Status s t a tu s ; // Return s ta tu s of the rece i ve
bool done = f a l s e ;
bool ∗ nex t t r an sa c t i on=NULL;
int f l a g =0;

n ex t t r an sa c t i on = new bool [i n i t i a l c o u n t s : : number f req i tems] ;
l a y e r = new FPtreenode<T>∗[i n i t i a l c o u n t s : : number f req i tems] ;

for (int i = 0 ; i < i n i t i a l c o u n t s : : number f req i tems ; i++)
{

l a y e r [i] = NULL;
}

FProot = new FPtreenode<T>;
FProot−>i n f o = 0 ;
FProot−>ch i l d = FProot−>brother = FProot−>f a t h e r = FProot−>nextsame = NULL;
FProot−>count = 0 ;
int bu f f e r 2 [1] ;
bu f f e r 2 [0] = 1 ;

do
{

MPI Iprobe (MPI ANY SOURCE, 2 , MPI COMM WORLD, &f l ag , &s ta tu s) ;
i f (f l a g==1)
{

done =true ;
}

MPI Iprobe (MPI ANY SOURCE, 1 , MPI COMM WORLD, &f l ag , &s ta tu s) ;

57

i f (f l a g==1)
{

MPI Recv (nex t t ransac t i on , i n i t i a l c o u n t s : : number freq items , MPI CHAR, MPI ANY SOURCE, 1 ,
MPI COMM WORLD, &s ta tu s) ; // Should be a boolena ins tead of a char , but mpi bool (ean)

// does not e x i s t s
updateFPtree (n ex t t r an sa c t i on) ;
MPI Send (bu f f e r2 , 1 ,MPI INT , s t a tu s .MPI SOURCE,1 ,MPICOMMWORLD) ;

}
}while (! done) ;

} // receiveTransact ions

// push nex t t ransac t ion into FP−t r ee
template <c l a s s T>
void FP<T> : : updateFPtree (bool ∗ nex t t r an sa c t i on)
{

int ar t ;
FPtreenode<T> ∗ptr = FProot ;
FPtreenode<T> ∗kid ;
FPtreenode<T> ∗prev = NULL;
for (a r t = i n i t i a l c o u n t s : : number freq items −1; a r t >= 0 ; art−−)
{

i f (n ex t t r an sa c t i on [a r t])
{

kid = ptr−>ch i l d ;
i f (kid)
{

while (kid && kid−>i n f o != ar t)
{

prev = kid ;
kid = kid−>brother ;

}//whi le
i f (kid)
{

kid−>count++;
ptr = kid ;

}// i f
else
{

prev−>brother = new FPtreenode<T>;
i f (ptr == FProot)

prev−>brother−>f a t h e r = NULL;
else

prev−>brother−>f a t h e r = ptr ;
ptr = prev−>brother ;
ptr−>count = 1 ;

ptr−>mark = (ptr−>i n f o = ar t) + 1 ; ;
ptr−>ch i l d = ptr−>brother = NULL;
ptr−>nextsame = laye r [a r t] ;
l a y e r [a r t] = ptr ;

}// e l s e
}// i f
else
{

ptr−>ch i l d = new FPtreenode<T>;
i f (ptr == FProot)

ptr−>ch i ld−>f a t h e r = NULL;
else

ptr−>ch i ld−>f a t h e r = ptr ;
ptr = ptr−>ch i l d ;
ptr−>count = 1 ;

ptr−>mark = (ptr−>i n f o = ar t) + 1 ;
ptr−>ch i l d = ptr−>brother = NULL;
ptr−>nextsame = laye r [a r t] ;
l a y e r [a r t] = ptr ;

}// e l s e
}// i f

58

}// for
}//FP: : updateFPtree

// reads the en t i r e d a t a f i l e from f i l e inputdata and
// puts i t in to an FP−t r ee
// reads whole f i l e (for the four th time) !
template <c l a s s T>
void FP<T> : : buildFP (char ∗ i n f i l ename)
{

int pos , item , items count , i ;
unsigned short newitemnr ;
char c ;
bool ∗ nex t t r an sa c t i on = new bool [i n i t i a l c o u n t s : : number f req i tems] ;
l a y e r = new FPtreenode<T>∗[i n i t i a l c o u n t s : : number f req i tems] ;
for (i = 0 ; i < i n i t i a l c o u n t s : : number f req i tems ; i++)

l ay e r [i] = NULL;
FProot = new FPtreenode<T>;
FProot−>i n f o = 0 ;
FProot−>ch i l d = FProot−>brother = FProot−>f a t h e r = FProot−>nextsame = NULL;
FProot−>count = 0 ;

int l i n e = 0 ;

int bu f f e r 2 [1 0] ;

MPI Status s t a tu s ;
i f s t r e am f i n (i n f i l ename) ;
i f (! f i n)

cout << ”No such f i l ename ” << endl ;

do
{

i f ((l i n e % (ps−1)) == (my rank−1))
{

for (int column = 0 ; column < i n i t i a l c o u n t s : : number f req i tems ; column++) {
nex t t r an sa c t i on [column] = f a l s e ;

}
i t ems count = 0 ;
do
{

f i n . get (c) ;
item = 0 ;
pos = 0 ;
while ((c >= ’ 0 ’) && (c <= ’ 9 ’) && ! f i n . e o f ())
{

item = 10∗ item + (int) (c) −(int) (’ 0 ’) ;
pos++;
f i n . get (c) ;

}//whi le

i f (pos && i n i t i a l c o u n t s : : ranking [item−i n i t i a l c o u n t s : : min itemnr] >= 0)
{

newitemnr = i n i t i a l c o u n t s : : ranking [item−i n i t i a l c o u n t s : : min itemnr] ;
n ex t t r an sa c t i on [newitemnr] = true ;
i t ems count++;

}// i f
} while (c != ’\n ’ && ! f i n . e o f ()) ;

i f (i tems count >= 1) // perhaps 2 , but does i t r e a l l y matter?
{
MPI Sendrecv (nex t t ransac t i on , i n i t i a l c o u n t s : : number freq items , MPI CHAR,0 , 1 , bu f f e r2 , 10 ,

MPI INT ,0 , 1 , MPI COMM WORLD, &s ta tu s) ;
}

} // i f l i n e s
else
{

f i n . get (c) ;
while (c != ’\n ’ && ! f i n . e o f ())

59

{
f i n . get (c) ;

}//whi le
}
l i n e++;

}while (! f i n . e o f ()) ;

int ∗ HIER = NULL;
HIER = new int [1] ;

i f (my rank != 1)MPI Send (HIER, 1 , MPI INT ,1 , 12 ,MPICOMMWORLD) ;

i f (my rank == 1)
{

int k laa r = 1 ;
MPI Status s t a tu s ; // Return s ta tu s of the rece i ve
while (k laar<ps−1)
{

MPI Recv (HIER, 1 , MPI INT ,MPI ANY SOURCE,12 ,MPI COMM WORLD,& s ta tu s) ;
k l aa r++;

}
}

i f (my rank == 1)
{

MPI Send (nex t t ransac t i on , i n i t i a l c o u n t s : : number freq items , MPI CHAR,0 , 2 ,MPI COMMWORLD) ;
// STOP

}

f i n . c l o s e () ;
d e l e t e [] n ex t t r an sa c t i on ;

}//FP: : buildFP

//===
//
// COUNTING

template <c l a s s T>
struct bucket
{

unsigned short i temvalue ;
T count ;
T aux ;
unsigned short number fo l lowers ;
bucket ∗next ;

} ;

template <c l a s s T>
c l a s s t r i e
{

pub l i c :
t r i e () { } ;
t r i e (i n i t i a l c o u n t s & i n i t i a l d a t a) ;
void bui ld up (FP<T> & th e o r i g i n a l t r e e) ;
void p r i n t t r i e (char ∗outputdata) ;

p r i va t e :
int l ength count [MAXDEPTH] ;
bool ∗ f r equent ;
void fpcount3 (unsigned short ∗nodes , bucket<T> ∗ t r i enode , unsigned short number buckets) ;
void makeaux0 (bucket<T> ∗ root , unsigned short number) ;
FILE ∗ out f i l ename ;
struct bucket<T> ∗ root ;
unsigned short t r i e s i z e ;
unsigned short k ;
T theva lue ;
unsigned short ∗ thea r raypo in t e r ;

60

int r e s u l t s [MAXDEPTH] ;
unsigned short ∗ f o l l ow s ;
struct bucket<T> ∗∗ r oo t s ;
void copying (bucket<T> ∗p , bucket<T> ∗q , unsigned short number q buckets) ;
void pr in tout (int depth , bucket<T> ∗ t r i enode , unsigned short number buckets) ;
void dotheFPtree (FPtreenode<T> ∗ i t s r o o t) ;

} ;

// constructor
template <c l a s s T>
t r i e <T> : : t r i e (i n i t i a l c o u n t s & i n i t i a l d a t a)
{

t r i e s i z e = i n i t i a l c o u n t s : : number f req i tems ;
root = new bucket<T>[t r i e s i z e] ;
f r equent = new bool [t r i e s i z e] ;
th ea r raypo in t e r = new unsigned short [t r i e s i z e +1] ;
∗ thea r raypo in t e r = 0 ;
thea r raypo in t e r++;
f o l l ow s = new unsigned short [t r i e s i z e] ;
r oo t s = new bucket<T>∗[t r i e s i z e] ;
for (unsigned short i temnr = 0 ; itemnr < t r i e s i z e ; itemnr++)
{

root [itemnr] . count = 666 ;
// to avoid problems with short ’ s ;
// t h i s pa r t i cu l a r count−f i e l d i s never used anymore (I hope)
root [itemnr] . i temvalue = itemnr ;
root [itemnr] . number fo l lowers = 0 ;
r oo t s [itemnr] = root [itemnr] . next = NULL;
f o l l ow s [itemnr] = 0 ;

}// for
}// t r i e : : t r i e

// do the FP−counting , a lready knowing the re l evant f requent 2− i t emsets
// now the deeper l e v e l s
// number buckets > 0 , nodes contains a s en t i n e l 0 at the s t a r t
template <c l a s s T>
void t r i e <T> : : fpcount3 (unsigned short ∗nodes , bucket<T> ∗ t r i enode , unsigned short number buckets)
{

unsigned short x = tr i enode−>i temvalue ;
do
{

while (∗nodes != x)
i f (∗nodes > x)
{

t r i enode++;
i f (! (−−number buckets))

return ;
x = tr i enode−>i temvalue ;

}// i f
else

i f (! ∗−−nodes)
return ;
t r i enode−>aux += theva lue ;
i f (! ∗−−nodes)

return ;
i f (t r i enode−>number fo l lowers)

fpcount3 (nodes , t r i enode−>next , t r i enode−>number fo l lowers) ;
t r i enode++;
i f (! (−−number buckets))

return ;
x = tr i enode−>i temvalue ;

} while (t rue) ;
}// t r i e : : fpcount3

// traverse the FP−t r ee
template <c l a s s T>
void t r i e <T> : : dotheFPtree (FPtreenode<T> ∗ i t s r o o t)
{

61

i t s r o o t = i t s r o o t−>ch i l d ;
while (i t s r o o t)
{

i f (i t s r o o t−>mark == k)
{

i f (f r equent [∗ thea r raypo in t e r = i t s r o o t−>i n f o])
{

i f (f o l l ow s [∗ thea r raypo in t e r])
{

theva lue = i t s r o o t−>count ;
fpcount3 (thear raypo inte r , r oo t s [∗ thea r raypo in t e r] ,

f o l l ow s [∗ thea r raypo in t e r]) ;
}// i f
thea r raypo in t e r++;
dotheFPtree (i t s r o o t) ;
thear raypo inte r −−;

}// i f
else

dotheFPtree (i t s r o o t) ;
}// i f
i t s r o o t = i t s r o o t−>brother ;

}//whi le
}// t r i e : : dotheFPtree

// bu i l d t r i e out of FP−t ransac t ions
template <c l a s s T>
void t r i e <T> : : bu i ld up (FP<T> & th e o r i g i n a l t r e e)
{

FPtreenode<T> ∗goingup ;
FPtreenode<T> ∗ g l obpo in t e r ;
T ∗ counttwoitemsets = new T[t r i e s i z e] ;
int cnt , i , suppo ;
k = t r i e s i z e − 2 ;
while (t rue)
{

g l obpo in t e r = t h e o r i g i n a l t r e e . l a y e r [k] ;
for (i = k+1; i < t r i e s i z e ; i++)

counttwoitemsets [i] = 0 ;
while (goingup = g lobpo in t e r) // note s i n g l e =!
{

suppo = globpo inte r−>count ;
while ((goingup = goingup−>f a t h e r) && goingup−>mark > k)
{

counttwoitemsets [goingup−>i n f o] += suppo ;
goingup−>count = suppo ;
goingup−>mark = k ;

}//whi le
while (goingup)
{

counttwoitemsets [goingup−>i n f o] += suppo ;
goingup−>count += suppo ;
goingup = goingup−>f a t h e r ;

}//whi le
g l obpo in t e r = g lobpo inte r−>nextsame ;

}//whi le
cnt = 0 ;
for (i = t r i e s i z e −1; i >= k+1; i−−) // in t h i s order !

i f (counttwoitemsets [i] < minsup)
{

root [i] . aux = 0 ;
f r equent [i] = f a l s e ;

}// i f
else
{

root [i] . aux = counttwoitemsets [i] ;
f r equent [i] = true ;
makeaux0 (roo t s [i] , f o l l ow s [i]) ;
cnt++;

62

}// e l s e
i f (cnt)
{

dotheFPtree (t h e o r i g i n a l t r e e . FProot) ;
r oo t s [k] = root [k] . next = new bucket<T>[cnt] ;
f o l l ow s [k] = root [k] . number fo l lowers = cnt ;
copying (roo t s [k] , root+k+1, t r i e s i z e −k−1);

}// i f

i f (k == 0)
break ;

k−−;
}//whi le

}// t r i e : : bu i l d up

// make a l l necessary aux−f i e l d s 0
template <c l a s s T>
void t r i e <T> : :makeaux0 (bucket<T> ∗ root , unsigned short number)
{

for (int j = 0 ; j < number ; j++)
{

root−>aux = 0 ;
i f (root−>number fo l lowers && frequent [root−>i temvalue])

makeaux0 (root−>next , root−>number fo l lowers) ;
root++;

}// for
}// t r i e : : makeaux0

// copy t r i e s t ruc ture from q to p
template <c l a s s T>
void t r i e <T> : : copying (bucket<T> ∗ p , bucket<T> ∗q ,

unsigned short number q buckets)
{

short temp ; // how many buckets does p need?
short i ;
for (int source = 0 ; source < number q buckets ; source++)
{

i f (q−>aux >= minsup)
{

p−>count = q−>aux ;
p−>i temvalue = q−>i temvalue ;
temp = 0 ;
for (i = q−>number fo l lowers −1; i >= 0 ; i−−)

i f (q−>next [i] . aux >= minsup)
temp++;
p−>number fo l lowers = temp ;
i f (temp > 0)
{

p−>next = new bucket<T>[temp] ;
copying (p−>next , q−>next , q−>number fo l lowers) ;

}// i f
else

p−>next = NULL;
p++;

}// i f
q++;

}// for
}// t r i e : : copying

// pr in t r e su l t i n g t r i e and frequency of each pattern leng th
template <c l a s s T>
void t r i e <T> : : p r i n t t r i e (char ∗outputdata)
{

int k ;
for (k = 0 ; k < MAXDEPTH; k++)

length count [k] = 0 ;
out f i l ename = fopen (outputdata , ”w”) ;
f p r i n t f (out f i l ename , ”(%d)\n” , i n i t i a l c o u n t s : : l i n e s) ; // empty se t

63

pr in tout (1 , root , t r i e s i z e) ;
int l p l ;
for (l p l = MAXDEPTH−1; l p l >= 0 && length count [l p l] == 0 ; lp l−−)

;
i f (i n i t i a l c o u n t s : : l i n e s >= minsup)

p r i n t f (”1\n”) ;
for (k = 1 ; k <= l p l ; k++)

p r i n t f (”%d\n” , l ength count [k]) ;
f c l o s e (out f i l ename) ;

}// t r i e : : p r i n t t r i e

// do the pr in t ing
template <c l a s s T>
void t r i e <T> : : p r in tout (int depth , bucket<T> ∗ t r i enode ,

unsigned short number buckets)
{

for (int i = 0 ; i < number buckets ; i++)
{

r e s u l t s [depth] = t r i enode [i] . i temvalue ;
l ength count [depth]++;
for (int j = 1 ; j <= depth ; j++)

f p r i n t f (out f i l ename , ”%d ” , i n i t i a l c o u n t s : : i t emsorder [r e s u l t s [j]]) ;
i f (depth > 1)

f p r i n t f (out f i l ename , ”(%d)\n” , t r i enode [i] . count) ;
else

f p r i n t f (out f i l ename , ”(%d)\n” , i n i t i a l c o u n t s : : i t ems f r equency [i]) ;
i f (t r i enode [i] . number fo l lowers > 0)

pr in tout (depth+1, t r i enode [i] . next , t r i enode [i] . number fo l lowers) ;
}// for

}// t r i e : : pr in tout

// main program
int main (int argc , char ∗argv [])
{

long int time1 , time2 , c ;
minsup = macro minsup ;
time1 = time (&c) ;

MPI Init(&argc , &argv) ;
i n i t i a l c o u n t s i n i t i a l d a t a (i nput f i l ename) ;
time2 = time (&c) ;

p r i n t f (”Execution time − read ing : %ld \n” , time2−time1) ;

MPI Barrier (MPICOMMWORLD) ;

i f (i n i t i a l c o u n t s : : i t ems f r equency [i n i t i a l c o u n t s : : number freq items −1] >= USHRT MAX)
{

time1 = time (&c) ;
p r i n t f (” Bui ld ing (big) FP−t r e e s t a r t s . . . \ n”) ;
FP<int> theFPtree ;
i f (my rank != 0)
{

theFPtree . buildFP (input f i l ename) ;
}
else
{

theFPtree . r e c e i v eTran sa c t i on s () ;
}
p r i n t f (”FP−t r e e completed\n”) ;
time2 = time (&c) ;
p r i n t f (”Execution time − FP−phase : %ld \n” , time2−time1) ;
time1 = time (&c) ;
p r i n t f (”Counting (big) s t a r t s . . . \ n”) ;
t r i e <int> ou r b i g t r i e (i n i t i a l d a t a) ;
o u r b i g t r i e . bu i ld up (theFPtree) ;
time2 = time (&c) ;

64

p r i n t f (”Execution time − count ing : %ld \n\n” , time2−time1) ;
i f (argc > 3)
{

ou r b i g t r i e . p r i n t t r i e (output f i l ename) ;
}

}// i f
else {

time1 = time (&c) ;
FP<unsigned short> theFPtree ;
i f (my rank != 0)
{

theFPtree . buildFP (input f i l ename) ;
}
else
{

theFPtree . r e c e i v eTran sa c t i on s () ;
}

MPI Barrier (MPI COMMWORLD) ;

i f (my rank==0)
{

p r i n t f (”FP−t r e e completed\n”) ;
time2 = time (&c) ;
p r i n t f (”Execution time − FP−phase : %ld \n” , time2−time1) ;
time1 = time (&c) ;
p r i n t f (”Counting (smal l) s t a r t s . . . \ n”) ;
t r i e <unsigned short> ou r sma l l t r i e (i n i t i a l d a t a) ;
o u r sma l l t r i e . bu i ld up (theFPtree) ;
time2 = time (&c) ;
p r i n t f (”Execution time − count ing : %ld \n\n” , time2−time1) ;
i f (argc > 3)
{

ou r sma l l t r i e . p r i n t t r i e (output f i l ename) ;
}

}// i f
}// e l s e

MPI Barrier (MPI COMMWORLD) ;
MPI Final ize () ;

return 0 ;
}//main

\

65

References

[1] Foster. What is the Grid? A Three Point Checklist, July 2002.

[2] Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. In Int’l. J. High-Performance Applications. Vol.
15, no. 3, 2001, pp 200-222.

[3] M. Cannataro, D. Talia. The Knowledge Grid: Designing, building, and
implementing an architecture for distributed knowledge discovery. In Com-
munications of the ACM. Vol. 46, no. 1, 2003, pp 89-93.

[4] P. Brezany. GridMiner - a Framework for Data Integration & Knowledge
Discovery on Computational Grids. Slides, April 2005, Vienna.

[5] P. Brezany, J. Hofer, A Min Tjoa, A. Wöhrer. GridMiner: An Infrastruc-
ture for Data Mining on Computational Grids. In Proceedings of the APAC
Conference and Exhibition on Advanced Computing, Grid Applications and
eResearch, Queensland Australia, October 2003.

[6] P. Brezany, I. Janciak, A. Wöhrer, A M. Tjoa. GridMiner: A Framework for
Knowledge Discovery on the Grid - from a Vision to Design and Implemen-
tation. Cracow Grid Workshop, Cracow, December 2004.

[7] J. Hofer, P. Brezany. DIGIDT: Distributed Classifier Construction in the
Grid Data Mining Framework GridMiner-Core. In Proceedings of the Work-
shop on Data Mining and the Grid (DM-Grid 2004) held in conjunction
with the 4th IEEE International Conference on Data Mining (ICDM’04),
Brighton, UK, November 1-4, 2004.

[8] G. Kickinger, J. Hofer, P. Brezany, A.M. Tjoa. Grid knowledge discovery
processes and an architecture for their composition. In Proceeding of Parallel
and Distributed Computing and Networks, Innsbruck, Austria, February
2004.

[9] I. H. Witten, E. Frank. Data Mining: Practical Machine Learning Tech-
niques with Java Implementations. Morgan Kaufmann, San Francisco, CA,
2000.

[10] W. Frawley, G. Piatetsky-Shapiro, C. Matheus. Knowledge Discovery in
Databases: An Overview. AI Magazine, 213-228, 1992.

[11] P. Jermyn, M. Dixon, B.J. Read. Preparing Clean Views of Data for Data
Mining.

[12] Two Crows. Introduction to Data Mining and Knowledge Discovery. ISBN:
1-892095-02-5. 2005

[13] D. Pearson. Data requirements for the Grid. 2002

66

[14] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems. IFIP International Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13, 2005.

[15] M.S. Prez, A. Snchez, P. Herrero, V. Robles, J.M. Pea. Adapting the Weka
Data Mining Toolkit to a Grid Based Environment, Lecture Notes in Com-
puter Science, Volume 3528, Jan 2005, Pages 492 - 497.

[16] D. Talia, P. Trunfio, O. Verta. Weka4WS: a WSRF-enabled Weka Toolkit
for Distributed Data Mining on Grids. Proc. of the 9th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD
2005), Porto, Portugal, October 2005, LNAI vol. 3721, pp. 309-320, Springer-
Verlag, 2005.

[17] D. Talia. Grid-Based Distributed Data Mining Systems, Algorithms and
Services. In Proceedings of the 9th International Workshop on High Perfor-
mance and Distributed Mining (HPDM), April 2006.

[18] D. Talia, P. Trunfio, O. Verta. WSRF Services for Composing Distributed
Data Mining Applications on Grids: Functionality and Performance. In Pro-
ceedings of the International Conference on Computational Science and its
Applications (ICCSA 2006), Vol. 3980:1080-1089 of LNCS, Springer-Verlag,
Glasgow, UK, May 2006.

[19] P. Brezany, I. Janciak, A. Min Tjoa. GridMiner: a Fundamental Infras-
tructure for Building Intelligent Grid Systems. In Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web Intelligence, 2005.

[20] G. Kickinger and J. Hofer and A. Tjoa and P. Brezany. Workflow Man-
agement in GridMiner. In Proceedings of the 3rd Cracow Grid Workshop,
Cracow, Poland, October 2003.

[21] W. Kosters and W. Pijls. Apriori, A Depth First Implementation. In Pro-
ceedings of the FIMI Workshop Of Frequent Itemset Mining Implementation,
Melbourne, Florida, USA, November 19 2003.

67

