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Chapter 1

Introduction

Only as recent as April 2003, the project of sequencing the entire human
genome was finished. This has led the way for researchers to focus on the
exploration of genes, located somewhere in 23 pairs of chromosomes. To
make efficient research possible, certain interesting regions of the genome
need to be isolated.

Polymerase chain reaction (PCR) allows DNA from a selected region of a
genome to be amplified, effectively “purifying” this DNA away from the
remainder of the genome [AJL+02]. To start the replication process for
this reaction, an appropriate initiator needs to be known for the region of
interest. Such an initiator is called a primer.

At the request of Peter E. M. Taschner of the Leids Universitair Medisch
Centrum (LUMC), Jeroen Laros attempts to find suitable primers of some
fixed length. In [Lar05], he does not only look at unique strands, but he
filters the set of possible primers for GC-percentage, melting temperature
and mutual positions of pairs of primers. This filtering does not necessarily
have to be exercised on a set of unique strands. Both GC-percentage and
melting temperature can be calculated for all strands of fixed length of a
DNA-strand, and whole regions of the DNA can be thereby disqualified as
possible positions for primers.

When attempting to find a suitable primer in a DNA-strand without know-
ing its length in advance, it is no longer possible to filter the DNA-strand
in advance. Strands will assume different melting temperatures and GC-
percentages after a nucleotide is added to them.

Both this problem and that of gathering information about strands of dif-
ferent lengths can be addressed by the introduction of some modifications
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CHAPTER 1. INTRODUCTION 4

on suffix trees. This thesis explores these modifications and discusses their
suitability to solve the problem of finding primers.

We start by providing some background information on the subject of finding
primers in the following chapter. The first part of the rest of the thesis will be
about the data structures and algorithms describing the different extensions
on suffix trees. The second part will describe how these extensions can be
applied to the detection of primers. In the third part we will discuss an
actual implementation, which was developed for this project, and we will
report on experiments we have performed.

This project was conducted at the request of, and in cooperation with,
Hendrik Jan Hoogeboom and Jeroen Laros of the Leiden Institute of Ad-
vanced Computer Science (LIACS).



Chapter 2

Background

The goal of this project is the detection of unique substrings of arbitrary
length in a string representing a strand of DNA. A string is considered
unique when it has a single occurrence on the genome. The resulting set
of unique substrings will possibly contain a set of primers. In this section,
some microbiological concepts are explained, and an outline on the use of
primers will be given.

2.1 DNA

In [AJL+02] deoxyribonucleic acid (DNA) is described as follows. DNA is
a set of strands of monomers. Each monomer in a single DNA strand –
i.e., each nucleotide – consists of two parts: a sugar (deoxyribose) with a
phosphate group attached to it, and a base, which may be either adenine
(A), guanine (G), cytosine (C) or thymine (T). The abbreviations as men-
tioned here will be used from this point on instead of the full names of the
bases. Each sugar is linked to the next via the phosphate group, creating
a polymer chain composed of a repetitive sugar-phosphate backbone with a
series of bases protruding from it. The DNA polymer is extended by adding
monomers at one end. The bases protruding from the existing strand bind
to bases of the strand being synthesised, according to a strict rule defined
by the complementary structures of the bases: A binds to T, and C binds
to G. In this way, a double-stranded structure is created, consisting of two
exactly complementary sequences of A’s, C’s, T’s, and G’s.

Every monomer is added to the strand by connecting its 5′-phosphate to a
3-OH group protruding from the monomer it is connecting to. The direc-
tion in which new monomers can be added is therefore called the 5′-to-3′
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CHAPTER 2. BACKGROUND 6

direction of chain growth. When double stranded DNA is duplicated, the
two complementary sequences are read in opposite order - i.e. always in the
5′-to-3′ direction, as illustrated in figure 2.1.

3′←−−−−−−−−−−−−−−−−−−−−−−−
. . . ATTGCATTCCCTTGCAATT . . .

5′

5′
. . . TAACGTAAGGGAACGTTAA . . .−−−−−−−−−−−−−−−−−−−−−−−→3′

Figure 2.1: Double stranded DNA

2.2 Primers

A primer is a relatively short nucleic acid strand that serves as a starting
point for DNA replication on a single DNA-strand. Here, the primer is the
exact complement of the strand read from the starting position in the 3′-
to-5′ direction [AJL+02]. To assure that the replication can start from no
other position on the strand, the primer needs to be unique. Apart from
this, there are some other desired features for a primer. The ones considered
in this project are melting temperature, length and GC-percentage.

2.2.1 Melting temperature

The melting temperature (Tm) of a primer is defined as the temperature at
which 50% of the same DNA molecules form a stable double helix and the
other 50% have been separated to single strand molecules.

Melting temperatures that are too high can cause problems since the DNA-
polymerase (the enzyme that induces duplication) is less active at such tem-
peratures. The optimal melting temperature lies between approximately
50◦C and 65◦C.

There are several methods available to estimate the melting temperature
of a strand. The most accurate models available are based on each of the
pairs of neighbouring bases on the same strand. This technique is the nearest
neighbour interaction technique, and for this project we have used the model
described by K.J. Breslauer et.al. in [BFBM86].
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2.2.2 Length

The melting temperature required increases with the length of the primer.
Primers that are too short would anneal at several positions on a long DNA
template, which would result in non-specific copies. On the other hand, the
length of a primer is limited by the temperature required to melt it. The
optimal length of a primer is generally between 10 and 30 nucleotides. This
has been an important motivator in the choice of the data structure chosen
for this project.

2.2.3 GC percentage

The percentage of certain nucleotides within a strand can have large influ-
ence on its suitability as a primer. The more C or G nucleotides a strand
contains, the higher the melting temperature will be. Furthermore, a per-
centage of either A and T or C and G nucleotides can cause the bases of the
primer strand to form unwanted pairs among each other. A primer typically
has a percentage of bases C and G around 50%.



Chapter 3

Formalisation

A DNA-strand is characterised by the sequence of bases that one of its two
complementary strands is built of. Its structure can therefore be described
by the string formed by the abbreviations of the bases read in 5′-to-3′-
direction. A DNA-strand can be described as a string X = x1 . . . xL with
xi ∈ Σ, 1 ≤ i ≤ L, where Σ = {A,T,C,G}.

Since the DNA of most living organisms contains more than one molecule
i.e., chromosome, the DNA needs to be displayed as a set of strings X =
{X1, . . . ,Xn}.

Unfortunately, not every nucleotide on every position in a chromosome is
known. There are certain areas that consequently cannot be described in
the string representing that chromosome. Usually, unknown positions are
denoted by the character N . Since we are looking for unique substrings,
we need to avoid any unknown positions, and we need to treat the identi-
fied areas as separate chunks. A chromosome can be subdivided in several
identified areas T1 . . . Tn. The whole of an organism’s DNA can then be
displayed as T = {T1,1 . . . T1,a1

. . . Tn,1 . . . Tn,an}. Now Ti,j = ti,j,1 . . . ti,j,Li,j

represents substring j of chromosome i for 1 ≤ i ≤ n and 1 ≤ j ≤ ai with
n the number of chromosomes in T , ai the number of identified chunks of
chromosome i and Li,j the length of chunk Ti,j. To find the exact position
of a substring on the genome, we need to keep track of the original positions
of the chunks on the chromosome.

The problem of finding short unique strands of DNA in the DNA-strand
can now be described as finding a substring ti,j,k . . . ti,j,k+l−1 of length l, for
which there exist no i′, j′, k′ so that ti,j,k . . . ti,j,k+l−1 = ti′,j′,k′ . . . ti′,j′,k′+l−1

and i′ 6= i, j′ 6= j or k′ 6= k.
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CHAPTER 3. FORMALISATION 9

The detection of unique substrings in a collection of strings can be achieved
by different methods.

In [Lar05] Jeroen Laros describes why the specific problem of finding such
substrings for a fixed length can best be approached by counting occurrences
of substrings by reading through the file multiple times. He achieves a rela-
tively low space complexity by considering each possible string of a certain
length in every traversal of the file, and only counting the strings with that
specific prefix.

Another widely used method for this problem is that of suffix trees. They
have the added benefit that they can describe the uniqueness of strings of
arbitrary length. Although they have the disadvantage that a tree repre-
senting the entire human genome will take more space than feasible with
current technology, they can provide a solution for smaller sequences. We
will introduce these data structures in chapter 4 together with an algorithm
which creates them with linear time and space complexity as suggested by
Esko Ukkonen in [Ukk95]. In chapters 5 and 6 we will introduce some mod-
ifications on these suffix trees, that will make them more suitable for the
search for primers.



Chapter 4

Suffix tree

In [Ukk95] the suffix tree is introduced as follows. With string T = t1 . . . tn
over an alphabet Σ, a suffix of T is defined as Ti = ti . . . tn and Tn+1 = ǫ is
the empty suffix, a suffix tree is a trie-like data structure representing the
set of all suffixes of T , which is denoted by σ(T ). Each string α, such that
T = βαγ for some strings β and γ, is a substring of T .

4.1 STrie

Before describing the suffix tree, the structure on which it is based, namely
the suffix trie, needs to be introduced. Formally, the suffix trie representing
σ(T ) is denoted as STrie(T ) = (Q ∪ {⊥}, root, F, g, f) and is defined as
an augmented deterministic finite-state automaton which has a tree-shaped
transition graph and is augmented with the suffix function f and auxiliary
state ⊥. In this trie, Q has a one-to-one correspondence to the substrings
of T. The state corresponding to substring α is denoted as α. Furthermore:
ǫ = root, F is the set of final states, with r ∈ F ⇔ r ∈ σ(T ).

The transition function g is defined as:

∀ α, γ ∈ Q ∀β ∈ Σ : γ = αβ ⇒ g(α, β) = γ

The suffix function f is defined as:

f(α) =







γ, for α 6= root and α = βγ for β ∈ Σ
⊥, for α = root

undefined, for α = ⊥

Now f(r) is the suffix link of state r. In STrie(T i) with T i = t1 . . . ti a
prefix of T and Fi−1 the final states set of STrie(T i−1), according to the
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definition of f the following holds: For any state r ∈ Q so that r ∈ Fi−1 if
and only if there is a j (with 0 ≤ j ≤ i − 1) for which r = f j(t1 . . . ti−1).
The path that can be traversed through suffix links from state t1 . . . ti−1

to state ⊥ in STrie(T ) is the boundary path. Algorithm 4.1 shows how
STrie(T i) is created. Here top denotes t1 . . . ti−1. STrie(T i) is constructed
from STrie(T i−1) as follows. For every state α found on a traversal of
the boundary path for which g(α, ti) is undefined, add a new state αti and
update g and f with g(α, ti) = αti and f(αti) = g(f(α), ti). The traversal
of the boundary path can stop as soon as a α is found for which state αti
already exists. Namely, if this requirement is met, for all α′ = f j(α), j ≥ 1
there must exist a state α′ti in STrie(T i−1) and g(α′, ti) = α′ti.

4.1.1 Complexity

Algorithm 4.1: Creation of STrie(T i)

r ← top;1

while g(r, ti) is undefined do2

create new state r′ and new transition g(r, ti) = r′;3

if r 6= top then create new suffix link f(oldr′) = r′;4

oldr′ ← r′;5

r ← f(r);6

create new suffix link f(oldr′) = g(r, ti);7

top ← g(top, ti);8

In the creation of STrie(T i) from STrie(T i−1) at most i new states are
created, since the boundary path has a length of at most i final states. In

the creation of STrie(T ) from STrie(ǫ) at most
∑|T |

i=1
i new states with their

corresponding transition functions and suffix links are created. The worst
case for both time and space complexity are therefore O(|T |2).

4.2 STree

It is possible to represent STrie(T ) more efficiently. By only using the
leaves and the nodes that have more than one child (branching nodes), and
representing strings by their indices, it is possible to represent STrie(T ) in
space linear to the length of T . Suffix tree STree(T ) is a data structure
that represents STrie(T ) in this way.

In STree(T ) = (Q′ ∪ {⊥}, root, g′, f ′), Q′ consists of all leaves of STrie(T )
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and all branching states R as defined below:

R = {r ∈ Q|∃a, b ∈ Σ,∃s, t ∈ Q : a 6= b ∧ g(r, a) = s ∧ g(r, b) = t}

States Q′ ∪ {⊥} are the explicit states. The implicit states are the states
of STrie(T ) not contained in Q′ ∪ {⊥}. The generalised transition function
g′ is defined for explicit states s and r and a string β over alphabet Σ as
g′(s, β) = r if and only if r is a child of s in STree(T ) and the transition
path from states s to r in STrie(T ) spells out the string β. If β = tk . . . tp
we can also write g′(s, β) = r as g′(s, (k, p)) = r. If tk = a, g′(s, (k, p)) = r
is called an a-transition.

The suffix function becomes:

f ′(α) =















γ, for α 6= root, α is a branching state
and α = βγ for β ∈ Σ

⊥, for α = root
undefined, for α = ⊥

If f ′(α) = γ for α a branching state, γ is also a branching state, since the
occurrence of more than one different substring with prefix βγ implies that
substrings with prefix γ will also occur multiple times.

An explicit or implicit state r of the suffix tree can be referred to by a
reference pair (s, (k, p)), where s is an explicit state, and the string tk . . . tp
is spelled out by the transition path in STrie(T ) from s to r. If s is the
closest ancestor of r in STree(T ), then (s, (k, p)) is canonical.

4.2.1 Complexity

STree(T ) contains at most |T | leaves, 1 for each suffix. Therefore it has at
most |T |−1 branching states (when |T | > 1) and at most 2|T |−2 transitions.
The space needed for STree(T ) is at most O(|T |).

4.3 Online construction of STree(T )

There are several algorithms for the construction of suffix trees. Edward
McCreight suggests a procedure for construction in linear time in [McC76].
Esko Ukkonen suggests a similar method in [Ukk95] that constructs STree(T )
online, – i.e. it only needs prefix T i to create STree(T i) and no knowledge
of suffix Ti+1 is required. Ukkonen’s algorithm for the online construction of
a suffix tree is based on the same principle as algorithm 4.1. For this project
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(1, 1)

(10,∞)

(10,∞)
(2, 2)

(8,∞)

(3,∞)

(5,∞)

(5,∞)

(5,∞)

(3,∞)

(2, 2)

(8,∞)

(8,∞)

Figure 4.1: STree(kokoskoek$)

the Ukkonen’s approach was chosen since it is online and it does not require
any previous knowledge about the input string.

The set of states in STree(T i−1) that needs to be updated to obtain STree(T i)
is only a subset of the corresponding states needed to obtain STrie(T i)
from STrie(T i−1). In algorithm 4.1 all states on the boundary path of
STrie(T i−1) that do not have a ti-transition are updated. By making a
slight change in transition function g for STree(T ), it is no longer neces-
sary to update the states that are leaves in STrie(T i−1). Any transition of
STree(T i−1) that leads to a leaf ℓ is called an open transition and is of the
form g′(s, (k, i− 1)) = ℓ. When an update is made to a leaf ℓ = tj . . . ti−1 in
STrie(T i−1), a new state tj . . . ti is added. This implies that ℓ becomes an
implicit state and it is replaced by ℓ′ = tj . . . ti in STree(T i). This will result
in an update of g′ with g′(s, (k, i)) = ℓ′. For ℓ a leaf, and g′(s, (k, p)) = ℓ
in STree(T i), p will always be equal to i. We can therefore represent all
transitions to leaves as g′(s, (k,∞)) where ∞ will be replaced by |T | at the
end of the algorithm. In this way it is not necessary to replace ℓ by ℓ′ each
time the tree is updated.

If we establish the active point sj = tj . . . ti−1 where tj . . . ti−1 is the longest
suffix of STree(T i−1) that occurs at least twice in T i−1, and the end point
sj′ = tj′ . . . ti−1 where tj′ . . . ti−1 is the longest substring of T i−1 such that
tj′ . . . ti is a substring of T i−1. Both sj and sj′ are implicit or explicit states
of STrie(T i−1). We only have to see which updates of states and transition
functions in STrie(T i−1) on the boundary path from the active to the end
point cause an update of their corresponding canonical reference pairs and
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transition and suffix functions in STree(T i−1). After this construction of
STree(T i), state g(sj′ , ti) becomes the active point for STree(T i).

To make sure that each suffix of T is represented properly in STree(T ),
we need to add a special end marker to string T . This character needs to
be unique in the string, so that there will be no overlap between different
suffixes in the tree. The character $ is an end marker that is commonly used
for this purpose.

In Chapter 5 we will introduce several modifications on the data structure
and construction of the suffix tree as suggested by Ukkonen. These mod-
ifications, i.e. pruning and truncation, are introduced to fit the problem
of finding primers. The time complexity of the construction of the simple
suffix tree is O(|T |). Since the suffix tree as described in the current section
is an unmodified suffix tree, its complexity should be that of the modified
trees, disregarding complexity introduced by these adaptions. A proof for
the complexity of the suffix tree with modifications will be given in sec-
tion 5.3. As an example of the simple suffix tree, the suffix tree for string
kokoskoek$ is shown in figure 4.1. In this figure, the slightly curved edge is
a suffix link.



Chapter 5

Modifications on the suffix

tree

In the following sections we introduce several modifications on Ukkonen’s
data structure and algorithm to present suffix trees. The reason for the
development of these extensions is to optimise the use of suffix trees for the
problem of finding unique strings with certain features within a DNA-strand.

As mentioned in chapter 3 the DNA can be described as a set of strings. To
make it possible for the suffix tree to contain several strings we can use a
suffix tree over multiple strings as will be described in section 5.1.

Since we are only interested in primers up to a certain length it makes sense
to only build trees up to a certain depth. These trees are introduced as
truncated suffix trees in section 5.2.

Finally, we are only interested in strands that have certain features. In
section 5.4 we introduce a modification of the algorithm, where we prune
away nodes of the tree that have unwanted features that can be calculated
through a non-decreasing function. If this function was not non-decreasing,
some nodes that possess the correct features might be cut of and the shape
of the tree will become unpredictable at some points which could affect the
linear complexity of the Ukkonen algorithm. We will be able to use this
type of tree to prune the truncated suffix tree on a subset of strands with
unwanted GC-percentage and melting temperature.

15
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5.1 A suffix tree over multiple strings

With a slight alteration of the Ukkonen algorithm, it is possible to build
a suffix tree for multiple strings T = {T1, . . . , Tn}. This modification was
suggested earlier by Dan Gusfield in [Gus97]. The algorithm first creates
the suffix tree STree(T1), and begins adding any new string Ti by resetting
the active point to root. The resulting tree is called STree(T ) and is a rep-
resentation of σ(T ) in space linear in length N . Here the reference pointers
become (j, k, p), where j represents the j-th chunk, and k and p are the
positions in that chunk.

A proof for both space and time complexity for this variation of the suffix
tree will be given in section 5.3.

5.2 A truncated suffix tree

The idea of truncated suffix trees is introduced in [NAIP03]. In this section
we will describe a formalisation of the idea to fit Ukkonen’s suffix tree and
we will prove that it remains linear proportional to the length of the input
string in section 5.3.

Truncated suffix tree STrunc(T,Ω) = {Q′′, root, g′′, f ′, c} is a data structure
that represents all substrings α of T where |α| ≤ Ω. State ⊥ is omitted in
this variation of the suffix tree. The main reason for this is that there will
be no need for it in the final implementation.

The leaves L of STrunc(T,Ω) are the states α in STrie(T ) for which either
|α| = Ω or α ∈ F and |α| ≤ Ω. The other explicit states represented in
STrunc(T,Ω) are the ancestors of L. The suffix function is only defined for
a subset of the states contained in Q′′.

A slight alteration is made to transition function g′. In the algorithm for the
construction of STree(T ) as described in section 4.3, a leaf ℓi is created with
transition function g′(s(k,∞)) = li, in which ∞ will later be replaced by
|T |, since state li represents suffix ti . . . t|T | of T . In STrunc(T,Ω) however,
a leaf ℓi represents a substring ti . . . ti′ with

i′ =

{

i + Ω− 1, for i + Ω− 1 < |T |
|T |, for i + Ω− 1 ≥ |T |

and it is therefore cumbersome to replace every instance of ∞ with the
correct value. Under the assumption that the length of string T is not
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known in advance, it is possible to save space and not use more time than
in the original algorithm. This can be achieved by redefining the transition
function for some state s to some state r as g′′(s, (k, d)) = r in which d
represents the length of the path from root to state r, instead of the index
of the final position represented by r. With g′′(s′(k′, d′)) = s the string
spelled out by the edge from state s to r is equal to tk . . . tk+d−d′−1. In this
manner, for every leaf, d is set to Ω by default and can later be set to |T |
for those leaves representing the last Ω suffixes of T .

A uniqueness label c is added for states α as

c(α) =







0, α ∈ L , α occurs only once in T
1, α ∈ L , α occurs more than once in T
λ, α /∈ L

This label will be used to determinate the uniqueness of every substring,
and its exact use in obtaining information after the construction of the tree
will be explained further in Chapter 6.

5.2.1 Algorithm

The algorithm for the creation of STrunc(T,Ω) is based on the algorithm
that creates STree(T ). The main differences are the introduction of the
uniqueness label c and the value of the active point sj.

Initially STrunc(T 0,Ω) is created. From every STrunc(T i−1,Ω) with 1 ≤
i ≤ |T |, STrunc(T i,Ω) can be created, until in the last step STrunc(T,Ω)
is constructed. The tree STrunc(T i,Ω) is created from STrunc(T i−1,Ω) by
adding all suffixes of string ti−Ω . . . ti (or σ(ti−Ω . . . ti)) to it.

The active point sj is found in a similar fashion as in Ukkonen’s original
algorithm. The tree STrunc(T i−1,Ω) is traversed starting at the active
point and subsequently new states are created until end-point sj′ is found.
The active point of STrunc(T i,Ω) will be sj′ if i − Ω < j′. If this is not
the case j′ will be increased by 1, namely i − Ω = j′ has to be true, since
the condition i− 1−Ω < j and j ≤ j′ also had to hold in STrunc(T i−1,Ω).
The correct state sj′+1 can then be found by proceeding as normal in the
update-procedure for state sj′, but avoiding all changes made to the tree.

Whenever a leaf ℓ is created as tk-transition of α, the value of c(ℓ) is automat-
ically set to 0, indicating that up to this point there is only one occurrence
of a substring with prefix αtk found. If the transition function for α is set
as g′′(α′, (k′, d′)) = α, it also states, that no other substring αtk+Ω−d′−1 will
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be found before the k + Ω− d′-th character of T (if such a character exists).
Now c(ℓ) will be set to 1 if the exact same substring is found again starting
after the k − d′-th character.

If ti+1−Ω . . . ti = ti′+1−Ω . . . ti′ , with i < i′, si′ will be the active point
for the construction of STrunc(T i′ ,Ω) from STrunc(T i′−1,Ω). Namely if
ti+1−Ω . . . ti = ti′+1−Ω . . . ti′ , then ti′+1−Ω . . . ti′ will be the longest substring
of ti′+1−Ω . . . ti′ that is also a substring of T i′−1. When this is the case,
label c will be update to c(ti′+1−Ω . . . ti′) = 1, indicating that the string it
represents is not unique in T .

5.3 Truncated Ukkonen over multiple strings

The concepts described in sections 5.1 and 5.2 can be combined to form an
algorithm which creates a truncated suffix tree over multiple strings. In the
following sections an algorithm to create STrunc(T ,Ω) will be described
followed by a proof of its complexity.

5.3.1 Algorithm

The algorithm for the creation of STrunc(T ,Ω) uses procedures update(s, (j, k, i)),
test-and-split(s, (j, k, i), t) and canonise(s, (j, k, i)), as represented be-
low. These procedures are used to respectively update the tree with new
character, to check whether a new node needs to be created and to find the
next canonical pair. They are based on procedures with the same names
described in [Ukk95]. With these modifications, the original procedures are
extended to be used for multiple strings, decide whether a string is unique
and to let leaf-nodes only represent strings of length Ω or shorter. For
these last two modifications only procedure update(s, (j, k, i)) needed to be
adjusted.

To emphasise the use of multiple strings, the parameter j (representing the
string number) was added to all procedures, and the second parameter of g′

was changed to (j, k, d), only for clarification.

For the details on the original procedures we refer to [Ukk95].
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Procedure update(s, (j, k, i)) with (s, (j, k, i − 1)) the canonical
reference pair for the active point

if i− k > Ω or (tj,i = $ and c(s) = 0) then1

c(s) = 1; (s, k)← canonise(f ′(s), (j, k, i − 1));2

oldr ← root;3

(end-point, r)← test-and-split(s, (j, k, i − 1), tj,i);4

while not (end-point) do5

create new transition g′(r, (j, i,Ω)) = r′ where r′ is a new state;6

if oldr 6= root then create new suffix link f ′(oldr) = r;7

oldr ← r;8

(s, k)← canonise(f ′(s), (j, k, i − 1));9

(end-point, r)← test-and-split(s, (j, k, i − 1), tj,i);10

if oldr 6= root then create new suffix link f ′(oldr) = s;11

return (s, k)12

Procedure test-and-split(s, (j, k, i), t)

if k ≤ i then1

let g′(s, (j, k′, d)) = s′ be the tj,k-transition from s;2

if t = tj,k′+i−k+1 then return (true, s)3

else4

replace the tj,k-transition above by transitions5

g′(s, (j, k′, i− k)) = r and g′(r, (j, k′ + i− k + 1, d)) = s′

where r is a new state;6

return (false, r)7

else8

if there is no t-transition from s then return (false, s)9

else return (true, s)10

Procedure canonise(s, (j, k, i))

if i < k then return (s, k)1

else2

find the tj,k-transition g′(s, (j, k′, d)) = s′ from s;3

while d ≤ i− k do4

k ← k + d + 1;5

s← s′;6

if k ≤ i then find the tj,k-transition g′(s, (j, k′, d)) = s′ from7

s′;
return (s, k)8
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Algorithm 5.1: Construction of STrunc(T ,Ω) for T = {T1 . . . Tn}
and Tj = tj,1 . . . tj,nj

$ for 1 ≤ j ≤ n a string over alphabet Σ. $ is the
end marker not appearing elsewhere in Tj .

create state root;1

for j ← 1, . . . , n do2

s← root;k ← 1;i← 0;3

while tj,i 6= $ do4

i← i + 1;5

(s, k)← update(s, j, (k, i));6

(s, k)← canonise(s, j, (k, i));7

0

0

0

0

1

0

1

1 0 0 1 0

0

0
k

$

$ o
$

e k s ks

k

$
s

sk

ko

o

e

e

k$

s

ko

Figure 5.1: STrunc({kokoskoek, koeskoes}, 3)

The final algorithm as used for this project is shown in 5.1. Figure 5.1 shows
a graphical representation of STrunc({kokoskoek, koeskoes}, 3) (note that
for convenience the indices (k, d) belonging to any edge are replaced by the
string tk . . . tk−1+d).

5.3.2 Complexity

Let T = {T1, . . . , Tn} a set of strings over alphabet Σ, and N =
∑n

i=1
|Ti|.

Theorem 5.1 Algorithm 5.1 creates STrunc(T ,Ω) online with time com-
plexity O(N + n).
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Proof. Algorithm 5.1 creates STrunc(T ,Ω) by initially creating
STrunc(T 0

1 ,Ω), and subsequently STrunc(T 1
1 ,Ω) through STrunc(T n1

1 ,Ω),
after which the end marker of string T1 is added. Since, STrunc(T n1

i−1
,Ω) =

STrunc(T 0
i ,Ω) (for i > 1), any STrunc(T 0

j ,Ω) is created from STrunc(T
nj−1

j−1
,Ω).

The procedure is repeated for j = 2, . . . , n by repeatedly creating STrunc(T i
j ,Ω)

from STrunc(T i−1
j ,Ω) for i = 1, . . . , nj + 1 (with Tnj+1 = $) and resetting i

to 1 for every new string that is digested. In the last step STrunc(T nn
n ,Ω) =

STrunc(T ,Ω) is constructed. The algorithm is online, since only the char-
acters read up to Tj,i are necessary to construct STrunc(T i

j ,Ω). Every j-th
traversal of the for-loop in algorithm 5.1 corresponds to adding σ(Tj) to the
tree, while every i-th repetition of the while-loop corresponds to the creation
of STrunc(T i

j ,Ω) from STrunc(T i−1
j ,Ω). This makes for a total of N + n

traversals of the while-loop.

To prove that the time complexity is linear to the sum of the total length of
all strings and the number of strings, one needs to show that the number of
steps necessary to create STrunc(T ,Ω) is linearly proportional to N + n.

To show that this is the case we have to look at the procedures that contain
loops. These are procedures canonise and update. Both of these procedures
are called N + n times in algorithm 5.1. First it will be made evident that
the total number of times the while-loop in procedure update is traversed
is linear proportional to N + n. At that point it can be concluded that
the procedure canonise will be called a number of times which is linear pro-
portional to N + n (it is only called from the main algorithm and from the
update-loop). Then it will be shown that the while-loop in procedure canon-
ise is traversed in O(N + n), and it will become visible that STrunc(T ,Ω)
is created with algorithm 5.1 in O(N + n).

Every time the update-procedure is called for the creation of STrunc(T i
j ,Ω),

it will traverse the suffix tree from the active point sk to the end point
sk′ . These states correspond to the substrings tk . . . ti and tk′ . . . ti of Tj.
Subsequently for the creation of STrunc(T i+1

j ,Ω), the active point becomes
sk′ . For any active point sk and end point sk′ , k ≤ i and k ≤ k′. Any
traversal of the while-loop corresponds to increasing k by 1. For any string
Tj , k can at most be increased nj + 1 times (including the end-marker) and
there are therefore at most nj traversals of the while-loop. Whenever i = 1
and j > 1, k is reset to 1 as well. This makes for a total of at most N + n
traversals.

The canonise function is called either directly from algorithm 5.1 or from
the update procedure. In both cases, it will attempt to find the canonical
reference pair for some state on the path from the active point to the end
point of the tree that is being built. The number of times its while-loop is
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traversed corresponds to the number of times an edge of the tree is traversed
down. The depth of a state is defined as the length of the string spelled out
by the path from the root to that state. Let ri be the active point of
STrunc(T i

j ,Ω) for 0 ≤ i ≤ nj + 1. The visited edges between ri−1 and ri

consist of a number of suffix links and one ti-transition. Taking a suffix link
decreases the depth by one and taking the ti-transition increases it by one.
The number of suffix links traversed is therefore depth(ri−1)−(depth(ri)−1)
and the total number of visited states (not counting state ri) is therefore
depth(ri−1)− depth(ri) + 2. The total number of visited states is therefore
∑n

j=1

∑nj+1

i=0
(depth(ri−1)−depth(ri)+2) =

∑n
j=1

(depth(r0)−depth(rnj+1)+
2(nj + 1))≤ 2(N + n). This makes for a total of O(N + n) link traversals.

The total time complexity is O(N + n). 2

Theorem 5.2 The size of STrunc(T ,Ω) has a worst-case complexity of
O(min(N, |Σ|Ω) + Ωn).

Proof. The number of states in STrunc(T ,Ω) will never exceed the number
of states in a tree which represents all possible strings of length Ω. In such
a tree every branching state will branch into |Σ| new states and the total
number of explicit states will therefore be

Ω
∑

i=0

Σi =
|Σ|Ω+1 − 1

|Σ| − 1

and the number of transitions will be

|Σ|Ω+1 − 1

|Σ| − 1
− 1

As stated in subsection 4.2.1, STree(T ) contains at most 2|T |−2 transitions.
In total, n strings are added to the tree, with each string Tj having a total
of nj suffixes (excluding the end marker). The total number of suffixes is
therefore N and STrunc(T ,Ω) contains at most N leaves, at most N − 1
branching states and N − 2 transitions.

Adding the fact that every string contains one end marker, a maximum of
n leaves and n transitions is added to the tree. This results in a worst
case of min(2N − 2, |Σ|Ω+1−1

|Σ|−1
) + 2Ωn and therefore a space complexity of

O(min(N, |Σ|Ω) + Ωn). 2
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5.4 Pruning a tree on a non-decreasing function

The previous section describes how we can discard any substring from the
tree that is longer than the strings we are interested in, while maintaining
the functionality of the original suffix tree. It is also possible to discard
strings from the tree that have other unwanted characteristics. As will be
shown in this section, strings with characteristics that can be expressed as
a non-decreasing function, can be pruned from the tree, without increasing
space or time complexity.

Function Υ can be defined as follows.

Definition Let Υ be a function over all strings over an alphabet Σ with
the property that for all strings αβ ∈ Σ∗:

i. Υ(α) ≤ Υ(αβ) and Υ(α) ≤ Υ(βα).

ii. It is possible to calculate the following values in |β| steps:

Υ(α) from the value of Υ(βα),
Υ(α) from the value of Υ(αβ),
Υ(βα) from the value of Υ(α),
Υ(αβ) from the value ofΥ(α).

When there is only an interest in the strings α with Υ(α) ≤ X, it is possible
to adjust algorithm 5.1, so that a subset of the strings with a value for Υ
higher than X will not be represented in the suffix tree.

5.4.1 Algorithm

After the creation of a new internal state α, Υ(α) is calculated. When
Υ(α) > X, the children of the state are removed from the tree. The state
now becomes a leaf with the special feature that its depth is |α| instead of
Ω. Also we do not have to update the uniqueness label c(α), since we are
not interested in the uniqueness of a string that does not qualify Υ(α) ≤ X.
After this the algorithm proceeds as before.

As an example of the construction of a tree with this updated algorithm,
figure 5.2 shows STruncΥ({kokoskoek, koeskoes}, 3, 4), with function Υ is
defined as Υ(ǫ) = 0, Υ(k) = 1, Υ(e) = 2, Υ(s) = 3, Υ(o) = 4 and
Υ(αβ) = Υ(α) + Υ(β). In this figure the nodes from which the children
were cut off are depicted by filled circles.
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Figure 5.2: STruncΥ({kokoskoek, koeskoes}, 3, 4) with Υ as on page 23

The new suffix tree resulting from the adjusted algorithm is called
STruncΥ(T ,Ω,X). This new algorithm is correct in the sense that it will
contain at least all substrings α (of maximum length Ω) with Υ(α) < X.
Furthermore, this suffix tree variation is built in linear time and uses less
space than STrunc(T ,Ω). For the next theorems we assume that Q′′ are
the explicit states of STruncΥ(T ,Ω,X) and that its transition and suf-
fix functions g′′ and f ′ are defined only for some subset of the states of
STrunc(T ,Ω).

5.4.2 Correctness

Theorem 5.3 If α a substring of T with |α| ≤ Ω and Υ(α) ≤ X, then there
exists some explicit state β with α a prefix of β.

Proof. Assume to the contrary that no such state β exists. This can have
two reasons. Either there existed such a β, but it was removed at some later
point in the algorithm, or it was never inserted in the tree.

If a state r = β did exist, but was removed at some later point, then this
must mean that there exists some prefix β′ of β for which Υ(β′) > X and
an explicit state r′ = β′ was created. But according to the definition of
function Υ, β′ can not be a prefix of α and therefore α needs to be a prefix
of β′, which is a contradiction.



CHAPTER 5. MODIFICATIONS ON THE SUFFIX TREE 25

If no such state ever existed in the tree, then it was never added. This
means that no string with prefix α is ever added to the tree. This can
only be the case if for every string T = t1 . . . tn ∈ T and α = ti . . . tj
(with 1 ≤ i ≤ j ≤ n) there exists a k with i ≤ k < j for which adding
σ(T k) to the current suffix tree will result in a shift of the active point for
STruncΥ(T k +1,Ω,X) beyond implicit state ti . . . tk + 1. This would imply
that either, Υ(ti . . . tk) > X which is not possible according to the definition
of Υ, or ti . . . tk was not yet represented in STruncΥ(T k − 1,Ω,X) and a
leaf ti . . . ti−1+Ω is created. ti . . . ti−1+Ω is an explicit state and α is a prefix
of ti . . . ti−1+Ω. This is again a contradiction. 2

In theorem 5.3, it was proven that no interesting information was lost from
the suffix tree, when several substrings are pruned. Furthermore, we need
to show that the suffix function f ′ is only defined for existing states and
that any internal state α (with |α| > 1) has an outgoing suffix link.

Since we only update f ′ when a new internal state is created (and is not
changed to a leaf immediately), and nodes are only pruned when they were
already leaves or when they are added as the direct parent of a leaf, f ′ will
always be well defined.

Furthermore, if α with α = βγ and β ∈ Σ a branching node in STruncΥ(T i
j ,Ω,X),

than Υ(α) ≤ X and, because of the definition of Υ, STruncΥ(T i
j ,Ω,X) must

contain a branching node γ, with f ′(alpha) = gamma.

5.4.3 Complexity

Theorem 5.4 STruncΥ(T ,Ω,X) is created with time complexity O(N).

Proof. The number of steps needed for the calculation of Υ is O(N). The
substrings of T for which states are created are of the form ti . . . tj. For
any subsequent event in which the Υ of some string ti′ . . . tj′ needs to be
calculated, i < i′, j ≤ j′ and i′ ≤ j′ are true. According to the definition
of Υ, the calculation of Υ(ti′ . . . tj′) from Υ(ti . . . tj) takes a maximum of
(i′ − i) + (j′ − j) steps. With I the number of internal nodes and tik . . . tjk

the k-th created internal node, the total steps needed is
∑I

k=1
(ik − ik−1) +

(jk − jk−1) = iI − i0 + jI − j0 ≤ 2N . At most 2N calculations are needed to
calculated Υ for all strings for which new nodes are created.

For every newly created node α with Υ(α) > X there is at most one state
that will be removed from the tree. When α has children, it has exactly
two: one that has just been created and one that was already there. For
the child αβ, which was created previously, Υ(αβ) ≥ Υ(α) > X and αβ
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has therefore no children. Two states will be removed, which is one for
every newly created state. The steps added to the algorithm add up to a
complexity of O(1) per state of STrunc(T ,Ω).

The deletion of states from the tree does not add more steps to the total
number of steps needed to traverse the tree during its creation. Whenever
a state βα (with β ∈ Σ) is deleted from the tree, then the newly created
state was the parent state βα′ of βα. After that, the tree is traversed, across
path p, to search for string α′ as would have been the case if no deletion
had occurred. Whenever string βα′ is encountered again (and state βα′ still
exists), the search for any string with prefix βα′ is omitted, and instead path
p will be crossed.

The updated algorithm remains linear. 2

It is easy to see that the updated algorithm creates STruncΥ(T ,Ω,X) in
memory space less or equal to that needed for the creation of STrunc(T ,Ω).

5.4.4 Remarks

It can be seen that the length of a string α = ti . . . tj also has all the prop-
erties of Υ. This is a special case of a non-decreasing function though.
Although we can calculate it in the number of steps suggested in the defini-
tion of Υ, the length of α can always be calculated in one step. Furthermore,
the structure of the tree resulting from pruning by length is intuitively more
obvious than that of pruning by other functions. We will therefore keep
treating it as a separate operation.

It is possible to prune the tree by several functions that satisfy the definition
of Υ. We can simply illustrate the correctness of this by using functions Υ1

and Υ2 with maximum values X1 and X2. If both of these functions are
non-decreasing, pruning on both functions is equal to pruning each newly
created internal node α when condition Υ1(α) ≤ X1 or Υ2(α) ≤ X2 is not
met. When either condition is not met, it will also not be met by any string
that has α as a prefix or suffix. The number of steps to calculate a value as
described in property ii in the definition of Υ becomes at most |2β|, which
is still |β| steps per function. Therefore, at most 2N calculations are needed
per function and the time complexity remains the same.



Chapter 6

Counting substrings in suffix

trees

The main interest for the use of suffix tree for this project was to discover
short unique strands with certain properties in a large strand of DNA. The
extensions introduced in chapter 5 were developed to target this problem
with growing effectiveness. The following sections present procedures to
discover the unique strings in different extensions to the suffix tree. The
algorithms are ordered in descending space complexity.

6.1 In STree(T )

To count the number of occurrences of certain substrings in STree(T ), we
can proceed as follows. For some string α over Σ, g′(s, (k, k′)) = r with
tk . . . tl = α and (r, (k′, l)) the canonical reference pair for some (explicit or
implicit) state r′. If there is no such state r′, and g′(s, (k, k′)) is undefined,
α is no substring of T . If there is such a state r′, then in STrie(T ), the
path from root to r spell out the string α, and all paths from root to any
descendant r′′ of r′, spells out some string αβ, with β a string over Σ. Leaf
l = ti . . . t|T | descends from r′ if and only if ti . . . ti+|α|−1 = α. Therefore the
number of leaves l in STree(T ) that descend from state r′, is equal to the
number of occurrences of string α in string T .

27
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6.2 In STree(T )

The procedure of counting substrings in STree(T ) is carried out similar to
that of section 6.1. Since in the case of multiple strings it is possible that a
certain string is entered several times, all leaves in the tree need a counter.
The sum of all counters in leaves l that descend from state r′ with r′ as in
STree(T ), is then equal to the number of occurrences of α in T .

6.3 In STrunc(T , Ω)

The procedure of counting substrings in STrunc(T,Ω) is again similar to
that for STree(T ), with the exception that only the uniqueness of substrings
with a maximum length of Ω is defined by the uniqueness label c. The
leaves of STrunc(T ,Ω) are equivalent to the leaves in STree(T ), with the
difference that the leaves in STrunc(T ,Ω) have a depth value d set to Ω
instead of an end-of-string value p. Since the start-position of the substring
corresponding to the leaf and the end of the current string are known, the
actual end-of-string value can easily be calculated. The uniqueness of a leaf
can be read from its uniqueness label c. An internal state never represents
a unique string.

6.4 In STruncΥ(T , Ω, X)

Leaf α in STruncΥ(T ) with a depth value d lower than Ω indicates that the
corresponding substring has an Υ-value higher than X. We are therefore
not interested in any string with prefix α and to exclude these from the final
set of unique strings, any such string can be considered non-unique. Apart
from this, uniqueness of a string is derived as for STrunc(T ,Ω).



Chapter 7

Transforming back to a

string

The algorithm to create STrunc(T ,Ω) discussed in section 5.3 produces a
tree from which the uniqueness of any substring of the input-file, of length Ω
or less can be determined. The substrings that were pruned from the suffix
tree with the algorithm to create STruncΥ(T ,Ω,X) discussed in section 5.4
will be treated as non-unique strings. After executing the algorithm, the
input-file is altered by adding a tag for every string to indicate whether or
not it is unique.

7.1 Notation

With the problem discussed in [Lar05], where the length of the primer was
fixed, the input-file was altered by adding a tag τi ∈ {0, 1, 2, 3} for each
position i. The tags stand for 1, 2, 3 or 4 occurrences respectively. A similar
approach is used for the extended problem. Now however τi will correspond
to the uniqueness of strings. Here τi ∈ {0, . . . ,Ω} and is equivalent to the
statement that the string ti . . . ti+j with j ∈ {0 . . . Ω − 1} is unique if and
only if j ≥ (Ω− τi).

Every string corresponding with a string consisting of identified bases in the
original file, is proceeded with a line of the form [i, j, i′, j′]. Here i and j rep-
resent the begin and end positions of the current substring in the total string
with unidentified sections removed, while i′ and j′ represent the correspond-
ing begin and end position in the original file. As an example, figure 7.1 dis-
plays the transformation of a file containing string accgaattaaNNNNaaacg,

29
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accgaattaaNNNNaaacg

⇓
[1, 10, 1, 10]
a1c2c1g2a1a2t2t2a0a0
[11, 15, 15, 19]
a1a1a1c0g0

Figure 7.1: outputfile with Ω = 3

to its output-file.

7.2 Complexity

Building the file is equivalent to a traversal through all the leaves of the
tree in which the number of visits is equal to the total length of the strings
represented by the tree.

In a non-truncated suffix tree, the maximum number of nodes visited is
4N with N the total length of all strings. For every string of length ni

represented by the tree, at most ni nodes need to be traversed to reach the
leaf presenting the entire string. From the father of the leaf the next leaf
is reached by traversing one suffix link. The total number of transitions to
reach the next leaf sum up to 2N for the entire traversal, as in the proof of
theorem 5.1.

The only difference in the traversal of the truncated suffix tree is that the
first leaf visited is reached in at most Ω transitions. The truncated tree is
therefore traversed in at most Ωn + 3N visits with n the number of strings
represented in the tree.

In the traversal of the suffix tree pruned with function Υ, the following
holds: For every node α that has been pruned to a leaf, all nodes representing
strings βα are leaves. By definition Υ(βα) ≥ Υ(α) and if βα was an internal
node, it must have been pruned after its creation. Therefore there are no
internal nodes without an outgoing suffix link unless they are the children of
the root. Any internal node α can be reached from an internal node which
is an ancestor of βα in the same amount of steps as needed in the equivalent
traversal in STrunc(T ,Ω). As in the proof of theorem 5.1, it is possible to
show that the number of transitions from one leaf to another add up to 2N .
The number of visits is again at most Ωn+3N and is probably lower – since
the depth of traversal is lower for pruned areas – depending on the amount
of nodes pruned with Υ.



Chapter 8

Counting DNA-strands with

suffix trees

As stated in Chapter 3, it is possible to describe DNA as a set of strings
T = {T1,1, . . . , T1,a1

, . . . , Tn,1, . . . , Tn,an} over Σ = {A,C,G, T}. Here Ti,j =
ti,j,1 . . . ti,j,Li,j

represents substring j of chromosome i for 1 ≤ i ≤ n and
1 ≤ j ≤ ai with n the number of chromosomes in T , ai the number of
identified chunks of chromosome i and Li,j the length of chunk Ti,j.

We are looking for candidates for primers, which will have some maxi-
mum length. The data structures developed in Chapter 5 provide the
structure needed to find these candidates with linear time and space com-
plexity. The algorithm for STrunc(T ,Ω) is a suitable method to find all
unique substrings of maximum length Ω in the chromosomes being exam-
ined, while STruncΥ(T ,Ω,X) provides the possibility to further restrict the
space needed to build a tree representing all interesting suffixes. In the fol-
lowing sections we will show how the suffix tree can be pruned on melting
temperature and GC-percentage.

8.1 Pruning on melting temperature

It is not possible to filter the DNA-strand for melting temperature in ad-
vance when looking for primers of arbitrary length. It is however possible to
restrict the growth of a suffix tree representing the DNA-string by consid-
ering the melting temperature corresponding to every internal node within
the tree.

Below we will describe how the formula for the melting temperature as
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developed by K.J. Breslauer et.al. in [BFBM86] of a strand of DNA can fit
the restrictions of the non-decreasing function Υ as described in chapter 5.

The function Tm for the melting temperature in degrees Kelvin of some
strand of DNA represented by α is defined as

Tm(α) =
∆Hd(α) + ∆Hi(α)

∆Sd(α) + ∆Si(α) + ∆Ss(α) + R ln

(

CT

b

) + 16.6[Na+]

for strings α with |α| ≥ 8, where sums of enthalpy (∆Hd) and entropy
(∆Sd) are calculated over all internal nearest-neighbor doublets, ∆Ss is the
entropic penalty for selfcomplementary sequences, and ∆Hi and ∆Si are the
sums of initiation enthalpies and entropies, respectively. Here R is the gas
constant (fixed at 1.987 cal

K···mol
) and CT is the total strand concentration in

molar units. Constant b adopts the value of 4 for non-self-complementary
sequences or is equal to 1 for duplexes of self-complementary strands or for
duplexes when one of the strands is in significant excess [BFBM86].

For any string α with |α| ≥ 8 it is possible to calculate a minimal value of
any string αβ with |αβ| = Ω, by defining Tm− as

Tm−(α) =

minΣΩ−|α|

β ∆Hd(αβ) + min(∆Hi)

maxΣΩ−|α|

β ∆Sd(αβ) + max(∆Si) + max(∆Ss) + R ln

(

CT

b

) + 16.6[Na+]

The values of ∆Hd(α) and ∆Sd(α) are the sums of the enthalpy and en-
tropy of all neighbouring pairs. The value of the enthalpy and entropy of
any possible pair is constant and can be looked up in a table. If α = a1 . . . ai,
then ∆Hd(a2 . . . ai) = ∆Hd(α) −∆Hd(a1a2),∆Hd(a1 . . . ai+1) = ∆Hd(α) +
∆Hd(aiai+1) and ∆Sd(a2 . . . ai) = ∆Sd(α)−∆Sd(a1a2), ∆Sd(a1 . . . ai+1) =

∆Sd(α)+∆Hd(aiai+1). Both minΣΩ−|α|

β ∆Hd(αβ) and maxΣΩ−|α|

β can be cal-
culated by adding Ω−|α| times the minimal enthalpy and entropy to ∆Hd(α)
and ∆Sd(α) respectively. The values min(∆Hi), max(∆Si), max(∆Ss),

R ln

(

CT

b

)

and [Na+] are all constants.

Additionally for every αβ ∈ ΣΩ: Tm(αβ) ≥ Tm−(α) and therefore Tm−

has the properties of function Υ as described in section 5.4. If we are only
interested in strings that have a melting temperature lower than X, this
makes Tm− suitable for the construction of STruncTm−

(T ,Ω,X).
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The function Tm+ can then be defined as

Tm+(α) =

maxΣΩ−|α|

β ∆Hd(αβ) + max(∆Hi)

minΣΩ−|α|

β ∆Sd(αβ) + min(∆Si) + min(∆Ss) + R ln

(

CT

b

) + 16.6[Na+]

Since Tm+ is a non-increasing function, −Tm+ has the properties of func-
tion Υ as described in section 5.4. If we are only interested in strings that
have a melting temperature higher than X, this makes Tm+ suitable for the
construction of STrunc−Tm+

(T ,Ω,−X).

8.2 Pruning on GC-percentage

Since the maximum length of each substring is known in advance, it is
possible to calculate the minimum percentage of G’s and C’s a string with
prefix α will have with function GC.

GC(α) =
g(α) + c(α)

Ω

Here g(α) and c(α) are the number of G’s and C’s in string α. For any α,
GC(α) will be smaller or equal to the actual GC-percentage of any string
that has α as a prefix and has a length of Ω or less. To be able do the
total amount of calculations for the minimum GC-percentage of a string in
(O)(N) steps, we can simply keep track of the number of G and C nucleotides
in the current string, by looking at the first character of the string before
we decrease the sliding window and the last character after we increase it.
This makes GC suitable for the construction of STruncGC(T ,Ω,X) where X
is the maximum GC-percentage of interest.

In the same way the maximum GC-percentage can be calculated. The func-
tion

AT(α) =
|α|

Ω
− GC(α)

is the minimum percentage of A’s and T’s in strings of any string that has
α as a prefix and has a length of Ω or less. AT(α) is suitable to use in the
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construction of STruncAT(T ,Ω, 1−X), where X is the minimum percentage
of G’s in C’s in a string to make it a candidate to be a primer.

8.3 Pruning on multiple functions

In summary of this chapter, it can be said that for any collection of chro-
mosomes T = {T1,1 . . . T1,a1

. . . Tn,1 . . . Tn,an}, a pruned and truncated suffix

tree STrunc{−Tm+,Tm−,GC,AT}(T ,Ω, {−Tmmin, Tmmax, GCmax, 1−GCmin})
can be created.



Chapter 9

Implementation

Although theoretically the Ukkonen algorithm is efficient in time and space
complexity, in reality it requires both its input string and the resulting tree
to be in main memory during its entire execution. The path that will be
traversed through the tree is dependent on the input string, which is not
known in advance and as a result no efficient ordering of the nodes is possible
to assure spatial or temporal locality.

Every transition and suffix link needs to be represented by its memory loca-
tion, and its indices. Although the space complexity of the individual tran-
sition and suffix links is treated as O(1) for convenience, in an actual imple-
mentation the complexity will be O(log(V )) with V the number of nodes in
the tree. A link from one node to another will be represented by its memory-
address which will have a length of ⌈log2(V )⌉ bits. Apart from that, the label
c needs to be defined for all leaves. For a set of n strings of total length N ,

there are at most min(|Σ|Ω+1, N)+Ωn leafs, at most min
(

|Σ|Ω−1

|Σ|−1
, N − 1

)

+

Ωn internal nodes and at most min
(

|Σ|Ω+1−1

|Σ|−1
− 1, 2N − 2

)

+ 2Ωn transi-

tions.

If the transition function g′ is defined for nodes s and r as g′′(s, (k, d)) = r.
The values of g′′ need to be searchable for state s and character ti and
need to return state r and depth d. Each transition needs to be represented

by at least
⌈

log2

(

min
(

|Σ|Ω+1−1

|Σ|−1
− 1, 2N − 2

))⌉

+ ⌈log2(Ω)⌉ bits of mem-

ory. Every internal node has at most one outgoing suffix link which needs
⌈

log2

(

min
(

|Σ|Ω−1

|Σ|−1
, N − 1

))⌉

bits. The counter function is defined for all

leaves and needs to be represented by only 1 bit. The entire input string
needs to remain in main memory and every character needs ⌈log2(|Σ|)⌉ bits
to be represented.
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The entire length of human DNA is approximately 3 × 109 and we are in-
terested in primers up to a length of approximately 30.

When we treat this as one string, the maximum amount of space needed to
build a truncated suffix tree with Ω = 30 for this tree is approximately (6×
109)× (⌈log2(6 × 109)⌉ + ⌈log2(30)⌉) + (3 × 109)× (⌈log2(3 × 109)⌉) + (3×
109) + (3× 109)× (⌈log2(4)⌉) = 3.33 × 1011 bits ≈ 38.7 Gigabytes.

Even when we reduce the maximum length to a number as low as 12, for

which we only need approximately
(

413−1
3
− 1

)

×
(⌈

log2

(

413−1
3
− 1

)⌉

+ ⌈log2(12)⌉
)

+
(

412−1
3
− 1

)

×
⌈

log2

(

412−1
3
− 1

)⌉

+ (412) = 7.92× 108 bits ≈ 95 Megabytes

to represent the tree, we still need 6×109 bits ≈ 715 Megabytes to represent
the character string.

Because the character string needs to remain in main memory, another prob-
lem arises. The Ukkonen algorithm is in theory online, so for every character
that is added to the string, new memory needs to be allocated. For large
strings this can result in a huge slow-down of the algorithm.

The following sections describe an implementation that we performed for
this project.

9.1 Building the suffix tree

The program suffixtreetrunc.c is an implementation of the truncated
and pruned suffix tree for multiple strings
STrunc{−Tm+,Tm−,GC,AT}(T ,Ω, {−Tmmin, Tmmax, GCmax, 1−GCmin}) as
described in chapter 8.

The following table lists the input-variables for suffixtreetrunc.c

option function default value

-i name of the input file chr.fa

-o name of the output file output

-m maximum length of interest 3
-g minimum percentage of G·C-pairs 0
-h maximum percentage of G·C-pairs 100
-t minimum melting temperature in degrees Celsius 0
-u maximum melting temperature in degrees Celsius 100
-d concentration of annealing primers in mol/ml 50
-e salt concentration in mol/ml 50
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The algorithm used in suffixtreetrunc.c is based on the configuration
described in the following subsections.

9.1.1 Nodes

For the sake of simplicity, memory-space is allocated for each node for the
transition and suffix functions and the uniqueness label (f , g and c). To use
constant space for each node, each node has one pointer to its first created
child and one pointer to its brother. The correct child needed for traversing
a transition link is therefore possibly found by going through a number of
brothers of the first child. This results in a total of 19 bytes per node.

The nodes and functions related to updating them are defined in suffixtree.c

and suffixtree.h.

9.1.2 Character string

The characters in the input file are read one by one and the character string
is kept in main memory in a previously allocated buffer.

After the tree has been built, it will be traversed to search for every substring
of length Ω and the last Ω−1 suffices of every substring. For every character
and its respective counter, as described in chapter 7, one char is written to
the output file, in which the first 2 bits represent the character at that
position (a = 0x00, c = 0x01, g = 0x10, t = 0x11) and the last 6 bits
represent the counter. This restricts the value of Ω in this implementation
to a maximum of 63, and the size of the output file will be approximately
equal to that of the input file.

The reading and writing of characters is defined in dnafile.c and dnafile.h.

9.1.3 Filtering

The functions Tm+, Tm−, GC and AT as described in chapter 8, are imple-
mented with restrictions (ii) in the definition Υ in chapter 5. This requires
the current values for the GC-count, enthalpy and entropy values for the
current suffix tj . . . ti+1 to be updated with every increase of either j or i in
timeO(1). The functions are defined with this characteristic in functions.c

and functions.h. The functions representing the melting temperature are
loosely based on the equivalent functions developed in [Lar05].
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These functions do not guarantee the filtering of all unwanted substrings
from the tree. The output file still needs to be filtered for wrong Tm+, Tm−, GC
and AT values.

9.2 Reading from an output file

To interpret the output file created by suffixtruncplus.c in the format
as described in chapter 7 the program search.c was created.

9.2.1 Search

The following table lists the input variables for search.c

option function default value

-i name of the input file chr.fa

-l length of interest 3
-g minimum GC-percentage 20
-h maximum GC-percentage 80
-t minimum melting temperature in degrees Celsius 60
-u maximum melting temperature in degrees Celsius 63

The values for the length of interest, the GC-percentages, and melting tem-
peratures are restricted to those used to build the suffix tree represented in
the file being examined. The uniqueness of all strings of some length (≤ Ω)
can be found as described in chapter 6. For every unique string the values
for Tm+, Tm−, GC and AT are calculated with the aid of functions.c and
functions.h. In this manner it can be decided which substrings could be
appropriate to be used as primers.



Chapter 10

Experiments

The programs described in chapter 9 were used to obtain information about
the speed-up and decrease in memory resulting from both the restriction of
the depth and the pruning according to function Υ. This information will
be presented and discussed in the following sections.

In all of the discussions, the emphasis needs to be on any improvement in
the time and space needed for the construction of the tree. As discussed in
chapter 9, the amount of memory needed is the bottleneck for Ukkonen’s
suffix tree algorithm. When a considerable amount of memory can be saved
at the cost of a slow-down, this is preferred to a large speed-up which has
an increase in necessary memory as its result.

10.1 Input file

The input files used for the experiments for this project were taken from the
genome database of the University of California Santa Cruz [UCS]. This
database contains tables in the FASTA format, describing the chromosomes
of several species. For the experiments described in this chapter only the
human genome was examined.

A table representing a chromosome is a file containing a string over alpha-
bet Σ = {a, c, t, g,A,C, T,G, n,N} in which every character represents the
nucleotide on that position. Both n and N indicate the absence of knowl-
edge about the nucleotide at that position. The capital letters A,C, T,G
represent that the nucleotide on that position is part of a sequence of up to
12 nucleotides that is repeated several times. Since for the problem assessed
in this project we look at unique sequences of variable lengths (often more
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Figure 10.1: Seconds of CPU-time needed to build a tree with depth Ω for
the 21-th human chromosome

than 12), it is not certain whether or not theses regions will be interesting.
Because of this, the capital letters A,C, T and G will be treated as a, c, t
and g respectively.

For the results shown in the following pages, we used a Pentium IV machine
with 3.20 GHz and 3.2 Gigabytes of available memory. Since each node
is represented using 19 bytes of memory, we could store a full suffix tree
for a string of length at most 8.8 × 107 characters. Alternatively, we could
for example store a truncated suffix tree of depth at most 13, which leaves
room for a 1.7 × 109 character string. In the experiments done here, the
21-th human chromosome was used, which is represented in the genome
database of the University of California Santa Cruz [UCS] in file chr21.fa

and contains approximately 4.7×107 characters (3.4×107 when we exclude
the regions with N -characters), and will therefore easily fit in main memory.

10.2 Time

The time needed to build both the tree and the output file was measured
for different values for the maximum depth Ω, ranging from 2 to 60. The
trees were pruned with respectively no function, functions GC and AT with,
for both, maximum value .55, functions −Tm+ and Tm− with maximum
values −25◦C and 30◦C and finally for all 4 functions. In figure 10.1 the
CPU-time in seconds to build the tree for each of this variations is shown.
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Figure 10.2: Seconds of CPU-time needed to build a file representing a tree
with depth Ω for the 21-th human chromosome

The time needed to write to the output file is depicted in figure 10.2.

The relative speed-up of pruning according to Υ compared to non-pruning
is shown in figure 10.3. The times compared here are the sums of the time
to build both the tree and the output file.

The time needed to build the truncated tree stabilises at large values of Ω
and the program executes noticeably faster for Ω ≤ 14.

In the graph showing the time needed to build the output file as shown in
figure 10.2 an obvious decrease in time is noticeable for Ω ≥ 12. This can
be explained by the amount of searches needed to find a child node. Before
a transition to a child node can be used, the correct child node needs to be
determined. In Chapter 7 we treated search operations for the correct child
of a node as if they would take approximately 1 step. Since most strings of
short length can be found in the large file, most internal nodes with a small
depth, will likely have |Σ| = 4 children. This is not by definition the case
for nodes with a larger depth. Since the traversal of the tree in order to find
all leaves takes place in the lower regions of the tree, it is likely that more
transition options need to be considered for smaller Ω, where nodes in the
lower region of the tree mostly have 4 children. More specifically, when a
node has 2 children, it can be expected that finding the correct child will
take 1

2
× 1 + 1

2
× 2 = 11

2
steps, while in a node with 4 children, the expected

number of steps is 1
4
× 1 + 1

4
× 2 + 1

4
× 3 + 1

4
× 4 = 21

2
.
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Figure 10.3: Overall speed-up for every Υ

Pruning on GC-percentage causes a large speed-up for Ω < 20, which is
probably caused by a decrease in number of nodes. The decrease in nodes
by pruning on melting temperature does not outweigh the time needed for
its calculation for those values of Ω. Overall the pruning functions create a
small slow-down for larger values.

10.3 Number of nodes

With the same parameters as in the previous section the number of nodes
in the resulting tree were counted. This gives an indication of the amount
of memory needed for each suffix tree variation.

The graph in figure 10.4 shows the size of the tree for the different values
of Ω. A comparison was again made between the different functions Υ and
the decrease in nodes is drawn in figure 10.5.

It can be assumed that the space required to complete building the entire
suffix tree is approximately that needed to build the truncated suffix tree
with maximum depth 13 or more. There are 413 ≈ 6.7×107 possible strings
of length 13 over alphabet Σ. Since the file examined here contains approx-
imately 3.4 × 107 characters in identified regions, it can be expected that
most of its substrings of length 13 or more are unique. Any leaf represent-
ing substring α in a truncated suffix tree with counter c(α) = 0 will also be
a leaf in the non-truncated suffix tree for the same string. DNA is not a
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Figure 10.4: Number of nodes in a tree with depth Ω for the 21-th human
chromosome

random strand and in general contains large regions of repeating patterns.
As can be seen in figure 10.4 only at approximately Ω = 40 the number of
nodes starts to stabilise. Although this is an advantage on number of nodes,
the truncation of the suffix tree has introduced the counter function c which
needs to be defined for every leaf and will result in a slightly larger use of
memory. A definite improvement in memory can be seen for Ω ≤ 20.

Pruning the tree with both the GC functions GC and AT as the temperature
functions Tm+ and Tm− causes a large number of nodes to be cut of. This
is especially the case for Ω < 20 where a large decrease in number of nodes
is noticeable, while the decrease is only small for 30 < Ω < 60.

It seems as if the GC functions account for a larger amount of pruned nodes
than the temperature functions. This is chiefly the case for lower values of
Ω while even for large values of Ω a small amount of nodes is still pruned
with the melting temperature. Note however, that the values for minimum
and maximum temperature (25◦ and 30◦C) are unrealistic. These values
were chosen to enhance the effect of the temperature function and give a
clearer contrast against the other functions. As mentioned in chapter 2
values between 55◦ and 60◦C are more useful when searching for primers.
The effect of using these as extreme values will have a smaller effect on the
decrease of time and space needed for the tree, than the values used here.

Furthermore, we need to note that there is a correlation between the melting
temperature of a strand and its GC-percentage. It can be seen in [BFBM86]
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Figure 10.5: Percentage of decrease in number of nodes for every Υ

that G and C nucleotides cause the melting temperature to rise more than A
and T nucleotides. This explains why we only see a small increase in percent-
age of number of nodes in figure 10.5 when we prune on both temperature
and GC-percentage.
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Conclusions

When looking for short unique substrings of variable length within a string
over some known alphabet, the truncated suffix tree is an efficient method
to identify such strings. If the suffix tree representing them can fit in main
memory, its creation and analysis can be conducted in linear time.

If, additionally, these substrings need to satisfy some non-decreasing func-
tion it is possible to reduce the size of the tree even more by pruning its
nodes during creation. The total algorithm remains linear if the following
holds. For any string for which the value of the function is known, if we add
or take one character from the string, the value of the function for the new
string can be calculated in O(1).

It is possible to apply these methods on DNA where there is an interest
in substrings up to a maximum length of around 50 and the tree needs
to be restricted on the functions for the GC-percentage and the melting
temperature. Especially when a large amount of DNA material is analysed
with this method, the truncation for a maximum tree depth of 20 can give
a large decrease in memory space and CPU time. Pruning on both the
GC-percentage and temperature functions can give a large further decrease
in both time and memory. The decrease in time achieves its peek between
tree depths of 10 and 20, while that of the space lies between 10 and 30.
For the Ukkonen algorithm where memory is the bottleneck, the decrease
in memory should count more then the decrease in time.

Since the ideal length for a primer lies between approximately 10 and 30
pruning and truncating the suffix tree provides a suitable method to discover
unique substrings.
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Chapter 12

Further research

As shown in chapter 9 the maximum possible length of the string represented
by the tree is very much dependent on the amount of memory available.
When the string exceeds this length, it will no longer be possible to hold
the entire tree in main memory. Because of the lack of spatial or temporal
locality, the algorithm can no longer be executed in linear time. For further
research it could be beneficial to find a method to build the suffix tree in a
manner which does not require it to reside completely in memory, possibly at
the cost of a large time complexity. With such an algorithm the truncation
and pruning of the tree could still result in significant improvements.

The methods discussed here are not restricted to the search for primers.
In future research a further analysis of the pruning algorithm can be made
without the emphasis on its possible application.
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