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I do not know what I seem to the world, but to myself I appear to
have been like a boy playing upon the seashore and diverting myself
and then finding a smoother pebble or prettier shell than ordinary,

while the great ocean of truth lay before me all undiscovered.

— Sir Isaac Newton

Men stumble over pebbles, never over mountains.
— Emilie Cady



Abstract

The pebble tree transducer (ptt) is a formal model of tree transformation, introduced
by Milo et al. [17] as a model of the capabilities of XML transformation languages
such as XSLT and XQuery. An n-ptt is essentially a tree-walking tree transducer (twtt)
that can remember up to n locations by marking them using one of n pebbles, which
it must drop and lift in a nested order, i.e., as if they were placed upon a stack. This
thesis provides three contributions.

Firstly, this thesis provides an improvement upon the decomposition result of En-
gelfriet and Maneth [13], which states that an n-ptt can be decomposed into n + 1
ptts without pebbles (i.e., twtts). We introduce the concept of the local pebble, defined
as a pebble whose location is not queried except when the pebble is at the top of the
“pebble stack”. We then show that if an n-ptt has m local pebbles, then the ptt can
be decomposed into n —m + 1 twtts. Furthermore, if the original ptt is deterministic,
then all of the twtts in the decomposition are deterministic; if the original ptt is non-
deterministic, then the last twtt in the decomposition is nondeterministic, while the
other n — m twtts are deterministic.

The second contribution has to do with the recent proof by Bojanczyk et al. [5]
that the pebble tree transducer is not capable of recognizing all MSO-definable input
patterns. In this thesis, we define and investigate an extension to the basic tree-
transducer model with the capability to evaluate MSO predicates in the left-hand
sides of rules. The improved decomposition result still holds for ptts that use MSO
predicates.

Thirdly, this thesis provides an in-depth analysis of how a ptt can model the various
features of XSLT and XQuery. To date, there has been no proper verification of the
claim that ptts are a good model for XML transformation languages. In this thesis,
we perform this verification by describing implementation techniques for a large subset
of the features of XSLT and XQuery. We show that in practice, local pebbles are a
common occurrence, and that the implementation techniques enabled by the use of
MSO logic increase the number of local pebbles significantly. Surprisingly, the fact
that a ptt has a bounded number of pebbles turns out to be a major obstacle for
modeling XSLT fully, which is inherently recursive in nature. In contrast, XQuery can

be modeled to a much larger extent.
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CHAPTER 1

Introduction

1.1. Pebble Tree Transducers

Tree transducers are tree automata that process an input tree and produce an
output tree as a result. The concept of tree transducers has been around for a long
time (see, for example, |8, 15|). Historically, they have been useful as a formal model
of compilers, among other things. In recent years, tree transducers are also being used
as a formal model for transformation and query languages for XML documents 23],
such as XSLT [16] and XQuery [22]. XML documents can be represented as trees,
and therefore an XML transformation can be modeled as a transformation of one tree
into another. To model the transformations that can be described by XML queries,
Milo et al. [17] introduced a new kind of tree transducer, the pebble tree transducer
(ptt). The ptt is an extension of the tree-walking tree transducer (twtt), which is the
transducer version of the tree-walking automaton [3], and which is closely related to
the attribute grammar (cf. Section 3.2 of [13]). The extension is analogous to the one
that Engelfriet and Hoogeboom [11] applied to the tree-walking automaton to create
the pebble tree-walking automaton (pta). To the tree-walking tree transducer model,
the pebble tree transducer adds so-called pebbles, markers for remembering locations in
the tree that are similar to those used in marker automata [4], but that are subject to
an additional nesting or “stack order” requirement. The pebbles are used as follows. In
addition to the tree-walking and output actions that one expects from a tree-walking
tree transducer, the ptt provides the facility to either drop or lift a pebble at the current
tree node. Two restrictions are imposed on the use of pebbles: firstly, the number of
pebbles is bounded, and secondly, pebbles are “stacked”, which means that pebbles
are always lifted in the reverse order in which they were dropped. In addition to the
usual tree-walking tests, the ptt adds the ability to check for the presence or absence
of pebbles at the current tree node.

1.2. XML Type Checking

Milo et al. [17] introduced the pebble tree transducer to solve a specific problem:
type checking of XML transformations. In XML, every document may specify that it is
of a certain “type”, which means that it satisfies the constraints posed by a Document
Type Definition (DTD). The type checking of a transformation consists of checking
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whether the transformation, when given an input document conforming to a specific
type, always produces output that conforms to a specific output type.

Milo et al. have shown that the type checking problem is decidable for pebble tree
transducers when document types are modeled by regular tree languages — a stronger
model than XML’s DTDs. Their type checking method is based on the principle of
inverse type inference, i.e., inferring the input document type from the output docu-
ment type. The time complexity of the resulting algorithm is hyperexponential in the
number of pebbles, but the precise height of the tower of exponentials is not specified in
[17]. An alternative algorithm was given by Engelfriet and Maneth [13], who showed
that a pebble tree transducer using n pebbles can be decomposed into n + 1 pebble
tree transducers using 0 pebbles (which are really just twtts), thus reducing the type
checking algorithm to n + 1 inverse type inferences of twtts. Since the inverse type
inference for twtts takes exponential time [10], this leads to an (n + 2)-fold exponential
time algorithm (i.e., a tower of height n+2).! This does assume that the decomposition

process has subexponential time complexity, which is in fact the case.

1.3. Extending the Pebble Tree Transducer

1.3.1. Introduction. In this thesis, we introduce several extensions to the pebble
tree transducer model, which improve the type checking complexity and which will
make it a more useful tool. The extensions include the concept of pebble scope, a concept
comparable to variable scope in programs, and the use of MSO logic in rules in order
to simplify pattern matching. The former addition serves to improve type checking
complexity, while the latter addition is intended to improve the correspondence between
the pebble tree transducer and the XML transformation languages that it is intended
to model. In addition, for technical reasons, we have adopted a different tree model.
The earlier ptt models are defined using a tree model based on terms over ranked
alphabets, while we will be using a tree model based on graphs. We will now discuss

each of these extensions in more detail.

1.3.2. Pebble Scope. A pebble tree transducer can be viewed as a computer
program. Pebbles can only be dropped and lifted according to a stack discipline, which
means that the dropping and lifting of a given pebble always fully encloses the dropping
and lifting of any pebbles higher on the stack. Thus, a dropping and subsequent lifting
of a pebble can be viewed as an invocation of a subroutine, which at the beginning
drops a pebble to remember its starting location, and which lifts the pebble when it
is done. The pebble that remembers the subroutine’s starting location can then be

regarded as a local variable of the subroutine. But in pebble tree transducers, the

IThe extra exponential is needed to construct the complement of the output type.
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pebbles can be accessed not only by the subroutine that dropped it, but also by any
subroutine called by such a subroutine — e.g. the subroutine that dropped the fifth
pebble on the stack can also see the location of the pebbles numbered one to four.
So, pebbles in pebble tree transducers are not really local variables: they are actually
globals.

We are interested to see the effects of reducing the scope of pebbles, and therefore
we introduce the concept of local pebbles. Local pebbles can be detected only by the
subroutine that dropped them, or, in pebble tree transducer terms, they can be detected
only when they are located at the top of the pebble stack. Interestingly, it turns out
that global pebble scope is not really needed all the time: often, ptt transformations
that require a given number of pebbles turn out to already use some local pebbles, or
they can be adapted to use the same number of pebbles but a smaller number of global
pebbles.

As we will show in Chapter 4, pebble scope influences the power of pebble tree
transducers: pebble tree transducers that use local pebbles are weaker than pebble tree
transducers that do not use them. As we mentioned earlier, Engelfriet and Maneth
[13] showed that any pebble tree transducer that uses n pebbles (an n-ptt?) can be
decomposed into n + 1 twtts. They also proved that this is the smallest possible
decomposition that works for all ptts in general.® In Chapter 4, we will show that if
an n-ptt has m local pebbles, it can be decomposed into n — m + 1 twtts: only the
global pebbles count for the number of twtts in the decomposition. Like Engelfriet
and Maneth’s algorithm, the new decomposition algorithm has subexponential time
complexity.* This has obvious implications for the complexity of type checking pebble
tree transducers using the algorithm described by Engelfriet and Maneth: if there are
n —m + 1 twtts in the decomposition, then the time complexity of the type checking
operation is a tower of n —m+ 2 exponentials. For m > 0, this is an improvement upon
the time complexity of Engelfriet and Maneth’s earlier algorithm, which is a tower of

n + 2 exponentials.

1.3.3. Pattern Matching using MSO Logic. In general, pattern matching can
be described as a boolean test on an input tree in which a bounded number of nodes

are marked; if the test result is positive, then the marked nodes constitute a “match”.

2Milo et al. [17], who originally proposed the pebble tree transducer model, count the automaton’s
reading head position in the tree as a pebble as well, whereas Engelfriet and Maneth [13] do not. In
this thesis, we will count pebbles like Engelfriet and Maneth: an n-ptt means a ptt which can drop n
pebbles at most. The differences between the various pebble tree transducer models are discussed in
more detail in Section 3.3.

3To be precise, they proved this for deterministic ptts only. Whether nondeterministic ptts can be
decomposed into less twtts remains an open problem.

4A detailed proof of this assertion is beyond the scope of this thesis and will not be provided.
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Almost all XML transformation languages support some sort of pattern matching fa-
cility, so pattern matching support is crucial for any theoretical model that purports to
be a model for XML transformation. Indeed, Milo et al. |17]| use pattern matching as
their prime example of the utility of pebble tree transducers. The definition of pattern
matching used by Milo et al. is relatively weak: if we compare it to the formalisms
discussed in the survey by Neven and Schwentick [19], most of which are equivalent
to monadic second-order logic (MSO), we find that the strength of Milo et al.’s pat-
tern matching mechanism is somewhat comparable to, but strictly weaker than that
of FOREG, which in turn is strictly weaker than MSO. It has recently been shown
that there is a good reason for this: pebble tree-walking automata cannot recognize all
regular tree languages [5], which implies that pebble tree transducers cannot evaluate
all MSO-definable patterns.

In the current thesis, we will investigate an extension to pebble tree transducers
that allows them to use the full power of MSO logic. In our model, the left hand side of
a rule consists only of a state and an MSO predicate ¢ over the domain of nodes in the
input tree. The MSO predicate has atomic formulas at its disposal to check whether
a node is the node that the reading head currently points at, whether a pebble with a
certain number has been placed on a node, whether a node has a certain label, whether
an edge has a certain label (more on this subject in the next section), and whether
two nodes are, in fact, the same node. A single MSO predicate is powerful enough to
perform analysis of the relationship between any number of nodes, and includes the
ability to test for the presence of a node having certain relationships with all of the
other nodes without remembering its location and without requiring that a pebble be
placed on the node. As a result of this ability, the number of pebbles (and especially the
number of global pebbles) needed to implement XML queries is reduced significantly,
as we will show in Chapter 5.

Unfortunately, even though MSO logic is a well-understood tool, it is also known
that efficient evaluation procedures for MSO logic formulas (i.e., evaluation procedures
with less than hyperexponential time complexity) do not exist. However, every MSO
predicate can be represented by a bottom-up tree automaton, which can be evaluated
in linear time. This makes the use of MSO logic feasible for usage in pebble tree
transducers.®

It should be noted that since rules with MSO predicates provide a strict superset of
the previous models’ detection capabilities, not all previous results on ptts may transfer
to ptts with MSO logic. We have reason to believe, however, that most results on ptts
me overall complexity does increase, because rule conditions are evaluated in linear instead
of constant time. Furthermore, we should mention that our earlier unproven assertion that our

decomposition algorithm has subexponential time complexity is predicated on the fact that MSO
logic formulas can be represented in this way.
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transfer to our ptt model. In Chapter 4 we will show that Engelfriet and Maneth’s
decomposition [13] also applies to our MSO-extended ptt model. Our decomposition
algorithm decomposes an n-ptt that uses MSO extensions into n — m + 1 twtts (for
some m), of which only the last twtt actually uses the extra power provided by the
MSO extensions: the others are equivalent to (and easily converted into) regular twtts.
For regular twtts, inverse type inference is possible in exponential time, while for MSO-
extended twtts, inverse type inference, the cornerstone of the type checking algorithm,
is possible in double exponential time [9]. Given the fact that exactly one of the twtts
generated by our decomposition algorithm uses the MSO extensions, the use of MSO
increases the time complexity of type checking by one extra exponential, yielding a
tower of n —m + 3 exponentials instead of n —m + 2. However, by using MSO one can
often implement algorithms using less global pebbles, which implies that n — m can
often be smaller when a ptt’s algorithm makes good use of MSO extensions. This can
tip the scale in favour of MSO-extended ptts.

1.3.4. Graph-Based Tree Model. Both the Engelfriet and Maneth [13] decom-
position and our extended version of that decomposition require the “uprooting” of
trees, i.e., reorganising the tree so that a different node is at the top. Unfortunately,
the term-based tree model used by Engelfriet and Maneth does not represent this op-
eration very well: an uprooted tree is completely different from the original tree, and
the process that is used to construct the uprooted tree is rather complicated. For that
reason, we use a different tree model: we represent trees as undirected rooted acyclic
connected graphs. This makes the uprooting operation extremely intuitive: it simply
consists of selecting a different root. Our tree model differs in some other aspects as
well: we use labeled edges, and no fixed relationship between a node label and the la-
bels of the incident edges. An edge can have a different label in either direction, which
is similar to the fact that in a term-based tree, the edge number going from a node to
its parent is unlabeled while the same edge in reverse direction would be labeled with
a positive integer. The only restriction on the labeling of the tree is that all outgoing

edge labels of a node must be unique.

1.4. XML Transformation with Pebble Tree Transducers

Milo et al. [17] assert that pebble tree transducers can be used to model the
capabilities of XML transformation languages. In their article, they include a small
example of how a pebble tree transducer would be able to perform a pattern matching
operation. However, this is the full extent to which their assertion has been verified: to
date, an actual analysis of the techniques by which pebble tree transducers can model
transformation languages such as XSL Transformations (XSLT) [16] and XQuery [22]

is lacking. In Chapter 5, we perform such an analysis, considering implementations
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using both MSO-less and MSO-extended ptt models. Our analysis shows that pebble
tree transducers are able to model a large number of constructs that are available in
XSLT and XQuery, regardless of whether the MSO extensions are used. However, the
analysis also reveals some unanticipated limits. In particular, it turns out that the
recursive nature of XSLT is problematic for pebble tree transducers, because XSLT’s
recursion depth is unbounded, while the number of pebbles in a pebble tree transducer
is bounded.

Throughout Chapter 5, when we describe implementations for XSLT and XQuery
constructs, we consider the implications of these implementations for the number of
global pebbles in the resulting pebble tree transducers. Our analysis shows that in
practice, using the implementation techniques that we describe, it is not uncommon
for pebbles to be local. In addition, we find that when the MSO-extended ptt model
is used, the MSO-based rules not only help to reduce the total number of pebbles in
general, but they generally allow for a reduction in the number of global pebbles as

well.

1.5. Outline

The remainder of this thesis is built up as follows. Chapter 2 lays out the concepts,
definitions and notations that are used in this thesis. Chapter 3 defines our pebble
tree transducer model. Chapter 4 reproduces Engelfriet and Maneth’s decomposition
result for our pebble tree transducer model, and shows that pebble tree transducers
with n pebbles of which m are local can be decomposed into n —m + 1 twtts. Chapter
5 analyzes how we can use pebble tree transducers to implement the features of XSLT
and XQuery, and how the described implementation techniques influence the number
of global pebbles that are required to execute a transformation. Chapter 6 discusses

the conclusions that can be drawn from the research presented in this thesis.



CHAPTER 2

Preliminaries

2.1. Introduction

This chapter contains the mathematical definitions that are going to be used through-
out this thesis but that are not new material. The basics may be skipped by readers
who are already familiar with commonly used mathematical notations. The other
sections cannot be skipped.

2.2. Basics

Natural numbers. The set of natural numbers {0,1,...} is denoted by N. For
k,l € N, [k,[] denotes the set {1 € N | k <i <[}.

Sets. The empty set is denoted by (). For a set A, the cardinality of A is denoted
by |A|, P (A) is the powerset (i.e., the set of all possible subsets) of A. Set membership
of an element a in a set A is denoted by a € A, the union of two sets A, B is denoted
by A U B, the difference by A — B and the intersection by A N B. For sets A and
B, we define the disjoint-sets-union, written A Uy B, as AU B when AN B = () and
undefined otherwise. (This operator allows us to express partitioning of a set in a single
statement; e.g., A = X Uy Y Uy Z expresses the fact that A can be split into blocks X,
Y and Z.)

Alphabets, strings and languages. An alphabet is a finite set. For an alphabet A,
a string w over A is written as ajas - - - a,, with a; € A (for i € [1,m]), where m >0
is called the length of w, denoted |w|. In a string w = ajas - - - a,,, the symbol a; (the
ith symbol) is denoted by w (i). The empty string over any alphabet is denoted by
A. For any string w = ajay - - - a,,, we define left (w,l) = ajas---a; (for 0 < 1 < m)
and left (w,l) = w (for I > m). We use A* to denote the set of all strings over A.
For n € N, AS" = {w € A* | |lw| < n} is the set of all strings over A with length at
most n, A" = AS""! is the set of all strings over A with length less than n, and
A" = {w € A* | |[w| = n} is the set of all strings over A with length exactly equal
to n. For an alphabet A and two strings v,w € A*, where v = vjvy---v) and
W = wyws - Wy|, the concatenation of v and w, denoted v - w or vw, is defined as
VW = V1Vg + - V| WIW3 * * * Wiy

Cartesian product. For n sets Aj, Ay, ..., A,, the Cartesian product is defined as

Ay xAgx---x A, ={(a1,a9,...,a,) | a; € A; (i € [1,n])}. As anotational convenience,

15
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we also define (Ay, As, ..., A,) = {{a1,a9,...,a,) | a; € A; (i € [1,n])}. An element
(ay,as,...,a,) of a Cartesian product of n sets is called an n-tuple; 2-tuples are called
pairs.

Relations. A set R C A x B is called a (binary) relation over A and B. For a
relation R over A and B, and a set A C A, R(A") = {y|x € A and (x,y) € R};
note that R(A’) C B. For R C Ax B, R°' = {(y,z) | (z,y) e R} C Bx A is
the inverse of relation R. The composition of two binary relations R C A x B
and S C B x (', denoted by Ro S or RS, is a relation over A and C defined as
{(z,2) | (z,y) € R and (y,2) € S for some y € B}. The n-fold composition of a bi-
nary relation R C A x A with itself is denoted as R", where n > 1; R° denotes the
identity relation /4 = {(z,z) |z € A}. The reflexive transitive closure of a binary
relation RC Ax Ais " =R UR'UR?U....

Functions. A function f from A to B (denoted f : A — B) is a relation over
A and B in which, for any a € A, f({a}) has at most one element. If f({a}) has
exactly one element, we denote this element as f (a). If f({a}) is empty, then f (a)
is undefined. A function f is total if f (a) is defined for all @ € A, it is injective if for
every ai,as € A for which f (ay) and f (as) are defined, if a; # ay then f (a1) # f (az),
and it is surjective if f (A) = B. If a function is both surjective and injective, it is
called bijective.

Computation relations. For a binary relation = over A and A, relation =" is called
the computation relation of =. A sequence ay,as,...,a, with a; € A (for i € [1,n])
and a; = a4, (fori € [1,n — 1]) is called a finite computation of length n by = starting
with a;. A sequence aq,as, ... with a; € A and a; = a;41 (for all i > 1) is called an
infinite computation by = starting with a;. A computation is complete if it is either
infinite or if there is no a,,; € A such that a, = a,1. In the latter case, a, is called
the result of the computation.

2.3. Graphs and Trees

2.3.1. Graphs. A graph is a finite, nonempty, undirected graph with labeled nodes
and edges. The undirected edges {u, v} of a graph are represented as a pair of directed
edges (u,v) and (v,u). Edge labels are directed, and the labels of the outgoing edges
of a node must be distinct. Formally, a graph is a pair ¢ = (v,,¢,) consisting of
a finite total node labeling function v, : V;, — X, and a finite total edge labeling
function ¢, : £, — ®,, with £, = v, (V}), ®, = ¢, (E,) (in other words, v, and ¢, are
surjective) and E, C V, x V,, having (u,v) € E, if and only if (v,u) € E,, and for
all (u,v1), (u,v2) € E;, v1 # vy implies €, (u,v1) # €, (u,v2). A graph g is a graph
over ¥ and ® for all X, ® for which ¥ O ¥, and & O ®,. The set of all graphs
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over ¥ and @ is written Gy . For a graph g over ¥ and ® and a subset ¥’ C X,
Vysr ={u| u eV, and v, (u) € X'} is the set of all nodes in ¢ that are labeled in ¥'.

For a graph g, V, is the set of nodes (or vertices) of g, 3, is the node label alphabet
of g, ®, is the edge label alphabet of g, and £ is the set of edges of g. For notational
convenience, if a graph has a name with a subscript, e.g. ¢g;, then we will write V] etc.
instead of V. A graph g is a supergraph of another graph ¢, written g O ¢’, when
vy D vy and €, O €y. The subgraph relation (C) is defined analogously. For a graph g
and a set V C V, the V-induced subgraph of g is defined as the graph gy = (vv,ey),
where vy (w) = v, (w) for all w € V, Ey = {(uv,w) | (u,w) € E, and u,w € V} and
ev (u,w) = €, (u,w) for all (u,w) € Ey. Graph ¢’ is an induced subgraph of g if
Vy €V, and ¢ is the Vj-induced subgraph of g.

For anode u € Vi, out, (u) = {¢, (u,v) | (u,v) € E,} is the set of labels of outgoing
edges of u. For u € V, and ¢ € outy(u), ¢ (u) denotes the unique v € Vj such
that €, (u,v) = ¢. If the intended graph ¢ is clear from the context, we will simply
write ¢ (u). A path is a sequence v; - - -v,, n > 1, of distinct nodes v; € V, such that
(vi,vi41) € B, for all i € [1,n—1]. A cycle is a path v; - - - v, with (v,,v1) € E, and
n # 2; its length is n. A graph is acyclic if it contains no cycles. A graph g is connected
if for all pairs of nodes u, v € V,, there exists a path of which w is the first node and v
is the last.

A graph homomorphism from graph ¢, to g, is a total function A : V; — V; such
that (1) for all u € Vi, vy (h(u)) = 11 (u), and (2) for all u,v € V4, if (u,v) € Ey, then
(h(u),h(v)) € Ey and €3 (h(u),h(v)) =€ (u,v). A graph isomorphism is a bijection
h: Vi — V, such that both h and A~! are graph homomorphisms. When there exists
an isomorphism from a graph g; to a graph g¢,, the graphs are isomorphic, which is
written g; = ¢g». An edge homomorphism is like a homomorphism, except that it does
not have to satisfy condition (1). The existence of an edge homomorphism from a graph
g1 to a graph g, is written g; eqee g2, and the graphs are called edge isomorphic.
For a homomorphism h and nodes u € V; and v € V; such that h(u) = v, we say
that node v corresponds to node u by homomorphism h. As a naming convention for
homomorphisms and isomorphisms, we will use kg, 4, for an (edge) homo/isomorphism
from a graph ¢g; to a graph g,. We will leave out the source graph g; if g5 is a
mathematical expression that uses graph g, as its only graph input. For instance, with
node relabeling (defined below), go = g; [s] for a graph ¢; and some function s, and we
simply write hy,[ to indicate the edge isomorphism from g; to g, [s].

Informally, the gluing of a graph g, at a node uy € V5, onto a graph ¢g; at a
node u; € Vj is obtained by taking the union of copies of the two graphs, where
uy and uy are merged into a single node having the label of us;. For this operation

to be defined, u; and u, must have disjoint outgoing edge labels, because if they do
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not, the result will not be a graph: it will have duplicate outgoing edge labels on
the node that merges u; and wuy. For the formal definition of gluing we require the
following definition. Let V' be the set consisting of all nodes in all graphs. Then
huyus1 @V — V oand hy, 4,2 + V. — V are total injections, uniquely determined
by w1 € V and us € V, that satisfy for any pair of graphs g¢i, 9o with u; € V}
and uy € Va, huyapa (Vi) N gz (Va) = {Puy s (1)} = {hujup2 (u2)}. In or-
der to show that such hy, .,1 and hy, .o exist, we will now give a possible defi-
nition for them. Assume that V is countable, and without loss of generality, that
V' = N. Then we can define hy, 4,1 = {(u1,0)} U{(v,2u+1) | v € V and u # u; } and
Py une = {(u2,0)} U {(u,2u+2) | u € V and u # us}. It is easy to verify that these
functions satisfy huyu,1 (Vi) N Auy sz (Vo) = {Puyuet (1)} = {Puyuse (u2)} = {0}
Having this definition, we can now continue with the formal definition of gluing. For
graphs g1, g2 € Gy ¢ and nodes u; € V5 and uy € V5 having outy (u;)Nouty (ug) = 0, the
gluing of (g2, us) onto g1 at uy, written gy [ug < (go, uz)], is then defined as follows. Let
91,95 € Gx.¢ so that g = g, and g5 = ¢o by respective isomorphisms hy C hy, 4,1 and
hy C huy 2. We then have VI = hy (V1) and Vi = he (V2), and V/ N VY = {hy (u1)} =
{ha (uz)}. Now let g = (v, €f) with V" = V/, € = €, v/ (h1(w1)) = va(us)
and v} (u) = v;(u) for all w # hy (u1). The gluing gy [u; < (g2, u2)] is the coor-
dinatewise union of ¢ and ¢5. The overlap between ¢) and g} is only one node
hi(u1) = ho(u2), and as those nodes share their node labels and have disjoint out-
going edge labels, g1 [u1 < (g2, u2)] is a graph. As g; [uy < (g2, uz)| fully contains g,
the isomorphism hy from graph g» to g5 is an injective homomorphism from g, to
g1 [u1 < (g2,u9)]. For a gluing g; [u; < (ge, u2)], we will indicate this homomorphism
by Rg,—gi[u1—(ga,us))- 1N addition, the isomorphism h; from g; to g] is an injective
edge isomorphism from ¢, to g7, and as ¢y [u; < (g2, u2)] contains g7, it is an edge
homomorphism from g, to gi [uy < (g2, u2)]. For a gluing g1 [uy < (g2, u2)], we will
use Mg, g [uy—(ga,uz)] t0 indicate this homomorphism. Note that gluing is monotonic
w.r.t. ¢g; and g¢o, i.e., if we have supergraphs g3 2 ¢; and g4 O ¢o, then we have
93 [u1 «— (ga,u2)] 2 g1[ur < (g2, us)] for any u; € V; and uy € V5. This is ensured
by the fact that h,, 4,1 and h,, , 2 are uniquely determined by u; and ug, and that
) and A

the chosen homomorphisms h are always subsets of

91— g1 [u1—(g2,u2 g2—g1[u1—(g2,u2)]

Py up,t @nd hy, o, 2, TEspectively.

For a graph ¢ € Gy ¢ and a total function s : ¥ — A defined on some domain
¥ C X, the node relabeling gs] € G=—syua,e is defined as the graph obtained as
follows. Let &' : ¥ — (¥ —X') UA so that s'(0) = s(o) for 0 € ¥ and §'(0) = ¢
otherwise. Now g [s] = (Vg[s), €45)) With €4 = €, and vy = v,s'. Obviously, g [s] is
edge isomorphic with g. Note that, like gluing, node relabeling is monotonic w.r.t. the

graph parameter as well: if ¢’ O g, then ¢'[s] D g[s]. There is a difference though:
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for node relabeling, the monotonicity is ensured by the fact that the edge isomorphism
from the original graph to the label-substituted graph is an identity function.

2.3.2. Trees. A treeis a connected acyclic graph. For label alphabets > and @, the
set of all trees over ¥ and ® is denoted Ty, 4. Because trees are connected and acyclic,
for a tree t and nodes u, v € V;, there is a unique path from « to v in ¢, which we denote
path, (u,v). The gluing of trees obviously yields a tree, as (1) the gluing is connected,
because the subgraphs representing the original trees are themselves connected, and
every pair of nodes from different trees are connected through the glue node, and (2)
the gluing is acyclic: the original trees are acyclic and no edges were added, so any
cycle must run across both subgraphs; and a cycle that runs across both subgraphs
would have to pass the glue node twice, which is not allowed, as the nodes in a path
(and therefore in a cycle) must be distinct.

A rooted tree t is a pair (tree;, root;) where tree; € 1% ¢ is a tree and root; € Vigee,
is the root. For a rooted tree ¢, “t” normally refers to the pair ¢ = (tree;,root;),
but when it is used in a context that unambiguously requires a tree, it is understood
to refer to tree;. For instance, for a rooted tree t, we will write V; for Viee,. A
homomorphism A from a rooted tree ¢ to a rooted tree t’ is a homomorphism from tree;
to treey having rooty = h(root;), and analogous definitions apply for isomorphism,
edge homomorphism and edge isomorphism. The notations ¢ = t' and t =4, t' are
used to indicate isomorphism and edge isomorphism with rooted trees as they are with
graphs. The set of all rooted trees over ¥ and ® is Ry o = {(t,u) |t € Ty ¢ and u € V;}.

For a rooted tree ¢, a node w € V, is a leaf when either w = root, and w has no
outgoing edges, or w # root; and the only outgoing edge of w is (w, path, (w, root;) (2)).
If a node is not a leaf, it is an internal node. For a rooted tree ¢, an edge (w,w’) € E;
is upward when path, (w,root;) = w - path, (w’, root;), and downward otherwise. For
a node label o, we use snt (o) (pronounced: single-node tree) to indicate a rooted tree
consisting of a single node having ¢ as its label.

For a rooted tree t € Ry o, the node relabeling ¢ [s] is defined as (tree; [s], root;).
For rooted trees t1,t; € Ry ¢ and a node u; € Vi, the gluing of ty onto t; at uy, written
t1[uy « to] is defined as the rooted tree (tree; [u1 < ta], Piree; —tree[ur—ts) (ToOt1)). We
define Ay, 4, [u—ts) = Nirees —trees[u1—ts], the edge homomorphism from ¢; to ¢y [uy < t5].
It should be noted that the homomorphism Airee,—tree; [uy —t5) 18 70t a homomorphism
from ty to ¢y [u1 < ta], 8S Nirees—trees [us—ts] (TOOt2) 7 10Ot [y —1,]-

Given alphabets 3, ® and A, Ty (A) denotes the set of all trees over ¥ and
¢ augmented by A. Formally, Tx ¢ (A) = Tyuae. Note that, in contrast with the
customary definition, this definition of augmented trees allows the labels in A to appear

on internal nodes as well as leaf nodes. Similarly, Ry, ¢ (A) = Rsua is the set of all
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rooted trees over ¥ and ® augmented by A. Note that for a tree t € Tx ¢ (A), ENA =)
implies V; = V5 Uy Vi A.

2.4. Monadic Second-Order Tree Logic

Let A be a set of relation symbols, where all relation symbols oo € A are associated

with an arity arity (o) > 0 and a set of atomic formulas
AF, = {a (21, .., Tasity(a)) | 21, - - -, Tarity(a) are node variables} .

A monadic second-order logic graph predicate or MSO predicate ¢b on A (an A-MSO
predicate, in short) is a logical formula on graphs ¢, that can use existential and
universal quantification over both nodes and sets of nodes from V,, and that can use
atomic formulas in AF, for all & € A, plus the atomic formula x € X for any node
variable z and node set variable X. We will first provide a formal definition of well-

formed MSO predicates, and then we will define the semantics of the formulas.

2.4.1. Well-Formed MSO Predicates. A well-formed A-MSO predicate (or
simply A-MSO predicate — well-formedness is normally implied) and its free variables
are defined as follows. The free variables of an MSO predicate are a pair (Fiode; Fet),
where Foqe contains the free node variables, and Fy contains the free set variables.
Lower-case variable names (such as x) indicate node variables, upper-case variable
names (such as X) indicate node set variables.

e For node variables 21, xs, . .., x, and a relation symbol o € A, o (x1,z2,...,2,) €
AF, is a well-formed MSO predicate having free variables ({z1,...,2,},0).
Note that atomic formulas for relation symbols in A only take node variables
as arguments, never node set variables.

e If z is a node variable and X is a node set variable, x € X is a well-formed
MSO predicate that has free variables ({z},{X}).

e If ¢ is a well-formed MSO predicate, (Fyode, Fset) is the set of free variables
of ¥, and x and X are variables, then —, Vx : ¢ and VX : 9 are well-
formed MSO predicates having free variables (Fhode; Fset); (Fnode — {Z} s Fiet)
and (Fhode, Fset — {X }), respectively.

e If ¢y and 1)y are well-formed MSO predicates having free variable sets (Fhode,1, Fet,1)
and (Flode 2, Fret,2), respectively, then (11 V ¢9) is a well-formed MSO predi-
cates that has free variables (Frode1 U Fnode2, Fret,1 U Fiet 2)-

The set of all well-formed A-MSO predicates is written MSO,. A closed A-MSO
predicate is an A-MSO predicate that has free variables (0, ()). The set of all well-

formed closed A-MSO predicates is written CMSO 4. Note that the definition implies
that for a set of relation symbols A’ O A, any well-formed A-MSO predicate is also a
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well-formed A’-MSO predicate. Also note that our definition of MSO predicates does
not include any redundant constructs. We will use the following notations, but only as

convenient shorthands:

o (11 N 1hy) stands for = (—1)y V —y).

e (r = y) stands for (—z V y).

e dr: ¢ and 34X : v stand for —Vx : =) and VX : =), respectively.

e Vx,y: ¢ stands for Vz : Vy : 1; defined analogously for node set variables, 3
clauses, and more than two variables.

e V€ X : ¢ stands for Vz : (x € X = ).

e Jr € X : ¢ stands for Iz : (x € X A¥).

2.4.2. Binding and Truth Values. For a well-formed A-MSO predicate ) with
free variables (Fode, Fset), and a graph g, a binding of 1 on g is a triple (b, ., DFe» 04),
D Floge — Vg (with F)

 ode Vode = Inode) 1s a total variable binding function

— P (V,) (with Fly, D Fi) is a

set =

where bp,

ode
assigning nodes to ¢’s free node variables, bg,,, : Fi,
total variable binding function assigning node sets to ¢’s free node set variables, and
relation binding by : A — P (V) is a total function having b4 () € P (V}fﬁty(o‘)) for
every o € A, binding an actual relation to every relation symbol in A. Given a binding
(bF,,g0s DFess ba), the truth value (or simply value) of ¢ is a value in {true, false}. For
& (z,w)
is defined as the node variable binding b, having 0. (7) = w and b (2) =

node variable binding br,_,., a node variable z, and a node w € V,, bg,_,.
bp,,q. (') for all 2/ # x in the domain of bp, .. The & operator is defined analogously
for node set variable bindings.
The truth value of an MSO predicate v, given a binding (bg, ., br,.,, ba) on a graph
g, is defined recursively as follows:
o If Yy = (xy,...,2,), then ¢ is true iff (b, (21),..., b5, 4 (Tn)) € ba ().
o if ) =z € X, then ¢ is true iff bg,_, (2) € bp,, (X).
o If ¢ = (11 V 1hy), then 1) is true iff at least one of ¢; and v, is true for binding
(OFyoa0s DFers D)
o If v = (¢ A1by), then 9 is true iff both ¢y and 1)y are true for binding
(OFpoqer OFsers ba)-
o If ¢ = —)y, then ¢ is true iff ¢, is false for binding (br, ., br.., ba)-
o If v = Vx : 1, for node variable x, then 1 is true iff for every w € V, 9y is
true for binding (bg, . & (r,w), bp,, ba)-
e If ) = VX : ¢4 for node set variable X, then ¢ is true iff for every V € P (V,),
1y is true for binding (bg,,,., br., B (X, V), ba).

2.4.3. Common Relation Symbols. These are a number of relation symbols

that are commonly made available in MSO predicates on graphs.
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equality: eq is a binary relation symbol that tests for node equality. Its relation
for a graph ¢ is beq, = {(7,y) | 2,y € V, and x = y}. Instead of eq (z,y) we
may also write x = y.

node label test: lab, is a unary relation symbol that tests the label of a node.
Its relation for a graph g is biab, o = {(z) | z € V, and v, (z) = o}.

edge label test: edge, is a binary relation symbol that tests the label of the
edge going from the first node to the second node. Its relation for a graph g
i8 bedge,.g = {(7,9) | 2,y €V, and ¢, (z,y) = ¢}.

true/false: true and false are nullary relation symbols, which indicate an
always-true or always-false predicate. The relation for true is byue = {()},
where () is a O-tuple of nodes. The relation for false is bgyse = (). The effect
of these relations is that the zero-tuple (which is always the argument list of

true and false) is in byye but not in beyge.

The set Ay, ¢ of these common relation symbols for graphs over ¥ and ¢ is defined as
Ase = {eq, true, false} U {lab, | 0 € ¥} U {edge, | ¢ € ®}. The relation binding for
Ay ¢ on a graph g is

bAg@,g = {(eq, beq,g) ) (true, btrue) ) (false, bfalse)} U
{(labo,blabmg) | S E} U

{(edge¢, bedged),g) | ¢ € <I>} )

We will use edgeq (7,y) = V 4cq edge,, (2, y) to indicate the existence of an edge having

any edge label that occurs in a set @'



CHAPTER 3

Pebble Tree Transducers

3.1. Introduction

In this chapter we define an extended pebble tree transducer model based on our
graph-based tree model. The extensions include rules with conditions expressed in
MSO logic, and configuration instructions on internal nodes. Section 3.2 gives the
formal definition of a pebble tree transducer, an introduction into the ptt computation
model, and formal definitions of all the concepts involved in the ptt’s computation
model. Section 3.3 then contrasts our model to some of the models that have been

proposed in related work.

3.2. Definition

We will begin by giving a formal definition of the syntax of our pebble tree trans-
ducer model. We will then provide an overview of both the syntax and the semantics of
a pebble tree transducer, in order to provide the reader with a general idea of the roles
played by the various ptt components. After that, we will provide formal definitions
of the ptt semantics.

DEFINITION 3.2.1. A pebble tree transducer (or ptt) is a tuple

M= (n,(%,9),(AT),Q,q,R)

where:

n € N is the number of pebbles,

(33, @) is a pair of input alphabets (X a node label alphabet, ® an edge label alpha-
bet),

(A,T) is a pair of output alphabets (A a node label alphabet, T" an edge label
alphabet),

@ is a finite set of states,

qo € Q is the initial state, and

R is a finite set of rules. In order to fully define rules we require the following

definitions (that we will explain in more detail later):

(1) For a tree t € Ty ¢, IC,,; = V; X Vf" is the set of n-pebble input configurations
on t.

23
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(2) A condition of M is a closed MSO predicate on relation symbols set A, =
Ay ¢ U {head} U {peb; |1 < ¢ < n}. The relation symbols head and peb,
(1 < i < n) are all unary. The truth value of a condition ¢ for an n-pebble
input configuration (u,m) € IC,; on a tree t € Ty ¢ is defined to be the
truth value of ¢ with binding (0,0,b4,,¢(urx) Where ba,, +wm = bag e U
{(head, {u})} U{(peb;, {m (i)}) [ 1 <7 < |=l}.
(3) For a condition 1, the set of input instructions of M on 1) is defined as
Iy, = {stay}u
{go, | p€®and M |= (¢ = 3z : Jy: (head (x) Aedge, (z,y)))} U
{drop | M |= (¢ = —3x: peb, (z))} U
{liftt | M = (v = Fz : (head (z) A toppebble (x)))}

where M |= x stands for “for all trees ¢t € 1% ¢ and all input configurations

(u,m) in IC,, 4, x is true”, and where

toppebble (z) = \/ (peby, (z) A pebcount,)
ke[1l,n]
(3z : peb; (z)) A free;;1 (when i > 0)
pebcount, = .
free; 1 (when i = 0)
free; = /\ —3Jy : peby, (v)
keli,n]

(4) For a condition v, the set of configuration instructions of M on 1 is defined
as Clyy = (Q, ).
(5) For a condition ¢, the set of instructions of M on v is defined as Ip;y =
Rar (Clazy)-
(6) A rule r € R is of the form (g,v) — ¢ with ¢ € @), ¥ a condition, and ¢ € Ijs
an instruction. There must exist a total function outy : @ — P (I') such that
for each rule r : {(q,¢) — ¢ in R:
(a) if v, (root,) = (¢',w) then outy (¢') 2 outy (¢q),
(b) if v, (u) = (¢',w) for u € V,, then outg (¢') 2 out, (u), and
(¢) out, (root,) Noutg (q) = 0.

The respective components of a ptt M may be referred to as ny;, Xy, Py ete.
An n-ptt is a ptt M with ny; = n pebbles. A 0-ptt is also called a tree-walking tree

transducer or twit.

3.2.1. Overview. Before we give the formal definitions of all the concepts of the

ptt’s semantics, we start with a high-level overview of the way a ptt works.
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Tree Walking. First, we will look at the way it walks over its input tree. A pebble
tree transducer M = (n, (X, ®),(A,I'),Q, g, R) walks over an input tree t € Ry,
much like a tree-walking automaton would. During the walk, it drops and lifts pebbles
to temporarily “bookmark” certain locations that it has visited. At every step the ptt
is in a configuration c, which consists of a state in () and of an input configuration in
IC,,;: information about the whereabouts of the reading head and the pebbles. The
ptt starts its tree-walk in the initial configuration, which has state gy (the initial state),
no pebbles, and the reading head at the root of the tree. For every configuration c,
there is a set of rules R. C R that are applicable to c. Whether a rule 7 : (¢, ¥,) — ¢,
is applicable to ¢ depends on the rule’s condition 1., which is specified as a closed
MSO predicate on the input configuration, and the rule’s state ¢,., which must match
the state of configuration c. A rule r prescribes the action that is to be taken in a
configuration ¢ to which it is applicable, by way of an instruction ¢,.

An instruction ¢, contains zero or more configuration instructions, instructions that
specify what step to take in order to get to a next configuration starting from c, i.e.,
these instructions specify a step in the tree walk. A configuration instruction can be
one of the following: drop a pebble, lift a pebble, move along an edge with a specific
label, or stay where you are. In addition, a configuration instruction specifies a new
state for the next configuration. The reason that an instruction may contain multiple
configuration instructions is found in how a ptt generates output, which is something
that we will explain in the next paragraph. The important thing to understand at this
point is that the configuration instructions are not executed serially but in parallel:
every configuration instruction represents a different single-step continuation of the
ptt’s tree walk starting from the same configuration, and the tree walk “splits up”
into as many parallel tree walks as there are configuration instructions in the rule’s
instruction ¢,.

Generating Output. Given an input rooted tree t € Ry, a ptt M = (n, (X, @),
(A1), Q, qo, R) defines intermediate output trees on t as trees in Rap (Cy), ie.,
rooted trees over output alphabets A and I', which may also have configurations of
M on t as node labels. The nodes in the tree that have labels in A are the already-
produced output, while the configuration-labeled nodes represent the fact that those
nodes still need to be completed, with output that is yet to be produced. As such, a
configuration that labels a node represents the beginning of a line of computation that,
when calculated to completion, will produce all of the remaining output that should
appear at that node.

The computation of a ptt M on an input rooted tree ¢ begins with the initial
intermediate oulput tree, a singleton tree in which the node is labeled with the ptt’s

witial configuration: the initial state ¢y, the reading head at root;, and no pebbles on
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the stack. As we said earlier, a node labeled with a configuration represents output that
is yet to be produced; and the initial configuration represents all the output that the ptt
will produce. But how does the ptt transform this initial tree into its final output? It
does so by performing computation steps on the intermediate output tree, for as long as
it still contains configurations. A ptt’s computation step takes an intermediate output
tree, and transforms it by performing one step in the tree walk of one configuration
that is present in the tree. In short, it takes a node u in the intermediate output
tree that is labeled with some configuration ¢, and on this configuration it executes
the instruction from a rule that is applicable to this configuration c. The execution of
the instruction yields a new segment of intermediate output tree (which may include
nodes with labels in A, but also nodes labeled with configurations in C);;), and then
the new intermediate output tree is created by gluing the new segment onto the old
intermediate output tree at u. Note that the gluing operation replaces node u and the
configuration that labeled it — but not its edges: the edges that u already had remain
in place.

Now, how does an instruction ¢ create an intermediate output tree segment? Well,
the instruction is basically a template for such a tree segment: it has the same nodes
and shape as the tree segment that it outputs, but the nodes that are to be labeled with
configurations in the instruction’s output are labeled with configuration instructions
instead. This is how, as we noted when we discussed the ptt tree walking mechanism,
an instruction can contain zero or more configuration instructions. As we explained
at that point, the configuration instructions specify how to transform a configuration
into another configuration by traversing an edge or dropping/lifting a pebble, and by
modifying the configuration’s state. The new segment of intermediate output tree, the
result of the instruction’s execution, is generated from the template + and the configu-
ration ¢ on which ¢ is executed, by executing the individual configuration instructions
on ¢, and by replacing the configuration instructions by their results.

While a generic instruction output may contain several nodes, some labeled with
configurations, some with output node labels, there are a number of instruction output
forms that are noteworthy because they fulfill a special function. First of all, an
instruction can output a tree segment that contains exactly one node, labeled with a
configuration. In effect, this instruction output achieves nothing except replacing the
prevous configuration in the intermediate output tree by a new one. Using this type
of instruction output, the ptt can walk the input tree and perform large calculations
without generating any output while it is doing so. Another noteworthy instruction
output form is one that contains no configurations at all. Such an instruction output
terminates the generation of output at the node in the intermediate output tree at

which the instruction’s output is glued: no configurations means no more new output.
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This type of instruction output is the only type of instruction output that reduces the
number of configurations in the intermediate output tree. For a ptt’s computation to
succeed, at one point or another all configurations must be removed by an instruction
that produces an output of this kind, yielding an intermediate output tree containing
no configurations at all: this is the output of the ptt’s computation. If a computation
eventually yields a tree with no configurations, then we call the ptt’s computation
successful.

To conclude this overview, we still need to discuss a small detail that we have
ignored earlier: gluing arbitrary trees onto each other does not necessarily yield valid
trees. As we explained, an instruction’s output is glued onto the intermediate output
tree, at an existing node that is labeled with a configuration. That node may already
have a number of outgoing edges, and those edges may conflict with the outgoing
edges of the root node of the instruction tree. In order to prevent this statically, for
any ¢ € () a ptt demands the existence of an upper bound outg (¢) to the set of the
labels of outgoing edges that an intermediate output node labeled with a configuration
in that state may have, and it demands that if there is a rule (¢,v) — ¢, then the
outgoing edge labels of the root node of « do not occur in outg (¢). Fortunately, whether
outp exists is decidable. The smallest outy (¢) that satisfy the first two conditions
of Definition 3.2.1(6) can be calculated as follows. First of all, for every rule that
generates an output node labeled with a configuration having state ¢, the outgoing
edge labels of that output node are in outg (¢q), as stated in the second condition of
Definition 3.2.1(6). We therefore initialize outg (¢) with all edge labels found using
this method. Secondly, if the output node labeled with a configuration having state
q is the root node of the instruction’s output, then the rule’s execution will glue this
root node onto a node that already had a configuration on it, and that may already
have a set of outgoing edge labels. We also know which edge labels that may be: those
associated with the state p of the previous configuration, which is the state named
on the left hand side of the rule. So, the elements of outg (p) must be in outg (q)
as well. This is expressed in the first condition of Definition 3.2.1(6). By repeatedly
iterating over all rules and adding outy (p) to outg (¢) until outg is stable (which must
happen, as outg (¢) is bounded), one eventually obtains an outg that satisfies the first
two conditions of Definition 3.2.1(6). As the algorithm only adds elements to the sets
that must necessarily be present according to the first two conditions in Definition
3.2.1(6), the resulting sets are the smallest ones that satisfy these two conditions; any
other out’, that also satisfies these conditions must have out, (¢) 2 outg (¢) for all
g. The third condition of Definition 3.2.1(6), which states that for all rules (g,v) —
t, out, (root,) Noutg (¢) = 0, is not necessarily satisfied by the algorithm’s result,

however. Fortunately, whether the condition is satisfied can be easily verified. When
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the condition is satisfied, then we have shown that there exists an outy that satisfies all
of the given conditions. And when the third condition is not satisfied by the calculated
outg, then there cannot exist an other out, that does satisfy the third condition: that
would imply that out, (root,) N out, (¢) = @ while out, (root,) Noutg (¢) # 0 for some
rule (¢,v) — ¢ in R, which cannot be the case given that out; (¢) D outg (¢). This
means that if outz does not satisfy the third condition, then there are no sets that
satisfy all three conditions of Definition 3.2.1(6).

We will continue by giving detailed definitions of all the concepts we just introduced.

3.2.2. Configurations. A configuration describes the full state of a ptt at one
position in a tree walk. It consists of two parts: an input configuration, which describes
the locations of the pebbles and the location of the reading head on the input tree, and
a state.

Input configuration. For a pebble count n and a tree t € Ty ¢, an n-pebble input
configuration on t is a pair h = (u, ), where u € V; is a reading head configuration
and m € V,=" is a pebble configuration. The reading head configuration indicates the
location of the reading head of the ptt, on a node which we call the current node for
that configuration. The pebble configuration indicates that there are [ = |7| pebbles on
the tree, and that the pebbles numbered 1,... [ are present at nodes 7 (1),..., 7 (l),
respectively. We will also refer to pebble configurations as pebble stacks, because
the dropping and lifting of pebbles must conform to a stack discipline, i.e., it is only
possible to lift the pebble with number [ (specifically, it is only possible to lift it from
node m (1)), and it is only possible to drop a new pebble with number [ + 1. This
is ensured by the restrictions on the available input instructions, transformations on
input configurations that will be defined shortly.

As defined earlier in Definition 3.2.1, the set of all n-pebble input configurations
on t is denoted by I1C,; = V; X Vf". The set of all input configurations of a ptt
M= (n,(3,9),(AT),Q,q,R) is ICy; = UteTE@ | (G

Configuration. For a ptt M = (n,(X,®),(A,I'),Q,q, R) and a tree t € Ty ¢, a
configuration of M on t is a pair (¢, h) € (Q,IC, ;). The meaning of configuration
(q,h) is that ¢ is the current state, and h is the current input configuration. The set
(@,1C,, ;) of all configurations of M on ¢ is denoted C),;. For a configuration (g, h),
ic ({q, h)) denotes the input configuration h.

3.2.3. Rules. As defined earlier in Definition 3.2.1, a rule r € R of a ptt M = (n,
(3,9),(A,T"),Q, qo, R) is of the form (g, 1)) — ¢, where the left hand side (g, ¥) consists
of a state ¢ € ) and a condition ¢y € CMSQOy,,,, and the right hand side ¢ € I/, is
an instruction. The state and condition control whether the rule is applicable to a
given configuration of M. For a configuration (g, (u, 7)) of M on a tree t € T ¢, a
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rule r € R : {(q.,%.) — ¢ is applicable to {(q,(u,7)) when ¢ = ¢, and 1, is true for
(u, ). The subset of R of rules that are applicable to a given configuration ¢ € Cj; is
denoted by R..

3.2.4. Instructions. Transformations on input configurations and configurations
are identified by wnput instructions and configuration instructions, respectively. In-
structions are templates for a segment of intermediate output tree.

Input instruction. An input instruction identifies a transformation of an input con-
figuration. For a ptt M = (n,(X,®), (A, '), Q, g, R) and a condition ¢ € CMSOy,,,
15 is the set of input instructions on 1, as defined earlier in Definition 3.2.1. The set
of all input instructions that may occur in M is II,; = {stay, drop, lift}U{go,, | ¢ € ®}.
The interpretation of the instructions is as follows. Stay instructs the ptt to leave the
reading head and the pebbles where they are, go, moves the reading head in the direc-
tion of outgoing edge label ¢, drop drops a pebble on the stack (only available when
the stack is not full), and lift lifts the topmost pebble from the stack (only available
when the topmost pebble is at the reading head location). For a tree t € Ty 4, the
erecution of an input instruction w € 1T, on an input configuration (u,7) € V; x V;="
for which condition ¥ is true, denoted by w ((u, 7)), applies the instruction to an input

configuration, resulting in a new input configuration in IC, ;. It is defined as follows:

(u, ) if w = stay
(. 7)) = (¢ (u),m) if w = go, with ¢ € @
T = (u, Tu) if w = drop

(u,left (m, |7| — 1)) if w = lift

Note that because 1 is true for (u, 7) and w € IIj; 4, we must have w ((u, 7)) € IC,, ;.
For instance, go,, is in Iy, if and only if ¢ implies 3z : Jy : (head (z) A edge, (z,y)),
which implies that for the reading head node u (bound to z), there is a node v (bound
to y) for which ¢ (u,v) = ¢, ie., goy ((u, 7)) = (e(u),7) is defined. Similarly, the
conditions on the drop and lift instructions ensure that the drop instruction is not
available when the last pebble has been dropped (3z : peb,, (z)), and that the lift
instruction is not available when there is not at least one node that has a pebble on it.

Configuration instruction. For a ptt M = (n, (3, ®),(A,T'),Q, g, R) and a condi-
tion ¢ € CMSO 4,,, a configuration instruction is a pair (¢’,w) € (Q,1l14). The set of
all configuration instructions of M is denoted by CI,; = (@, 11,,), while the set of all
configuration instructions of M available for a condition ) is Cly; = (Q,1y). For
a tree t € 1% ¢, the execution of a configuration instruction (¢’,w) on a configuration
(q,h) € Cpy is defined as (¢, w (h)).

Instruction. As we explained earlier, a computation step of a pebble tree transducer
takes a node of an intermediate output tree that is labeled with a configuration, and
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then glues a newly generated segment of intermediate output tree onto the old interme-
diate output tree at that node. An instruction ¢ is a template for such a tree segment.
It consists of a tree over the output alphabets, A and I', augmented by configuration
instructions in CIj;y, where ¢ is the condition of the rule of which ¢ is the right hand
side.! For a ptt M = (n, (3, ®),(A,T),Q,q, R) and a condition ¢ € CMSQO.,4,,, the

set of instructions of M on 1 is defined as

The complete set of instructions of M is defined as Iy = Rar (Cly).

Ezxecution of an instruction. By executing an instruction, we create the to-be-glued
intermediate output tree segment from the template given by the instruction. Concep-
tually, a configuration instruction that labels a node of the instruction tree instructs
us how to calculate the configuration that is to be placed at that node, from the con-
figuration that the instruction tree is going to replace. The execution of an instruction
simply consists of executing all the configuration instructions present as node labels,
and replacing the nodes by nodes labeled with the configurations that result from the
configuration instruction executions. For a ptt M = (n,(3,®),(A,I'),Q,q, R), a
tree t € Ty ¢, an input configuration h = (u,m) € IC,;, a condition ) € CMSO,4,,
that is true for h, and an instruction ¢ € Iy, the ezecution v(h) of v on h , is
defined as ¢ (h) = ¢[s,] where the node relabeling s, : Cly, — Ciyy is defined as
sp((¢,w)) = (¢,w (h)). Note that because ¢ € Rar (Cly ), and because all node
labels in CI,;, are replaced by node labels in Cy¢, ¢ (h) € Rar (Chry). For a configu-

ration ¢ = (¢, h) € Cyry, we define the execution ¢ (c) of v on c as ¢ (h).

3.2.5. Computation.

Intermediate output tree. For a ptt M = (n,(3,®),(A,T),Q,q, R) and a tree
t € Ty e, an intermediate output tree of M on t is a rooted tree d € Rar (C’M,t)?
Intermediate output trees represent the global state of a pebble tree transducer during
its computation of an output tree (as opposed to the local state represented by an
individual configuration). The nodes with labels in A are the output that has already
been produced by the transducer, while each node with a label in C);; represents
unfinished output: the label is the configuration from which the remaining output
attached to that node should be computed.

Note that our definition of ‘instruction’ does not correspond with the one used by Engelfriet and
Maneth [13]; their definition of ‘instruction’ corresponds with our definition of ‘input instruction’.
(For a more extensive discussion of the differences between the various models, see Section 3.3.)
2Note that we use d to denote an (intermediate) output tree, which might not be intuitive at first.
The following might help the reader to correctly associate d with the concept of a tree: (a) d is a tree
that may have node labels in A, and (b) d stands for dendron, which is the word for tree in ancient
Greek.
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Initial configuration and initial intermediate output tree. A computation of a ptt
M = (n,(3,9),(A,T),Q,q,R) on an input rooted tree ¢t € Ry ¢ always starts in
the initial state at root;, and with no pebbles present. We call this configuration,
{qo, (rooty, A)), the initial configuration of M on t. The tree snt ({qo, (root,, A))), which
consists of only a root node labeled with the initial configuration of M, is called the
initial intermediate output tree of M on t.

Computation relation. A computation of a pebble tree transducer M is a transfor-
mation from one intermediate output tree of M to another. In a computation step,
a node u labeled with a configuration is taken, a rule » € R is selected that is ap-
plicable to that configuration, the rule’s instruction is executed on the node’s label,
and then the resulting intermediate output tree segment is glued onto the intermediate
output tree at node u, resulting in a new intermediate output tree. Formally, for a ptt
M= (n,(3,9),(A,T),Q,q,R) and a tree t € Ty, ¢, the computation step relation of
M on t, denoted by =/, is the binary relation over intermediate output trees such
that for intermediate output trees d,d’ € Rar (Cyry), the relation d =+ d’ holds if:

e for all w € Vj labeled in C)y,, with v, (w) = (¢, ¢), the relationship out, (w) C
outg (¢) holds,
e there is a node u € V; where v, (u) € Cyr, and there is a rule (¢,¢) — ¢in R

that is applicable to v, (u), such that
d 2du—t(vg(u))]

The node u is called the computation step node of computation step d =), d’. The
relation =7, , is the computation relation of M on t. Note that because the first of the

above conditions holds for d, it also holds for d'.

3.2.6. Various Properties. A ptt M = (n, (3, ®), (A, '), Q, g0, R) may have the
following properties:

e Total: If for every tree t € Ty ¢, every configuration (g, h) € Cys, has at least
one applicable rule in R, then M is total.

e Deterministic: If for every tree t € T, ¢, every configuration (g, h) € Cy, has
at most one applicable rule in R, then M is deterministic, and we call it a
dptt or an n-dptt.

A pebble i € [1,n] of M may be either global or local. Conceptually, if a pebble is local,
then its position can have no influence on the automaton’s behaviour when the pebble
is not at the top of the pebble stack. Formally, a pebble i € [1,n] is local iff i < n and
for all rules (¢,7) — ¢ that use an atomic formula in AFye,., M |= ¢ = free; ;. If
a pebble is not local, then it is global. Note that this definition implies that pebble n
is always global (provided that n > 0, of course).
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3.2.7. Translation.
Translation. For a ptt M = (n, (X, ®), (A, 1), Q, g, R), the translation realized by
M, denoted by 7y, is defined as

TV = {(t,d) € Ry.o X Rar | snt ({qo, (root;, A))) =Mt d}.

Two transducers (of any type) M; and M, are equivalent if Tp;, = Tay,-

Translation classes. The class of all translations realized by n-ptts is denoted by
n-PTT, and the class of all translations realized by n-dptts is denoted by n-DPTT.
Furthermore, we define PTT as | J,.,n-PTT, and DPTT as | J,,.,n-DPTT . The class
0-PTT is also referred to as TWTT,_the class of all translations realized by tree-walking
tree transducers.

Pebble tree transducer types. The translation class names n-PT'T, PTT etc. corre-
spond with pebble tree transducers of a certain type. The set of all possible n-ptts is
denoted n-ptt, and so on.

3.3. Comparison with Other Pebble Tree Transducer Models

Both Engelfriet and Maneth [13| and Milo, Suciu and Vianu [17]| define a model
for pebble tree transducers, and these models are both different from our model and

from each other. The main differences are:

(1) Our ptt model is based on graphs with labeled edges, while both other models
use trees that are based on terms over ranked alphabets. It is possible to map
between a term-based tree model and our graph model, so this difference does
not affect the relative strength of our ptt model.

(2) We allow generalized instructions, while Engelfriet and Maneth only allow
simplified instructions. As simplified instructions are a normal form, this does
not lead to a difference in model strength.

(3) We allow internal nodes of intermediate output trees to be labeled with con-
figurations. In our graph-based tree model this makes sense: any extra output
is simply glued onto the node in question, an operation which is no different
for leaves and internal nodes except for the fact that the internal nodes may
have more than one existing outgoing edge, where a leaf has one at most.
We have reason to believe that the ptt that does not allow configurations on
internal nodes is a normal form of our generic ptt model: we expect that it
is possible to use MSO logic to predict all output that will be generated at a
node. However, converting a ptt to such a normal form does come at a price:
the MSO-based prediction may have to look at pebbles that are not at the
top of the stack, forcing them to be global, while these pebbles may have been
local in the denormalized ptt. As we will show in Chapter 4, the number of
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global pebbles influences the number of twtts into which the ptt can be de-
composed. We therefore believe that allowing configurations at internal nodes
of intermediate output trees makes the ptt model strictly stronger.

Where configuration tests in both other ptt models are relatively limited, we
allow conditions to be specified as MSO predicates on the configuration. The
MSO predicates can express all configuration tests that the other models are
able to perform. This makes our model considerably more powerful.

There is one thing we have not allowed our MSO predicates to do, which
is to perform a direct root test: the MSO predicate has no built-in way of
determining which node is the root node. The literature is divided on whether
to provide a root check: the original ptt model described by Milo et al. [17]
did not provide a root check, but Engelfriet and Maneth [13] did provide it.
We considered adding a relation symbol to test whether a node was the root,
but we thought this would be rather arbitrary: the physical root node of a
tree is not always the logical root node, and there is no reason to give the root
such a special place. A primary example for this is that in the encoded trees
we use for our decomposition proof in Chapter 4, we never use the root at all.
Fortunately, when one does want to know the (logical) root node, there are
ways to provide that information. For instance, one can encode the “upward
direction” in the labeling. In that case, a node that has no outgoing “upward”
edges is the root. In fact, this is the way the root is encoded in tree models
based on terms over ranked alphabets: in those models, the upward edge is
always labeled with number —1. As the term-based ptt models already use
this encoding, it can be argued that our ptt model is not weakened by the lack
of a built-in root check: when provided with the same input as the other ptt
models, having the same edge labels, our ptt model can detect the root node.
In the model by Milo et al. there is no concept of a reading head: instead,
they use an extra pebble (which they call the current pebble) which is always
at the top of the stack, and which is moved around as if it were a reading
head. The drop operation drops a new ‘current’ pebble at the root of the tree
(leaving the old ‘current’ pebble where it was, the equivalent of ‘dropping’ it
in our model), while the [lift operation simply picks up the current pebble and
makes the next pebble on the stack the current pebble, wherever it is located.
Translated to our model, this means that drop drops a pebble and moves the
reading head to the root, and lift moves the reading head to the location of
the pebble at the top of the stack and then picks it up. While the ptts of
Engelfriet and Maneth can emulate the behaviour of the ptts of Milo et al.
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| Our Model | Engelfriet and Maneth |
Input Configuration Input Configuration
Configuration Configuration
Condition Test
Input Instruction Instruction
Configuration Instruction | Not an explicit concept.
Instruction Right-hand side of a rule

TABLE 1. Mapping between the concepts of the model of Engelfriet and
Maneth [13] and our model.

and vice versa |13, section 3.1], our ptts cannot emulate the behaviour of the
ptts by Milo et al. because our model lacks a “root check”.
(7) Both we and Engelfriet and Maneth consider both deterministic and nonde-

terministic ptts, while Milo et al. consider only nondeterministic ptts.

Table 1 contains a convenient overview of how the concepts of Engelfriet and Maneth’s

model relate to our concepts.



CHAPTER 4

Decomposition

4.1. Introduction

Engelfriet and Maneth showed that an n-ptt can be decomposed into n + 1 tree-
walking tree transducers (twtts) [13]. The method that they used to perform this
decomposition is just one example of a larger class of decomposition methods. In this
class of methods, a decomposition is obtained by repeatedly decomposing an n-ptt M
into a twtt A and an m-ptt M’ such that 7oy = 747 and m < n. The end result
of such a decomposition is a sequence A, ..., A, of twtts and a 0-ptt M*) for some
kE <n, such that 73y = 74, - - - 74, Tpy». The 0-ptt M® is of course a twtt as well, so
the result is a decomposition into k£ + 1 twtts with £ < n.

In this chapter, we first define a general framework for all decompositions of ptts
into twtts using this incremental decomposition method. Within this framework, we
then identify a subclass of simple decomposition methods that are based on stepwise
sitmulation. This subclass covers all the decomposition methods we will discuss in
this thesis. After defining the framework we use it to create an extended version of
Engelfriet and Maneth’s method that supports our extended ptt model. Using this
extended method, we can decompose an n-ptt M into k + 1 twtts, where k is the
number of global pebbles in M.

4.2. A Framework for Incremental Decomposition

In the remainder of this thesis, we will conveniently use the term decomposition to
mean a decomposition using the incremental decomposition framework defined here,

unless we indicate otherwise.

DEFINITION 4.2.1. For an n-ptt M, an m-ptt M’ and a twtt A, the pair (M, (A, M"))
is a decomposition step if m <n and 7y = TATH.

For an n-ptt M, k > 1, twtts A; (1 < i < k), and an m-ptt M’, a sequence
Ay, o A, M is a decomposition of M if m < n —k and 7y = 74, - Ta, 7. 1If

m = 0, then the decomposition is complete, otherwise it is partial.

It is clear that if we have a partial decomposition A4, ..., Ax, M’ and a decompo-
sition step (M’, (Agy1, M")), then Ay, ..., A1, M is a decomposition as well, where
M" is a ptt with less pebbles than M’. By repeatedly applying decompositon steps to

35
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the rightmost ptt in the decomposition we will always arrive at a complete decompo-
sition. The only requirement for this to work is that we can find decomposition steps

that can be applied. So, we need to have a method for finding decomposition steps.

DEFINITION 4.2.2. A decomposition method is a function § : (ptt — twtt) — (twtt x ptt)
such that all (M, (A, M')) € 6 are decomposition steps. The decomposition method is
total if the function ¢ is total. If for a ptt subtype xptt C ptt, § (M) = (A, M) and
M € xptt imply M’ € xptt and A € xptt, then xptt is closed under decomposition by
0. If § (M) exists for every M € xptt — twtt, then § is total on zpit.

It is easy to see that when we have a total decomposition method 9, we can find
a complete decomposition for any n-ptt M by repeatedly applying the decomposition
method. When a decomposition method ¢ is not total on ptt, but when we do have
a subset xptt C ptt on which ¢ is total, and when this subset xptt is also closed
under decomposition by 9, then we can still find a complete decomposition for any ptt
M € xptt. We will use this fact later to show that the decomposition method that we
will develop also applies to some restricted ptt subtypes, including subtypes that are

similar in operation to Engelfriet and Maneth’s ptts.

4.3. Decomposition Methods using Stepwise Simulation

4.3.1. Introduction. To find a decomposition step (M, (A, M")), we need to cre-
ate an M’ that uses less pebbles than M, and that works on a transformed tree that
can be generated by a twtt A, with 747y = 7). Speaking in terms of configura-
tions, we want to build a ptt M’ that has a smaller pebble configuration space than
M. However, M' must be able to represent every M-configuration by a configuration
of its own, so M’ needs to have a combined configuration space that is at least as
large as that of M. So, the obvious course of action is to enlarge the spaces of the
other configuration components, the reading head and the state: in other words, we
need to encode the pebble locations of M in the state and in the reading head of M’.
Observe that the pebble configuration space that needs to be encoded is unbounded:
the amount of information that needs to be encoded elsewhere if we remove even a
single pebble from the pebble configuration space is proportional to the size of the
input tree, which is unbounded. Unfortunately, the state space can only be enlarged
by a finite amount, because the number of states of a ptt is finite. So, the only way
we can encode a pebble position is by encoding some amount of it in the reading head
position. And in order to do that, we need to have a larger tree, with enough nodes
to yield a configuration space for M’ that is at least as large as that of M. If we want

to encode a reading head position and m pebble positions in the reading head without
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enlarging the state space, we will need to use a tree that has a node for every combi-
nation (u,p) of a reading head position v and a string of pebble locations p (|p| < m):
the size of this enlarged tree ¢’ in terms of the size of the original tree ¢ will therefore
satisfy [Vy| > |Vi| (1 + V)| + [Vi]* + -+ - 4 |V4|™). This equation follows from the fact
that u has |V;| possible values, which must be multiplied by the number of different
configurations for p, which can represent zero pebbles (1 possible configuration), one
pebble (|V;| possible configurations), two pebbles (|V;|? possible configurations), and so
on for up to m pebbles.

If we perform decomposition by transforming the tree, changing the configuration
space, and transforming the ptt accordingly, we must have a method to prove that the
tree transformation combined with the transformed ptt results in the same translation
as the original ptt. We do this by requiring that the new ptt together with the trans-
formed tree perform a stepwise simulation of the original ptt. In the next paragraphs,
we will define a very restricted form of stepwise simulation, and we will then show that
any original ptt, alternative ptt and tree transformation that satisfy this definition

yield the transformation equality that we require.

4.3.2. Stepwise Simulation.

DEFINITION 4.3.1. For ptts M = (n, (X, ®), (A, 1), Q, g0, R) and M’ = (n/, (X', D'),
(A, T1),Q’, ¢, R') and rooted trees t € Ry, ¢ and t' € Ryy ¢/, CCps 0 v is the set of all
total injective functions cc : Cyry — Chpp (which should be read as “corresponding
configurations”) that map the configurations of M on ¢ to the configurations of M’ on

', in such a way that:

(1) The initial configurations are mapped onto each other:
cc ((qo, (roots, A))) = (gj, (rooty, A)).
(2) For all ¢ € Cyy and for all rules r : (¢,7)) — ¢ in R that are applicable to
¢, there is a rule ' : (¢/,%') — ' in R’ that is applicable to cc (¢) for which
! (cc(e)) = u(e) [ec).
(3) For all ¢ € Cy4 and for all rules 7' : (¢’,¢') — ¢/ in R’ that are applicable
to cc (c), there is a rule r : (g,1)) — ¢ in R that is applicable to ¢ for which
! (cc(c)) = u(c) [ec).
For ptts M = (n,(X,®),(A,T),Q,q,R) and M' = (', (¥, ), (A, T),Q, ¢, R'),
and a total function 7 : Ry ¢ — Rsv e, M' performs a stepwise simulation of M using

a tree transformed by 7 if, for all trees t € Ry, o, CCprt mr (1) 18 nonempty.

INote that our definition of stepwise simulation requires one-on-one correspondence of steps, which is
not required for stepwise simulation in general. The reason we included this restriction is that we do
not actually require anything more than this for the things we are going to prove, and it simplifies
the proofs significantly.
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We will now show that for any M, M’ and 7 that satisfy our definition of stepwise
simulation, the translation realized by M’ applied to a tree transformed by 7 is equal
to the one realized by M. In order to prove this, we require the following technical

lemmas.

LEMMA 4.3.2. Let X and A be node label alphabets, let ® be an edge label alphabet,
let ) C % and A" C A be subsets of the node label alphabets so that (3 —X )UA" = A,
and let s : X' — A’ be a total function. Furthermore, let t,d € Ry ¢, and let u € V; be
a node of t. Then t[s||u « d[s]] =t [u«— d]]s].

PROOF. For any edge labeling function €, node labeling function v and (edge) homo-
morphism /, let h (¢) = {((h (u), 1 (v)),¢) [ (v, v),¢) € e} and h(v) = {(h(w),0) | (w,0) € v}
In general, for any rooted trees ¢, d and node u € V;, the following equalities hold for

gluing ¢ [u « d|:

Vt[u<—d] - hu,rootd,l (Vt - {(u7 Vg (u))}) Ur]i hu,rootd,2 (Vd)
€tlu—d] = hu,rootd,l (et) Ur]i hu,rootd,2 (Ed)
100ty [uq = Purooty,1 (0Ot;)

Let s : ¥ — A be defined as in the definition of node relabeling, and for any
node labeling function let s’ () = vs'. In general, for any tree ¢t and a node relabeling
t[s], the equalities vy = s’ (), &) = & and rooty = root, hold. Note that for any
(edge) homomorphism h, s’ (h(v)) = k(s (v)) = {(h(w),s (0)) ]| (w,0) €V}, as h
only substitutes node identities, while s’ only substitutes labels. Then:

Ctlu—d][s] — CEtlu—d
= hu,rootd,l (€t> Ur]i hu,rootd,2 (€d>
- hu,rootd,l (et[s]) Ur]i hu,rootd,2 (ed[s}>

= Etfs]fud[s]]

Vuedls) = 8 (Vefud)
= 8 (hurootg,1 (Ve — {(w, v (1)) }) Ugt B rooty 2 (Va))
= hurooty,1 (8" (Ve — {(w, v (1)) })) Ugt B ooty 2 (87 (V)
hasoot gyt (Veis) = { (1 vy () ) Ut Parooty 2 (Vags)

Vi[s)[ued]s]]

)
)
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rOOty[yg[s] = TOObiyueq
= hu,rootd,l (I‘OOtt)
= huroot 1 (rooty))
= TOObt[s]jud]s]

O

LEMMA 4.3.3. Let t,i,d,d € Rs, ¢ be rooted trees over some node and edge label
alphabets & and @, and let w € V,. Ift =t and d = d with isomorphisms h,_; and
hy g, then tiu «— d] = t[h,_;(u) « d.

PROOF. This lemma is provided without proof. U

LEMMA 4.3.4. Let 3 and A be node label alphabets, let ® be an edge label alphabet,
let ) C % and A" C A be subsets of the node label alphabets so that (X —X )UA" = A,
and let s - X' — A’ be a total function. Furthermore, let t,t € Rs ¢ be rooted trees. If
t ¢, then t[s] = t[s].

PROOF. This lemma is provided without proof. 0

The next two lemmas show that when our definition of stepwise simulation applies,
for every intermediate output tree of the simulated automaton there is a corresponding
intermediate output tree in the simulating automaton, and every intermediate output
tree in the simulating automaton corresponds to an intermediate output tree in the

simulated automaton.

LEMMA 4.3.5. Let M = (n, (X, ®), (A, I),Q,q, R) and M' = (0, (X', ?"), (A, T),
Q' qy, R') be ptts, and let 7 : Ryo — Rs o be a total function. Let M' perform
a stepwise simulation of M wusing a tree transformed by 7, and let t € Ry o, cc €
CCrppr ey and k > 0. Then for all d € Rar (Chry), if snt({qo, (rooty, \))) =%, d,
then snt (<q(’), (rootT(t), >\)>) :>]X4/,T(t) d[eey].

PROOF. We will prove this by induction on k, the length of the computations.

Property: For a given k > 0, for all d € Rar (Cary), if snt ({go, (rooty, \))) =4, d,
then snt (<q(’), (rootT(t), >\)>) :>]X4',r(t) d [cey].

Base (k = 0): For k = 0 we must have d = snt ({q, (root;, \))). By Definition
4.3.1, d[cc;] = snt (<q6, (rootT(t), )\)>), so snt (<q(’), (rootT(t), >\)>) :>?V[’,T(t) d [cey].

Induction: Assume the property holds for some & > 0. Now let d € Rar (Chry)
so that snt ({qo, (roots, A))) :>’th1 d. Then there must be a dy € Rar(Cuy) so
that do = d and snt ((go, (roote, A))) =%, do. By the induction assumption,
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snt (<q(’), (rootT(t), )\)>) :>]X4/,T(t) do [cci]. By the definition of dy =/ d, there are a
node u € Vy, where ¢ = vy, (u) € Cy4 and a rule (¢,v) — ¢ in R that is applicable to ¢
so that d = dy [u < ¢ (c)]. Then ¢’ = vgy[ec,] (1) = cc; (c), and by Definition 4.3.1 there
then exists a rule (¢/,9’) — ¢/ in R’ that is applicable to ¢, so that /' (¢/) = ¢ (¢) [ccy).
Then dy [cc] = w7 do [cci] [u ¢/ ()], and because (using Lemmas 4.3.3, 4.3.2 and
4.3.4) do[cci] [u — ' ()] = doleey] [u «— t(c)[cce]] = dolu «— ¢(c)][cce] = dcey], we
have snt (<q6, (rootT(t),)\)» :>]X4/,T(t) do [cci] = 7@y d[ccy], which proves that the
property holds for k£ + 1 and therefore for all k. O

LEMMA 4.3.6. Let M = (n, (X, ®), (A, I),Q,q0, R) and M' = (n/, (X, ?"), (A, T),
Q' qy, R') be ptts, and let T : Ry ¢ — Ry ¢ be a total function. Let M’ perform a step-
wise simulation of M using a tree transformed by 7, and lett € Ry o, cc; € CCOurymr r(1)
and k > 0. Then for all ' € Rar (C’M/J(t)), if snt (<q(’), (rootT(t), )\)>) :>]X4/,T(t) d’ then
there exists a d € Rar (Chye) such that snt((qo, (root, N))) =4, d and d' = d[cc,).

PROOF. We will prove this by induction on k, the length of the computations.
Property: For a given k > 0, for all d € Rar (C’Mrﬁ(t)), if

snt ({q), (r00t,(1),\))) =y &,

then there exists a d € Rar (Chsy), such that snt ((go, (rooty, \))) =4, d and d' =
d [cey].

Base (k =0): The only computation of length 0 is snt (<q(’), (rootT(t), )\)>) :>]X4',r(t)
d with d’ = snt (<q(’), (rootT(t), )\)>) We have d' = d [cc;] where

d = snt ({qo, (root,, \))),
because cc; ((qo, (rooty, A))) = (gh, (root, ), A)) by Definition 4.3.1. We also have
snt ({qo, (rooty, A))) :3“ snt ({qo, (rooty, A))) = d.

This proves that the property holds for k£ = 0.

Induction: Assume the property holds for & (k > 0). Now let d’, dj, € Rar (C’M/,T(t))
so that snt (<q6, (rootT(t), )\)>) :>’fV[,7T(t) dy =) d'. Since the property holds for £,
there exists a tree dy € Rar (Cart), so that snt ({qo, (root,, A))) :>vau do and dj [ccy| =
dy by some isomorphism Agqcc,)—ar- As dy = a7 d', there is a node v’ € Vg labeled
with a configuration ¢ € Cyy 1), and there is rule r' : (¢’,4') — ¢/ in R’ which is
applicable to ¢, such that d' = dj,[v' « /' (¢)]. Let v = h;ol[ccﬁq a, (v') € Vq, be the
corresponding node in dy. Then ¢ = vy, (v) = cc; ! (vay () = cc; ' (¢). By condition
3 of Definition 4.3.1, there is also a rule r : (¢,%) — ¢ in R which is applicable to c,
having ¢ (c) [cc] =/ (¢/). Now let d = dy[v < ¢(c)]. We then have dy =74 d and
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therefore snt ((qo, (roots, \))) :>’]V[t1 d. Now Lemma 4.3.3 and Lemma 4.3.2 give us:
¢ d e ()

dy [cey] [v ¢ () [eeq]]

I

= do[v—=1(¢)][eci]
= dccy

This completes the proof that the property also holds for £ + 1, and therefore for
all k. O

LEMMA 4.3.7. Let M = (n, (%, ®), (A, T),Q, 0, R) and M" = (n/, (X, ®"), (A, T),
Q' qy, R') be ptts and let 7 : Ry ¢ — Ryy.o be a total function so that M' performs a
stepwise simulation of M using a tree transformed by 7. Then for all (t,d) € Ry ¢ X
Rar,

snt ((qo, (roots, A))) =, d
if and only if
st ((q0, (root-), X)) =420y d-

PROOF. By Definition 4.3.1, CCys a7y is nonempty. Let cc; € CCuryar 7(1).-

(=) snt ({qo, (roots, A))) =4, d implies snt ((go, (roote, A))) =%, , d for some k, and
by Lemma 4.3.5 this implies snt (<q(’), (rootT(t), )\)>) :>ﬁ/1',7(t) d' for d' = d[cc;], and as
d € Rar, this means d' = d.

(<=) snt ((go, (r00t, (1), A))) =4y (s d implies

snt (<q(/), (I'O()t.,-(t), )\)>) :>I]€\4’,T(t) d

for some k, and by Lemma 4.3.6 this implies that there exists a ' € Rar (Cys) so that
snt ({qo, (rooty, A))) :>ﬁ/[7t d with d = d' [cci]. Asd € Rayp and cc; : Cyrp — Cpr 71y, We
must have d’ = d, and as the computation relation =, is defined modulo isomorphism,
this implies snt ((go, (rooty, \))) =%, , d. O

THEOREM 4.3.8. Let M = (n,(X,®),(A,T),Q,q,R) and M' = (', (¥, 9'),
(A T),Q, ¢, R') be ptts and let 7 : Ryo — Ry e be a total function so that M’

performs a stepwise simulation of M using a tree transformed by 7. Then Ty = TTap.
4.4. The Decomposition Method
In this section, we will define a decomposition method . Given a ptt
M = (n,(%,9),(A,1),Q, 9, R)

with n > 0, we will specify a ptt M’ = (n—m,(X,9),(A,T),Q,q,R') and a
total function 7,y : Rye — Rxe so that M’ performs a stepwise simulation
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of M using a tree transformed by 7,,x¢. In addition, we will specify twtt A =
(0,(3,?),(X,9"),Qa,q0,4, Ra) so that T4 = 7, » . For brevity, we will write 7 =

Tm,,®-

DEFINITION 4.4.1. Foraptt M = (n, (2, ®), (A, '), Q, g, R), fg (M) is the number
of the lowest-numbered or first global pebble in M.

The variable m signifies the number of encoded pebbles, its value must be chosen for
every decomposition. It may be chosen anywhere in the range [1, fg (M)]; choosing m =
1 yields a decomposition method equivalent to Engelfriet and Maneth’s method, while
m = fg (M) yields the shortest decomposition that is possible with this method. The
decomposition method works as follows. Transformation 7 first encodes the pebbles up
to and including m in its transformed tree by adding extra nodes. Then M’ makes use
of the extra nodes (and therefore reading head configurations) in the 7-transformed tree
to keep track of the location of the first m pebbles. Effectively, the decomposition M’
performs a stepwise simulation of M using transformation 7. To arrive at an M’ and
7 that satisfy the stepwise simulation conditions, we will start by defining for a rooted
tree t € Ry, ¢ an input configuration mapping cic; : IC,,; — IC,,_, 71), and we will use
that mapping to provide a complete definition of 7 and M’. We then construct a twtt
A with 74 = 7. Finally, we prove that cc, ({q, (u,7))) = (g, cic; (u, 7)) is a member of
CCst, a7 ,7(1), Which by the definition of stepwise simulation implies that A" performs
a stepwise simulation of M using tranformation 7. As 74 = 7, Theorem 4.3.8 then
implies that (M, (A, M’)) is a decomposition step. Furthermore, the method by which
we construct (A, M') from M constitutes a total decomposition method, because the
process of constructing A where 74 = 7,,, 5 ¢ is defined for all ¥, ® and m > 1, and the
construction of M’ from M is defined for every M € ptt — twtt.

4.4.1. The Configuration Mapping. Consider trees t € Ry ¢ and 7 (t) € Ry ¢
for a to-be-defined transformation 7 : Ry, ¢ — Ry ¢/, an input configuration h = (u, )
in IC,, ;, and the corresponding input configuration h’ = cic; (h) = (u’, 7’) according to
a to-be-defined mapping cic; : IC,,; — IC,_p, 7(1)-

First, look at the reading head configuration in M’. Encoding m pebbles in the
tree means that we are going to expand the number of possible configurations of the
reading head compared to M. Without committing to a specific tree transformation,
we can state that u' = pebenc, (u, left (7, m)) for some injective total function pebenc, :
Vi x me — V). We will choose a specific function pebenc, in the next section, where
we will discuss the tree transformation.

Next, look at the pebble configuration 7’'. Because we encode the first m pebbles
of M in the tree, we are going to skip the leftmost m elements of 7 when we construct
7/ from it: 7’ only needs to represent the pebbles w (m + 1)7 (m +2)---m(n). The
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pebble locations in 7" will, of course, be nodes from the transformed tree 7 (¢), not
from the original tree . But which nodes? The encoding function pebenc, requires not
only a node, but also the leftmost m pebbles on the stack, so it seems logical that we
should encode the stack pebbles as 7' (k) = pebenc, (7 (m + k), left (m,m)). Note that
the fact that pebbles are stacked will ensure that the first m pebbles, left (m, m), will
not change as long as there is a pebble m + k > m on the stack, and that will ensure
that the encoding of such a pebble m + k& will not change during its “lifetime”.

Finally, a word about states. Because we will encode everything in the tree, we
have chosen to keep the states the same in the simulated and the simulating ptts. This
is not a necessity: it is very well possible to define more complex encodings where the
state space is transformed as well. However, in our case, transforming the state space
would serve no other purpose than to complicate things; as we discussed in Section
4.3.1, a state space transformation can only change the total configuration space size
by a constant factor, while we need an increase linear in the size of the input tree to
encode even a single pebble location.

Summarizing this mapping:

DEFINITION 4.4.2. Given ptts M = (n, (X, ®), (A, '), Q, g, R) and M' = (n —m,
(2,9),(A,1),Q, q, R') where m € [1,fg(M)], a total function 7 : Ry ¢ — Ry e/, a
tree t € Ry ¢, and a total injective function pebenc, : V; x me — Vi), the input
configuration mapping cic; : IC,,; — IC,,_,, - is defined as

cic; ((u, 7)) = (pebenc, (u, left (7, m)) , stackenc, (7))

with |stackenc, (7)| = max (|r| — m, 0) and stackenc, (7) (k) = pebenc, (7 (m + k) ,left (7, m))
(for all k € [1, |stackenc; (7)|]). Furthermore, the configuration mapping cc; : Cpry —
Chr 71 is defined as

cer (g, (u,m))) = (g, cic; ((u, 7)) .

4.4.2. The Transformed Tree. We are now ready to define what the trans-
formed tree 7 () will look like. Let us begin by defining pebenc, : V; x V=™ — V¢,
as

pebenc, (u, 7) = u,
where u, is simply an alternative way of writing (u, 7). This definition for pebenc,
is extremely simple, and it makes it immediately clear that pebenc,, cic;, and cc;
are total and injective. In the definition of 7 (¢), the encoding of the nodes is not
really an issue. The only other things that we can state about the nodes of 7 () is
that V) = {uﬂ |ueV,and 7 € me}, and that v, (uz) = 14 (u); this means that
pebenc, is even a bijection. It is the edges between the nodes that matter, because
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they determine whether the transformed tree can be used for stepwise simulation.? The
main constraint that the edges of 7 (¢) have to satisfy is that they must support input
instruction mapping: we must be able to simulate every input instruction that can be
executed by M on ¢ on the transformed tree with a single input instruction. We choose
the following encodings for the input instructions, immediately specifying the edges

that these encodings require in 7 (¢):

e The go, (¢ € ®) instruction is mapped to the same instruction. This means
that we must have ® O &, and if go, (u, 7) = (¢ (u),7) (with 7 € V;=™), then
we must have goy (ur,stackenc, (7)) = (¢ (ur) , stackenc, (7)). In other words,
if ¢ (u) = «/ in ¢, then we must have ¢ (u,;) = u! in 7 (). The set of required
labeled edges in € is {((ur,ul),¢) | (u,u'),¢) € & and 7 € VtSm}.

e Dropping/lifting a pebble with number ¢ > m + 1 is encoded as the same
drop/lift instruction, but for the pebble with number ¢ — m. This requires no
edges in e, ().

e Dropping/lifting a pebble with a number i < m requires moving from a
node u, to a node u,, (for dropping) and back (for lifting). Because we
can only use a single instruction to simulate the dropping/lifting instruction,
the encoded nodes before and after the instruction need to be directly con-
nected. We introduce two new edge selectors lift, drop € &’ to connect them.
The drop and lift instructions are then translated as go,.,, and go,, re-
spectively. The set of labeled edges that this encoding requires in e, is
{((try Uny) ,drop) | u € V; and m € V=" }H{ ((Uru, ur) , lift) | w € V; and 7 € V=" }.

e The stay instruction maps to itself. No edges in €,(;) are required for this.

These edges are all that are required, so we specify that 7 (¢) contains exactly these
required edges. This leaves us with the following definition:

DEFINITION 4.4.3. For given node and edge label alphabets ¥, ® and encoded
pebble count m > 1, 7: Ry ¢ — Ry ¢ where ® = ® U {drop, lift}, is a total function.

2This is very different from Engelfriet and Maneth’s decomposition proof [13], where the node encoding
was the major issue. The reason for this difference is that we have adopted a graph-based tree model,
which naturally includes the concept of node identity, whereas Engelfriet and Maneth used a tree model
based on terms over ranked alphabets. In such a tree model, nodes have no separate identity, and
instead are identified by their paths from the root; this makes node encoding naturally cumbersome,
as it tightly binds node encoding together with the creation of the complete structure of the encoded
tree. The graph-based tree model that we use is much better suited for this proof.
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It is defined for t € Ry ¢ as 7 (t) = ((VT(t), eT(t)) ,rootT(t)), where

vey = |J Ve

7rEVt§m
Er(t) = U €rr(t) U €1 (t),droplift
ﬂewgm
Vo) = {(um, 1 (u)) | u € Vi}

ey = {((um ), ) | (u,u), ) € &}

€r(t),droplift = {

root.;y = (rooty),

Note that this choice of root,() ensures that cic; maps the initial input configuration
of M on t, (root, \), to the initial input configuration of M’ on 7 (t), (r00t ), A). 7 ()
is comprised of disjoint trees 7, (t) = (VT,T(t), eTﬂ(t)), plus the edges in €, () droplift- NOte
that each of the component trees 7 (¢) is isomorphic with ¢ (in the non-rooted sense)
by an isomorphism A 1) : Vi = Vi), huesr,t) (W) = wa; clearly, by ) is also an
injective homomorphism from ¢ to 7 (¢). Note also that all of the edges in e( dropiitt
run between nodes from distinct components 7, (t) and 7, (t), which implies that for

each m € V=™, 7, (t) is an induced subgraph of 7 ().
LEMMA 4.4.4. 7 (t) is a rooted tree.

PROOF. We need to prove that 7 (t) is a connected, acyclic graph. As for proving
that it is a graph, it is easy to see that 7 (t) is finite and nonempty if ¢ is finite and
nonempty, which it is. What remains to be shown is that 7 (¢) is connected, acyclic,
that all edges have a reverse, and that the outgoing edge labels of a node are distinct.
For starters, it is clear that each of the components 7, (¢) is acyclic and connected,
that all of their internal edges have a reverse and that all of their nodes have distinct
outgoing edges to nodes within the same component. We now need to prove that the
edges that run over component boundaries do not create cycles, that they make the
whole of 7 (t) connected, that they all have reverses, and that they do not add duplicate
outgoing edges. These are the proofs for these properties:

e Reverse edges. 1t is clear from the definition of €. () gropiire that there is always
a drop edge in the opposite direction of a lift edge and vice versa, so these
edges always have a reverse.

e No duplicate edges. The lift and drop edges do not occur within the component
trees, so only duplicates within €. (y) qropiirr Need to be considered. Assume a
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node u, has two outgoing drop edges. Then both those edges run to u,,, as
all drop edges generated by €,(4) aropiits Tun from a node u, to a node ur,. But
€7 (t),droplift 1S @ set, so there cannot be two such edges. A similar argument can
be made for lift edges.

e Connectedness. Any component tree 7, (t) with m # X is connected to compo-
nent tree Tiea(rri ) by edge (7 (1)), 7 (17 im0 ) 1) € rc)cropin
Note that if 7 # X then © = left (7, |7| — 1) - 7 (|=|). By induction, any com-
ponent tree 7, (t) is therefore connected to the root component 7, (¢), and as
all of the edges in 7 (¢) have reverses, any component tree 7, (¢) is connected
to any other component tree 7,/ (t).

o Acyclicity. Form € V=" let 7, (t) be defined as the {umr |ueV,, nr' € me}—
induced subgraph of 7 (¢). Obviously, 7\ (t) = 7 (t). We use induction on the
length of 7 to prove that 7, (¢) is acyclic.

Base (1| =m): 7.1 (t) = 7 (t), which is a tree and therefore acyclic.
Induction: Let © € V,=™, and assume 7., (t) is acyclic for all u € V,. Now

consider 7, (). Clearly,

s (1) = ( U our <t>> U (1)U (0. E)

ueVy

where U indicates coordinatewise union, and where
E = {((tr, try) ,drop) | u € Vi} U {((tru, ur),lift) | u € V;}.

It is clear that E adds exactly one edge to each component 7., (), thus
connecting each of the components to 7, (t). Now assume that there is a cycle
in 7,4 (t), and that it contains a node in a component 7, (¢). By assumption,
Trus () is acyclic, so the cycle has to use an edge that leaves 7., (t) and a
different edge to get back inside 7., (t). However, 7., (¢) has only one new
edge attached to it in 7, (¢), so that is not possible. A cycle in 7, (t) can
therefore not contain a node in any of the components 7, (¢). But then the
cycle should contain only nodes from 7, (¢), which is also acyclic, and 7, (t)
does not add any edges between nodes of 7, (t). In conclusion, such a cycle
cannot exist, and by induction, 7y, (¢) = 7 (¢) is acyclic.

O

4.4.3. The Encoding TWTT. As we now have a definition for 7(¢), we can
define a twtt A so that 74 = 7. We will start by defining A, after which we will show
that 74 = 7. The general principle of A will be very simple: it walks outward along
the edges of the tree, copying nodes as it goes along. At every node it passes, it also

generates a “drop” edge for every node along the way. At the other end of the “drop”
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edge, it simply starts walking outward again, copying the whole tree as it goes along.
When the twtt reaches a subtree and m “drop” edges have already been generated, no

more drop edges are generated.

DEFINITION 4.4.5. For given node label alphabet >, edge label alphabet ¢, and
encoded pebble count m > 1, A= (0, (3, ?), (X, ®"),Q4, .4, Ra) with

¢ = U {drop,lift}
Qa = {qe:i| ¢ € ®U{lift} and i € [0,m]}

qo,A = qift,0

Ry = {{t,isVorr) = tpioFs
¢ € dU{lift}, i € [0,m], o € &,
F C 9, total function r : F' — ®}

Yo r, = Jx:head (x) A (lab, (z) A
/\ Jy - <edge T, y) A edger(q;) (y,x)) A
PEF
/\ —Jy : edgey (2,y) |)
decd—F
toiorr = ((VsioFr €pioFr), T00tsi o py)
where
Vasorr = {100tgi0m, b U{ug |6 € F—{0}} U {uamp | i < m}
Viorr = {(rooty;qpr0)}U

{(U(g), <q,«(¢3),i, g0¢;>> | peF - {¢}} U

{(uarop, {(qutei+1, stay)) | i < m}

€pio Fr = {((r00t¢7i70—7}7‘,r’ ué) , q@) | peF— {¢}} U
{(( Uss TOO%,i,cr,F,r) : 7“(@) | peF- {¢}} U
{((
{((

The parameters of the rule set may be interpreted as follows. o, I’ and r convey the tree

100t4.i 0. Fry Udrop) , ATOP) | < m} U

Udrop, T00ts i o Fr) , lift) | i < m}

structure at the node that is to be copied: o is its node label, F' is its set of outgoing
edge labels, r : ' — & is a function that associates a reverse edge label with each of
the outgoing edges. For every state g4,, there is exactly one rule for every possible

input situation o, F),r. Every such rule contains an instruction that creates an exact
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copy of the input situation in the output tree, plus a drop edge. The parameters ¢ and
i, stored in the state g, ;, are used to remember what part of the tree copying process
has already been done by the twtt. First of all, the ¢ parameter remembers the number
of drop edges that have already been crossed at the current location in the output
tree. Basically, the invariant is maintained that if a node u, is being generated, then
it is labeled with a configuration having state gs; with ¢ = |7|. When the automaton
generates another drop edge, i.e., when it generates a node u,, below a node u,, the
configuration labeling node u,, has an ¢ that is one higher than the configuration that
labeled u,. Lastly, the ¢ parameter represents the “way back”. When the automaton
generates a new node u,, labeling it with a configuration, then it already generates
one of the outgoing edges of that node — the edge leading toward the part of the tree
that was already copied. Of course, the subsequent actions of the automaton on wu,
should not generate that edge again. This is where ¢ plays its part: it records in
the configuration that labels u, which of the outgoing edges of u, has already been
generated. This is reflected in the instruction tree’s node set Vi ; , r,: it only contains
nodes u; for $eF— {¢}, i.e., it does not generate an output node for the node behind
the edge labeled ¢, even though it exists in the input tree.

The definition of A clearly makes it look like a ptt, but it is important that we
verify that it actually satisfies the conditions of Definition 3.2.1. We will do so in the

following Lemma.
LEMMA 4.4.6. A is a pit.

PROOF. The alphabets, states and pebble count are fine for any ptt; what we need
to verify is that the rules satisfy Definition 3.2.1(6).

The first condition specified by item (6) is that a rule » € R4 should be of the
form (¢,v) — ¢ with ¢ € Q4, ¥ a condition of A, and ¢ € I4, an instruction.
It is easy to verify that in a rule » € R4, 7 : (¢pisYorr) — loioFr, Yorr 1S in
fact a condition of A, as it is a closed MSO predicate that uses relation symbols
{edgeq; | QE e FCdor ngﬁ ed—-FC <I>} U {head,lab,} € A,. Furthermore, ¢,, €
Qa = {qs: | 9 € PU{lift} and i € [0,m]}, as the definition of R4 specifies ¢ € & U
{lift} and i € [0,m]. The condition ¢ € 144 = Ry¢r (Clay, .. ) is also satisfied, because
¢ is obviously a rooted tree, the edge labels used in ¢ are {drop, lift}U{é |pe F— {¢}}U

{r (q@) | peF— {gb}} C @', root, is labeled 0 € X, there may be a node that is

labeled (quf i+1, stay) which is clearly in CI Ao.r,» and the remaining nodes are la-

beled <qr(¢;) P goq;> for a ¢3 € I, which is also in Clsy, . , as we will show. First
of all, Gn(3) € Q4 because r (q?)) € & C & U {lift} and ¢ € [0,m] by the definition



4.4. THE DECOMPOSITION METHOD 49

of R4. Secondly, go; is in Il4y, ., as ¥y p, clearly implies that for any ngﬁ e F,
Jz : Jy : head(z) A edge; (2, y).

The second condition specified by Definition 3.2.1(6) is that there must exist a total
function outg, : Q4 — P (P’) that satisfies a number of conditions for each rule in R 4.
Let outg, (¢s:) ={¢}. For each rule r: (g4, Vo rr) — leior, D Ra, outp, satisfies
the conditions given by Definition 3.2.1(6) as follows :

(1) vy, . (root,,, ) €3, so this condition is satisfied trivially.
(2) For any w € V,, . with v, . (u) = (gy,w), we have out u) =

{¢'} C outp, (g5,4) = {¢}.

(3) out, .., (ro0t,,..,.) Noutr, (4s5) = (F —{6}) U {drop | i <m}) N {6},
and as ¢ € ® U {lift} and therefore ¢ # drop, and as ¢ ¢ F — {¢}, this

intersection is empty.

Lg,i,o Fr (

U
LEMMA 4.4.7. Let d € Ry o/ (Cay). If snt ({qugpo, (roots, X)) =% , d, then |Vys| = k.

PROOF. We will prove this by induction on k. For k = 0, |Vyx| = 0 = k, as
vg = {(roota, (qus 0, (roots, A)))}. Now assume the property holds for a given k, and
that snt ((qug 0, (roots, A))) :>’j1’t dry = at dp1. Let w € V), be the computation step
node of computation step dy, = 4, dx4+1. Then w is labeled with a configuration in C'y 4,
and it is replaced in dj.; by the output of an instruction execution. As all instructions
occurring in rules of A have only the root labeled in X, ‘deﬂ,g} = V4. =] +1. By
induction, the lemma holds for all k. O

LEMMA 4.4.8. A is total and deterministic.

PROOF. This statement is equivalent to saying that for any configuration ¢ =
(qp,i, (u,m)) € Cay, exactly one rule r € R, is applicable to c. Let (g4, (u, 7)) € Cay
be any configuration. Input configuration (u, ) satisfies condition v, ) cut,(u),r With
(@) = & <<ﬁ (u) ,u) for ¢ € out, (u). There exists a rule for any combination of a state
s,i and condition 1, ,, so A is total. In addition, (u, ) satisfies no other conditions,

as all of the conditions 1), r,, are mutually exclusive (which can be easily verified). [

LEMMA 4.4.9. Let d € Ry o (Cay). If snt({qufso, (root;, \))) =74, d, then there
exists an injective edge homomorphism h from d to T (t) that satisfies the following
properties:

(1) For all w € Vyyx, vg(w) = vr@ (b (w)) and outy (w) = out. (h (w)).
(2) For allw € Vyc,,, if va(w) = (g, (u, ), then
(a) there ezists a ™ € V;' so that h (w) = U.
(b) outy (w) = {¢}, except when w = rooty, in which case ¢ = lift, i =0, and
outy (w) = 0.
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PrROOF. We will prove this property by induction on the length of the computation,

Base (k = 0): If snt ((qus 0, (rooty, A))) =% , d, then

d = snt ({qu.0, (root,, A))) .

Let h = {(rooty, root,« ) }. This is a rooted-tree edge homomorphism, as h (root,) =
root,(;), and as no edges need to be matched because d contains only one node. Further-

more, h is trivially injective because it contains only one element. As for the properties
of h:

(1) Holds trivially because Vy = (.
(2) We only have rooty € Vyc,,, and v4 (rootq) = (qus,o0, (roote, A)).
(a) We have h (rooty) = root.; = (root;),, having encoded pebble stack
A € V2, which is what the property demands.
(b) For root,; and vy (rooty) = (ge,, (v, A)) it is required that ¢ = lift, i = 0,
and out, (rooty) = (), which is indeed the case.

Induction: Let k > 0, and assume the property holds for any k-length derivation

snt (<q1ift70, (I“OOtt, )\)>) :>];X,t dk

with d, € Ry ¢ (Cat). We can derive the property for derivation

snt ((quiss,0, (Troots, A))) :>]Z,t di =t de

of length k£ 4 1 as follows. Let wy, € V) be the computation step node of step di, =4
di41, with v (w) = (g, (u, N)), u € V4, and ¢y; € Qa. (Note that the pebble stack is
always A because A is a twtt.) The one and only applicable rule for this configuration
is (qgi, 1) — ¢ wWith ¥ = ¥y, () oute(u),r A0 L = 14 1y (u) oute (u),r> With 7 <¢> = ¢,(p(u), u).
We then have dy.; = dj [wy < ¢ ((u, \))]; we can assume without loss of generality
that diy11 = dj [wp < ¢ ((u, A))] and that hg,_.q,,, is an identity isomorphism, because
it can be easily verified that if the property applies to a tree d, then it applies to any
tree isomorphic to d as well. As 7 is always equal to A in A-configurations, we will use
the shorthand definition ¢ (u) = ¢ ((u, A)) for any instruction ¢ € I4 and node u € V;.
By the induction assumption, there exists an injective edge homomorphism h; from dj
to 7 (t) that satisfies all of the properties specified by the Lemma. We will now show
that there exists an edge homomorphism A from dy1 to 7 (¢) that also satisfies all
of these properties.

In order to construct hy1, we must provide corresponding nodes for the extra nodes

that are in dj,; but not in di. By property 2b of the induction assumption (and as
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¢ (u) has exactly one level of nodes below the root), this set can be described as
{6(wi) | 6 € outis (wy) — {61},

and we want to bind each of these ¢ (wy,) to ¢ (hg (wy,)). However, this can only be
done if ¢ (hy, (wy,)) ezists for all ¢ € outyyy (wy) —{¢}. By property 2a of the induction
assumption, v (wg) = (¢, (u, A)) implies that hy (wy) = u, for some 7 € V}, so what
we want to prove is that out, (ur) 2 outjpi: (w) — {¢}. We will, in fact, prove the

following slightly stronger statement.
CLAIM. out,( (ur) = outyiq (wy).
PROOF. From the definition of 7 (t) we can derive:
out,(y (ur) = outy (u) U {drop | [7| < m} U {lift | 7 (|7|) = u}.
We know that because dj41 = dj, [wy < ¢ (u)], outyy1 (wi) = outy (wi)UJout, () (rootL(u)).
We can derive from the definition of ¢ (u) that
out,(, (root,wy) = (out, (u) — {¢}) U {drop | i < m}.

When wy, = rooty, then outy (wy) = (), ¢ = 0, and ¢ = lift (by property 2b), which
implies outy41 (wy) = outy (wi) U out,gy (r0ot,)) = out,) (root,w,)). As ¢ = lift and
|7| =i =0, we know that {lift | 7 (|7]) = u} = (), and we have

out,(y) (root,y) = (out, (u) — {¢}) U {drop | i < m}
= outy (u) U{drop | |7| < m}
= outy (u) U{drop | |7| < m} U {lift | 7 (|x|) = u}

= outry) (Unr)
which is what we wanted to show. Now consider wy # rooty. Then outy (wy) = {¢}
(by property 2b), and (as explained below):
outiiy (wy) = outy (wx) Uout,g) (root,e))

= {o} U ((oute (u) —{¢}) U{drop | i <m})

= {lift | ¢ = lift} U out; (u) U {drop | |7| < m}

= {lift | 7 (|7|) = u} Uout; (u) U{drop | |7| < m}

= out( (ur)
Note first that we use the fact that {¢} U (out, (u) — {¢}) = out, (u) iff ¢ € out; (u),
which is the case iff ¢ # lift. The case that ¢ = lift is covered by {lift | ¢ = lift}. This

is the case exactly when hy (wy) = u, has 7 (|7|) = u, for the following reasons. First

of all, ¢ labels the first outgoing edge on the path from wy to rooty, as w; has no other
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outgoing edge labels. Secondly, hj (root;) = root.). As hy is injective, this implies
that ¢ also labels the first outgoing edge on the path from hy (wi) = ur to T0Ot ().
Now observe that if node u, of 7 (t) has an outgoing edge labeled lift, then this edge is
always the first edge on the path from that node to root.(;, as this path leads through
the lift edge to Uiefi(r,|r|-1), through the component 7iei(r|r|—1) (t) to the next pebble

at 7 (|7 = 1)efy(r 1 —1)» through the lift edge to 7 (7| — 1),5 etcetera until the

m,|m|—2)?
pebble stack is empty, and then to (root;),. Summarizing, hy, (w;) = u, has a lift edge
iff 7 (|m|) = w; the lift edge will be the first edge on the path to root., as is ¢, so

¢ = lift iff 7 (|7|) = u. This concludes the proof of the Claim. O]

Having shown that the outgoing edge labels of wy in di,; match those of hy (wy)

in 7 (t), we can now define hy, as follows:

heyr = hpU {<$<k+1> (W) riry) (B (W))) | 6 € outyyr (wy) — {¢}} :

It is obvious that h;4, is a total function from Vi to V) because, as observed
before, Vi1 — V) = {$<k+1> (wy,) | qg € outyyq (wg) — {(b}} Furthermore, we can show
that h,.; is injective using the following reasoning. Of course, hy is injective, so for
any two nodes w,w’ € Vi C Vjyq, w # w' implies hyyq (w) = hy (w) # hy (W) =
}}ktl (w'). Furthermore, for any nodes w = q3<k+1> (%Uk) zfnd w = (7321%1) (wy), with
o, ¢" € outgyy (wy) — {d}, w # w' obviously implies ¢ # ¢ and therefore hy,; (w) =
ng5<T(t)> (hi (wy)) # QASQT(t» (hi (wg)) = hgs1 (w'). Lastly, consider a pair of nodes w €
Vi € Viyq and w' = ng5<k+1) (wy), quS € outyy (wy) — {¢p}. We have hy 1 (w) = hy (w) €
hi (V). Assume that hyiq (w') = hgyq (w), e, gZS(T(t)> (hi (wg)) = hg (w). Clearly w #
wy. Then pathy, (wy, w) = wrduy (wi) - - -w in di, (as the only outgoing edge label of wy,
in di is ¢), and because hy, is an injective homomorphism, path_ ) (hy (wi) , hy, (w)) =
hie (wi) G(ryy (i (wy)) - - - hy (w) in 7 (¢). But if our assumption that qu5<T(t)> (hi (wg)) =
hi (w) is true, then if |path, . (he (wi) , hy (w))] # 2, we have (hy, (wy,) , hi (w)) € Er)
and so path, ) (hx (wr) , hi (w)) is a cycle in 7 (¢), which contradicts the fact that 7 (¢)
is a tree. On the other hand, if ‘pathT(t) (hi (i), hy (w))| = 2, then ¢y (b, (wy)) =
hi (w), which contradicts our assumption that ¢« (hi (wi)) = hi (W), as ¢ # ¢. We
have now verified all combinations from the domain of h;.;, and we can conclude that
hi+1 is in fact injective.

Next we show properties 1, 2a and 2b for hy.;. As for all nodes w € V; with
w # wg, outy, (w) = outgyq (w) and vy (w) = vy (w), it is obvious that the properties
hold for all nodes in Vj, — {wy}. We will therefore need to verify the properties only
for wy, and for all (;3<k+1) (wy) with ¢ # .
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(1) Let us begin by checking the labels. The only considered output node with
a label in ¥ is wy, which has v (wi) = vy (rootb(u)) = v, (u), whereas
his1 (W) = hy (wp) = ur has label vy (uz) = 14 (u), which is a match.
Now let us look at the outgoing edge labels. Again, we only need to consider
wy. Using the Claim, we have outyi (wy) = out,q) (ux) = out-(y) (hi (wi)) =
out-() (hry1 (wi)).

(2) (a) As discussed earlier, we only need to consider wy and all QAS(HD (wy) with
qg # ¢. Because vg41 (wg) ¢ Cay, that leaves the <§<k+1> (wy,), (;3 € outyy (wg)—
{¢}. We can derive the labels of these nodes from the definition of ¢ (u), as
dgs1 = dy [wg «— ¢ (u)]. If QAS = drop, we have

Vst <¢§<k+1> (wk)> = <qr(q;),i, (ng (u), A)>

As hit <<13<k+1) (wk)> = Sy (i (wr)) = Dirgey) (un) = (Qg(t) (u))w, we have

7 € V;' (taken directly from the induction assumption). However, if ¢ = drop,
then we have vjy1 (drop., 1y (wi)) = (Qise,it1, (u, A)). AS hyyq (dropqy (wr)) =
drop, sy (hx (wx)) = drop (), (Ux) = Uy, we have mu € V;*1 (as the induc-
tion assumption provides m € V;, and u € V;). This completes the proof that
this property holds for Ay .

(b) Like with the preceding property, we only need to consider the <;3<k+1) (wg,),
¢ € outgy (wg) — {¢}. Consider such a node <;3<k+1) (wg). It cannot be
rooty 1, as root,; is labeled in X in all but the initial intermediate output
tree. Now let us first consider the case that ¢ £ drop. In the definition of ¢ (u),

~

O u(u)) (rootb(u)) =ug with reverse edge label €,(,) (ué,rootb(u)> =r <Q§> The
derived node <§<k+1> (wg) has label <qr(¢;) - <q3<t> (u), >\>> It is easily under-

~

stood that node u; has only the “reverse edge” r <¢>) as its outgoing edge label,

SO out,(,) (%) = {r ((ﬁ) }, and as g is not the root of ¢« (u), the correspond-

ing node <;3<k+1> (wy) must also have outy, 4 <<§<k+1> (wk)) = {r (q?)) }, which
matches its label. Now consider the case that ¢ = drop. In this case, ¢ (u) de-
fines (;AS@(u» (rootb(u)) = Udrop, With out,( (tarop) = {lift}. On the other hand,

we have vjy1 (drop,qy (wi)) = (qitsi41, Stay), and outyy (drop .y (wi)) =
{lift}. This proves that this property holds for hy ;.

What remains is that we need to show that hy,; is an edge homomorphism from
diy+1 to 7 (t). Clearly, all edges in dj.; that correspond to edges in dj match up per-
fectly with edges in 7 (t), because hy.; fully contains hy. This means that we will
only need to look at the outgoing edges ¢ € outyy (wy,) — {@} to establish Ay as
an edge homomorphism. Using the first property we derived for h;,;, we already
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know that all of the outgoing edges are present. Also, we know that h;.; maps
these edges as <$<k+1> (wy,) ,(;3<T(t)> (hg (wk))) By this definition, the outgoing edge
labels obviously match up; in order to establish the homomorphism we still need to
check that e, ((;Aﬁ<k+1> (wy,) ,wk> = €r(¢) (@T(t» (ur) ,uﬂ). This is obviously the case

when ¢ = drop, as €41 (dropgqy (wi) ,wi) = lift = e (drop, sy (ur), ur). For

~ ~ ~

¢ # drop it is true as well: €44 <¢<k+1> (wk),wk) =7 (q?)) = &(pw(u),u), and
€x(t) (é(m» (ur) ,un) = (1) ((é(w (u))ﬂ ,uﬂ> = g <q§<t> (u) ,u). Therefore, hy,; is

a homomorphism, and by induction the Lemma is proven. 0]
THEOREM 4.4.10. For all trees t € Ry, ¢, Ta (t) = 7 (1).

PROOF. A is total and deterministic (by Lemma 4.4.8), so it will always successfully
compute at most one output tree (modulo isomorphism). We will now prove that
this tree is 7 (). First of all, the computation will proceed for at least }VT(t)} steps.
When only £ < ‘VT(t)‘ computation steps have been applied, there must be a node in
the intermediate output tree d that is labeled with a configuration, by the following
reasoning. Let hg.. be the injective edge homomorphism from d to 7 (¢), which
exists by Lemma 4.4.9. There are k = |V x| < ‘VT(t)} nodes that have labels in X
(by Lemma 4.4.7); for every one of these nodes, the set of output edges matches those
of the corresponding node in 7 (¢) (by Lemma 4.4.9(1)). If each of these outgoing
edges would lead to one of the nodes in Vjy, then this would also be true for the
corresponding edges in 7(t). As |hg_.¢) (Vax)| = |Vas| = k < Vi@, that would
imply that 7 (¢) is not connected. However, 7 (¢) is a tree and is therefore connected,
so we can only conclude that at least one of the outgoing edges of nodes in V; 5, leads
to a node not in V5. This node must then be labeled with a configuration in Cjy .
Because A is total, there will always be an applicable rule for that configuration, so
we can draw the conclusion that the computation will not complete in less than ‘VT(t)‘
computation steps. Now consider a computation of k = ‘VT(t)‘ steps that yields an
intermediate output tree d. Then [V, > |Vyx| = k = ‘VT(t)‘ by Lemma 4.4.7. On
the other hand, hq_ () is an injective edge homomorphism, so |Va| < ‘VT(t)‘. Together
with |Vy| > ‘VT(t)} this implies ‘VT(t)‘ = |V4l, i.e., hg_.r@p) is an edge isomorphism. All
of the |V x| = k = |V4| nodes in d have labels in 3, which match their counterparts in
‘VT(t)} completely, according to property 1 of Lemma 4.4.9. This implies that hq_,«)

is a full isomorphism, and d = 7 (). O]

4.4.4. The Simulating (n — m)-ptt. In order to complete the decomposition, we
must now define the simulating ptt M’ = (n —m, (X, ®'), (A, T'),Q, qo, R') such that
M’ performs a stepwise simulation of M using a tree transformed by 7. In preparation
for this definition, we require the following definitions and lemmas.
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DEFINITION 4.4.11. Let C be a set of relation symbols, and let C' O Ay, ¢ for some
node label alphabet ¥ and edge label alphabet ®’. Furthermore, let ® C &', and let x
and y be node variables. We define the C-MSO predicate pathg (z,y) as follows, using
C-MSO predicates 1, 5 as intermediate formulas for presentation purposes, because of
the length of the complete formula:

U
(e
s = VpeP: (meq(p,x)A—eq(p,y)) = U2
vy = (b€ P: uedgeq (x,0)) Ais
s = z€PAyePA(eq(x,y)Viy)

pathg (z,y) = 3P: 5

where we make use of the auxiliary predicate uedgeg, (x,y) = (edges (x,y) A edgeg (x,y)),

(—eq (a,b) A uedgeg (a, p) A uedgeq (p, b))
El(l, be P: ’401

which indicates the existence of an undirected edge labeled in ® in both directions.
The interpretation of pathg (z,y) is that “there exists a path from z to y whose

edges are all labeled in ®”. The formulation of pathg (z,y) is such that it is valid for

any acyclic graph. We will now state this interpretation formally, and provide proof

that it is correct.

LEMMA 4.4.12. Let X be a node label alphabet and let ®' be an edge label alphabet.
Let g € Gxo be an acyclic graph over ¥ and @', let ® C &', and let © and y be
node variables. Then pathg (z,y) is true for binding (br,,,,, br,...0) with b 2 ba_ 4
if and only if there is a path vivs - - v, from v = bp

ot (T) t0 v = bp, . (y) with
€g (Ui, Vig1) € P and €4 (vig1,v;) € @ fori e [1,k—1].

PROOF. In this proof, we will use the same subpredicates ¢; 5 that were used in
the definition of pathg (z,y) to identify the components of pathg (x,y).

(=) Assume pathg, (z,y) is true with binding B = (bg, 4, bFe, 0), b 2 bag 6 - Let
by, = bp, . (x) and b, = bg,,. (y). Then there exists a node set bp € P (V) so that
15 is true with binding Bs = (bg,,., br., © (P, bp),b). Then by conjuncts z € P and
y € Pofs, b, € bp and b, € bp. We will now construct a path v,v; - - - v3 from vy = b,

ode

to vy = b, where v; € bp for i € [1, k], and where €, (v;,v;41) € © and €, (vi41,v;) € ©
for i € [1,k—1]. We start with v; = b,. By conjunct (eq (z,y) V 14) of ¢5, at least
one of eq (z,y) and 9, is true with binding Bs. If eq (z,y) is true, then we are done:
vy = b, = b, is a path from b, to b,, and v; € bp. If not, then we know that v, must
be true with binding By = Bs, which implies that conjunct 3b € P : uedgeg (z,b) is

true, so there exists a v, € bp so that €, (v1,v2) € ® and €, (vy,v1) € . Note that
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ve # vy because g is acyclic (and so vjvs is a path). Having these first two nodes, we
can complete the path as follows by adding a node at a time, making sure that our
path is only connected by undirected edges in ®, and that we do not go back along
an edge that is already in the path. Let v; be the last node that was added to the
path. If v; is equal to b,, then we are done. If not, then v; is not equal to v; = b,
either (as vy ---v; is a path), and as predicate 14 is true with binding By, conjunct
13 is true with binding By = By, and as v; # b, and v; # by, 1 is true with binding
By = (bp,,q. @ (p,vi),bpe @ (P,bp),b). This, in turn, implies that ¢; is true with
binding By = (bg, .. & (p,vi) & (a,w1) & (b,ws) , bp,, ® (P,bp),b), for a pair of nodes

wy, wy € bp, which implies that €, (v;, w1) , €, (w1, v;) , €4 (vi, Wa) , €, (w2, v;) € . Now

ode

consider the following two situations. The first is that v;_; = w; or, symmetrically,
v;_1 = wo. In this situation, we take v;11 = wy (if v; 1 = wy) or vy = wy (f v,y =
wy), which is necessarily different from all previous nodes in the path, as there would
otherwise be a cycle in g. If v;_; # w; and v;_; # w,, then we know for certain that
@ (p,vi) ® (a,vie1) & (b, w) , br, ® (P,0p) ,b)
for w € {wy,wy}, and we can fall back to the first situation and continue for any of

1y is also true with binding B = (bg,_,,
these paths, both of which would eventually lead to b,: as every new node we add
to the path is different from all the previous ones, and as bp is finite, adding nodes
following this procedure will eventually yield a complete path from b, to b,. However,
this cannot happen: as both paths would lead to b,, and both paths are distinct, they
would form a cycle in g when joined together. Therefore, this case cannot occur.
(«<)Assume that there is a path vjvy - - - v with vy = bg,_,, (2), vy = b, (v), and
both €, (v;, v;41) € ® and €, (vi11,v;) € ® for ¢ € [1,k — 1]. Then pathg (x,y) is true for
binding (bg,_,., br,.,, b) because 15 is true with binding Bs = (bg,,,., b, ® (P, bp) . b)
with bp = {v1,vs,...,v;}. This can be seen as follows. Let b, = bp,_, () and
by, = b, (y). Obviously, b, = v; € bp and b, = v, € bp, so the conjuncts
x € P and y € P of ¢5 are true with binding B;. Now, if & = 1, then v; =
v = b, = by, so eq(x,y) will be true, which implies that s will be true. Now
consider the case that £ > 1. Then 1), is true with binding B5, because conjunct
db € P : uedgeg (x,b) is true as €, (by,v2), €, (v2,0,) € © and vy € bp, and be-
cause 3 is true as well, which we will show next. For 135 to be true, we should
show that 1 is true with binding By = (bp, .. ® (p,v:),br., ® (P,bp),b) for any
v; & {bs, by}, i.e., i € [2,k —1]. This is the case when 1, is true with binding B; =
(bp,ou. @ (p,v;) @ (a,wy) & (b, ws), bp,, & (P,bp),b) for a pair of nodes wy, wy € bp. It
is easy to see that v is true with binding By if {w;, ws} = {v;_1,v;41}. This concludes

the proof that pathg (z,y) is true with binding (bg, ., br.,, b)- O
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DEFINITION 4.4.13. Let £, ®, &’ be alphabets, with &' O ®. Let C' O Ay, ¢sU{head}
be a set of relation symbols. The C-MSO predicate reachableg (x) is defined as

reachableg () = 3h: (head (h) A pathg (h, z)).

The predicate reachableg (z) indicates that x is reachable from the reading head
location while crossing only edges labeled in ®. We will now prove a special case of
this interpretation, which is that in a tree 7 (¢) (as in Definition 4.4.3), reachables ()

is true for all nodes in the same component tree 7, (t) where the reading head resides.

LEMMA 4.4.14. Let X, ®, 9" be alphabets, with ® = & U {drop, lift}. Let C' D
Ay, o U {head} be a set of relation symbols. Let m > 1, and let 7 : Ry ¢ — Ry o be
defined as in Definition 4.4.3. Furthermore, lett € Ry o, u € V;, 7 € V;Sm, and let B =
(0F, 00+ OFyei s b) be a binding for C-MSO predicates with b 2 bag, ,, -y U {(head, {ux})}.
Then reachableg (z) is true with binding B if and only if bp,,, (v) = w, for some
w € V.

PROOF. We have reachableg () = 3h : (head (h) A pathg (h, x)), which is true with
binding B iff pathg (h, x) is true with binding (bg .. @ (h,u,),bg,,,b), as head (h) is
only true when bg, . (h) = u,. According to Lemma 4.4.12, pathg (h, z) is true with
ode (h)a Vg = bFnode (:L') for
which e (v;,v41) € ® and €, (vig1,v;) € ® for i € [1,k —1]. If the path from
bp,.q (h) to bg,, .. (v) satisfies this condition, then bg,_, (x) and b

node node

ode

this binding iff there exists a path vyvs - v, with v; = bp,

(h) = u, must
be in the same component tree 7, (t) of 7(t), as none of the edges leading to other
component trees are labeled in ®. All nodes in component tree 7, (t) are w, for some
w € V;. On the other hand, if bg, . (x) and bg, . (h) = u, are in the same component
tree 7, (t) of 7 (¢), then path,_ ) (bF,.q. (h) ;bR (7)) is entirely within that component
tree and hence contains only edges with labels in ®. This completes the proof of the
Lemma. U

DEFINITION 4.4.15. Let X, ®, ' be alphabets with &' O &, and let C' be a set of
relation symbols. If ¢ € MSOg¢, then ¢ constrained to ®, written ¢ [®], is a C'-MSO
predicate, with C' = C'U Ay, ¢ U {head}, defined as follows:

e If ¢y = x € X for a node variable x and a node set variable X, or if ¢ € AF,,
for a relation symbol a € C, then ¢ [®] = 4.
o If ¢y = =)y with ¢y € MSOg¢, then ¢ [®] = —1); [P].
o If Y = (Y1 V 9g) with 1,905 € MSOg, then ¢ [®] = (¢1 [P] V ¥ [D]).
o If ) = Vux : ¢, with ¢ € MSO¢ and z a node variable, then 1 [®] is defined
as
Vz : (reachableg (z) = 1 [®]).
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o If Yy = VX : ¢y with ¢/ € MSO¢ and X a node set variable, then v [®] is
defined as

VX : ((Vx € X : reachableg (z)) = 1 [®])

for some node variable z.

In the definition of v [®], the predicate reachables (z) is used to transform an
MSO predicate { € MSO¢, that, say, works for trees ¢t € 7%, 4, to a predicate that is
equivalent to ¢ when it is applied to a larger tree ¢’ € T% ¢/ that contains an isomorphic
copy of t, and where the part that is isomorphic to ¢ can only be left through “marker
edges” that are labeled outside of the edge label domain of . Note that such a larger
tree ¢’ may contain several components that are each an isomorphic copy of a (possibly
different) tree; the predicate ¢ [®] considers only the component that the reading head
resides in. In our simulating ptt M’, we will use constrained MSO predicates by taking
the conditions of the original ptt M, that work on a treet € Ry, ¢, and then constraining
them to work on 7 (t) € Rs auift,drop}- We Will constrain the conditions of M to the
edge set ®, which will make sure that the conditions work exactly on the nodes of the
component tree 7, (t) of 7 (¢) in which the reading head resides when the condition is
evaluated.

The next definition shows how to transform an MSO predicate by replacing an
atomic formula by an MSO predicate. This will allow us to replace references to

pebbles in M’s conditions by equivalent predicates in the simulating ptt M.

DEFINITION 4.4.16. Let C' be a set of relation symbols and let ¢» € MSO(. Let
C'"C C,andlet [ : (UaeC’ AFa) — MSO¢ so that for « € C’" and « (xl, . ,xarity(a)) €
AF,, f (o (21, ..., Tarity(a)) ) is an MSO predicate with free variables (Fyode, #), Fnode C
{xl, . ,xarity(a)}. Then ¢ [f] is defined recursively as follows:

o Ifyy=x¢c X, then ¢ [f]=2 € X.

o If ¢y = =)y with ¢y € MSOg, then ¢ [f] = —¢4 [f].

o If oy = (Y1 V 1by) with ¥y, 99 € MSOg¢, then ¢ [f] = (1 [f] V U2 [f])-

e If¢) =Vux : ¢ with ¢); € MSO¢ and a node variable x, then ¢ [f] = Vx : ¢ [f].

o If ¢y = VX : 4y with ¢; € MSO¢ and a node set variable X, then ¢ [f] = VX :
U [f].

o If Y € AF,, a ¢ ', then ¢ [f]

o If € AF,,, a € (', then ¢ [f]

.
f ().

With these definitions, we can now define M.
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DEFINITION 4.4.17. For a given ptt M = (n, (3, ®), (A, '), Q, qo, R) and an integer
m € [1,fg(M)], we define M’ = (n —m, (£,P'),(A,T"),Q, q, R'), where
¢ = P U{drop,lift}
R = {{qg,¢;) — t; | {¢,¥) — ¢isin Rand i € [0,n]}
v = { false if 1 uses peb, for a local pebble k£ < ¢
' ¥ [®] [fi] A simpebcount,; A safe,; otherwise

o= L]si]
with fi : (Upeqiun AFpen, ) = MSO,,, and s; : Clyy — Clyyr defined as follows:

fi = {(pebmin(ivm) (), Ja : (edgeys, (x,a))) | « is a node variable} U
{(peby (x), false) | z is a node variable and k € [i + 1,m]} U
{ (peby, (z), peb,_,, (z)) | « is a node variable and k € [m + 1,n]}
si = {({g,drop),(q,804,)) | ¢ €Q, 1 <m} U
{ (g, 1ift) , (q,8051)) | 4 € Q, i < m}.

The predicate v); uses A;-MSO predicate simpebcount,, which verifies whether the
“simulated” pebble count is equal to i, and which is defined as:

simpebcount, = levelyin(im) A pebcount . o ;—m)-

Recall that the simulated pebble count is equal to the number of “drop” edges that
have been followed plus the number of real pebbles that have been dropped. The
simpebcount predicate uses the level subpredicate to check the number of “lift” edges
that can be followed from the reading head in the simulating tree (which, of course,
corresponds to the number of “drop” edges that have been followed), and uses pebcount,
as defined in Definition 3.2.1 (but with n —m instead of n), to check the additional real
pebbles that have been dropped in the simulating ptt. The level predicate is defined
as follows for j € [0, m]:

level, = 3o, Yo, 21,91, %2, Y2, ..., 2; : head (xq)
A /\ (pathg (zx, yr) A edgens (Yx, Trt1))
kel0,j—1]

A= (3yj, w41 ¢ (pathg (75, y5) A edgeyy (35, Tj11)))) -

The 1); predicate also uses the safe auxiliary predicate, which verifies that the input
instructions contained in the translated instruction ¢; are, in fact, valid in the situation
at hand. The inclusion of this predicate is necessitated by the fact that, by Definition

3.2.1(3), the right hand side of a ptt rule can only use instructions whose validity is
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implied by the rule’s condition. The safe predicate is defined as:

Jz : Jy : (head (z) Aedgey (z,y))  ifw=go, (¢ € D)
safe,; = /\ —3Jx : peb,,_,. (x) if w = drop
vi; (w)=(gw)EA (weV,,) Jz : (head (z) A peb,_,, (z)) if w = lift.

LEMMA 4.4.18. M’ is a ptt.

PROOF. Since M’ clearly has the same structure as a ptt, proving that it is a ptt is
a matter of proving that the rules in R’, which are of the form (g, 1);) — ¢; actually have
q € Q, ¢; a valid condition of M’, and ¢; € Iy, . Furthermore, we need to specify
outr : @ — P (I'). First of all, for any rule (q, ;) — ¢;, we have (q,7) — ¢ € R, so
q € Q. Also, it is easy to verify that v); is a well-formed, closed A,;~-MSO predicate.

Secondly, observe that ; has been defined to include, in the top-level conjunct
safe, ;, for every input instruction w used in ¢; except for the lift instruction, the
exact predicate x that 1); needs to imply for instruction w to be in II;p ,,, by the
definition of Il ,,. As these are top-level conjunctions, it is clear that for any in-
put instruction w # lift that occurs in ¢;, M’ = (¢, = X), and so w € Iy,
and v; € Iypy, = Rar(Q xIypy,). In the case that w = lift, we have M’ |=
(¢; = Ju: (head (z) A peb,_,, (z))), but also M’ |= (¢; = simpebcount;), and as
M' = (simpebcount, = pebcount,y,. i m), M’ = (i = pebcount ..o m))-
Because 3z : (head (z) A peb,_,, (z)) implies that the pebble count is at least 1, we
therefore have M’ = (¢; = pebcount,_,, ). We derive

3z : (head (z) A peb;_,, (z)) A pebcount,_,,

Jx : (head (z) A peb,_,, (z) A pebcount,_,,)

= Jda: | head (z) A \/ (peby, (z) A pebcounty,)
ke[l,n—m]

=  dz: (head (x) A toppebble (z))

which is exactly the predicate that 1; needs to imply for lift to be in I, ,. Therefore,
the reasoning that we used earlier for the other input instructions is also valid for the
lift instruction.

Finally, let outg (q) = outgr(q) and observe that if the conditions specified by
Definition 3.2.1(6) hold for outg (¢) and a rule {q,v) — ¢ € R, then they also hold for
outr (q) = outg (¢) and all {q,v;) — ; € R’ (i € [0,n]), as ¢; = ¢ [s;] has configuration
instructions with a state ¢ at the exact same nodes where  has them, with the same

set of outgoing edges. This completes the proof that M’ is a ptt. 0

We will now prove that the configuration mapping cc;, as defined in Definition 4.4.2,

satisfies the conditions given by the definition of stepwise simulation (Definition 4.3.1).
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LEMMA 4.4.19. Let (u,m) € IC,,, v € CMSOa4,, where ¢ does not use any rela-
tion symbols in Pyay = {peb, | k < |7|, k local in M}. Then v is true with binding
((D, 0, bAM,t,(qu)) if and only if 1) [®] [f\wl} is true with binding ((7), 0, bAM,J(t),cict((wr))).

PROOF. We will prove this using structural induction. Let ht—meft(ﬂ m(t Vi—= Ve
be the injective homomorphism defined as just after Definition 4.4.3, and let Py (rm) =
ht_)ﬁeﬁ(mn)(t) for brevity. For ¢ € MSQO,4,,, let ghode be a function from node variable
bindings for ¢ on ¢ to node variable bindings for ¢ [®] [ fix] on 7 (¢) so that for bp, . :
Frode = Ve Gnode (Doqe) * Friode = V() With gnode (brpoq,) () = Nett(rm) (Do, (%)) for
all z € F!_ 4. Similarly, let g be a function from node set variable bindings for ¢ on
¢ to node set variable bindings for ¢ [®] [fir)] on 7 (¢) so that for bg,, : Fl, — P (V}),
Gset (bhre) * Floy — P (Vey) with gser (0ret) (X) = {Piteti(mm) (w) | w € bp, (X)} for
all X € F!

vet- AS Niegy(rm) is total and injective, so are gnoge and gset. For brevity, let

b= bayt(um) ANV = bays (o) cica (wm) = Da 2(0) (s my stackence(r))

Property: If ¢ € MSO,,,, ¥ does not use relation symbols in Fgca, then v is
true with binding B = (br,_,., br,,,b) if and only if ¢ [®] [fir] is true with binding
B’ = (gnode (bFppa,) » Gset (DRt ) » U').-

Base: The base of the structural induction is formed by all predicates that do not
use subformulas, i.e., by the atomic formulas. We will separately consider x € X and
the atomic formulas over each of the relation symbols in Ay, = {eq, head, false, true} U
{lab, | 0 € ¥} U {edge¢ | o € CI)} U {peb, | i € [1,n]}.

e Consider 1) = false. Then ¢ [®] [f,] = false. Obviously, ¢ is always false
with binding B and v [® [ f‘ﬂ] is always false with binding B’.

e Consider ¢ = true. Then 1) [D] [ ] = true. Again, 9 is obviously always true
with binding B, and ¢ [®] [f«/] is always true with binding B'.

e Consider ¢ = ¢ [®] [fi5] = « € X for some node variable z and node set
variable X. v is true with binding B if and only if b, (z) € bg,, (X), which

is true if and only if

node (bFnode) (J?) = hleft(w m) (bF ode ( ))
S {hleft(w,m) (’UJ) | w e bFset (X)}
= Jset (bFset> (X>

(where the iff is justified by the fact that hiefe(r,m) is total and injective), which
is true if and only if x € X is true with binding B’'.

e Consider ¢ = ¢ [P] [f\w\] = head (z) for some node variable z. Clearly,
head (z) is true with binding B iff b, ,, (z) = © iff gnode (bF,q.) (%) = Uiei(r,m)
(where the iff is again justified by the fact that hieg(x,m) is total and injective)
iff head (z) is true with binding B’.
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e Consider ¢ = 9 [P] [f\ﬂ} = eq (z,y) for some node variables x and y. Clearly,
eq (z,y) is true with binding B iff bp, . (2) = bp, .. (V) I Pieto(rm) (bR 0. (7)) =
Piete(rm) (DFpoue (¥)) (S Piegs(r,my i total and injective) iff gnode (Dr,yq.) (%) =
Gnode (bF,,4.) (v) iff eq (x,y) is true with binding B’

e Consider ¢ = ¢ [P] [fw] = lab, (z) for some node variable x and node label
o € 3. We find that lab, (z) is true with binding B iff v (bp,_,. (z)) = o, and
lab, () is true with binding B’ iff

ode

Vr(t) (Gnode (DFpo.) (%)) =
VT(t) <(bFnode (x))left(w,m)> =

Vi (bFpoa. (7)) = 0

(using the fact that v, (w:) = v; (w), by the definition of 7 (t)).

e Consider ¢ = ¥ [®] [fir] = edge,(z,y) for some node variables z,y and
an edge label ¢ € ®. We find that edge, (z,y) is true with binding B iff
€t (DFpoue (7) 5 bFoqe (V) = ¢, and edgey (2, y) is true with binding B’ iff

ET(t) (gnode (bFnode) (ZL’) » node (bFnode) (ZL’)) -
r) ( (PFiose @ timany » (Inode Prinse) () iigrm) ) =
€¢ (bFnode ($) 7bFnode (y)) = ¢

(using the fact that e ) (wx, w,) = € (w,w’), by the definition of 7 (t)).

e Consider 1) = peb, (z) for some node variable x and some pebble number
k € [m+1,n]. Then ¢ [®] [fix] = peby_,, (z). Now, peb, (z) is true with
binding B iff by, (1) = 7 (K) if Guote (brae) (@) = (ravae (D)etrimmy =
(7 (k) )ety(nmy = Pebenc, (m (k) ,left (m,m)) = stackenc, (m) (k —m) (where
again we use the fact that Aief(rm) is total and injective) iff peb,_,, (x) is
true with binding B'.

e Consider ¢ = peb,, (z) for some node variable  and k& = min(|7|,m). Then
V[®] [fir] =3a: (edgeyp, (2, a)). Also, because k = min (|r|, m), left (m, k) =
left (r, m). Now, peb,, (x) is true with binding B iff 7 (k) = bg,_,, (). We have
Gnode (DF,oq,) () = (0 (k))left(w,m) = (7 (k))left(ﬂ,k)’ which means that (7 (k))left(ﬂ,m) =
(7 (K)) rm(r) Where 7" =left (7, k — 1). By the definition of 7 (¢), there then ex-
ists an edge <<(7r (k) wrmry » (T (k:))w,) ,lift>, which means that Ja : (edge;f, (¢, a))
is true with binding B’. Reasoning in the other direction, the definition of
7 (t) implies that the only nodes gnoqe (br,

node

) (x) that have an outgoing edge
labeled lift are of the form (7 (k)),., (), which gives us gnode (bF,oq.) (¥) =
(OFuoae (@))ieti(mmy) = (T (K)) 1 r) and therefore br,,, (x) = 7 (k), which implies
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that peb, (x) is true with binding B. This proves the double implication for
this case.

e Consider ¢ = peb,, (z) for some node variable  and k € [|7| + 1,m|. Then
¢ [®] [fix] = false, which is false for any binding B’. Then we need to show
that peby(x) is false for any binding B. Take a look at k € [|7| + 1,m]. Then
k > |m|, which means that peb, (z) is false.

Note that the three cases for v = peb, (z) are exhaustive, because all pebbles k <
min (||, m) are local in M and hence are in Plye,. This concludes the base proof.
Induction: Assume that the property holds for all subpredicates that may be used
in a predicate. Now let 1) € MSOy,,, where ¢ does not use relation symbols in Pgca-
We will show that ¢ is true with binding B = (b, .. by, b) if and only if ¢ [®] [ fi]
is true with binding B’ = (gnode (bF, 4. ) s Gset (bry;) »b'). We have already shown that
this is true when 1 does not contain any subpredicates, so we will now consider all of

the possibilities for a 1) that does contain subpredicates.

e Consider ¢ = —¢1. As ¥ [®] [fix]] = —1[®] [fi«] (by definition of [®] and
[fi=(]), and 11 is true with binding B iff 11 [®] [f«/] is true with binding B’ (by
assumption), we have that 1) = —¢; is false with binding B iff ¢ [®] [ fi-] =
—tp1 [®] [fx/] is false with binding B’, and as a predicate is always either true
or false, v is true with binding B iff ¢ [P] [flﬂ] is true with binding B'.

e Consider ¢ = (11 V 1),). This predicate is true with binding B iff at least one of
¢y and v is true with binding B, iff at least one of ¢y [®] [ fir)] and 12 [®] [fix]
is true with binding B’ (because the property holds for ); and v, by assump-
tion) iff (1 (D] [fir] V2 [®] [fin]) = (1 V42) [@] [fir] = ¢ [P] [fir] is true
with binding B’

e Consider ¢ = Vz : 9. We have ¢ [®] = Vx : (¢ [P] V —reachableq (z)), and
as reachableg () does not use formulas affected by fix|, reachableq () [fix] =
reachableg () and therefore 1 [P] [f\wl} =V : (@Dl (D] [fw] V —reachableg (:E))
By Lemma 4.4.14 (applied to left (m,m)), for all w € V;, reachables () is false
with binding

(gnode (bFnode) S ($, wﬂ’) » Jset (bFset) ) b/)

if and only if 7’ # left (w,m). Hence, ¢ [®] [fr] is true with binding B’ iff
(41 [®] [fin] V —reachableg (2)) is true for all bindings

(gnOde (bFnode) @ (x7 w) 7gset (bFset) 7b,) ’

with w € Vi), iff ¢ [P] [f\wl} is true for all bindings

(gnode (bFnode> D (x7 wleft(n,m)) » Uset (bFset> 7b/) ’
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with w € V;, iff ¢; is true for all bindings (b,
iff ¢ is true with binding B.

e Consider v»v = VX : ;. By the same reasoning as in the previous case,
V[®] [fin] = VX ¢ (¢1[®] [fi] V 3z € X : —reachables (z)). By Lemma
4.4.14, for all w € V}, reachableg () is false with binding

@ (x,w),bg,,,b) with w € V},

ode

(gnode (bFnode) D ($, wﬂ’) » Jset (bFset) ) b/)

if and only if 7’ # left (m,m), and therefore 3z € X : —reachableg () is false
with binding (gnode (b, 4.) s Gset (bry,) @ (X, bx),b") if and only if there is a
Wy € bx so that @' # left (m, m). Therefore,

VX : (¢1 [®] [fir)] V 3z € X : —reachableg ()

is true with binding B’ iff (¢4 [®] [fix] V 3z € X : —reachables (z)) is true
with binding B’ combined with all possible bindings by € P (VT(t)) for X,
iff ¢ [®] [fix)] is true with binding B’ combined with all possible bindings
bx € P <VT )) for X, iff ¢y is true with binding B combined with all

left(w,m) (t
. . . -1 . .
possible bindings bx € P (hHT1eft(ﬂ,m>(t) <Vﬂeft(ﬂ,m>(t)>) =P (V) for X, iff ¢ is
true with binding B.
This completes the induction step, which implies that the property holds for all ¢/ €
MSO,,, that do not use relation symbols in Pycal- O

In order to be able to fully line up the truth values of 1) and v;, we need to consider
the extra conjuncts that are included in v; next to ¢ [®] [f;], plus the case that i uses
relation symbols from Ploca).

LEMMA 4.4.20. Let M = (m,(%,®),(A,T).Q.,%,R) be a pit, let t € Ryg,
let (u,m) € ICzy, and let j € [0,7]. Then pebcount; is true with binding B =
(@,@,bAﬁ,t,(u,w)) Zﬁj = |7T‘

PROOF. Recall that pebcount; = (3 : peb; (2)) A (Ake[jﬂﬁ] -3y : peb, (y)) for
j € [1,m]. This predicate is true with binding B iff there is a 7 (j) and there are
no «(j') for j/ > j, which is iff x| = j. On the other hand, for j = 0, we have
pebcount; = (Ake[j-i-l,ﬁ] —3Jy : peb, (y)), which is clearly true iff there is no m (j’) for
any j' > j, i.e., when |7| < j, i.e., |7| = 0. d

LEMMA 4.4.21. Let (u,m) € IC,:, and let j € [0,m]. Then level; is true with
binding B’ = (@,@,bAA{,’T(t)7ciCt((u77r))) iff |left (m,m)| = j, i.e., j = min(m,|x]).

PROOF. From the definition of level;, it is clear that level; is true iff there exists
a series of nodes wy, wy, wy, wy, ..., w; € Vy) so that wy = Wiefe(x,m) is at the reading
head and so that
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(1) for all k, €, (wy, wx41) = lift and path_ ;) (wy, w}) only crosses edges labeled
in @,
(2) there exist no w}, w;1 where path_ (w;,w}) only crosses edges labeled in ®,
and e, (w;-,wjﬂ) = lift.
Let 7' = left (m,m), so wo = u,. Constraint 1 on wo, wg, wy, wy, ..., w; € Vyq) is satis-
fied iff for k € [0, j = 1], wy, = 7" (17| = F)egyar vy A0 Whir = 7" (|7 = By (o ) (15
as within any component tree 7,/ (tf) of 7(¢), there can be at most one node wj
that is reachable through a ®-path that has a lift-edge, which is 7" (|7”|) ., and
as this lift-edge always leads to @ (|m"])eg(pm pvj—1)- Constraint 2 is clearly satis-
fied iff w; is in 7, (¢), Le., iff left (7, |7'| —j) = AN iff |[7'| —j = 0 iff |[7'| = j. As

|7'| = |left (w,m)| = min (m, |7|), this proves that level; is true iff j = min (m, |r|). O

LEMMA 4.4.22. Let (u,m) € IC,+ and let i € [0,n]. Then pebcount; (as defined in
Definition 8.2.1) is true with binding B = (@, 0, bAl\/Iytv(Uﬂr)) iff simpebcount; is true with
bzndmg B = (®7 ®7 bAM/,T(t)7cict((u,7r))) .

PROOF. We will compare the truth values of simpebcount, and pebcount,.
CASE 1. When ¢ < m, we have simpebcount, = level; A pebcount,. Two subcases:

e || > m. Then |stackenc; (7)| > 0, so pebcount, is false with binding B’ (by
Lemma 4.4.20) and therefore simpebcount,, is false with binding B’. From
i < m and |7| > m we can deduce that i # |r|, and therefore pebcount, is
false with binding B.

e |1| < m. Then |stackenc, (7)| = 0 and pebcount, is true with binding B’. This
implies that the truth value of simpebcount; is given by level;. By Lemma
4.4.21, level; is true with binding B’ iff i = |left (7, m)|, i.e., i = || (because
|| < m). This corresponds exactly with pebcount,, which is true with binding
B iff i = |nx|.

CASE 2. When ¢ > m, simpebcount, = level,,, A pebcount,_,.. Two subcases:

e |r| > m. By Lemma 4.4.21, level,, is true with binding B’, because m =
min (m, |7|). By Lemma 4.4.20, pebcount,_,, is true with binding B’ iff i—m =
|stackenc, ()| = |w| — m, i.e., i = |r|. Again, this corresponds exactly with
pebcount,.

e |7| < m. Then |stackenc; (7)| = 0. By Lemma 4.4.20, pebcount,_,, is true
with binding B’ iff [stackenc, (7)| = i — m, and as i« > m, i —m > 0 and
therefore this condition is not satisfied, and simpebcount; is false with binding
B'. Likewise, from i > m and |r| < m we can conclude that ¢ # || and that

pebcount, is false with binding B.
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LEMMA 4.4.23. Let (u, ) € IC,; and let (q,v) — v € R. Then 1 is true with bind-
ing B = ((7), 0, bAMJ,(um)) if and only if Vx| is true with binding B’ = ((7), 0, bAM,J(t),CiCt((Wr))).

PRrROOF. First, we will prove the special case that 1 uses a relation symbol in
Pocat = {peby, | k < |n|, k local in M}, which implies 9|, = false, which is always
false. As 1) uses peb;, € Pocal, ¥ = freey is true for (u,7) (by the definition of a
local pebble), and as free,; = —3z : peb, ., (v) while £ + 1 < |7, free;,; is false
with binding B, and therefore the fact that 1» = freey,; is true implies that ¢ must
be false. This proves the double implication for this special case.

Now for the general case in which ;| consists of 1 D] [ fW] and two other conjuncts.
By Lemma 4.4.19, ¢ is true with binding B iff ¢ [®] [f5] is true with binding B'.
That means that the Lemma’s statement is true iff ¢ [®] [fi,] implies both of the
other conjuncts, simpebcount, and safe,|r. Assume ¢ is true with binding B and
Y [P] [fw} is true with binding B’. By Lemma 4.4.22, simpebcount,, is true with
binding B’.

The truth of safe, |, is a bit more involved: we will have to prove that all of the
conjuncts in safe, ;| are true with binding B’. These cases cover all possible conjuncts

in safe, | :

e Conjunct 3z : Jy : (head () A edge, (x,y)) is in safe, || with ¢ € ® iff there
exists a w €V, so that Vi, (w) = <q,g0¢> iff there exists a w € V, so that
v, = (q,804). This implies that v = Jz : Jy : (head () A edge, (z,y)) is
true with binding B (because go, € I1,), which implies that ¢ [®] [fir] =
(32 : 3y : (head (z) A edge, (2,y))) [®] [fix] is true with binding B’ (by Lemma
4.4.19). We know that ¢ [®] [ fr] is true with binding B’, so

(33: 3y - (head (7) A edge, ($>y))) (@] [flﬂ]

must be true with binding B’ as well. Transforming this predicate into predi-
cates with the same truth value with binding B’ yields

(32 : Jy : (head (z) A edge, (2,Y))) [®] [fix]
= Ju: (Jy: ((head (x) A edge, (z,y)) Areachables (y)) A reachableg (z))
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using the (standard) fact that for a predicate x € MSO,4,, and a node variable

L,

(3z 2 x) [@]

(=¥ - =) [®]
=V : ((—x) V —reachableg (x))

=¥z : = (x A reachableg ())
= dz: (x Areachableg (7)) .

This obviously implies that 3z : 3y : (head (z) A edge, (z,y)) is true with
binding B’ as well, which is what we were trying to prove.

Conjunct —3x : peb,,_,, (z) is in safe, | iff there exists a w € V,  so that
v, (w) = (g, drop) iff there exists a w € V, so that v, = (¢, drop) and |7| > m.
This implies that ©» = -3z : peb, (x) is true with binding B (because
drop € I,7), which implies that ¢ [®] [fir]] = (-3 : peb, (z))[®] [fx]
is true with binding B’ (by Lemma 4.4.19). First, consider |7| = n. Then ¢
must be false, because ©» —> -3z : peb,, () is true, which contradicts our
assumption that 1 is true. Now consider |r| < n. We have already shown
that simpebcount,, is true, and if || > m, simpebcount, | contains conjunct

which includes conjunct —3z : peb,_, (z) (because |7| < n).

—m?

pebcount,
Therefore, =3z : peb,,_,, () is true.

Conjunct 3z : (head (x) A peby,_,, (x)) is in safe, | iff there exists a w € V; |
so that v, (w) = (g,lift) iff there exists a w € V, so that v, = (g, lift) and
|w| > m. This implies that v = dz : (head (x) A toppebble (x)) is true
with binding B (because lift € II,;,), so because we know that ¢ is true
with binding B, we know that 3z : (head (x) A toppebble (z)) is true with
binding B as well. Recall that toppebble (z) =V, , | (Peb (z) A pebcount,,)
in M. As pebcount,, is true with binding B if and only if £ = |r| (by Lemma
4.4.20), 3z : (head (x) A toppebble (z)) is true with binding B if and only
if 3z : (head (x) A peby, (x)) is true with binding B. This is true if and
only if (3z : (head (x) A peb ())) [P] [fix/] is true with binding B’. Because

7| > m,

(Elx : (head () A peby, (x))) (D] [f|7r‘] =

(32 : (head (z) A peby,|_,, () A reachables (z)))
and therefore we have that 3z : (head (z) A peby,_,, (z)) is true with binding
B'.
Conjunct 3z : Jy : (head (z) A edgegy, (%,y)) is in safe, | iff there exists
aw €V, sothat v, (w) = (q,804.4p) i there exists a w € V, so that



68 4. DECOMPOSITION

v, = (q,drop) and |7| < m. As |left (7, m)| < m, Wiefs(r,m) has an outgoing drop
edge according to the definition of 7 (t), so 3z : Jy : (head (z) A edgeg,op (4, Y))
is true with binding B’.

e Conjunct Jz : Jy : (head (x) A edgeyy (z,v)) is in safe, || iff there exists a
w €V,  so that v, (w) = <q,golift> iff there exists a w € V, so that v, =
(q,1ift) and |r| < m. This implies that ©» = Jx : (head (z) A toppebble (z))
is true with binding B, and as v is true with binding B, we know that Jx :
(head (x) A toppebble (x)) is true with binding B. We can deduce from the def-
inition of toppebble (z) that if toppebble () is true, then there is at least one k
for which (peb,, (z) A pebcount,,) is true. As pebcount,, is only true with bind-
ing B when k = |r|, we have that 3z : (head (2) A peby, (x) A pebcount, ) is
true with binding B. Then

(3z : (head (z) A peby, (2))) [®] [fir] =
Jdz : ((head (z) A Ja : edgeys (7, a)) A reachableg (7))

is true with binding B’, and so 3z : (head () A Ja : edgeyy, (z, a)) is true with
binding B’. This predicate is clearly equivalent to 3x : Jy : (head (x) A edgey, (x,y)),

which is therefore true with binding B’ as well.
OJ

LEMMA 4.4.24. Let t € Ry o, ¢ = (q,(u,m)) € Cuyy, 7 : (¢,¢)) — ¢t € R, and
i € [0,n]. Then r' : (q,1;) — ; is applicable to cc; (c) if and only if i = |7| and
r:(q, ) — v is applicable to c.

PROOF. Let ¢ = cc; (¢) = cci ({q, (u,m))) = (g, cic; ((u, m))).

(=) Let 7’ be applicable to ¢’. Clearly, this implies that ¢; # false. Then
Y; = ¢ [®] [fi] A simpebcount; A safe, ;, which implies that simpebcount; must be true
for ¢, which is if and only if i = |7| (by Lemmas 4.4.20 and 4.4.22). By Lemma
4.4.23, ¢ is true with binding (0,0,b4,,+r) if and only if ¢ is true with bind-
ing (@, 0, bA]\/[/,T(t),CiCt((u,W)))7 so because the latter statement is true (because ¢’ satisfies
V; = 1z|), the former is also true, which implies that c satisfies 1). As the state specified
in » matches the state in ¢ as well, r is applicable to c.

(<) Let r be applicable to c. We will show that r’ : (g, 1) — ¢-] € R’ is applicable
to . First of all, the state components of ¢’ and of 7’ match. That leaves the condition.
Because 1) is applicable to ¢, we know that ) is true with binding ((7), 0, bAAI7t7(U77F))7 which
by Lemma 4.4.23 implies that 1|, is true with binding (0,0, b4, () cic:((ur)) ), Which

implies that rule 7’ is applicable to ¢'. O

THEOREM 4.4.25. M’ performs a stepwise simulation of M using a tree transformed
by .
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PROOF. This requires that CCysy v 7() is nonempty for any tree t € Ry g. We
will prove this by showing that cc; € CCpsy ). Consider the three conditions for
membership of CCysy 17 ) given by Definition 4.3.1.

(1) cei ({go, (rooty, N))) = (qo, ((rooty), , A)) = {qo, (00t (), A)).

(2) Let ¢ = (e, (u,m)) € Crpy, and let r @ (g, ) — ¢ in R be applicable to
c. By Lemma 4.4.24, rule 1’ : (g., %) — vz € R’ is applicable to ¢ =
cey (¢) = cer ({ge, (u,m))) = (ge, cice ((u, 7)) = (qe, (Utefi(x,m), stackenc, (7)) ).
We now have to establish that ¢, (/) = ¢(c)[cc, i.e., that the fragments
of intermediate output tree produced by the rules are isomorphic except for
the fact that the configurations in M"’s intermediate output trees are trans-
formed by cc;. We will in fact prove that they are equal, i.e., ¢ () =
t(c) [ec;). The left hand side is ¢ [sx] (¢') = ¢ [s}x/] [9¢] Where g0 ((q,w)) =
<q, ((U]eft(ﬂ— m), stackenc, (7 )))>, while the right hand side is ¢ [g.] [cc;], where
gc ({¢,w)) = (¢, w((u,m))). None of g, g, S}z and cc, are defined for § €
A, which means that nodes u with v, (u) = 6 € A will have their equiv-
alents labeled with & in ¢ [sir] [g¢] and ¢[g.] [cc,] as well. As sy is not
total, let s be s so that s({q,w)) = sz ({¢,w)) when s/ ((q,w)) is de-
fined, and s ({(¢,w)) = ({¢,w)) otherwise. What remains to be proven is that
ge (s ((q,w))) = cct (9¢ ((¢, w))) for all (q,w) € Clp. We will cover all cases.

e (q,w) = (q,stay). We have s ({(q,stay)) = (g, stay), and

ge (<q7 StaY>) = <q7 Sta}’ ((uleft(n,m)u StaCkenCt (7T>))>
= (¢, (Wefs(r,m) stackenc, ()))
On the other hand, g¢.({(q,stay)) = (g,stay ((u,7))) = {(q,(u, 7)) and
cer ((g, (u, m))) = <Q7 (uleft(w,m)v stackenc, (77')) >
o (q,w) = <q,go¢> for some ¢ € ®. We have s (<q,go¢>) = <q,go¢> and
9e' (<Q>g0¢>) = <C_I g0y ((uleft(7r m), stackenc, (7 ))>
= (¢, (¢ (Wets(r,m) ) - stackenc (7)))
)

= (0 ((6 ()i - stackency (7)) )

On the other hand, we have g. ({q, go,)) = (g, g0, ((u,7))) = (¢, (¢ (u) , 7)),
and cc: ({g, (6 (1) ,m))) = (@, (6 ()i Stackency (7)) ).
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e (q,w) = (q,drop) and |w| < m. In this case, we have s({(q,drop)) =

<Q> godrop> and

9 ((4:80ur0p)) = (4: 80urop ((efi(rm), stackenc, (m))))
= <q, (drop (uleft(mm)) , stackenc;, (7T)>>
= (¢, (Wefe(r,m)-u, Stackenc, (1)) )
(g, (Wett(ru,m), stackenc; (1)) )
On the other hand, we have g, ((¢, drop)) = (g, drop ((u, 7))) = (q, (u, 7u))
and cc; ((q, (u,7u))) = (q, (Wett(rum), Stackenc, (7u))), and as 7| < m,
stackenc; (mu) = stackenc, (7) = .

(q,w) = (q,drop) and |7| > m. In this case, we have s({(q,drop)) =
(q,drop) and

ge ({g,drop)) = (g, drop ((wefs(r,m), stackenc, (7))))
= (q, (Wefs(r,m), stackenc; () - Wieft(r,m) ) )
= (¢, (Wets(ru,m), Stackenc, (Tu)))
On the other hand, we have cc; (. ({¢, drop))) = (g, (Wefs(ru,m), Stackenc, (Tu))),
as in the previous case.

(q,w) = (g,lift) and |7| < m. Then we must have 7 = 7'u where 7’ =
left (7, |7| — 1). We have s ({(g,lift)) = (g, g0y;;) and

9 ({0, 80i51)) = (8% 1 ((urefs(m.m), Stackenc, (7))))

= (g, (lift (tefy(x' m)-u) - stackenc; (7)))

= (¢, (wefs(x,m) stackenc, (m)))
On the other hand, we have g.({q, lift)) = (g, lift ((u, 7))) = (g, (u, 7)) and
cey ((q, (u, 7)) = <q, (uleft(ﬂzvm),stackenct (7?’))>, and as |7| < |7| < m,
we have stackenc; (1') = stackenc, (7) = A.
(q,w) = (q,lift) and || > m. In this case we also must have 7 =
7m'u where 7' = left (7, || — 1). Furthermore, note that stackenc; (7) =

stackenc, (') - Uiey(x,m), and that left (r,m) = left (7',m). We have
s ({q,lift)) = (g, lift) and

9e' (<Q7 hft>) = <Q> lift ((uleft(n,m), stackenc;, (7T)> >>
= (¢, (Wefs(x',m), stackenc; ('))) .
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On the other hand,

cer (g ({g1ift))) = (g, 1ift ((u, 7)))
= (g (u, 7))
= (q, (Wefs(x',m), stackenc, (7)) ,

as in the previous case.

(3) Let ¢ = (¢, (u,m)) € Cpre and let ¢ = ce; (¢) = (g, cicy ((u, 7))). When a rule
" {q, ;) — 1; € R' is applicable to ¢/, Lemma 4.4.24 implies that i = |7| and
rule 7 : (¢,%) — ¢ in R is applicable to c. The equality ¢ (cc; (¢)) = ¢ (c) [ccy]
was already proven in the second item of this proof. This completes the proof
of the Theorem.

O

LEMMA 4.4.26. A pebble k € [m + 1,n]| is local in M if and only if pebble k —m is
local in M.

PROOF. Pebbles nin M and n—m in M’ are both global, so we need to consider only
k <n. Let k € [m + 1,n — 1] be alocal pebble in M, and let k—m be the corresponding
pebblein M'. Letr : (q,v) — ¢+ € Rand r" : (q,v¢;) — 1; € R for some i € [0, n], and let
1; reference relation symbol peb,_,,. Recall that ¢; = ¢ [®] [fi] Asimpebcount, Asafe, ;.
Two cases:

o i <i. If peb,_,, occurs in ¢ [®] [f;], then peb,, occurs in ¢ and then 1); = false
by definition, which contradicts the fact that it references relation symbol
peb;,_,,. If peb,_,, occurs in simpebcount, = level,, A pebcount,_,,, then it
must occur in pebcount;_,,, and as pebcount; only references pebbles num-
bered j and higher, this implies that £k —m > i —m, i.e., kK > 1, which contra-
dicts our assumption that k£ < ¢. Finally, if peb,_,, occurs in safe, ;, then there
are two possibilities. The first is that it is in the conjunct =3z : peb,,_,, (),
which only occurs when & = n while we only consider £ < n here. The second
is that it is in a conjunct 3z : (head (z) A peb,_,, (z)), which implies k& = 4,
which contradicts our assumption that £ < 1.

e k > i. By definition, v; contains conjunct simpebcount;, which is defined as

_—

levelyin(i,m)/Apebcount Furthermore, we have pebcount

max(0,i—m)* max(0,i—m)

freemax(1,i—m+1)- Now observe that free, = free, for y > x. When
t < m, we then have free;, — free;_,,.1, and when ¢ > m, we have
free; ,y1 = freey_,,+1. This implies that M’ = ¢, —> freeg_,,.1-

Now let k£ € [m + 1,n — 1] be a global pebble in M, and let k —m be the corresponding
pebble in M’. Then there is a rule r : (¢,1) — ¢ where 1) references peb, and where
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) = freey;; is false for some tree t € Ry ¢ and input configuration (u,7) € IC,, ;.
Then v is true and free,,; is false with binding B = ((7), 0, bAM’t,(um)), which implies
that k + 1 < |7|, i.e., |7| > k. Then by Lemma 4.4.23, 1, | is true for binding
B = (0,0,ba,, r(t)cice((um))- As 1 references peby, k > m, and ), # false (which
means that 1) does not reference any relation symbol peb; with j < |7| where j is local
in M), 1| references peb,_,, in its conjunct ¢ [®] [f;]. On the other hand, free;_,,
is false with binding B’ because 7| > m and k —m + 1 < |r| — m = |stackenc; (7).
Therefore, for the rule <q, ¢|7r\> — LUg|, Y)x| = Ireey_,,11 is false while 9|, references

peb,_,.,, so pebble k — m is global in M’. O

Technically, we do not really need to know that the number of global pebbles stays
the same, in order to prove that a decomposition in k + 1 pebbles is possible, where k
is the number of global pebbles in the original ptt M. Nevertheless, it is an interesting
fact, as it places a lower bound on the size of the decompositions that may be achieved

using this exact decomposition method.

4.4.5. Deterministic PT'Ts. We have gathered all of the ingredients for defining
a decomposition method ¢ on ptts. However, it is desirable that dptt be closed under
decomposition by d, and there is no guarantee that M’ will be deterministic if M is
deterministic. In fact, if M is deterministic, M’ will behave deterministically as long
as its input tree is in 7 (Ry o) and as long as its configurations are in cc; (Chy). Using
this fact (which we will prove in the next Lemma), we will construct a ptt M” from M’
that is deterministic if M is deterministic, and that behaves exactly like M’ on input
trees in 7 (Ry o) and on configurations in cc, (C:). We will then prove that M” also
performs a stepwise simulation of M using a tree transformed by 7.

LEMMA 4.4.27. Let M be deterministic, and let t € Ry, 4. Then for every configu-

ration ¢ € Cipy, there is at most one rule in R' that is applicable to cc, (c).

PROOF. Let ¢ = (¢, (u, 7)) € Cpry. As M is deterministic, there is at most one rule
r:{(q,%) — ¢ € R that is applicable to c. Lemma 4.4.24 implies that the only rules in
R’ that can be applicable to cc; (¢) are 7’ : (q,1;) — ¢; € R’ with i = |x|. All of the

components of this rule are fixed, so there is at most one such rule. 0

Given that M’ is deterministic in its behaviour on all configurations that occur in
the simulations, we shall now define a ptt M” that is equivalent to M’ wherever M’ is

deterministic, and that has no true conditions in any other cases.

DEFINITION 4.4.28. Given M and M’, where M is deterministic, we define M" =
(n—m, (2,®"), (A, I'),Q, q, R") where R" = {(q, ¥; N exclyy,) — v; | (¢, ¢i) — v; € R'}
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with excly y, = /\cx —¢" where

X o= A {av) = € B = {{a.vi) = u}

and ¢, does not reference peb,_,, if k —m local in M" and k < i}.
LEMMA 4.4.29. M" is a ptt.

PROOF. This can be derived from the fact that M’ is a ptt. First of all, outzs =
outg clearly satisfies the conditions placed upon it by Definition 3.2.1(6). Furthermore,
whenever a condition 9; A excl, ,, is true, then 1); is true as well, which implies that if

L € Ipgy,, then o € [M,wi/\exclq,wi as well. O

LEMMA 4.4.30. Lett' € Tx g, let ¢ = (q, (u, 7)) € Cpprpy = Crpr v, and let R., be the
set of all rules in R’ that are applicable to ¢. Then rule v : (q,¢; N exclyy,) — t; € R”
is applicable to ¢ if and only if R, = {{q,¥:) — t;}.

PROOF. Let r be the rule (q,1;) — ¢;, and let " be the rule (g, ¥; A excly ) — ;.

(<) Let R, = {r}. Then 1) is true for ¢/, and for all r": <q,¢§-> — € R #r,
5 is false for ¢’ (as ' ¢ R;,). Condition 9; Aexcly,, asserts that 1); is true, and asserts
the falseness for a subset of the set of conditions that we just determined were false.
Therefore, r” is applicable to .

(=) Let r” be applicable to ¢’. Then conjunct ¢; is true for ¢, which means that
r € R/,. Now assume that R/, # {r}. That implies that there is a rule ' : <q,1/1;-> —
vy € R, " # r, and that ¢} is true for ¢’. But then also v’ € R', which implies that
either excl,,, contains a conjunct —)}, or ¢ references peb,_,,, k —m local in M’,
k <'i. The former case would contradict our assumption that ¢} is true. In the latter
case, ¥; == freey_m41. Also, ¢; == simpebcount,, and as peb,_,, is used, k& > m,
which implies ¢ > m, which in turn implies that simpebcount, = pebcount,_,, —
Jdz : peb,_,, (), while free;_,,.1 implies the opposite because k —m +1 < ¢ —m. This

contradicts our assumption that v} is true. Therefore, R}, = {r}. O
LEMMA 4.4.31. M" is deterministic.
PROOF. Let r{ : <q,1/1i(1) A exclq7w§1>> — Lgl) and 77 : <q,1/1](-2) Aexclq7w§2>> — L§-2)
be distinct rules in R”. Then there are distinct rules r| : q,wi(l)> — Y and 7

<q,@/)](-2)> — ng) in R'. Let t' € Ty ¢ and let ¢ € Cypp = Cyrp, and assume that
both 7} and 7} are applicable to ¢. By Lemma 4.4.30, this implies that the set of
rules in R’ that are applicable to ¢ is equal to {r}} (because r] is applicable to ¢)
and to {r}} (because 7 is applicable to '), and {r}} # {r}}, which is a contradiction.
Therefore, |/ and r} cannot both be applicable to ¢, and therefore there is at most one
rule that can be applicable to any configuration ¢’ € Cy», which implies that M" is

deterministic. O
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LEMMA 4.4.32. If M is deterministic, then M" performs a stepwise simulation of

M wusing a tree transformed by 7.

PROOF. We verify that cc, € CCyrynv,-(1), using the conditions specified in Defi-
nition 4.3.1:

(1) cer ({go, (rooty, A))) = (qo, (root, ), A)).

(2) Let ¢ = (g, (u,m)) € Chry, and let 7 : (¢,1) — ¢ in R be applicable to c¢. Then
by Theorem 4.4.25, there is a rule v’ : (¢, ¢') — ' € R’ that is applicable to
cct (¢), and ¢/ (cet (¢)) = o (c) [cer]. As ¢ € Cprp and M is deterministic, Lemma
4.4.27 specifies that 7’ is the only rule in R’ that is applicable to cc; (¢). Then
by Lemma 4.4.30 there is a rule r” : {(¢/,v") — / € R” that is applicable to
ccq (c).

(3) Let ¢ = (g, (u, m)) € Cpry, and let 7 : (g, 1; A exclyy,) — ¢; in R” be applicable
to cc; (¢). Then by Lemma 4.4.30, there is a rule 7’ : (¢, ;) — ¢; in R’ that is

applicable to cc; (¢). The remainder follows from Theorem 4.4.25.

O

LEMMA 4.4.33. Let k € [m + 1,n]. Pebble k — m is local in M’ iff pebble k — m is

local in M" .

PROOF. Let &k — m be local in M’, and let r" : (q,¢; ANexcl,,,) — 1 € R" be
a rule that references peb,_,.. The first possibility is that i; references peb,_,., in
which case M’ = ¢; = free,_,,41 because k — m is local in M’, and therefore
M" = 1; Nexclyy, = freey_,,41. The second possibility is that excl,,, references
peb,_,,. In that case, the definition of excl, ,, dictates that k > 4, and then either
M' = +; = simpebcount;, = pebcount,_,, = free;_,,.1 = freey_,, 1 (for
i >m)or M' | 1; = simpebcount, = pebcount, = free,_,, .1 (for i < m).
This implies M" = 1; Aexcl,y, = freeg_,11.

Now let & — m be global in M’. Then by Lemma 4.4.26, pebble k is global in
M. 1In the second part of the proof of Lemma 4.4.26 we showed that there then
exists a tree t € Ry ¢, a tree 7 (t) € Ry 4/, configurations ¢ = (g, (u, 7)) € Cyr and
d =cc;(c) € Capry and arule 17 <q,1/1w> — U|z| € R’ so that 1|, references peb,_, .,
Y|4 is true for ¢/, and freey,_,, 1 is false for ¢/. Then by the fact that M is deterministic,
Lemma 4.4.27 tells us that ' is unique, and Lemma 4.4.30 then implies that »” :
<q, Y| A exclqvww> — (x| € R" is applicable to ¢/, which means that ¢ A excly  is
true for ¢. However, free;_,,,1 is still false, so - A exclq,%| —> freey_,,.1 is false
and pebble &k — m is global in M". O

4.4.6. Finalizing the Decomposition Method.
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DEFINITION 4.4.34. generic : (Ptt — twtt) — (twtt x ptt) is defined as dgeneric (M) =
(A, M"), where A and M’ are constructed from M using the method described in this
chapter using m = fg (M). dqge : (dptt — twtt) — twtt xdptt is defined for deterministic
ptts as dget (M) = (A, M"), where A and M" are constructed from M using the method
described in this chapter, again using m = fg(M). § : (ptt — twtt) — twtt x ptt
is defined as 6 (M) = dget (M) when M is deterministic, and 6 (M) = Jgeneric (M)
otherwise.

COROLLARY 4.4.35. (M, (A, M')) is a decomposition step, and if M is determinis-
tic, then (M, (A, M")) is a decomposition step as well. dgeneric 15 a total decomposition
method, 040 1S a decomposition method that is total on dptt, and 0 is a total decompo-

sition method. Furthermore, dptt is closed under decomposition by dge; and 0.

PROOF. That (M, (A, M")) is a decomposition step follows directly from Theorems
4.4.25 and 4.4.10, Lemma 4.3.8, and Definition 4.2.1, which defines the concept of
a decomposition step. Lemma 4.4.32 provides the remaining proof for the fact that
(M, (A, M")) is a decomposition step. By Definition 4.2.2, a function ¢§ is a decom-
position method if all (M, (A, M')) € § are decomposition steps, which is the case
for Ogeneric; Odet and 0. Furthermore, dgeneric 1S total and dget is total on dptt because
the methods described in this chapter do not place any constraints on their input M.
The fact that J is total can be easily derived from the fact that dgeneric and dqer are
total. That dptt is closed under decomposition by d4e; follows from Lemma 4.4.31 and
Lemma 4.4.8, and that dptt is closed under decomposition by ¢ follows from the fact
that 0 (M) = dgey (M) if M € dptt. O

THEOREM 4.4.36. A ptt M can be decomposed into k + 1 twtts, where k is equal to
the number of global pebbles of M. If M is deterministic, then M can be decomposed

into k + 1 deterministic twtts.

PROOF. By repeatedly applying the decomposition method 9, we know we can de-
compose M into some number of twtts. At each decomposition step 0 (M;) = (A;, M;11)
(M; = M), the number of twtts in the total decomposition is increased by one (in the
form of A;), while the number of global pebbles remaining in the ptt is reduced by ez-
actly one, because the decomposition method ¢ encodes all pebbles up to and including
the first global pebble into the tree, while the remaining pebbles in M;.; have the same
number of global pebbles (by Lemma 4.4.26 and Lemma 4.4.33). After applying k — 1
decomposition steps, we have ptt M, which contains only one global pebble, and as
the definition of local pebble does not allow the highest-numbered pebble to be local,
the global pebble must be the last one. The step 0 (My) = § (Ag, My41) then leaves a
ptt M1 with zero pebbles, because 6 (M},) will encode all pebbles up to and including
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the first global pebble, which is the last pebble. The ptt M., with zero pebbles is
also a twtt, and combined with the twtts A, ..., A this gives a total of £ + 1 twtts
in the decomposition. If M is deterministic, then all of the twtts will be deterministic

because dptt is closed under decomposition by J. 0



CHAPTER 5

Application to XML Transformation Languages

5.1. Introduction

In this chapter, we will explore the capabilities of our extended Pebble Tree Trans-
ducer to perform XML transformations. We will begin by providing some background
into XML, XML transformations, XML document types, and the role of the pebble

tree transducer in the type checking of XML transformations.

5.1.1. Historical Background. XML [23] was designed to be a leaner replace-
ment for SGML, a document markup language that was standardized in 1986 [2].
Standardized by the WWW Consortium (W3C) in 1998, its primary focus was on the
storage and interchange of documents. In particular, it was to be the basis for XHTML,
a replacement for HTML, the SGML-based language for documents on the World Wide
Web. Shortly after the XML standard was published, the WWW Consortium published
a document-oriented transformation language called XSL Transformations (XSLT) [7],
whose structure was highly suitable for presentational transformations, such as would
be needed to transform XML data sets into XHTML documents. However, XML was
also being used as a generic format for storage of data, i.e., for databases, and XSLT
was not too well suited to the types of transformations or “queries” normally used on
databases. This left a vacuum, which was soon filled by a myriad of database-oriented
XML query languages. Eventually, the WWW Consortium embarked on the standard-
ization of a query language called XML Query or XQuery [22], whose semantics are
not unlike those of SQL, the standard query language for relational databases. At the
time of this writing, the XQuery standardization process is nearing completion, while
the second version of XSLT [16] is nearly finished as well.

5.1.2. XML Document Structure. An XML document has a tree structure,
where every node has a textual label (which is called a tag in XML terminology), a
set of name-value pairs called attributes, and a sequence of child nodes. In an XML
document, a node having tag foo is represented by a start-tag <foo> and an end-tag
</foo>. The start-tag and end-tag enclose the XML that represents the child nodes of
the foo node, e.g.:

<foo>
<childnodel> ... </childnodel>

7
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<childnode2> ... </childnode2>
</foo>

If a node has no child nodes, then the start-tag and end-tag may be written as a
combined start-end tag <foo />, which is short for <foo></foo>. The attributes of a

node are listed within the start-tag (or combined start-end tag) of the node, like this:

<foo attributenamel="’valuel’’ attributename2="’value2’’>

</foo>

At the highest level, an XML document consists of a string of such node descriptions.
Technically, an XML document has an implicit root element (called the document
entity) that is not included in the textual representation but that does exist in the
conceptual structure of the document.

When we translate this description of XML to tree-theoretical terminology, an XML
document is essentially an unranked tree. Although the attributes and the child nodes
are disjoint sequences of “subnodes” associated with a node, these sequences can be
unified by viewing the attributes of a node as specially marked child nodes. In their
original paper on pebble tree transducers, Milo et al. [17]| argued that XML’s unranked
trees can be encoded as ranked trees. While the graph-based tree model that we use
for our pebble tree transducers provides us with more freedom than ranked trees, it is
not capable of encoding XML natively either: the number of child nodes of each node
is limited by the number of available edge labels. We will consider an encoding of XML
using our tree model in Section 5.3.1. In contrast with the encoding used by Milo et

al., our encoding will include support for data values and an unbounded tag space.

5.1.3. Document Types and Transformation Languages. The XML stan-
dard allows an XML document to declare that it conforms to the restrictions of a
document type, specified by a Document Type Definition (DTD). For example, an
XHTML document declares that it is an XHTML document by referring to the DTD
for XHTML. A DTD specifies the following things:

e a list of allowed node labels;
e for each node label, the allowed attribute names; and
e for each node label, the allowed child nodes, in terms of a regular expression

over node labels.

Essentially, a DTD specifies a restricted kind of regular tree language consisting of
XML document trees, using the concept of a regular tree language over unranked trees
as described by Briiggeman-Klein and Wood [6]. Milo et al. [17] describe DTDs
as extended context-free grammars, i.e., context-free grammars where the right-hand

sides of productions are regular expressions over the node label alphabet. Note that
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DTDs are not able to fully specify a regular tree language, as they only specify the
relationships between a node’s label and the order of the labels of its child nodes.
However, the concept of a “document type” is usually extended to mean a regular tree
language, and more recent, next-generation XML type or “schema” languages such
as RELAX NG [1] and XML Schema [14] are able to describe more of the regular
tree languages. In a survey by Murata et al., [18], it is shown that XML Schema is
able to describe a specific subset of the regular tree languages that they call single-
type regular tree languages (which are comparable to the tree languages recognizable
by a deterministic top-down tree automaton), while RELAX NG is able to describe
all regular tree languages. Type definitions that can fully describe the regular tree
languages are referred to as generalized DTDs.

XSLT and XQuery transformations are allowed to specify the output type that their
result will have, i.e., that the result will conform to a specific DTD. Unfortunately, the
transformation languages’ complicated semantics make it hard to verify such a claim
statically; and performing the verification dynamically adds yet another step to the
already labor-intensive transformation process. Milo et al. [17] showed that, when
they modelled XML transformations using pebble tree transducers, a static type check
of the form “if the input tree conforms to type X, then the output tree conforms to
type Y” was decidable. Unfortunately, they did not provide too much information on
exactly which parts of the commonly used XML transformation languages could be
modelled by a pebble tree transducer. In the sections that follow, we will attempt to
provide more detailed insights regarding the extent to which pebble tree transducers
can model the capabilities of XSLT and XQuery.

5.1.4. Chapter Overview. In Section 5.2, we will look at the two XML trans-
formation languages that have been standardized by the WWW Consortium, XSLT
2.0 and XQuery 1.0, and at their common subset, XPath 2.0. In Section 5.3 we then
discuss how the features of these languages match up with the capabilities of a ptt,
and how the features may be implemented (if they can be implemented at all). For all
features, we will consider MSO-based implementations as well as implementations that
do not use MSO, in order to assess the extra capabilities provided by the addition of
MSO. Where the capabilities of a ptt are not sufficient for emulating XSLT or XQuery,
we will consider these deficiencies in the light of using the pebble tree transducers for
type checking purposes, i.e., we will consider an approzimation of the XSLT or XQuery
construct, and we will then consider whether a type check would yield the same result
using that approximation. The way in which a ptt can simulate XML transforma-
tions is illustrated in Section 5.4 using a sample XQuery transformation. The chapter

concludes with a section that deals with the number of global pebbles that XQuery



80 5. APPLICATION TO XML TRANSFORMATION LANGUAGES

transformations require, and a method for minimizing the number of global pebbles

required for the evaluation of certain queries.

5.2. XML Transformation Languages

5.2.1. XPath. If we want to explain the XSLT and XQuery transformation lan-
guages, we must begin by explaining XPath expressions [20], which are the common
ground between the two models. There are two kinds of XPath expressions: path ez-
pressions, which navigate the tree structure of an XML document to calculate sets (or,
more accurately, sequences) of nodes, and other expressions, which calculate values.
XPath terminology does not have a separate name for these other expressions, but we
will refer to them as wvalue expressions.

5.2.1.1. Path FEzxpressions. In short, one can describe a path expression as a set
of pairwise and per-node constraints on strings of nodes of a fixed length. A pairwise
constraint (called azis in XPath terminology) is always between two consecutive nodes,
and states a tree relationship, i.e., “child”, “descendant”, “ancestor”, “following” (in the
so-called “document order”, which is defined as a left-to-right pre-order tree walk),
“following-sibling” and the like. The per-node constraints consist of two parts: a node
test and a predicate. A predicate is a boolean XPath value expression. The node test
is a redundant construct that provides a subset of the functionality of predicates using
a more convenient notation. Using a node test, one can express a constraint on the
label of the node, and on the kind of node (node or attribute). The result of an XPath
path expression is calculated by performing pattern matching (a term that stems from
the fact that path expressions are referred to as patterns in XSLT terminology). The
pattern matching operation calculates a set of match nodes from a given starting node,
or context node in XPath terminology. Conceptually, it works as follows: one takes all
strings of nodes that start with the context node and that satisfy the constraints of
the path expression. Given a string of nodes, one can easily verify whether or not the
node string satisfies the constraints of the path expression. Of each of these matching
node strings, the last node is a match. The result of the pattern matching is a sequence
consisting of all matches, in document order, with no duplicates. The “no duplicates”
clause is significant, since a node may be a match for a path expression through more
than one string of nodes!

The following is an example of a path expression:
descendant: :foo[attribute: :bar="xyz’]/child: :baz

This path expression specifies constraints on a string of three nodes, starting with the
context node. The first constraint is descendant: :foo[attribute: :bar="xyz’]. In
this constraint, the axis is given by descendant: :, which specifies that the second node

must be a descendant of the context node. The axis is followed by a node test and
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a predicate: node test foo specifies that the node label of the second node should be
foo, and predicate attribute: :bar="xyz’ specifies that attribute bar of the second
node should have value xyz’. The second constraint, /child: :baz, indicates that the
path expression should locate another node, which must be a child node of the second
node, and whose node label should read baz. This third node is a match of the path
expression.

Path expressions also support the following syntactical conventions:

e child:: isthe default axis (e.g. foo/bar stands for child: :foo/child: :baz)
unless the separator is //, in which case the default is descendant::, e.g.
foo//baz stands for child: :foo/descendant: :baz.

e Q is short for attribute: :.

e A path expression that starts with / indicates that the second node of the
node string must be the root of the tree, e.g. /foo matches all nodes labeled
“foo” that are children of the root. One can also start the path expression with
//, which is short for /descendant: :.

e The path expression . indicates the context node itself.

5.2.1.2. Value Ezpressions. “Value expressions” are like regular mathematical ex-
pressions, i.e., they calculate a result by applying operators to values. In calculating
their results, they have access to the tags and attribute values of nodes, as well as
externally defined variables (which we will discuss later). Value expressions can access
the current node, and they can access other nodes in the tree by navigating to them
using a path expression. As mentioned in the preceding paragraph, XPath value ex-
pressions can be used as per-node constraints in path expressions; in this situation,
the expression’s current node is the node to which the constraint is being applied. For
instance, in the path expression example, the value expression attribute: :bar=’xyz’
retrieves an attribute from the current node, which is a potential match for the second
node in the full path expression, i.e., a matching node for descendant: :foo that is
being tested with the predicate [attribute: :bar=’xyz’]. Value expressions are also
used for other purposes, e.g. conditionally generating output. The expressions can
become arbitrarily complex: they have at their disposal a large library of functions,
they can perform calculations, and so on. Furthermore, not only can they perform
calculations on single values, they can also deal with sequences of values, which they
can filter, sort, merge and aggregate. There is one limitation that should be mentioned,
because it has important implications for the simulation of XPath using pebble tree
transducers: per-node constraints have no way of refering to other intermediate nodes

within the pattern expression.
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5.2.2. XSLT. The basic entity of the XSLT transformation language is the tem-
plate rule. A template rule consists of a pattern, which is a path expression that
determines the nodes to which the template applies, and a so-called sequence construc-
tor that determines the output tree structure that is to be produced for the input

nodes that match the pattern. A template looks like this:

<xsl:template match="foo’”>
<bar />
<baz />

</xsl:template>

Note that XSLT transformations are themselves XML documents: an XSLT template
is described by an XML node. This particular template matches any node having
label foo, and replaces it with the output of a sequence constructor, which in this case
consists of two nodes, one labeled bar and one labeled baz. The way that the pattern
is “matched” is somewhat different from normal path expressions: a node matches a
template’s pattern p if the node is a match for path expression p starting from at least
one of the nodes in the tree. For instance, if a template’s pattern is foo/bar/baz, then
any node matching //foo/bar/baz matches the pattern.

Using its list of templates, an XSLT transformation is able to transform a sequence
of nodes by iterating over the nodes and by selecting, for each node, the highest-priority
template for which the node is a match. For each node for which an appropriate tem-
plate exists, the transformation then generates output by instantiating the sequence
constructor of the template. An XSLT sequence constructor is basically a sequence
of output nodes, that may contain fixed output but that may also contain XSLT in-
structions to specify how specific parts of the output tree are to be generated. When
a sequence constructor is evaluated, the instructions can refer to the node that was
matched as the contert node, i.e., the instructions can evaluate nested path expressions
starting from the matched node, evaluate XPath value expressions on the matched
node, or they can copy the matched node. When an instruction is applied to nodes
selected using a pattern expression, these nodes are called the “selection”. The instruc-

tions cover the following things (leaving out some redundant constructs) :

e xsl:apply-templates: generate output by applying appropriate templates
to a selection.

e xsl:for-each: for each node in a selection, include the output of a specified
sequence constructor. Optionally process the selection in a specific order.

e xsl:if: include the output of a specified sequence constructor depending on

a boolean value expression.
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e xsl:copy and xsl:copy-of: Output a copy of the context node resp. a
selection. The xsl:copy instruction generates a shallow copy, i.e., it copies
only the node itself, while the xs1:copy-of instruction generates a deep copy,
i.e., a copy of the node itself and also the complete subtree below it.

e xsl:message: show the user a message, and optionally abort the translation.

e xsl:variable: bind the result of an expression to a named variable. A vari-
able definition has no child nodes to indicate its scope: instead, it is visible
throughout the remainder of the sequence constructor in which it is contained,
and in the nested sequence constructors invoked by the processing instructions
contained therein. Variable definitions are local to the template within which
they are defined, i.e., if a variable is defined in one template, and another
template is applied while the variable is in scope, the variable’s value is not
visible in the invoked template.

e xsl:with-param: templates may specify that they take parameters using the
xsl:param instruction; in the xsl:apply-templates instruction, the caller

may specify values for the parameters using xsl:with-param.
The following is an example of an XSLT transformation:

<xsl:template match="’/’">
<bar>
<xsl:apply-templates select=""%"’ />
</bar>
</xsl:template>
<xsl:template match=""foo’”>
<baz/>
</xsl:template>
<xsl:template match=""%"">
<xsl:if test="’Qpebbles !'= 3;’>
<xsl:copy />
</xsl:if>
</xsl:template>

This XSLT transformation consists of three templates. The first template has match
expresson / , which only matches the root of the XML document. This is, in effect, the
starting point of the transformation: an XSLT transformation’s processing starts by
applying a template to the root of the input document, and this template will be the
highest-priority template that matches this root node. The first template’s sequence
constructor defines a single node with label bar, with child nodes which are found by
applying templates to all children of the document’s root. For all of these nodes, the
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only candidate templates are the second and third templates, as none of the child nodes
of the root node are equal to the root node, and therefore the first template will never
apply. The second template matches any node labeled foo, while the third template
matches any node at all — except for those labeled foo, because the second template
has a higher priority. The second template simply outputs a node labeled baz for every
foo node encountered, while the third template copies the input node, but only if the
value of its pebbles attribute is not equal to 3. Now look what happens when this

transformation is applied to the following XML document:

<foo />

<betty pebbles="3" />

<foo />

<barney pebbles=""5"">
<bambam pebbles=""5"’/>

</barney>

The output of the transformation will be:

<bar>

<baz />

<baz />

<barney pebbles="’5"" />
</bar>

Note that the betty node has not been copied, since its pebbles attribute was equal
to 3. It has actually been processed by the third template, but as the condition of the
xsl:if was not met, the final output was empty. Note also that, although the barney
node has been copied, the copy is shallow, and the bambam child node of barney has not
been processed. This is because the sequence constructor that processed the barney
node (the third template) only copied the node itself using an xsl:copy instruction,
but did not specify that anything should have happened to its children — if it wanted
to have included its children in the output, processed by templates, it should have
specified <apply-templates />.

One additional feature of XSLT that we should mention is the concept of a mode,
a concept that is very similar to a pebble tree transducer’s state. Template rules may

specify that they are only valid in a certain set of modes, like this:

<xsl:template match=""%"’ mode="mymode’’>
</xsl:template>

The xsl:apply-templates instruction may specify, using the mode attribute, that only
templates should be applied that apply to a given mode:

<xsl:apply-templates mode="’othermode’’>
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In this example, the template rule defined above does not apply, because it only applies
to mode mymode and not to mode othermode. One special characteristic of modes is
that they are persistent: if an apply-templates instruction specifies a specific mode,
then all processing as a result of that apply-templates instruction takes place in that
mode — unless, of course, a nested apply-templates instruction overrides it by specifying
a different mode.

5.2.2.1. A Note on XSLT Versions. Although we limit ourselves to XSLT 2.0 in this
chapter, the differences between the XSLT 1.0 and the XSLT 2.0 processing models are
not such that our conclusions do not apply to XSLT 1.0. The main difference between
XSLT 1.0 and XSLT 2.0 is that XSLT 2.0 supports a richer and better-defined data
model, using schema information to be able to work with typed data values. Although
the processing model has been changed or clarified in many small details, the general

structure remains the same.

5.2.3. XQuery. While XQuery also uses XPath expressions to locate nodes and to
perform calculations, the XQuery transformation model is quite different from XSLT.
Where the XSLT paradigm is based on recursive application of template rules that
provide a binding between a node and its transformed output, the XQuery paradigm is
based on a more direct node search and iteration concept called the FLWOR ezpression.
FLWOR (pronounced “flower”) stands for the clauses of an FLWOR expression, which
are For, Let, Where, Order By and Return. The function and structure of FLWOR
expressions is similar to the SQL SELECT statement. The For clause is similar to
an entry in an SQL FROM clause, the Where and Order By clause are exactly like
their SQL counterparts of the same name, and the Return clause is similar to SQL’s
SELECT clause, the main difference being that it does not return a tuple but a tree.
The main difference from SQL is in the Let clause. The Let clause specifies a node set,
like the For clause, but there is a difference: while all the sets of nodes specified in the
For clause are “joined” (the query evaluation iterates over every combination of input
tuples), the Let clause binds a set of nodes to a single variable of the sequence type.
In the other clauses, such a set can be processed in all sorts of ways: aggregations can
be calculated, the sequence’s nodes can be copied in the output, the sequence can be
used in a nested For clause, and so on.

Here is an example of a FLWOR expression (similar to an example from the XQuery
standard):

for $d in /departments
let $e := /employees/employee[@deptno = $d/@deptno]
where fn:count($e) >= 5

order by fn:count($e) descending
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return
<big-department>
<deptno>
{$d/@deptno}
</deptno>
<headcount>
{fn:count ($e)}
</headcount>

</big-department>

Note that, as opposed to XSLT transformations, XQuery queries are not XML docu-
ments. This FLWOR expression finds all departments, for which it finds all employees
in that department, it narrows down the department selection to those having at least
five employees, then sorts the results by number of employees (in descending order)
and then returns a <big-department> node for each result, including child nodes rep-
resenting the department number and the headcount of the department.

5.3. Pebbles and XML Transformation Languages

We will now begin our investigation into how XPath path expressions and value
expressions, XSLT transformations, and XQuery queries may be implemented using
pebble tree transducers. We attempt to provide full coverage of all features of the
languages (modulo redundancy), so that we achieve a complete image of the things
which a pebble tree transducer can and cannot do. For every feature, we will first
consider an implementation that works for an “MSO-restricted” pebble tree transducer,

that we define as follows.

DEFINITION 5.3.1. An MSO-restricted ptt is a ptt whose conditions’ truth values
can be expressed as 3h : head (h) AY, where 1) is a boolean combination of the following

atomic formulas and predicates:

e lab, (h), where o is a node label.

e du: (edge¢ (h,x) Aedgey (z, h)), where ¢ and ¢ are edge labels.

e peb, (h), where k is a pebble number.

e istowardy j (h), which is a predicate that is true iff edge ¢ is the first edge on
the shortest path toward pebble k.

An MSO-restricted ptt has facilities similar to those available in earlier ptt models
that did not allow the use of MSO predicates. The “istoward” facility is new, but it
is necessary to provide a “sense of direction” in our tree model, that does not have a
concept of “up” or “down”. In a sense, it replaces the fact that earlier ptt models had

an implicit “is up” test for edges. We will discuss this in more detail in Section 5.3.2.
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For each transformation language feature, after we consider an MSO-restricted
implementation, we will discuss how an implementation using the full power of MSO
logic could improve upon such an implementation. At the end of the section, we will
discuss some of the more difficult issues, namely recursion, data-value joins, complex
data-value calculations, and sorting.

5.3.1. XML Representation. In order to be able to discuss implementations of
XML-based constructs in a ptt, we will need to assume some sort of representation
of XML documents as rooted trees. We will assume the following straightforward

encoding:

e There are two types of nodes that represent XML nodes: “tag” nodes and
“attribute” nodes. These node types are identified by their node labels only
as being “tag” or “attribute” nodes; the actual tag and attribute names are
encoded in child nodes (as we will discuss below).

e A “tag” node is linked to its children by an edge labeled “firstchild”, that points
to the first node in its sequence of child nodes (with a reverse edge labeled
“parent”). The remainder of the child nodes are then reachable by following
the “next” edges (with reverse edges labeled “prev”).

e Similarly, a “tag” node is linked to its attributes by an edge labeled “firstat-
tribute”, that points to the first node in its set of attributes (with a reverse edge
labeled “parent”). The remainder of the attribute nodes are then reachable by
following the “next” edges (with reverse edges labeled “prev”).

e Unbounded values in an XML document are represented by a linked list of
nodes, where the node label represents a finite chunk of the value, and an
edge labeled “next” leads to the next chunk (and the reverse edge is labeled
“prev”). A node that has an unbounded value associated with it identifies this
value by an edge that leads to the node representing the first chunk of the
value; this edge is labeled appropriately to identify the meaning of the value
(e.g., “tag” or “attribute”, see below), while the reverse edge is always labeled
“owner”. (In graphic representations, we will always depict unbounded values
as single nodes, which are labeled with the unbounded value, in quotes. This
does not reflect what a real unbounded value representation would look like;
most likely, such a representation would use a node for each character in the

unbounded value, or even for each bit.)
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e A “tag” node’s tag name is an unbounded value, identified by an edge “tag”.!
An “attribute” node has two unbounded values, identified by edges “name” and
“value”.

e The “document entity”, i.e., the implicit root node of every XML document,
is encoded as a “tag” node at the root node of the tree, with no tag, only
children. This conforms to the way the document entity is treated in XML.

e We consider text nodes a redundant construct, so we will not consider them at
all. We view them as equivalent to, say, XML nodes with a special tag text,
having an attribute value that specifies the textual value; everything that can

be implemented for such nodes can be implemented for text nodes as well.
Figure 5.3.1 shows an example of this representation for the following XML fragment:

<foo att="’35"">
<bar />
<baz />
</foo>
<bambam />

To prevent clutter, the Figure only shows edges in one direction; the reverse edge
labels are indicated in brackets. Even though the graph display was already simplified,
it remains large and difficult to interpret. In what follows, we will generally abstract
away some of the details of the graph representation when we display graphs. In
particular, we will generally display a “tag” node and the nodes representing its tag
value as a single node, labeled with the tag value. An “attribute” node is displayed as a
single node labeled attributename="value”. In addition, we will display only downward
edges (i.e., the edges having labels “tag”, “firstattribute”, “name”; “value”, “firstchild”);
the reverse edge labels are uniquely determined by the downward edge labels, so we can
safely omit them from the display. Figure 5.3.2 shows the same graph as in Figure 5.3.1,
but with these abstractions in place. One should remain aware that the abstracted
version of an XML graph is only an abbreviation for the full version; the abstraction

is simply for display purposes, nothing else.

5.3.2. Path Expressions. Path expressions can generally be evaluated using peb-
ble tree transducers. We will discuss three approaches: a naive algorithm that does not
satisfy all of the constraints imposed by XPath, a fully XPath-compliant algorithm,
and an extension of that algorithm using MSO logic. Futhermore, we will discuss an
approach that work only for certain types of path expressions.

1f the input document conforms to a DTD, then the number of possible tag values is finite and the
tag can be represented in the node label. However, a well-formed XML document does not need to
conform to a DTD, so we assume that tags are unbounded values.
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next [prev]

tag [owner]

firstattribute [parent] tag [owner]

firstchild [parent]

next [prev] @

tag [owner]| tag [owner]

FIGURE 5.3.1. An example of the graph representation of an XML fragment.

ALGORITHM 5.3.2. A naive algorithm for evaluating a path expression.

(1) Drop a pebble on the current node.

(2) Walk through all nodes in the tree that satisfy the next pairwise constraint.
(As the pairwise constraints are simple tree-structural constraints, they can be
implemented using a tree walk.) For each visited node:

(a) Ewaluate the per-node constraints. If they are not satisfied, continue with

the next node.
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next "bambam"

firstattribute firstchild

FIGURE 5.3.2. An example of the abstracted graph representation of an
XML fragment.

(b) If we are at the last pairwise constraint in the path expression, we have a
match. Erecute everything that needs to be done for a match.

(c) If we are not at the last pairwise constraint in the path expression, re-
cursively exrecute steps 1, 2 and 3 to find the nodes satisfying the next
pairunse constraint relative to the node that we are currently at.

(3) Lift the pebble dropped in step 1.

For a path expression over strings of n nodes, this algorithm drops n local pebbles
and no global pebbles (excluding pebbles dropped for evaluating per-node constraints).
The algorithm uses the stack of local pebbles to find the matches of a path expression
using the obvious implementation of n nested loops, one loop for each “step” or pairwise
constraint in the path expression. Unfortunately, this algorithm has several drawbacks.
First of all, the algorithm does not filter out duplicates: the algorithm will find a node
multiple times if there are multiple ways in which it satisfies the constraints of the
path expression, i.e., if there are multiple strings of intermediate nodes for which the
pattern’s constraints are satisfied. Also, the output of XPath is defined to be given in
document order, and this algorithm does not generate its output in that order. The
advantage of the algorithm is that it requires no global pebbles. Now consider the

following algorithm.

ALGORITHM 5.3.3. Alternative tree-based algorithm for evaluating a path erpres-

ston.

(1) Drop a pebble on the starting node.

(2) Walk through all nodes in the tree, in pre-order. These nodes are the candidate
matches. For each visited node:
(a) FEwvaluate a reversed wversion of the path expression, using Algorithm 5.3.2.

Each time a “reverse match” of the path expression is found, compare
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the reverse match with the starting node. If the reverse match s the
starting node, then the candidate match is an actual match. When this
has happened, remember this in the state.
(b) If the algorithm in (a) determined that the candidate match was an actual
match, execute everything that needs to be done for the match.
(3) Lift the pebble dropped in step 1.

For a path expression over n nodes, this algorithm uses one global pebble (in Step 1)
and n local pebbles (in Step 2), again excluding any pebbles used in evaluating per-node
constraints. This algorithm does not have the drawbacks of the previous algorithm: it
generates the matches in the correct order, and it generates each match only once. It
has a different drawback, however: it requires the use of a single global pebble, as the
matches of the reverse pattern matching must be compared to the starting node.

In the preceding algorithms, we have not considered the possibility of using MSO
logic to check the potential matches. This is possible in cases when the per-node

conditions are MSO-implementable, using the following algorithm.

ALGORITHM 5.3.4. Ewaluate a path expression using MSO logic. Let the path ez-
pression to be evaluated be a path erpression over n nodes, i.e., n — 1 steps using n — 1
per-node constraints.

(1) Drop a pebble m on the starting node.
(2) Walk through all nodes in the tree, in pre-order. At each visited node:
(a) Evaluate the MSO predicate

Jdz,y : peb,, (x) A pathexp (z,y) A head (y)

where pathezp (x,y) =

g,z [ (= 2) Az, =y) A /\ (step; (xi, xiv1) A constraint;q (z;41))
i€[l,n—1]

where step; (x,y) is an MSO predicate that expresses the axis or tree re-
lationship required by step i € [1,n — 1], and constraint; (x) is an MSO
predicate that expresses the per-node constraint specified for node i € [2,n)]
of the path expression.

(b) If the predicate is true, then the visited node is a match. Execute every-
thing that needs to be done for the match.

(3) Lift pebble m.

Note that the predicate step, (x,y) is implementable for all tree relationships. For
instance, the “child” relationship can be easily represented by \/ .4 edge, (x,y). The
MSO algorithm uses one local pebble, regardless of the number n of nodes in the path
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expression, and it generates the matches in document order. Thus, if it can be applied,
i.e., if the path expression allows it, this algorithm is preferable over Algorithms 5.3.2
and 5.3.3. This is only the case when all of the per-node constraints can be expressed
using MSO logic. We will analyse whether this is possible in the next paragraph, which
deals with value expressions.

We should not fail to mention an assumption that has been made in Algorithms
5.3.3 and 5.3.4, which is that it is possible to walk through the nodes of a document in
pre-order, a.k.a. “document order”. This poses some difficulty, since in our tree model,
there is no easy way to detect which way is “up”, as it cannot be deduced from the node
label which edge is in the “upward” direction. It can be detected by an MSO predicate,
provided that it has a method for detecting which node is the root. Our ptt model
does not have a “built in” root identification method, so it is a prerequisite for a “root
check” that the root is marked in some way, either by a node label or by a pebble that
has been placed upon it at the beginning of the ptt’s computation. Fortunately, XML
provides us with an easy way to identify the root node without dropping a pebble on
it: the node representing the “document entity” is the only “tag” node in the tree that
has an empty tag — there is no other way to create an empty tag in XML. This method
cannot, however, be used by MSO-restricted ptts. These ptts have no choice but to
place a global pebble on the root node at the beginning of the ptt’s computation, and
to use the istoward, ; predicate to determine the direction of the root. The requirement
for this global pebble is not too much of a problem, since dropping a pebble at the
root generally comes free of charge for MSO-restricted ptts: they will normally start a
simulation of an XSLT transformation or XQuery query with an instance of Algorithm
5.3.3, which will drop a global pebble on the starting node — the root node.

Optimizations for Specific Path Fxpression Types. Some path expressions can be
evaluated without using any pebbles at all. For instance, the following algorithm
describes how the child:: axis may be evaluated without pebbles.

ALGORITHM 5.3.5. Evaluate a path erpression child: :t[pl, where t is a node test

and p is a predicate, using no pebbles (except for those used in evaluating t and p).

(1) Follow the firstchild edge.

(2) Test the current node using node test t and predicate p. If it satisfies the
conditions, then it is a match for the path expression. FExecute everything that
needs to be done for a match.

(3) If the current node has a next edge, follow it and continue with Step 2.

(4) While the current node has a prev edge, follow it.

(5) Follow the parent edge.
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Obviously, a path expression consisting of a sequence of steps using the child::
axis is equivalent to a sequence of single-step path expressions, so the above algorithm
can be used to implement any path expression using only the child:: axis. Note, how-
ever, that path expressions over multiple nodes cannot always be split up into nested
evaluations of smaller path expressions without changing the outcome, as this may
affect the output ordering or it may create duplicates where there were none before.
For instance, the path expression descendant: :foo/descendant: :bar may return a
node .../foo/.../foo/.../bar only once, while path expression descendant: :foo with
a nested path expression descendant: :bar will find the same node twice. If a path
expression only uses the child:: axis, then neither the output ordering nor the du-
plicate filtering of the output is affected if the path expression is split up, so this can
be safely done.

The following algorithm can, under certain conditions, be used to evaluate the

descendant: : axis using no pebbles.

ALGORITHM 5.3.6. Fvaluate a path expression descendant::t[pl, where t is a
node test and p is a predicate, using no pebbles (except for those used in evaluating t

and p). Only works under the following conditions:

(1) The input document satisfies a DTD.

(2) The current node’s tag is an element of a known set T. (This can be known if
the current node was selected using a path expression that contained a tag test
for its last node.)

(3) According to the input DTD, for each tag in T, no descendant of a node having

a tag in T can ever have a tag in T.
The algorithm works as follows.

(1) Ezecute a pre-order tree walk, starting from the context node. For each visited
node:
(a) Check if the node’s tag is in T. If it is, we have visited all descendants,
and we are back at the context node. Stop the algorithm.
(b) Test the node using node test t and predicate p. If it satisfies the condi-
tions, then it is a match for the path expression. Execute everything that

needs to be done for a match.

The two algorithms presented here are just examples of how certain types of path
expressions may be optimized to be evaluated without using pebbles. Depending on
the precise combination of input DTD and axis, there are many possibilities to apply
pebble-free algorithms. For instance, even the parent:: axis, which is normally not
reversible (i.e., you cannot recover a node when you know only its parent), may be
evaluated without using a pebble if the current node’s tag is known, and if the DTD
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specifies that a node bearing such a tag has a child number that is uniquely determined
by the parent’s tag.

5.3.3. Value Expressions. Pebble tree transducers can only evaluate a limited
subset of the possible value expressions. Recall that such expressions can be complex,
and they can refer to nodes and values that were saved earlier. We will now try to give
an impression of the capabilities of the ptt to simulate various constructs.

Analysis of an Unbounded Value. A ptt has a built-in finite state machine, using
which it can analyze the unbounded values in an XML document, by walking through
the nodes that represent the values. The ptt can therefore perform any kind of analysis
that can be performed by a (statically known) finite state machine, including but not
limited to equality comparisons with a fixed value (e.g. text = ’’f00’’), inequalities
(e.g. x >= 327), and matching any tag or attribute value in the input tree with a
regular expression. Such analyses can be performed by an MSO predicate without
requiring any tree walking: MSO predicates can recognize the regular tree languages,
which implies that they can calculate the results of finite state machines over any root-
to-leaf path in a tree. Unbounded values are on a root-to-leaf path, which means that
they can be analyzed.

Comparison of Multiple Unbounded Values. In general, this is not possible. Com-
parison of an attribute value to another attribute value requires the comparison of two
segments of tree, potentially unlimited in size. Pebble tree transducers cannot perform
such a comparison, a fact which can be seen as follows. As shown by Milo et al. [17],
the domain of a ptt can always be described by an MSO predicate. MSO predicates can
recognize exactly the regular tree languages, which are the tree languages recognizable
by finite tree automata; and it is well known that finite tree automata are not able to
compare segments of tree of arbitrarily large sizes. Intuitively, the inability of ptts to
compare unbounded values can be understood as follows. To compare two unbounded
values, one cannot remember one of the values in the state, so it seems logical that the
comparison algorithm must iterate over finite chunks of data from the first value and
the second value in parallel, comparing the chunks one-by-one. Imagine that we are
at the Nth step in this process, i.e., we are comparing the Nth chunk of data, and we
have our reading head at the Nth chunk in the first value. We memorize the contents
of the chunk in the state, and then we move to the corresponding group of nodes in
the other value. We have to store our position in the first value though; we cannot
simply store N in the state because N is unbounded, so we have to drop a pebble to
mark our location. Now we move to the Nth chunk in the second value, which we
presume we can find because we have dropped a pebble there (not being able to store
N in the state). We compare the chunk with the remembered state, lift our previous
pebble, and drop it again at the (N + 1)th chunk. But this is impossible, because
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the pebble indicating the position in the second value is not the top pebble. Therefore,
this algorithm cannot possibly work. As we already stated above, MSO logic cannot
compare unbounded segments of tree of arbitrarily large sizes, so the addition of MSO
logic capabilities to ptts does not provide additional capabilities in this respect.

Multiple Unbounded Values in General. Although comparisons between multiple
unbounded values are not possible, there are some cases in which expressions using
multiple unbounded values can be evaluated. If a calculation can be split into parts
that:

(1) have at most one unbounded input,
(2) can be executed by a finite state machine, and

(3) produce a result from a finite set

then they can be executed by a ptt. For instance, the three-part expression x > 3 and
y < 5is no problem: the two comparisons can be evaluated individually and yield re-
sults from the finite set {true, false}, and the boolean and operation that calculates the
expression’s end result has only finite inputs. However, an expression like (z® mod 7)
(which is expressible in XPath as ((x*x*x)/7-fn:floor ((x*x*x)/7))*7, for positive
x) has a result in the finite set [0, 6] (provided that x is integral) but can probably not
be executed by a finite state machine; the expression £ > y+5 has multiple unbounded
inputs and no intermediate calculations that reduce the unbounded inputs to a finite
value, so this expression cannot be executed for the same reasons that comparisons
between attributes are not possible.

Now let us consider this in the light of MSO logic. In general, expressions that
satisfy the same constraints as specified above, can be evaluated using a single MSO
predicate, as follows. Number the component expressions 1,...,m, where compo-
nent expression 1 is the topmost expression in the dependency tree. Describe each
component expression k£ using n; inputs having values in finite sets Iy,...,I,,, re-
spectively, and an output in O,. Obviously, all of the finite inputs of the component
expressions are either predefined in the state or defined by the outputs of some other
component expression. For each component expression k, define predicates hasvaluey ,
for o € Ok as V, c1, (jeqing) (/\je[l,nk] (inputhasvaluejdj) A analyzek,oyh,”',%), where
analyzey, ,;, ., Tepresents the state machine-computable unbounded value analysis
for component expression k in the case that the other inputs have values iy, ..., y,.
Furthermore, in this predicate, we use inputhasvaluemj = hasvalue.;, if input j is
defined by component expression ¢, and otherwise inputhasvaluej,ij is true if input j
has value 7;, and false otherwise. The predicate hasvalue; , now expresses whether the
entire expression has value o € O;. Note that if the expression uses subexpressions
that cannot be evaluated using MSO logic, then obviously the expression as a whole

cannot be evaluated using a single MSO predicate.
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Ezxpressions using Variables and Parameters. In XSLT and XQuery, XPath expres-
sions are evaluated in a context which may define named variables (and in XSLT also
parameters), using xsl:variable (and xsl:with-param) in XSLT and using the Let
clause in an XQuery FLWOR expression. These variables contain values from the en-
closing calculation. Pebble tree transducers can only model variable values in a “simple”
way if they contain values from a statically known finite set (because then their values
can be stored in the state), or if they refer to nodes (because then they can be identi-
fied by a pebble). If a variable refers to a node, the node can be compared to another
node (which can be accomplished by comparing pebbles), or the node can be used as
the starting point of further operations (looking at attribute values, evaluation of path
expressions, etcetera). Note that if a variable is represented by a pebble, then this
pebble is often global, but in some cases it may happen to be local, or an optimization
can be applied to make it local. We will give an example of this later, in our discussion
of XSLT.?

With some effort, some variables containing unbounded values can be modeled
as well. In general, when a variable’s value is defined, it is computed using an XPath
expression. Of these, there are only finitely many in an XSL or XQuery transformation.
Therefore, the variable’s value may be stored by storing the identity of the formula that
computed the variable’s value (in the state), and the inputs of the computation. When
a “formula variable” like this is used, its definition formula can then be expanded so
that it is treated as a part of the enclosing expression. It is then, of course, subject
to the general limitations on the use of unbounded values that we described in the
preceding paragraph. Now, how can we perform storage of the inputs for these “formula
variables”? First of all, the context node can be stored using a pebble (whose globality,
as with node-valued variables, depends on the circumstances). The values of other
variables that serve as input are available because variable scopes are properly nested,
i.e., the variables used in another variable’s definition have a scope enclosing that of
the defined variable.

Ezxpressions using Path Ezxpressions. These kinds of expressions are possible, pro-
vided that the path expression in question can be executed by a ptt. The evaluation of
the pattern subexpression can simply be nested in the evaluation of the outer pattern
expression. Similarly, when we allow the use of MSO logic, the MSO representation of
the pattern expression can be used as a subexpression to identify matches; no separate
computations are needed to use the pattern expression.

2Also, note that whether a variable’s pebble is global or local has nothing whatsoever to do with
whether the variable itself is global or local. The scope of a “local variable” in XSLT is potentially
much larger than what a ptt considers “local”: in XSLT “local” means “in nested processing within the
same template”, a scope that may encompass the dropping of a large number of pebbles, while a ptt
views local as “until the next higher-numbered pebble is dropped”.
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Expressions using Sequences. Expressions using sequences cannot always be mod-
eled. To begin with, it is difficult to represent the sequences themselves: sequences can
be unbounded, so it is not possible to, for instance, drop a pebble on each node in the
sequence, or remember each value in the sequence in the state. However, this is not the
whole story: sequence variables can be implemented using the same technique by which
we can implement unbounded-value variables: instead of the actual nodes, we store the
expression that defines the sequence, plus its inputs. Expressions using sequences can
then be evaluated by iterating over the elements of the sequence (using the expression
that defines the sequence) and evaluating the expression. A set intersection of two se-
quences can be evaluated by iterating over the first sequence and then checking whether
the resulting nodes are also in the second sequence. A set union of two sequences can
be evaluated by iterating over all nodes in the tree and by checking membership of both
sequences for each nodes. Aggregations over unbounded values contained in nodes are
not possible for obvious reasons, but aggregations over bounded values derived from the
elements of a sequence can be computed, i.e., one can perform aggregations like “every
node in this aggregation satisfies boolean expression ezxpr”. When we allow MSO logic,
these calculations can even be done within a single MSO expression. For instance, the
set intersection of two sequences is easily computed if predicates for membership of
both sequences are available, simply by using the conjunction of the two predicates.

Discussion: MSO, Path Expressions and Local Pebbles. In Section 5.3.2, we men-
tioned that path expressions may not be evaluated using MSO logic when one of the
per-node constraints could not be translated into an MSO predicate. As we mentioned
earlier, Milo et al. [17] showed that the domain of a pebble tree transducer can always
be described by an MSO predicate. Therefore, if a value expression can be evaluated
by a ptt without using MSO, it can always be expressed as an MSO predicate as well.
This reduces the number of global pebbles required for the evaluation of a path ex-
pression to zero, for any path expression that can be evaluated by a ptt. Furthermore,
in contrast with non-MSO implementations, MSO logic can evaluate value expressions
starting from other nodes in the tree (be they pebble-marked or found through the use
of a path expression), without moving the reading head toward them. The net effect of
this is that, when evaluating a subexpression starting from another point in the tree,
the MSO implementation does not need to drop a pebble on its previous location to
remember it, which not only saves a pebble compared to the non-MSO implementa-
tion, it also makes that the next pebble on the stack gains a larger potential to stay
local compared to the non-MSO implementation, i.e., if that pebble is referenced in
the subcalculation that takes place in the other location. Combining this with the fact
that MSO path expressions allow for a global-pebbles-less pattern matching algorithm,
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we can only conclude that an implementation using MSO yields much higher numbers
of local pebbles.

5.3.4. XSLT. The model by which XSLT generates output is quite similar to that
of pebble tree transducers. Where a ptt’s instruction trees are segments of output tree
that leave certain parts “to be calculated” by placing configuration instructions on the
nodes, XSLT’s sequence constructors are sequences of output XML nodes that leave
certain sequences “to be calculated” by including XSLT instructions. In the paragraphs
that follow, we will consider implementations for the instructions that we described
earlier in Section 5.2.2.

Sequence Constructor Processing. A sequence constructor is a tree segment con-
taining instructions, so the obvious solution is to implement them one-on-one as ptt
instructions. However, this is not possible using the XML node sequence representation

that we described. For instance, if we have the following sequence constructor:

<nodel />

<xsl:for-each select="%">
<sometag />

</xsl:for-each>

<node3 />

Then a corresponding instruction would look like this (using the abstracted XML graph

format that we discussed earlier):

The for-each instruction may produce several nodes, which are inserted in-line into
the node sequence at the position of the xsl:for-each node. Our ptt model, however,
does not allow us to split a node after it has been created, i.e., we cannot use this

instruction to subsequently generate a tree fragment that looks like this:

n n n n
@ p— sometag p—— sometag next @

Therefore, using the chosen XML representation, we cannot execute the for-each
instruction correctly using a single ptt instruction per sequence constructor. Instead,
we need to build the output sequence step by step, starting from the leftmost node and
first generating the output of the instructions before continuing with the remainder.
While we are processing the instructions in this way, we must of course remember our
position in the sequence constructor in the state. Such stepwise generation of output

would look somewhat like this:
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(1) Initial node with label ¢:

(2) Generate the first node, and a configuration which generates the output for

the xs1:for-each instruction:

(3) Generate the first output node of the xsl:for-each instruction, and a con-

figuration node which calculates the next output node:

n n
@ next Sometag next @

(4) Generate more output for the xsl:for-each instruction until the last has been

generated:

n noo— - - - — — n n
@ next next <q2’findnext’ - >

(5) Switch to state g3, which generates the third node in the sequence constructor:

n noo— - - - — — n n

(6) After g3, the final result is:

n noo . __ — — n n

In this example, the state records the location in this particular sequence constructor,
the output nodes of the for-each are generated completely before node3 is generated,
and only then is node3 generated. Note that, in general, the sequence constructors
instantiated by an xsl:for-each instruction may itself contain instructions; for in-
stance, in the example above, the fragment <sometag /> may be replaced by a se-
quence constructor containing a nested xsl:for-each instruction, and possibly more,

thus obtaining for instance the following sequence constructor:

<nodel />
<xsl:for-each select="¥"">
<seql />
<xsl:for-each select="%"">
<xsl:if test="’Qattl = 3>
<seq2 />
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</xs8l:if>
</xsl:for-each>
<seq3d />
</xsl:for-each>
<node3 />

If we generate the output node sequence of the above fragment, and we are processing
the xs1:if instruction, we must at the same time be aware of our position in all of the
enclosing sequences that are still being constructed. This is no problem: all sequence
constructors are finite, so we can store this information in the state. Things become
more complicated when the xsl:apply-templates instruction is being used; in order
to keep things simple for now, we will discuss this instruction last.

Iteration. Iteration in XSLT is done using the xsl:for-each instruction. An ex-

ample:

<nodel />

<xsl:for-each select=’child::*’’>
<seql />
<seq2 />
<seq3d />

</xsl:for-each>

<node3 />

This instruction takes the selection (specified in the example by path expression child: :
and for each selected node, it includes the output of the given sequence constructor
(in the example these are the nodes with tag seq[123]), in-line at the location of the
for-each node in the sequence constructor’s node sequence. In a pebble tree transducer,
this can be implemented by evaluating the selection using Algorithm 5.3.4, inserting
the results of the output constructor for every match found. By default the selection
is processed in document order, but XSLT provides the possibility to specify a sort
order. The pebble tree transducer is not able to simulate sorting, a fact which we will
discuss further in Section 5.3.6.

Conditional Output. Conditionals, provided by xsl:if, are easy to implement in
ptts. The conditions are boolean XPath value expressions, so one simply evaluates
them, and depending on the result one either processes the nodes in the conditional’s
sequence constructor or not.

Aborting the Translation. While its ability to provide the user with a message is
of no interest, the xsl:message instruction allows for the translation to be aborted.
This is also no problem for a ptt: switching to a state for which no rules are defined is
guaranteed to lead to an unsuccessful completion of the transformation.
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Copying. The xsl:copy-of instruction creates deep copies of all of the nodes in a
selection, while the xs1:copy instruction simply creates a shallow copy of the context
node (excluding child nodes and even attributes). Copying nodes to the output is not
a problem for ptts, be it deep or shallow copies, and the implementations of these
instructions are obvious.

Dealing with Variables and Parameters. The instruction xsl:variable binds a
value to a named variable, while the instruction xsl:param binds a value to a named
parameter for nested template invocations. In Section 5.3.3, we already discussed
a mechanism for implementing variables so that XPath expressions could use them:
node-valued variables can be implemented by dropping a pebble on the node in ques-
tion; variables whose values are from a finite set can be stored in the state; and for
unbounded values, including sequence-typed values, the method of computation can
be stored together with the inputs. To these regular types of variables and parameters
that are common to both XSLT and XQuery, XSLT adds the possibility to bind a
variable to the output of a sequence constructor. The value of a sequence construc-
tor is like a node sequence such as would be returned by a path expression, except
that it is a sequence of output nodes, accompanied by their attributes and descendant
nodes. In XSLT 1.0, calculations on such output node sequences (called result tree
fragments in XSLT 1.0) are limited: one can use them as components of other out-
put node sequences, and one can convert them into strings, and that is it. In XSLT
2.0, node sequences can be manipulated in much more complex ways; effectively, the
output of a sequence constructor is a temporary tree, and it can be processed in the
same way as an input tree: path expressions can be evaluated on it, and one can even
apply templates to it. Clearly, a ptt cannot possibly evaluate such complex expres-
sions. However, the functionality of XSLT 1.0 is implementable by a ptt, insofar as the
sequence constructors themselves are implementable. The storage of the output of a
sequence constructor in a variable or parameter may be done using the same method
that we used with the “formula variables” in Section 5.3.3: one simply stores a sequence
constructor identifier (and there are a fixed number of those in an XSLT transforma-
tion) to identify the method of generating the output node sequence, plus the inputs
of the method, so that the method may be executed at a later time while yielding the
same result. The functionality of including an output node sequence as part of another
output node sequence is trivially implemented, as the included output node sequence
is just another input of the including output node sequence.

As we announced earlier in our discussion on XPath expressions using variables in
general, whether pebbles used for variables are local or global depends completely on
the situation, and on the optimizations applied when converting a transformation into
a ptt. For instance, consider an XSLT fragment such as the following:
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<xsl:variable name=""foo0’’ select=""."" />
<xsl:copy-of select="$foo/description’/>
<xsl:foreach select="’bar//baz’’>
<foobarbaz>
<xsl:copy-of select="’$foo/name”’ />
<xsl:copy />
</foobarbaz>
</xsl:foreach>

In this example, the variable foo will be implemented using a pebble. The variable’s
use in the second line does not require this pebble to be global. If the xs1:foreach in
the third line is implemented using Algorithm 5.3.4, then the use of foo in the fifth line
takes place when the pebble used by Algorithm 5.3.4 is the top pebble on the stack,
which would make the pebble representing foo global. However, it is easy to detect
that the two pebbles are always dropped on the same node, so it is easy to optimize
away the pebble used by Algorithm 5.3.4. If this optimization is applied, the second
use of variable foo also takes place when foo’s pebble is at the top of the stack, which
means that the pebble can remain completely local.

Templates. A fact that we have thus far carefully avoided to deal with is the fact
that an XSLT transformation actually makes use of template rules. Template rules are
the XSLT transformation’s equivalent to the ptt’s rules. Where a ptt rule has a state
and a condition, a template rule’s applicability is determined by the current mode and
a path expression: the template’s “match” attribute specifies which nodes are eligible
for processing by the template. The transformation is started by applying the highest-
priority eligible template to the root node. Also, from within a sequence constructor,
one can use an instruction to apply templates to a node or a selection of nodes: the
xsl:apply-templates instruction. This instruction works like this: it walks through
the selected nodes in order, selects a template for each visited node, and generates
output by applying the templates. The difference between the transformation’s initial
template application to the top-level nodes (the children of the “document entity”) and
the xs1:apply-templates instruction is that with xsl:apply-templates, a selection
can be given, i.e., the templates are applied to a sequence of nodes. This implies that
every matched node must be a match of two path expressions: the selection expression
from the xsl:apply-templates instruction as well as the pattern expression of the
template. The selection of the instruction defines the order in which the nodes are
subjected to their appropriate templates, so these must be evaluated in an outer loop.
We can simply iterate through the selection of the instruction, and we can then use
Algorithm 5.3.2 (when not using MSO logic) with a reversed version of each template

match expression, or an MSO predicate representing the template match expression, to
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check whether the selected node satisfies the templates’ match expressions; the first one
that actually matches is applied. Note that the previous context node is not involved
in the evaluation of the match expressions: the match expressions effectively specify a
relationship between a node and any node in the tree, i.e., they match if there is any
string of nodes that matches the pattern and that has the tested node as the match
node.

Recursion. The existence of the xs1:apply-templates instruction brings with it a
most unfortunate downside, namely the possibility of unbounded recursion®. Depending
on the input XML document’s Document Type Definition, an XML document may
have an unbounded nesting depth. Now consider an XSLT transformation such as the

following:

<xsl:template match="foo’’ priority="2"’">
<bar />

</xsl:template>

<xsl:template match="’¥"’ priority=""1"">
<xsl:copy>

<xsl:apply-templates />

</xsl:copy>

</xsl:template>

In this transformation the second template matches every node and simply copies
it, applying templates to all of its children. The first template, which has a higher
priority, matches only nodes with tag “foo”, replacing the node and all its descen-
dants by a single node with tag “bar” in the output. Now, in a ptt simulation of this
XSLT transformation using the algorithms that we have discussed, every level of in-
vocation of the second template will cost one pebble, to walk through the matches of
the xs1:apply-templates instruction.* Furthermore, as the location in each nested
sequence constructor must be remembered, it will also cost space in the state. For

instance, consider this sequence constructor:

<nodel />
<xsl:apply-templates />
<node3 />

and consider a ptt evaluation of this sequence constructor using the step-by-step process

described in the beginning of this (sub)section, at the point where it is evaluating the

3A subject which is covered in-depth in [21].

In reality, this transformation is so simple that it can be implemented much better than that, as the
matches of a pattern (child::*) can all be reversed easily to find the starting node of the pattern. For
the sake of the argument, assume that the path expressions are so complex that this is not possible.
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FIGURE 5.3.3. An instruction that encodes XML as a binary tree.

xsl:apply-templates instruction. The intermediate output tree will look somewhat

like this:

where state ¢ remembers the state of:

(1) The above sequence constructor (i.e., “we are at node 2”).
(2) The template that is being evaluated.

This is not a problem, unless the template that is evaluated is the same template
that contained the above sequence constructor. In that case, the nested template
evaluation needs to reuse the part of the state that stores “the location in the above
sequence constructor” (item 1), but it is still in use by the enclosing evaluation of the
template. Now, there #s a partial way out of this, but it does have a distinct lack of
beauty: it involves encoding XML differently. Specifically, it means encoding the XML
so that a sequence constructor can be instantiated all-at-once. A method for doing
this would be to represent node sequences not as a linked list (using next edges), but
as a binary tree (using left and right edges) whose leaf nodes, traversed in left-to-right
order, represent the node sequence. A sequence constructor as in the example would
then be evaluated using a single instruction having the structure depicted in Figure
5.3.3. In this structure, the node3 node is generated immediately instead of after the
xsl:for-each, and the xsl:for-each has its own leaf, where it can add as many
nodes in the sequence as it needs to. This tree structure gets rid of the state space
nesting, as the location in all nested sequence constructors need not be remembered in
the state anymore. Walking through node sequences using a tree structure like this is
not a problem, so the possibility to implement the other constructs of XSLT would not

be negatively impacted. However, we are still left with a problem, which is the pebble
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stack. Generally, the xs1:apply-templates invocation in the example will iterate over
a set of nodes that are calculated starting from the enclosing context node. Therefore,
in order to make this iteration possible, this enclosing context node requires a pebble
on the stack. By recursively applying this argument for the entire recursion stack, one
finds that there is still a pebble stack overflow which will not go away. As our MSO-
based XSLT simulation only requires local pebbles (except for pebbles that represent
variables — they often need to be global), one possible solution to this problem would
be to allow an unlimited number of local pebbles, while retaining a limit on the number
of global pebbles.

Additional recursion problems crop up when variables (and, for the same reasons,
parameters) are involved. Because variables are local to a template, a variable can have
an unbounded number of nested definitions. For variables whose values can be stored
solely in the state, this is no problem, as we have shown that state space nesting can be
avoided. However, for variables that require the storage of nodes (for whatever reason
— they may be node-valued variables or they may store a complex non-node value using
the techniques we described earlier) pebbles are placed on the stack, and those may not
be reclaimed. Furthermore, because of the nature of variables, these pebbles are often
required to be global. An unlimited number of local pebbles will then not be sufficient
to allow for unbounded recursion in templates using such pebble-requiring variables.

5.3.5. XQuery.

FLWOR Expressions. In contrast with the inherently recursive XSLT “apply-
templates” structure, the basic structure of XQuery is provided by FLWOR expressions,
which provide no mechanism for recursion. Essentially, a basic XQuery transformation
has the same capabilities as a single template would have in XSLT: it can iterate over
all combinations of multiple sets of nodes, on which it can impose conditions, it has
conditionals, etcetera. In essence, an XQuery FLWOR expression like the following:

for $f1 in [@f1], ..., $fN in [QfN]
let $11 := [@11], ..., $1M := [QIN]
where [expression]

return [...sequence...]

(where @f1..fN and @11. .1N represent path expressions) is equivalent to the following
XSLT sequence constructor:

<xsl:variable name="’start’’ select=""."" />

<xsl:for-each select=""$start/[Qf1]’>

<xsl:for-each select="’$start/[QfN]’">
<xsl:variable name=’’11’ select="‘$start/[@11]" />
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<xsl:variable name="’1M’’ select="‘$start/[@1M]”’ />
<xsl:if test="[expression]‘>

[...sequence...]
</xsl:if>

</xsl:for-each>

</xsl:for-each>

We have already seen that most of the constructs used in this sequence constructor can
be implemented using pebble tree transducers; hence the equivalent XQuery FLWOR
expression can be implemented by a pebble tree transducer as well.

Recursion. Even though its basic structure does not allow for recursion, XQuery
does have a recursive mechanism: it allows for the definition of functions, which are
sequence constructors that can be called by their name. Functions can be recursive,
and if the functions recurse over pattern expressions or sequences, we run into the same

infinite-number-of-pebbles problems that occur with XSLT.

5.3.6. Discussion.

Recursion. Both XSLT and XQuery allow for recursion, and therefore for unbound-
edly nested evaluation of pattern expressions. This is not implementable using our
pebble tree transducers, as it requires the availability of an unbounded number of peb-
bles (albeit local ones). Interestingly, there is a large difference between XSLT and
XQuery as to the usability of the language when recursion is omitted. In XSLT, the
recursion lies at the core of the processing model. The xs1:apply-templates instruc-
tion occurs in almost all XSLT transformations, and as documents processed by XSLT
are often of types that allow unbounded nesting levels, this implies that most XSLT
transformations cannot be modeled using the current pebble tree transducer model. On
the other hand, the recursion features of XQuery lie at a considerable distance from
the core features of the language and are generally not required to write a transforma-
tion in XQuery. Therefore, a much larger proportion of XQuery transformations can
potentially be modeled using pebble tree transducers.

Joins. The fact that ptts cannot generally handle data values, and especially data
value comparisons or joins, has been previously discussed by Milo et al. [17]. They
argue that for type checking purposes, one can make the assumption that the out-
comes of the data value comparisons are independent. One can then model an XML
transformation that includes data value comparisons using a ptt, but such that the ptt
nondeterministically chooses any outcome for every data value comparison. Notwith-
standing the fact that such a ptt does not perform the ezact transformation that it is
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intended to model, if the comparison independence assumption is satisfied, its output
“type” is the same, and therefore one can still use it to perform a full type check. If
the assumption is not satisfied, i.e., if the comparisons are dependent, then the actual
output type of the transformation is a subtype of the output type of the ptt-simulated
transformation. If the desired output type of the transformation is a supertype of the
output type of the ptt-simulated transformation, the ptt-based type check will still
succeed, in which case the transformation type-checks as well. However, if the desired
output type of the transformation is very strict, the ptt-based type check may fail, a
“false negative” type-check.

Complex Calculations. A similar argument can be made for the outcomes of com-
plex calculations based on unbounded values. When these outcomes end up in the
output, this does not influence the type checking, as data values are not constrained
by DTD document types.” When they influence a conditional decision, they can be
simulated by a nondeterministic choice for either outcome. Unfortunately, in this case,
the outcomes of the complex expressions cannot generally be considered independent.
For instance, consider the following fragment of XSLT:

<xsl:if test=""x*x < 25°>
<foo />
</xsl:if>
<xsl:if test=""x*x*x >= 125°>
<bar />
</xsl:if>
If the complex calculations in this example are considered independent, then the possi-
ble outcomes of this XSLT fragment are the empty node sequence, <foo />, <bar />
and <foo /><bar />. However, in reality, the only possible outcomes are <foo /> and
<bar />. Again, the output type of the ptt-simulated transformation is a supertype of
the actual output type of the transformation, and this may give rise to “false negatives”.

Sorting. In addition to the shortcomings listed above, the pebble tree transducer
lacks the capability to iterate over a sequence in a sorted order. Even if it were possible
to compare data values, sorting would be impossible because of the stack order of
pebbles. To understand this restriction, consider how a pebble tree transducer would
perform such a sorted iteration. As a first step, it would have to locate the first
element in the sort order. It can only do this by iterating over every node in the
input sequence, and keeping track of which of the visited nodes was the earliest in
the sort order. However, the only way it can do that is by dropping a pebble on the
“currently earliest”. Even supposing that the ptt were able to compare the next node

in the iteration with the node marked “currently earliest”, the ptt cannot replace the

SHowever, generalized DTDs may specify data value types.
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“currently earliest” pebble: it cannot lift the pebble, since it is not at that node; simply
walking toward the pebble and lifting it would imply that the ptt would forget the
node that it would like to replace the pebble with; and it cannot drop a pebble on the
“new currently earliest” node to remember this, since that would be on the stack on
top of the previous “currently earliest” pebble, preventing the removal of the previous
pebble.

Fortunately, in many cases it can be shown that the removal of sorting has no effect
on the result of type checking a transformation. Because XML’s DTDs only constrain
the combination of a node having a certain tag and the order of the tags of its child
nodes, it is always safe to swap two nodes bearing the same tag. If every element
processed in a sorted operation always yields the same sequence of tags in its output,
for instance in this XSLT fragment:

<xsl:for-each select="’bambam’’>
<xsl:sort order="@foo’’ />
<bar />
<xsl:copy />
<baz />

</xsl:for-each>

then the actual output of the XSLT fragment and the output of this fragment without
the sorting always contain the same tag sequences, which implies that the output of the
transformation satisfies a certain output DTD if and only if the output of the unsorted
version of the same transformation satisfies that same output DTD. This argument
unfortunately does not hold for generalized DTDs, as regular tree languages are not
closed under the exchange of two subtrees whose roots have the same node label. Still,
some generalized generalized DTDs may be closed under this operation, for some tags,
and for those DTDs, for those tags, the argument remains valid.

5.4. XQuery and PTTs: An Example

5.4.1. Introduction. In this section, we will attempt to clarify some of the ideas
presented in Section 5.3, by means of an example of how an actual XQuery transfor-
mation may be modeled using a ptt. In our example, we will use the following XQuery
query X (using unspecified path expressions p; through ps):

for $w in /p,
for $x in $w/p,
for $y in fn:intersect($w/ps, $x/ps)
for $z in $y/ps
return
<foo>
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{$z/@foobar}
<baz />
{$x/0@fo0}
<bar>
{$y/@bar}
</bar>
</foo>

In the subsections that follow, we will show how one can go about implementing query
X using a pebble tree transducer, utilizing exactly two global pebbles, and one local
pebble. In the example, we will assume nothing about the path expressions p; to
ps except that they can be expressed using an MSO predicate. Specifically, we will
not assume that any of these path expressions can be evaluated using pebble-free
algorithms. We will denote the MSO predicate for a path expression p; (k € [1,5]) by

pathexp, (z,y).

5.4.2. The PTT. We will define a pebble tree transducer M = (n, (3, ®), (A, T),
Q, qo, R) with n = 3, with (3, ®) = (A, T') including all node labels and edge labels
required to represent XML in the way we defined it in Section 5.3.1, plus those node
labels required to represent actual data. If we specify the XML definition further by
adding the specification that data consists of ones and zeroes (i.e., that it is binary

data), this leaves us with the following definitions:

¥ =A = ({tag, attribute, zero, one}

® =T = ({firstchild, firstattribute, parent, next, prev, tag, name, value, owner}

We will not specify @), go and R in detail; however, we will specify a number of states
and instructions that are used.

5.4.3. The Search Algorithm. Query X consists of four nested iterations over
the results of path expressions, where each nested iteration is dependent on the current
node of some of the enclosing iterations. The ptt algorithm to evaluate the query can
be written to follow the query structure quite closely. We will describe it as a single
line of computation, which hands off control to an output-generating component when

it has found a match.

ALGORITHM 5.4.1. Ewvaluate query X with ptt M. This describes the “main line of
computation” only.
(1) Let all states in Q) be marked with a single subscript from {findfirst, findnext},

and let this subscript be preserved in subsequent states unless it is explicitly
specified that it should be changed. Let the initial state be marked findfirst.
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(2) Iterate over matches for $w by evaluating /p, using Algorithm 5.3.4. For each
match, execute the following step:

(3) Iterate over matches for $x by evaluating $w/py, using Algorithm 5.5.4. Note
that during this evaluation, pebble 1 represents $w. For each match, execute
the following step:

(4) Iterate over matches for $y by evaluating fn:intersect ($w/ps, $x/py) us-
ing an obvious variant of Algorithm 5.5.4. Note that during this evaluation,
pebble 2 represents $x, which means that both $w and $x are available to the
MSO ezpression used to evaluate fn:intersect($w/ps, $x/ps). The MSO

expression to test whether the head of M is at a node in this intersection is
Jw, x,y : (peby (w) A peby (z) N pathexps (w,y) A pathezp, (x,y) A head (y)) .

For each match, execute the following step:

(5) Iterate over matches for $z by evaluating $y/ps using Algorithm 5.3.4. Note
that during this evaluation, pebble 3 represents $y. For each match, execute
the following step:

(6) We now have pebbles 1, 2 and 3 representing $w, $x, and $y, respectively,
and the reading head representing $z. Interrupt the algorithm for generating
output by switching to state Ggenoutput,f, where f € {findfirst, findnext} is the
current findfirst/findnext state, and continue the iteration at this point when
the state is set 10 Goutputgenerated, -

(7) After all of the algorithm’s nested iterations have completed, execute an in-
struction snt(tag), i.e., a single-node tree with label tag. This removes the
algorithm’s final configuration from the intermediate output tree and replaces
it by the node label tag. (The reason for this will become clear in the next

section, when we explain how output is generated.)

In this algorithm, pebble 1 is used in Step 4 while pebble 2 is also on the stack.

Therefore, pebble 1 is global. On the other hand, pebble 2 is only used in that same

step, when it is at the top of the stack, so it is a local pebble. While pebble 3 is only

used while it is at the top of the stack, it is nevertheless global, as the nth pebble is

always global. However, it should be noted that if the query implementation would

have required more pebbles, nothing would have kept pebble 3 from being local as well.

5.4.4. Generating Output: Main Structure. Algorithm 5.4.1 signals when

everything is set up for generating an output item by switching the state to ggenoutput,

where f € {findfirst, findnext } represents whether a segment of output has already been

generated. When this state is reached, output should be generated using instruction

tirst When f = findfirst, and using instruction ipey when f = findnext. Both of these
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instructions are based on a single instruction tree tgenoutput, shown in Figure 5.4.1.
(Note: this graph, and the following ones does not use the abstracted XML graph
representation that we described in Section 5.3.1, except that the “upward” edges are
not displayed.) Instruction tg.s then looks like this, generating a tag node that includes

Lgenoutput @S its first child:

firstchild

(root of genoutput)

Instruction tnex, has the same structure, but it includes tgenoutput @s the next sibling

(root of genoutput)

These instructions spawn several lines of computation. The main line of compu-

of the tag node:

tation described in Algorithm 5.4.1 continues in the root of the output generated by
Lgenoutput, While the configurations in the other nodes independently compute the output

values specified in the subscripts of their states. When the state is marked “findfirst”,

doutputgenerated,findnext’ stay)

(4§82 /@foobar Stay)

(dgy /@bar> Stay)

FIGURE 5.4.1. The graph for instruction tgenoutput -
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this indicates that the main line of computation takes place at the “document en-
tity” node at the top of the XML output, and that the first output segment should
be attached to the node in which the computation takes place using an edge labeled
firstchild. After i has been executed, the main line of computation is continued with
the state marked as findnext, to indicate that a fragment of output has already been
generated, that the main line of computation is taking place in the node at the very
top of the last generated segment of output, and that a subsequent output segment
should be added to this node using an edge labeled neztchild. The following graphs
provide a step-by-step illustration of the way the output is generated.

Step 1: The initial situation. In this example, any state with subscript search is an
abstraction for any state that concerns searching for a result, i.e., the implementation
of Algorithm 5.4.1.

<qsearch,ﬁndﬁ1rs‘c7 )
Step 2: Algorithm 5.4.1 has found a result, so it switches the state to genoutput.
<qgenou‘cpu‘c,ﬁndﬁrs‘c7 )

Step 3: The state is labeled findfirst, so the instruction cq.s; is executed. Note that
the root node is a bare “tag” node, with no actual tag value. This is the document
entity, as described in Section 5.3.1. Also note that the entire structure of the first
result is already generated (although much of it has been left out in this graph). The
“tag” label of the root of the generated result has not been generated yet, as this node
harbours the configuration that continues the “main” algorithm of the query. The state
of the continuing configuration is goutputgenerated findnext- Lhis triggers a continuation
of Algorithm 5.4.1. By marking the state as findnezt, the ptt remembers that the
document entity has already been generated.

firstchild

<qoutputgenerated,ﬁndnext7 )

firstchild

next
<q$z/@f00bar7 --) o>
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Note that the fact that we can immediately generate the entire result structure,
including the tag of the result’s topmost node, and then forget about it, is a convenient
side effect of our choice to encode even a node’s tag as a data value. Had we chosen to
encode tags as node labels, then we would have had to remember the tag in the state
until the next result were found, or until the algorithm would complete! If the node
label is static, such as in this example (“foo”), this would not pose any real problem, as
the tag value that is to be generated can simply be stored in the state. However, if the
node label is dynamic, e.g., if it were copied from the input, then the search algorithm
must remember an unbounded value. As the search algorithm must be able to lift all
pebbles off the stack, it cannot properly do this. In contrast, our current XML graph
representation has no problems with dynamic node labels.

Step 4: Algorithm 5.4.1 picks up, searching for a next result.

firstchild

<qsearch,ﬁndnextv )

firstchild

next -

<q$z/@foobar’ .y

Step 5: The algorithm finds another result, so it switches to state genoutput.

firstchild

<qgen0u‘cpu‘c,ﬁndnex‘c7 )

firstchild

next
<q$z/@foobar7"'> o>

Step 6: As the state is now labeled findnext, the instruction tne is executed. This

generates the label of the root node of the first result, and the complete structure of
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the second result. Like in Step 3, the new result’s root node contains the configuration
that continues the search for more results.

firstchild

next

)

<q0utputgenerated,ﬁndnext ’e

firstchild firstchild

_ next [ . next >

<q$z/@f00ba1r’ )

5.4.5. Generating Output for Individual Output Nodes. Having covered
the main structure of how output is generated, we will now consider how the parallel
computations that generate the actual output can achieve their goals. As the parallel
computations are all very similar, we will look at only one: the computation for the
node labeled <q$X/@f00,stay>, that was shown in Figure 5.4.1. Remember that, at
the beginning of these lines of computation, the pebble stack contains three pebbles
marking $w, $x and $y, and the reading head marks $z. Therefore, the simplest
implementation for generating output for $x/@foo is to walk to the node marked by
pebble 2, to traverse its outgoing edge labeled firstattribute, and to iterate over all
attributes until an attribute named foo is found, and then to copy its value to the
output. However, this naive implementation would make pebble 2 a global pebble!
The solution is very simple: before walking to the node marked by pebble 2, pebble 3
must be lifted. This poses no problem, as the value of $y is not needed in this line of
computation, and the lines of computation for each calculated output node and also
the main line of computation have independent pebble stacks.

5.5. XQuery Pebble Requirements

5.5.1. Introduction. The example presented in Section 5.4 required three peb-
bles, of which two were global. In this section, we present a more general method for
determining the number of global pebbles required to evaluate a FLWOR clause in an
XQuery transformation, for a selected subset of FLWOR clauses. In addition, we will

provide an optimization strategy for evaluating unordered-mode FLWOR clauses.

5.5.2. Required Global Pebbles. Consider an XQuery transformation of the

following form:
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for z; in //*, x9 in //*, ..., x, in //*
where ¢; and ¢, and ... and ¢,
return ...

where each ¢ (k € [1,m]) is a boolean XPath expression that references variables
with numbers V, C {1,2,...,n}, that cannot be rewritten as one or more smaller
expressions that each use only a subset of these variables. A ptt normally processes
the above transformation by using n — 1 pebbles and the reading head to represent
variables z; to x,,_; and x,, respectively, and by using the pebbles to perform n nested
iterations which each iterate over all nodes in document order. Now consider expression
¢r, and let v = max (V). Then ¢ can only be evaluated by the ptt while the current
iteration nesting level is in [v,n], as these are the only times when all of the inputs
to ¢ have been assigned values. Considering that when the iteration nesting level is
[ € [1,n], pebbles 1,... ;1 — 1 represent variables x1,...,2;_; and the reading head
represents variable z;, we can describe the effects of evaluating ¢, at a given iteration

nesting level [ on the globalness of pebbles as follows:

e If | > v + 2, then the pebble stack contains at least v + 1 pebbles, which
means that none of the variables referenced by ¢, are at the top of the stack.
Therefore, all pebbles with numbers in Vj, are forced to be global.

e If [ = v+ 1, then the pebble stack contains v pebbles, which means that of the
variables referenced by ¢y, only z, is represented by a pebble that is at the
top of the stack. The remaining pebble numbers in V), are forced to be global.

e If [ = v, then the pebble stack contains v —1 pebbles; variable z, is represented
by the reading head and variable x,_; is represented by pebble v — 1 at the
top of the stack. The remaining pebble numbers in V. are forced to be global.

Clearly, using this evaluation algorithm it is optimal to evaluate ¢; during iteration
nesting level [ = v. The set of pebbles that are required to be global for the evaluation

of the entire XQuery transformation can then be described as

{n}u | (Vi — {max(V}), max (Vi) — 1})
ke[l,m]
where {n} is included because the highest-numbered pebble is always global. Note that
if, for an expression ¢y, Vi = {v,v — 1} or V;, = {v}, i.e., the expression only references
a variable and its direct neighbour in the nesting order, the expression does not cause
any global pebbles to be created. If all expressions are of this kind, no global pebbles
are needed (except of course pebble n).
It should be noted that in general, any query of the form:

for z; in pathexpl,
T2 in pathexp2,
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T, in pathexpn
where ...
can be rewritten to the above form, by replacing all of the path expressions by //x*,
and by placing an equivalent constraint in the where clause. In general, a variable
originally defined by path expression pathexpk can be constrained in the where clause
using the expression fn:exists(pathexpk[.=x;]). This extends the above result to
a considerably larger set of queries.

5.5.3. Unordered Mode Optimization. XQuery transformations can be eval-
uated in either ordered or unordered mode. In ordered mode, the variables in a for
expression such as the one described above are required to iterate over their values in
nested document order, i.e., the outer loop iterates over all nodes for the first variable
in document order, a nested loop iterates over all nodes for the second variable, etc.
In unordered mode, however, the variables may be processed in any order. So, for
unordered-mode FLWOR clauses, we can attempt to reorder the variables to reduce
the number of global pebbles. We will now present an ordering strategy that often
succeeds at significantly reducing the number of global pebbles. Note that this alters
the output of a ptt, so it may not always be a suitable optimization for typechecking
purposes. In many cases, however, this does not matter; the same arguments apply
that we used in Section 5.3.6, in the discussion on sorting.

For an XQuery transformation of the form presented in Section 5.5.2, let the graph
g be defined as:

Vo = {wifiel,nl}
E, = {(x;,z;)|thereisak € [1,m] with {i,7} C V,}

with arbitrary node and edge labels. This graph contains the variables of the trans-
formation as nodes, where two variables are connected if there exists a where clause
constraint to which they are both input. For instance, the graph for the XQuery
transformation that we discussed in Section 5.4 (restructured so that it is in the form
presented in Section 5.5.2, and ignoring the connection between w and the root node)
looks like this:

YOO

Now consider an arbitrary XQuery transformation of the form presented in Section
5.5.2, and its graph g. Observe that, for any path z; . ..x; through such a graph g, if we
evaluate the variables in consecutive nested iterations, in the same order in which the
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variables occur in the path, then the variables along that path can be represented by
local pebbles. That is, of course, assuming that all other input variables are available
by other means, i.e., global pebbles, and that the pebbles are not forced to be global
for other reasons. We can generalize this observation into a method by which we can
optimize the number of local pebbles: we simply carve up the graph into such “paths”
as much as possible, and then all of the nodes in the paths can be represented by
local pebbles. For this to work, the paths need to be selected so that they do not
introduce the need for global pebbles in each other’s evaluations. For instance, if ¢ has
a structure like the following, it is very tempting to select the nodes labeled “A” as a

path, and the nodes labeled “B” as a second path.

However, this fails to work: the individual paths can be evaluated using only local
pebbles under the assumption that the other inputs to the constraints on the nodes on
the path are available as global pebbles. That means that either the second node from
the top row, or the second node from the bottom row must be represented by a global

pebble. In general, these are the conditions that a set of paths must fulfill so that the

variables on every path in the set can be evaluated using only local pebbles:

e The paths do not overlap.

e There are no direct connections between the paths (because otherwise, at least
one of the sides of the connection become global).

e The nodes in the paths are not connected to each other in ways other than by

the edges in the path.

If we have selected a set of paths that fulfill these conditions, containing k£ > 2 nodes,
then we can evaluate the entire XQuery transformation using & — 2 local pebbles and
n — k + 1 global pebbles, by nesting the iterations as follows: the outer n — k iterations
iterate over all possible values for the variables not on the paths, and then the inner k
iterations iterate, for each path, over the possible values for the variables on the paths,
nested in the order in which they occur in the paths. The fact that the paths do not
refer to each other guarantees that they can be evaluated in any nesting order, and
the fact that the variables that are not on the paths are placed in the outer iterations
ensures that they are available to the nested iterations that evaluate the paths. Of
the inner £ iterations, the deepest-nested iteration requires no pebble as it uses only

the reading head, while the next deepest nested iteration uses the highest-numbered
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pebble which is global; the remaining pebbles are local, yielding a total of £ — 2 local
pebbles. The remaining (n — 1) — (kK — 2) = n — k + 1 pebbles are global.

Applying this idea to the query from Section 5.4 (for which the graph g was dis-
played earlier in this section), we can see that we can choose either path wyz or path
xyz for “local” evaluation, making either the pebble for x or the pebble for w global.
Note that in this example, reordering does not reduce the number of global pebbles:
the evaluation still requires two global pebbles, as the highest-numbered pebble will be
global as well.

Formally, we can express the selection of paths as follows. We select a largest set
Viocat € Vj so that the Vigea-induced subgraph of g contains no cycles, and so that
the Vioca-induced subgraph of g contains no nodes of a degree higher than two. The
Viocai-induced subgraph of g consists of a set of disconnected components that are
monadic trees. These components represent the selected “paths” through g. The nodes
in V; — Viecal T€present the variables that must be represented by global pebbles.

While the optimum that we achieved with this optimization strategy may not al-
ways be the absolute optimum, i.e., depending on the path expressions better algo-
rithms may be possible, it places a reasonable upper bound on the number of global
pebbles required. In some cases, using this strategy yields exceptionally good results,
for instance when ¢ looks like this:

@ Local Local Local @
@ Local Loca Local @

In this example, only the central three variables need to be represented by global

pebbles: after representing these variables by global pebbles, we can evaluate the
variables in the path along the top and the path along the bottom using local pebbles.
Note that one of the variables marked “local” in this graph will be represented by a
global pebble after all, despite its inclusion in the selected paths: the highest-numbered
pebble is always global. This example therefore requires a total of four global pebbles.



CHAPTER 6

Conclusions

6.1. Introduction

In this chapter, we will summarize the results shown in this thesis, and we will
reiterate some of the thornier issues that we have run into. We will start by discussing
our extensions to the pebble tree transducer model in relation to type checking. In the
section that follows, we discuss our findings regarding the relationship between XML
transformation languages and pebble tree transducers. We will wrap up our conclusions

with a short discussion of some remaining issues.

6.2. Type Checking

As we discussed in the introduction, type checking of an n-pebble tree transducer
has until now been shown to be feasible using an algorithm whose time complexity is
(n + 2)-fold exponential (i.e., a tower of n + 2 exponentials). In the present thesis,
we have introduced the concept of local pebbles, which leads to an algorithm that
improves upon this time complexity. We have shown in Chapter 4 that a pebble tree
transducer with k& global pebbles and any number of local pebbles can be decomposed
into k£ + 1 twtts, yielding a type checking algorithm with a (k + 2)-fold exponential
time complexity. We have also shown that in real situations, like in the example
of Section 5.4, it is possible to execute transformations that require n pebbles using
algorithms that make at least some of the pebbles local, like the algorithms described
in Section 5.3.2. This means that this improvement is not purely theoretical: it reduces
complexity in real situations.

In addition to the concept of local pebbles, we have introduced a ptt extension
which allows ptts to perform MSO tests. We have seen in Sections 5.3.2 and 5.3.3 that
the use of MSO tests can lead to a decrease in the required number of global pebbles;
and each global pebble that can be avoided leads to a reduction of the time complexity
of the type checking algorithm by one level of exponentiation. The MSO extensions
also have a cost: we observed in Section 1.3.3 that the type checking algorithm has a
time complexity that includes one additional level of exponentiation. Therefore, if we
compare an algorithm implementation using a regular ptt and an MSO-extended ptt,
the MSO-extended ptt is at an advantage if it is able to execute the algorithm using
two less global pebbles than the regular ptt.

119
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In conclusion, we have introduced concepts which yield both theoretical and real-
world improvements on the time complexity of type checking for a significant subset of
the transformations that can be expressed using pebble tree transducers. The use of
local pebbles is already able to provide an improvement by itself in many situations,
but the potential for improvement becomes even larger when pebble tree transducers
with MSO tests are used.

6.3. PTTs and XML Transformation Languages

In Chapter 5, we have looked at the semantics of XPath expressions, XSLT and
XQuery, and we have described a number of techniques for implementing these seman-
tics using pebble tree transducers, both using MSO extensions and without using MSO
extensions. We have shown that a surprisingly large subset of the constructs of XSLT
and XQuery are, in fact, implementable using pebble tree transducers. In particular,
the possibilities for storing various variable values have turned out to be larger than
we expected: we have found techniques to store node sequences, result tree fragments,
and even some unbounded values in variables. On the other hand, we have also found
that there are some fundamental limitations. One of these limitations, the inability
to perform data value joins on unbounded values, was already discussed by Milo et
al. in [17]. In their paper, they argue that if join conditions are independent, then
pebble tree transducers can still be used for type checking, as the output type then
remains the same. We have found that sorting, which is closely related to joins, is
also not implementable using pebble tree transducers. However, we have also provided
an argumentation that under specific conditions, a ptt can be used for type checking
transformations that include a sorting operation.

In [17], Milo et al. claimed that XSLT cannot be fully implemented using pebble
tree transducers. As a cause of this, they only explicitly mentioned the inability of
pebble tree transducers to perform data value joins. However, next to this rather
obvious limitation, we have found an unexpected additional limitation, which is that
unbounded recursion is not possible. This limitation is a direct result of the fact that
a pebble tree transducer has a bounded number of pebbles. Because of the highly
recursive nature of XSLT, this implies that of the XSLT transformations, only those
transformations can be simulated for which it can be statically shown that they have
only bounded recursion. Unfortunately, this is a very small subset of typical XSLT
transformations. So, notwithstanding the fact that most individual XSLT constructs
can be implemented using pebble tree transducers, the implementation of the whole of
an XSLT transformation is often problematic.
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6.4. Discussion

It is important to recognize the fact that, in order to achieve good type checking
time complexities using the techniques that we describe, the construction of the pebble
tree transducers needs to be done with care. Various techniques for implementing
XSLT- and XQuery-expressible transformations were presented in Chapter 5, each with
different effects on the number of global pebbles. A careful choice of implementation
techniques makes all the difference. Optimization techniques, like the one we presented
in Section 5.5.3, can yield dramatic improvements compared to naive implementations.
Unfortunately, we have no algorithm to generate the optimal implementation (i.e.,
the implementation with the least number of global pebbles) for a given XSLT or
XQuery transformation. We explicitly do not claim that the techniques presented in
Chapter 5 are optimal, and as the implementations are bound only by the semantics
of the modeled XSLT and XQuery transformations, in many situations more optimal
implementations may be possible.

The problems in modeling XSLT transformations are most unfortunate. As we have
explained, the cause of these problems is found in the fact that a pebble tree transducer
has only a bounded number of pebbles, while XSLT transformations often require
unbounded recursion. There is a relatively simple solution to this problem, which is to
allow an unbounded number of local pebbles. This solution, and its implications, are
beyond the scope of this thesis; we have investigated it in detail, and a paper presenting

the results is currently under review for publication [12].
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