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Abstract

Motivation: Over the last years there have been many e↵orts in predicting the possible
deleterious e↵ect of genetic variants. However, due to an increase in longevity research and
research into protective variants, there is an increasing need for predicting protective alleles
and alleles that have a beneficial e↵ect on human functioning.
Methods: We created an evolutionary model based on the human-derived allele frequency
(DAF), i.e. the allele frequency of alleles not yet present in our last common ancestor with
the chimpanzee. Based on this model we generated a training set containing three types
of variants: beneficial variants, deleterious variants, and neutral variants. The idea behind
the model is that beneficial alleles will be overrepresented in the variants with a high DAF
since beneficial alleles fixate relatively rapidly. A balance between new alleles and negative
selection pressure keeps the low DAF variants enriched for deleterious variants. Neutral
variants only encountering pressures from random genetic drift can be found all over the
DAF spectrum and since the extreme ends are enriched for deleterious alleles and beneficial
alleles the middle part of the spectrum should be enriched for neutral alleles. After labeling
all variants in ExAC according to these principals, we collected a broad range of genetic and
genomic features for each of the labeled variants. Using this dataset we trained a classifier
to separate the three classes and assessed its performance.
Results: The model was successful in separating the three classes in our training set.
The model could also separate pathogenic variants and benign variants from the ClinVar
database. When inspecting beneficially predicted variants we found that they often associate
to beneficial traits in genome-wide association studies. We found that deleterious alleles are
di↵erent from the other alleles because of their higher conservation, where beneficial alleles
could be distinguished because of their higher mutability. Lastly, we show that according to
the model a cohort of cognitively healthy centenarians is enriched for beneficial alleles.
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1 Introduction

Life expectancy is highly variable between individuals. Some live on to extreme ages without
any severe health problems, while other die early from disease. Since longevity is in part
determined by a genetic component[31, 34], these di↵erences in longevity point towards the
fact that genetic variations might protect the former of the two groups against diseases while
other variants might make the latter group more susceptible to disease. This insight inspired
research trying to associate variants with phenotypical traits. The most common way of
investigating associations between variants and traits is through a genome-wide association
study(GWAS). In a GWAS one takes a group showing a certain trait and a group not showing
this trait and one tries to find variants that occur more often in one group than the other.
However, the GWAS method has some limitations, the most important being statistical
significance. To still be able to investigate variants that are not significant researchers
started trying to predict whether a variant was likely to have an e↵ect, solely based on the
properties of a variant. This way genetic researchers have an extra indication on whether
they should put more e↵ort into certain variants or whether they are better o↵ spending their
valuable time and resources on other things. Most of the variant e↵ect predictors focus on
predicting deleterious alleles since most genetic research is aimed at finding disease-related
variants.
The first e↵ort in creating an annotation for deleteriousness was Sorting Intolerant From
Tolerant (SIFT) by Kumar et al.[44, 56]. This algorithm scored amino acid substitutions as
tolerable or as intolerable based on the conservation of the amino acid in di↵erent species.
The intuition being that highly conserved bases are more likely to be deleterious when
changed since all the alternatives were filtered out by natural selection for a reason. Genomic
Evolutionary Rate Profiling (Gerp)[12] later applied the same intuition only on a nucleotide
level, by looking at the expected mutation rate and comparing it to the actual mutation
rate to see if the site is more conserved than expected. Some algorithms that try to predict
deleterious alleles take a di↵erent approach where they predict the e↵ect on the protein
itself[5] or combine this with the conservation measures[1, 66]. Recently a new type of
annotation has been introduced based on combining di↵erent types of annotation[41, 35].
Combined annotation dependent depletions (CADD) is particularly interesting in this class.
The creators of this method defined an evolution-based model for defining variants that
were probably filtered out by natural selection and variants that were actively selected for
and used machine learning to see which properties di↵erentiate these two classes. A big
advantage of this approach is that a large data set can be created and the method also
works for non-coding regions. All these methods were aimed at detecting deleterious and
disease-causing alleles. However, surprisingly, there are no e↵orts in trying to predict the
protectiveness of variants. Especially, since more and more research started looking into
longevity and specific variants protecting us from disease it is becoming more important to
predict these beneficial alleles.
Even more so, as this di↵erence can be understood from evolutionary theory as pioneered by
Darwin[13], Wallace[86] and, Fisher[21]; i.e. alleles encoding for improved fitness fixate[23]
and those decreasing fitness will die out[23] (Figure 1A). Since disease susceptibility is a
large factor in longevity[48, 15, 22] one can expect genetic variations that influence disease
susceptibility to also have an e↵ect on fitness, therefore we opted for using an evolution-
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Figure 1: A) shows how the allele frequencies of the three types of variants are expected to
develop over time. On the right of each type, it shows the expected distribution at the any given
time. In the bottom right corner, we see what the distribution would be if we overlay them. B) A
visualization of the human-derived allele frequency. The allele of the common ancestor is compared
to the reference and alternative allele of a human variant to see which of the two is ancestral and
which is human-derived. The allele frequency of the human-derived allele is used.

based model for predicting neutral, deleterious, but also protective variants. Evolution itself
does not care much for longevity since it is only influenced by reproductive fitness. However,
lowering disease susceptibility will increase not only longevity but also reproductive fitness,
especially when the disease starts before the end of the reproductive age range. Even if
this is not the case, one can still often observe the ’grandmother e↵ect’, that hypothesizes
that based on a kin-fitness principle children whose grandparents are still alive and vital are
better integrated into society and therefore have an evolutionary advantage[74].
The frequency at which relatively new alleles occur in the population is indicative of the
e↵ect that it has on the evolutionary fitness in humans. Therefore, we can simulate three
di↵erent types of variants based on their allele frequency: beneficial alleles, neutral alleles,
and deleterious alleles. We might be able to learn how to predict the e↵ect of new alleles
without any allele frequency information, by learning about the di↵erent properties of these
three types of alleles.
In other words, one could look at the frequency of alleles and use these for training a model.
More specifically, use the human-derived allele frequency (DAF), i.e. the frequency of alleles
not yet present in the common ancestor humans and other primates(figure 1B).
Based on evolutionary arguments, one might expect beneficial variants to have a DAF of
almost 1 since they fixate relatively rapidly and one might expect deleterious alleles to have
a low frequency since the balance between new mutations and negative selection pressure
keeps them at a low frequency[23](Figure 1A). The fate of neutral alleles is mainly determined
by genetic drift[39, 58, 23], therefore, neutral alleles can be found with all kinds of DAF-
values (Figure 1A). Since beneficial variants gravitate towards fixation and deleterious alleles
variants keep a low-frequency one can expect the frequencies between the extreme ends of the
spectrum to be enriched for neutral variants (Figure 1A). By creating a training set of variants
with a high DAF (beneficial), a medium-high DAF (neutral) and low DAF (deleterious) we
wanted to try to predict for newly introduced alleles where they might end up on the DAF-
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spectrum and thereby predict their e↵ect on fitness and disease. Like for deleterious variants,
we would like to be able to predict whether a newly detected variant will be protective or not.
Or, to understand what makes it that one variant is protective while the other is pathogenic.
Based on numerous genetic and genomic features we set out to find these di↵erences.
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2 Results

A training set was created based on variants extracted from the ExAC[49] exome database,
containing all the variation in the human exomes of 60,000 alleles (See section 4.1). We
devised a labeling approach based on the intuitions as laid out in the introduction using
the DAF of each of the variants in ExAC. The DAF was calculated by using the ancestral
genome of the chimp and humans that was inferred in the Ensembl Compara 75 release[30].
The DAF was calculated as follows:

DAF =

(
1� AF, if anc = alt

AF, otherwise
(1)

An extremely high DAF (> 0.999) is indicative for a beneficial allele. An extremely low
DAF (< 0.001) is indicative for deleterious alleles. Variants not encountering any selection
pressure (neutral variants) are enriched in DAFs between the extremes (0.2 < DAF < 0.8).
A way of inspecting how much sense the labeling makes is comparing the probability density
function for a random variant belonging to a certain allele frequency to the principles of
the Neutral evolution model of as proposed by Fumio Tajima[79]. If we look at figure 2

Figure 2: Probability density distribution for a random variant belonging to a certain human
derived allele frequency bin in the ExAC dataset.

we see a couple of things that stand out. First, we see a part in the middle that is pretty
much flat, which is what one would expect for neutral variants based on the neutral model
of evolution[79]. This model states that the chance of observing a neutral variant scales
with 1

i , where i is the allele count. To create a probability density function, one would
have to multiply this probability with the observed alleles, which is i resulting in 1

i ⇥ i = 1.
This means that the probability density function in a neutral model scales as a constant,
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just as the middle part of our function. It can be seen that the ’flat part’ of the spectrum
corresponds to the part being labeled neutral(0.2 < DAF < 0.8). The model assumes a
stable population size. If the number of rare variants is larger than expected by Tajimas
neutral evolution model, that means a recent population expansion. This observation is in
agreement with the fact that the world population has drastically increased in recent times[3].
The weak selection pressure of the last ages caused by this population explosion might cause
deleterious alleles to not be filtered out as e�ciently as they would be otherwise, therefore
the peak on the left is enriched for deleterious alleles. On the right we see a drastic increase
compared to the middle part, that can be explained by the recent decrease in population
size that forewent the population increase previously mentioned (i.e. a bottleneck)[3], in
that case, these would be the positively selected variants[79]. Based on these principles of
population genetics our labeling also is sound, since the thresholds for labeling overlaps with
the observations of figure 2.
For all labeled variants, we collected features. The same features as used in CADD[41].
The created training set was used for training a multinomial logistic regression classifier for
prediction.

2.1 Variant categories can be separated with good accuracy

Next, we were interested in whether we could di↵erentiate between the three classes. For
that, we trained a multinomial logistic regression. To predict the variant class we made use
of a large collection of features (see table 7). First, we wanted to assess the test performance
of the classifier, i.e. see how well the classifier could separate the di↵erent labels in a dataset
it was not trained on. An area under the receiver operator characteristics curve (AUROC)
analysis was used for this (See section 4). Since an AUROC can only be defined for the
classification of two classes we trained a one-versus-rest classifier for all classes and averaged
these, this gives an estimation of the actual multinomial performance[45]. Figure 3 shows
the AUROC performance in separating the di↵erent classes. With an average AUC of 0.74,
the model performs better than random classification(AUC=0.50), showing that the three
classes are separable. It can be seen that the neutral variants are less separable from the
other classes, indicating overlap of the neutral class with the other two classes.
We expected the beneficial and deleterious class to be heavily contaminated with neutral
variants, so we wanted to see what the performance would be if we were to minimize this
contamination. Figure 4 shows the ROC-performance of the posteriors for the beneficial and
deleterious class for all ExAC variants when the variants are grouped based on their neutral
posterior probability (See section 4). This figure shows that the lower the posterior for neu-
tral, the higher the classification performance. With results ranging from good performance
(AUC of 0.74 for the 0.41-1.0 neutral posterior bin) to almost perfect classification for the
(0.98 for the 0.0-0.18 bin). The lower the neutral posterior the less contaminated we expect
the group to be with neutral variants, therefore these results indicate that the contamination
of neutral variants does, in fact, have a large e↵ect on classification.
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Figure 3: The ROC performance of the one-versus-rest classifiers for all the di↵erent classes, and
their average ROC

Figure 4: ROC-curves for di↵erentiating beneficial and deleterious variants in di↵erent neutral
posterior probability categories.

2.2 Validation

The fact that the classifier can separate the di↵erent classes is encouraging, however, that
does not yet say anything about how the model translates to the classification of real clinically
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relevant variants. To investigate this, we applied the model to benign and pathogenic variants
in the ClinVar[46] database.

2.2.1 ClinVar pathogenic variants predicted with high precision

The distribution of the posterior probabilities for the benign variants and the pathogenic
variants in ClinVar can be seen in figure 5. Pathogenic variants score extremely high on

Figure 5: A split violin plot showing the posterior probability of the di↵erent classes for the
benign variants (blue) and pathogenic variants (red) in ClinVar.

the posterior for deleteriousness when compared to the benign ClinVar variants. The be-
nign variants in ClinVar generally have a higher posterior for the neutral class than in the
pathogenic variants in ClinVar. This could be expected since the benign variants had no
known e↵ect, just like the neutral class is defined as having no e↵ect. Table 1 shows the

Benign Pathogenic Protective
Number of variants 18835 26263 25
Beneficial 6731 (35,7%) 604 (2,3%) 12 (48%)
Neutral 7210 (38,3%) 602 (2,3%) 9 (36%)
Deleterious 4894 (26,0%) 25057 (95,4%) 4 (16%)

Table 1: Classification of the ClinVar database

classification of variants in the ClinVar database using a simple classification based on high-
est posterior of the multinomial model. Pathogenic variants are classified accurately in the
deleterious category. For the benign variants one would hope that they get overwhelmingly
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classified as Neutral, however, although this is the most occurring classification, the mis-
classification rate was still 62%. Note that the benign variants are variants that did show a
phenotypical e↵ect, but an e↵ect that was non-pathogenic. Consequently, it might be that
our predictor still is right in classifying an e↵ect, either deleterious or beneficial. Since the
number of protective variants in ClinVar was low and the quality of the protective traits was
poor, it was decided to use separate methods for validating the beneficial class.

2.2.2 Beneficially predicted alleles associate to beneficial traits

In order to do a validation of the beneficial variants, we inspected the traits that associate
to some of the most beneficially predicted variants and for contrast we also showed the
traits associated to some of the most deleteriously predicted variants in GWAS studies (See
section 4). Table 5 and table 6 show the hits in the GWAS catalog[51] that have a posterior
probability of 0.8 or higher for the beneficial class and the deleterious class respectively
present in ExAC. The manual classification by the authors of the trait is given in the first
column. Table 2 shows the number of variants after each filtering step and the percentage of
truly beneficial traits and deleterious traits for both predicted classes. Both classes associate
mostly to their appropriate e↵ect. However, note that the number of associations is relatively
low, especially for the beneficial class (N=9). It can be seen that the GWAS catalog had

Beneficial variants Deleterious variants Neutral variants
Posterior>0.8 130,344 472,982 321,496
RS numbers 20,301 46,209 51,264
In GWAS catalog 23 55 51
Manually assigned classification 9 35 -
Assigned beneficial 6 (67%) 3 (33%) -
Assigned deleterious 2 (6%) 33 (94%) -

Table 2: Number of variants for each step in the GWAS catalog analysis.

more results for the deleterious variants than the beneficial traits, probably having to do
with the fact that more variants had a deleterious posterior of 0.8 or higher than there were
variants with a beneficial posterior of 0.8 and higher or the fact that deleterious phenotypes
are more of the topic of research. If we look at the ratios of it can be seen that most of the
beneficial variants found were also judged to be beneficial whereas most of the deleterious
variants were also associated to deleterious traits. These results suggest that the beneficial
class as defined in the model does predominantly code for beneficial traits.

2.2.3 Beneficially predicted variants often located at selection sweep sites

Selective sweeps occur during a bottleneck, where the population rapidly decreases, increas-
ing selection pressure. This leaves a pattern in the genomes of a population for all positively
selected variants. These patterns can be recognized by algorithms specialized in detecting
these selective sweeps. The algorithm used for this analysis is called SweepFinder[57, 62].
Figure 6 shows the probability density function for the likelihood of being located on a se-
lection sweep site for beneficially, deleteriously, and neutrally predicted variants in ExAC
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as estimated by the multinomial classifier(See methods). What we wanted to find out by
creating this plot is if beneficially predicted variants would be on locations of which we also
see a higher likelihood of positive selection. As can be seen in the figure especially the higher

Figure 6: Probability density function with respect to the likelihood of the variant being in a
selective sweep region for the three di↵erent predicted classes.

likelihoods seem to be enriched for variants that were also predicted to be beneficial and
the lower likelihoods seem to be enriched for deleterious alleles. A simple Mann-Whitney-U
test showed that the beneficial alleles are not significantly di↵erent from the deleterious class
(P=0.16), however, the plot still shows the what one would hope to see if the classifier were
to work correctly.

2.3 Deleterious variants overwhelmingly protein changing

After validating the model we were interested in inspecting the di↵erences in properties
between the three class labels in our training set, starting with variant types. Figure 7
shows the counts of di↵erent variant types in the training set for each class. One can see
that the deleterious class exists of a disproportionate amount of nonsynonymous variants,
where the beneficial class and intronic variants are mostly neutral. This could be expected
from intronic variants, because of their extremely weak e↵ect. Most of the loss of function
mutations (stop gained, stop lost, canonical splice site, nonsynonymous) show an enrichment
of deleterious mutations. Because of their enormous e↵ect on protein function, this could be
expected. Although there also is some literature based on empirical evidence suggesting that
protective variants should consist mostly of loss of function variants[28]. All the other variant
consequences show an enrichment for both beneficial and neutral variants indicating that at
least based on variant consequences neutral variants and beneficial variants are similar. The
intergenic variants are enriched for neutral variants. Quite interestingly the synonymous
variants seem to make up a higher fraction of the beneficial variant than the neutral variants,
which would not be expected based on the fact that synonymous variants have such little
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Figure 7: Shows counts of each variant type in the training set separated based on class. Green
shows the beneficial class and red the deleterious class and blue the neutral class. The variant types
are ordered on the di↵erence between the beneficial and the deleterious count. The variant types
with a ’*’ were all significantly di↵erent(See methods). The right side panel shows an aggregation
of all protein-changing variant types and all non-protein-changing variant types.

e↵ect. Although they can have quite a large e↵ect on expression and regulation[68].
Another interesting observation is the fact that the first two components of the principal
component analysis (PCA) of the training set perfectly separates di↵erent variant types.
Figure 8 shows the first two principal components of the features in the training set. Clear
clusters form. The clusters were color coded and numbered. The variants clustered according

Figure 8: The first two principal components of the training set. The di↵erent clusters that
formed are color coded.

to variant type: Cluster 0 was entirely made up of synonymous variants, cluster 1 was made
up of intronic variants, cluster 2 was made up of stop gained, stop lost and non-synonymous
variants and cluster 3 was made up of all other variants types. This indicates that the
variants types account for the most variance in the features is actually caused by di↵erent
variants types. It is interesting to see that all variant types so perfectly separate in di↵erent
clusters. Especially, if we consider that the indicator variables for the variant types have
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such a low factor in the linear combination for the principal components.

2.4 Properties that di↵erentiate

We wanted to know how informative di↵erent features were in di↵erentiating all the classes
at ones, but also how informative variants are in distinguishing between two of the three
classes. We trained a classifier on all possible combination of two classes, using just one fea-
ture at the time. For each of the di↵erent classifiers, the AUROC was determined to see how
well that certain feature di↵erentiated the corresponding classes. Figure 9 shows an overview
of the di↵erentiating power of all the di↵erent feature. It can be seen that all features related

Figure 9: Heat map shows the AUROC scores of all features used in one versus one classification.
The AUROC was generated training for the two corresponding classes on the feature alone and
testing its AUROC performance. The left figure shows an over of all features, where the right side
shows only the features that were in the top 10 for at least one of the di↵erentiations.

to conservation are doing well in di↵erentiating between the beneficial and deleterious class
and also in di↵erentiating the deleterious and neutral class. It was already well known that
deleterious variants tend to be separable through conservation [41, 56, 1], and this finding
confirms that view. It can be seen that not many features are performing well in di↵erenti-
ating between beneficial and neutral variants, indicating that these classes are very alike in
many perspectives. On the other hand, mutability, DNA access, and transversions seem to
separate beneficial alleles when compared to neutral variants. It can also be seen that the
combination of an indicator value for nonsynonymous SNPs and feature values perform well
in general, this indicates that non-synonymous variants point towards the deleterious class
(See also figure 9). Interestingly, the nucleotide substitution, the amino acid substitution,
the expression values, the chromatin state and the functional genomics data add little to no
information that can be used for prediction.
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Figure 10: This plot shows the distribution of most informative features from figure 9 values
among the di↵erent classes: D is the deleterious class, N is the neutral class, and B is the beneficial
class. The top features were defined as scoring as one of the 10 most informative features in at
least one of the di↵erent di↵erentiations. The outer lines show the extremes, horizontal line in the
middle shows the mean feature value for that class.

Figure 10 show the violin plots for the feature values for some of the most important features
in di↵erentiating the classes. This shows that the CADD score is relatively higher for the
deleterious class than for the beneficial class, which makes sense since the CADD training
set was relatively similar to our training set. It can also be seen that all the conservation
scores show higher values for the deleterious class than for the beneficial class indicating that
beneficial variants occur in less conserved regions than the deleterious variants. This could
be due to the fact that conserved regions are conserved because of their important function,
altering this functions might decrease the fitness of its carrier. It can also be seen that
the beneficial variants di↵er from the other two classes in their mutability. Indicating that
more mutable regions are actually more likely to carry a beneficial variants, which could be
explained by the fact that more mutable regions have a higher turnover of variants and if we
see the selection process as a trial and error process it makes sense that regions with a higher
turnover tend to yield more variants that make it to fixation. Lastly, it can be seen that a
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combination of the indicator value for non-synonymous variants combined with conservation
scores also is a predictor for beneficialness pointing towards the fact that non-synonymous
variants actually di↵er the most of all the possible variant consequences.
Since many of the top features seem to have a lot of overlap we also applied a greedy feature
selection algorithm where features get selected iteratively based on how much information
they add on top of the previously selected features. The 10 first selected features for each pos-
sible di↵erentiation can be found in the supplementary data. It can be seen that the selected
features do not di↵er much from the top performing features. These results again indicate
di↵erentiation of the deleterious class through conservation features and di↵erentiation of
the beneficial class through mutability.

2.5 The importance of the full feature matrix

To see if our training and labeling scheme had any advantage over just using one of the
existing predictors for this three-class problem, we created a separate classification of the
variants by taking the most informative features (the CADD RawScore) and try to separate
our training data just using this feature. This resulted in figure 11. Just as expected the

(a) The AUROC performance of the classi-
fier based on just the CADD raw score

(b) The AUROC performance of the classi-
fier using all features.

Figure 11: Comparison of the AUROC performances

classifier using the full range of features performs far better than the just using the CADD
score. Note, that we are mostly interested in classifications with a low false positive rate, and
it is exactly this range where full feature matrix makes a huge di↵erence in the classification
for neutral and beneficial variants. To quantify this di↵erence we investigated the partial
AUROC (pAUROC) this is the AUROC integrated from a false positive rate of 0 to 0.1.
Here we see quite a di↵erence, the CADD raw score alone scored a pAUROC of 0.013 where
the full feature matrix scored a 0.019. It’s interesting to see that the same problem could
not be resolved by just thresholding an existing feature, this indicates that it really is the
combination of features that create the classification accuracy.
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2.6 Comparison to Combined Annotation Dependent Depletion

Because the model in this study bears many similarities to the CADD-algorithm[41] created
by Kircher et al, it might be interesting to see how the two compare. The CADD algorithm
is also based on a training set that finds its intuition in evolution. The algorithm di↵eren-
tiates two di↵erent types of variants: simulated variants and observed variants. Simulated
variants were variants generated using a simulation approach that simulates variants that
are expected to be in the population by now however that are not found in population stud-
ies. The intuition is that these are actively selected against and therefore are deleterious.
The observed variants are variants that are not observed in the last common ancestor of the
human and chimpanzee, however, are now totally fixated. The idea being that these could
at least not be deleterious since otherwise, they would not be able to fixate.
The di↵erence with the labeling of the training set in this study compared to the CADD
algorithm are small making it interesting to see if this small change makes a di↵erence. One
di↵erence is that the CADD algorithm focuses on variants that were completely filtered out
or completely fixated (DAF = 0/DAF = 1.0, respectively), where we only looked at vari-
ants that occurred that still occurred in the human population(DAF < 0.001/DAF > 0.999,
respectively). Our motivation for doing this was that otherwise, we would train too much
on variants that made us di↵erent from the other primates, instead of variants that made
humans di↵er from each other. Another aspect of our motivation was the fact that the
’simulated variants’ also contained a lot of lethal variants, we want to focus on non-lethal
variants since lethal variants would not be witnessed in the human population anyway.
For quantifying the di↵erence between our definition of classes with respect to that of CADD,
we trained a logistic regression between them and assessed the area under the ROC curve.
Both deleterious classes (CADD and ours), could be di↵erentiated with an AUROC of 0.59.
The beneficial classes could be di↵erentiated with an AUROC of 0.64 AUROC.
To inspect the di↵erence in properties, we plotted the mean feature value for beneficial
variants according to CADD (B*) and according to our definition (B), and similarly for
deleterious variants according to CADD (D*) and to our definition (D). From figure 12 it
can be seen that the deleterious classes follow the diagonal more tightly than the beneficial
classes, which would be expected based on the AUROCs. Consequently, for the deleterious
class, most di↵erences are extremely small. However, for the beneficial class that is not the
case. It can be seen that the mutability is far higher in our beneficial class than in the
’observed variants’, that the beneficial class contains fewer transversions than the observed
variants, and the reference nucleotides are more likely to be G/C in our beneficial class and
the alternative is more likely to be A/T. The transversions can be explained by the fact
that transversions have a bigger impact and therefore they are more likely to create a larger
functional change of that locus. If that change is beneficial, this will mean quicker fixation.
The higher G/C’s in our beneficial class is also quite interesting, it might have to do with
the lower rate of transversions, since G>A and C>T are transitions. The higher mutability
in our model can be explained by the fact that highly mutable sites are more likely to be a
variant in the human population since even after complete fixation they will still mutate.
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Figure 12: The di↵erences of the closely related class of our model and CADD plotted. Each of
the dots represents a feature. The closer to the dotted line the more they are alike in both class
definitions.

2.7 Cognitively healthy centenarians enriched with beneficial al-
leles

In order to apply the model to a real use case, a data set of variants was created by comparing
a cohort of early onset Alzheimer’s disease (EOAD) patients to a cohort of proven cognitively
healthy centenarians (CHC) (See section 4). The variants were called in both cohorts and
three di↵erent sets of variants were made: 1) a set containing variants unique to the CHCs,
2) a set containing variants unique to the EOAD and, 3) a set of variants present in both
cohorts. Figure 13 shows the distribution of the posterior probabilities for the di↵erent
classes in the model for the variants unique to that EOAD cohort (red) and the variants
unique to the CHC cohort (green). It can be seen that the mean for the neutral posterior
in both groups is the same. For the deleterious posterior the mean is slightly higher for the
EOAD variants, where mean posterior for the beneficial class is slightly higher for the CHCs
than the EOAD. The di↵erence for the deleterious class is just above significance and the
di↵erence for the beneficial class is just below significance. These results suggest that the
variants of the two cohorts have a slightly higher posterior for the appropriate class. Table
3 shows the classification of the di↵erent groups of variants. To see if any of these results
were enriched or depleted, we did a thousand random permutation procedure on the CHC
and EOAD labels to create new groups. We scored these new groups to create a distribution
of all classifications for all groups. The 95% extremes of these distributions were used as
a normal range any value below that was considered significantly depleted and value above
that was considered significantly enriched. The EOAD group is almost significantly enriched
for deleterious variants and the CHC seems to be enriched for beneficial variants.

17



Figure 13: The distribution of the posterior probability of all the classes for the scored variants
unique to the AD cohort (red) and unique to the 100plus cohort (green). The p-value for the
MannWhitney U test between the left side and right side distribution is given under the distribution.

Unique to EOAD normal range Unique to CHC normal range In both groups normal range
Total 1502 314 201663
Deleterious 421 (28%) [22%-28%] 71 (22%) [20%-23%] 47939 (24%) [22%-25%]
Neutral 591 (39%) [37%-41%] 128 (41%) [39%-42%] 87224 (43%) [41%-45%]
Beneficial 490 (33%) [31%-36%] 115 (37%) [32%-36%] 66500 (33%) [31%-35%]

Table 3: Classification of the EOAD-CHC comparison variants. The 95% confidence interval for
a ’normal population’ was determined by using a random permutation procedure on the CHC and
AD subjects.

3 Discussion

In this study, we created a model based on evolution to predict the e↵ect of new alleles. We
validated that the model often translates to clinically relevant predictions. When looking
at the di↵erence in properties between the di↵erent variants we see a clear pattern emerge,
where deleterious variants are more conserved than other variants, which agrees with most
research on deleterious alleles[44, 41]. However, what this research has added is a distinction
in the rest of the variants between beneficial variants and neutral variants. Between these
classes we see a pattern of mutability determining the fate of the variants, where beneficial
variants tend to be located in the more mutable areas to the genome with better DNA-
accessibility(Figure 14). What the causality is for mutability being predictive of beneficial
variants remains a question. There are two possible explanations: 1) either the beneficial
variants are usually located on more mutable areas, or 2) the higher mutability causes a
higher chance of fixation because of a higher ”genomic turnover”, i.e. a faster trial and error
process.
The di↵erence seen in posteriors between the CHCs and the EOAD cohort is very small but
still suggestive. However, since most of the unique variants will be private variants unrelated
to cognition, it is quite interesting to see that there was some signal picked up here. When
looking at the classifications itself we actually see a significant enrichment in beneficially
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Figure 14: schematic overview of the most important findings. It shows all di↵erent classes of
the model as well as the ’simulated variants’ (D*) and the ’observed variants’ (B*) of the CADD
model. The AUC for a regression trained between just the two classes is given as well as the most
important feature for di↵erentiation.

predicted alleles in the CHCs and an almost significant depletion in deleterious alleles.
We found the deleterious variants to be overwhelmingly protein changing, where the ben-
eficial class and neutral class were more regulatory and non-coding. This goes against the
’less is more’ hypothesis[26]. This hypothesis states that evolution is mainly carried out by
a loss of gene function. The question is whether these results really contradict each other or
whether the loss of function variants in the beneficial class, even though they are rare, have
the highest impact on evolution.
Looking at the di↵erences in the classes between CADD and our model, one might won-
der if the choice to only look at variants occurring in current populations makes much of
a di↵erence, especially when looking at the deleterious class. Looking back we still are of
the opinion that our assumption is sound and, even though the di↵erence is very small, the
labeling done this way is more elegant than the complex model, and the many assumptions
that come with that, needed for creating the CADD classes. A point that needs to be made
with regards to this comparison is the fact that our algorithm was only trained on the exome,
whereas CADD can score the whole genome because of their di↵erent labeling approach.
One disadvantage of the model is that since the model is based on evolution it will not
always directly translate to clinical classifications. For example in a case where a variant
protects against disease but has a second negative e↵ect that is larger than the fitness gain
of the protections, this variant will be negatively selected against. However, as we saw in the
validation using the GWAS catalog most of the very certain classifications seem to associate
to appropriate traits.
Another point of criticism could be that we could expect the class labels to be contaminated
with the other classes. Mostly because of the fact that random genetic drift causes a lot of
neutral variants to end up in fixated or be filtered out[39, 40]. To what extent this influences
the model performance is hard to figure out and will remain in part unknown for now. The
neutral class and the other two classes seem to di↵er considerably as can be seen in figure
3, which indicates that the other two classes are mostly made up of variants di↵erent from
the neutral class. What figure 4 shows, however, is that filtering out the variants that look
like neutral variants from the other classes improved the classification. This finding shows
that there is at least some contamination of neutral variants in the other classes.
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Since the number of variants in each of the classes was skewed to an unrealistic degree we
decided to fix this by using downsampling to set the number variants equal for each of the
classes. In a perfect world, of course, we would have like to set the prior probability for
each of the classes to a number that actually represents the chance of observing each of the
variant types, however, this is simply not known at the moment. There are some e↵orts in
trying to figure out what is called the ’distribution of fitness e↵ect’[20], however, none of
these e↵orts were detailed enough to be able to determine the distribution of our classes.
In this study, we tried to validate the model with all the possible tools available, however,
the protective variants in ClinVar could not be used in a convincing way and the number
of actual GWAS hits was quite low. Although the first validation results are encouraging,
before any usage in a real clinical genetics environment is possible, the model should be
further validated using a larger number validated protective/beneficial variants. One could,
for example, turn to the GWAS catalog again and extract all variant decreasing disease risk
or having a positive e↵ect on survival use for validation, however, creating such a data set
will be very labor intensive.
For now, the genome of the chimpanzee-human last common ancestor was used for infer-
ring the selection on a variant. This means that our reference point is anywhere from 4
million[61] to 13 million[4] years away. A lot can happen in 4 million years; variants can
become fixated and be filtered out again over such a large time span. Therefore, it might
be interesting to try a similar approach using the genome of human subspecies, such as the
Neanderthal[65] or the Denisovan[55], or even to try using ancient human genomes, such as
’Ötzi’[38] or Egyptian mummies[70]. The beneficial variants must have fixated at a higher
rate when using these genomes when sticking to the DAF threshold of 0.999 for beneficial
labeling, which might result in a cleaner training set.
Another way of possibly improving the model is by using another classification method that
allows for the generation of meta-features. Here some manually created combination of fea-
tures were used, however, this does not make much sense from a machine learning point of
view since modern machine learning algorithms, such as neural networks with a deep archi-
tecture are perfectly capable of automatically combining features.
Concluding, a model for predicting beneficial alleles was successfully implemented and val-
idated. When inspecting beneficially predicted variants we found that they often associate
to beneficial traits in genome-wide association studies. We found that deleterious alleles are
di↵erent from the other alleles because of their higher conservation, where beneficial alleles
could be distinguished because of their higher mutability. Lastly, we showed that according
to the model a cohort of cognitively healthy centenarians is enriched for beneficial alleles.
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A high-coverage genome sequence from an archaic denisovan individual. Science,
338(6104):222–226, 2012.

[56] Pauline C Ng and Steven Heniko↵. Predicting deleterious amino acid substitutions.
Genome research, 11(5):863–874, 2001.

[57] Rasmus Nielsen, Scott Williamson, Yuseob Kim, Melissa J Hubisz, Andrew G Clark,
and Carlos Bustamante. Genomic scans for selective sweeps using snp data. Genome
research, 15(11):1566–1575, 2005.

[58] Tomoko Ohta. The nearly neutral theory of molecular evolution. Annual Review of
Ecology and Systematics, 23(1):263–286, 1992.

26



[59] Nicholette D Palmer, Mark O Goodarzi, Carl D Langefeld, Nan Wang, Xiuqing Guo,
Kent D Taylor, Tasha E Fingerlin, Jill M Norris, Thomas A Buchanan, Anny H Xiang,
et al. Genetic variants associated with quantitative glucose homeostasis traits translate
to type 2 diabetes in mexican americans: the guardian (genetics underlying diabetes in
hispanics) consortium. Diabetes, page DB 140732, 2014.
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4 Methods

4.1 ExAC database

Variants were extracted from the Exome Aggregation Consortium (ExAC) exome database
version 0.3.1. ExAC contains the exomes of 60,706 unrelated individuals.[49] The database
contains 10,195,872 variants. After applying quality control (QC) 7,140,753 were left. QC
existed of passing the following conditions: passing the ExAC QC, a number of covered
alleles in the population (allele number) that was su�ciently high (at least 100,000) and a
high-quality ancestral base call in Ensemble compara release 75[30].

4.2 Inferring human-derived allele frequency

The allele frequency of the human-derived allele is called the human-derived allele frequency
(DAF). The DAF of each variant in ExAC was calculated by taking the allele frequency
and comparing the alternative allele (alt) of the variant to the ancestral allele (anc). In the
following manner:

DAF =

(
1� AF, if anc = alt

AF, otherwise
(2)

The variant e↵ect for each of the classes was labeled as follows: 1) Beneficial: DAF > 0.999,
these variants are relatively new in the population and managed to fixate in the population;
2) Neutral: 0.2 < DAF < 0.8, these common variants are expected to have an extremely
weak e↵ect; 3) Deleterious: DAF < 0.001, these variants were not actively selected for and
therefore maintained a low DAF. This resulted in 29,793 variants being labeled as neutral,
24,818 being labeled as beneficial and being labeled as 7,086,141 deleterious. Since the
distribution of the three di↵erent classes is unknown and the classes were extremely skewed
it was decided to stratify the class sizes using random downsampling. Resulting in 24,818
variants per class.

4.3 Feature collection

For each of the variants a large number of features was collected, mostly extracted from
the Ensembl Variant E↵ect Predictor(VEP, Ensembl Gene annotation v68)[54]. The fea-
tures included conservation based annotations such as GEPR[12], phastCons[33], phyloP[33],
Grantham-score[25], SIFT[44] and, polyphen[1]; regulatory features such as DNase hyper-
phosphorilation [11], transcription factors[11]; and transcript features such as expression
and other functional genomics measures in cell lines. Table 7 in the supplement gives a full
overview of all features used in the model and their respective references. Binary features
were encoded to 0,1. Non-binary features were scaled to [0,1] using linear min-max scaling.
Non-real (such as amino acid substitutions and nucleotide substitution) were represented by
a series of features for every obtainable value.
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4.4 Model deployment

4.4.1 Training

All variants selected during downsampling were used in training a multinomial logistic regres-
sion classification with L2 regularization and a stochastic average gradient descent solver[69].
The optimal lambda-value of the L2 regularization was tested by iterating over di↵erent val-
ues each 10x bigger or smaller and scored using cross-validation accuracy. The lambda was
found to be robust, with an optimal value at the default of 1.
The entire model was implemented using sci-kit-learn[63].

4.4.2 Performance testing

The performance was examined using an area under the receiver operating characteristic
curve analysis(AUROC) based on splitting the data in a training set and test set. The
splitting of the data set was done using random sampling of half of the variants. For the
multinomial class, the average AUROC of the one versus rest classification for all three
classes was used.

4.4.3 Feature analysis

To analyze the predictive power of individual features new logistic regression classifiers were
trained for each feature: one multivariate to see how well the feature can di↵erentiate between
all classes, and three one-vs-one logistic regression classifiers to see how well the feature
di↵erentiates between beneficial versus deleterious, beneficial versus neutral, and deleterious
versus neutral. Since we expected a lot of overlap between the informativeness of the features
we also assessed which feature combinations were the best, ranking the feature combination
up to 10 features by using a greedy feature selection approach[82, 27]. Meaning first the
most informative feature was selected, after which the feature that was the most informative
in combination with the first feature was selected, then a third that is most informative in
combination with the first two. This way the algorithm kept adding features until we had
the 10 most informative features.

4.5 Assessing training performance

The testing performance was assessed using an area under the receiver operating characteris-
tic curve (AUROC). Since this is a three-class problem and the AUROC expects a two-class
problem, we chose to calculate the AUROC for three di↵erent one versus rest classifiers were
trained (one for each class) and these ROC-curves would be averaged [45]. The AUROCs
were created by separating the data into two parts one for training and one for testing per-
formance. For each variant, we can calculate the (estimated) posterior for all three classes
(B, D, N) using the three trained classifiers. This allows us to study the performance of
di↵erentiating between the beneficial and deleterious class for di↵erent levels of neutrality.
Hereto, we separated variants according to the di↵erent levels of predicted posterior for the
neutral class (binned in 5 di↵erent categories of equal size based). For all variants, the
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posteriors of the beneficial and deleterious category were normalized to 1 and then used to
create ROC-curves for every category and category-based AUROCs.

4.6 Validation

4.6.1 ClinVar

ClinVar[46] is a database that consists of clinically validated variants. All variants from
version 2017-05-30 were checked to make sure that the variants were SNPs and that the vari-
ants were within the ExAC capture regions. After which, three di↵erent types of variants
in the ExAC capture region were extracted from the database: Pathogenic (n=26261), Be-
nign (n=18831) and protective (n=25). All extracted variants were scored using the trained
multinomial regression.

4.6.2 GWAS data

We used a GWAS validation approach based on GWAS databases. The variants were filtered
to make sure that were in the ExAC capture region and to make sure that the variants only
included single nucleotide variations (SNVs). All were scored with a split approach where the
variants were randomly sampled to form two groups, a multinomial regression was trained
on the one group to score the other and vice versa. All variants with a posterior probability
of 0.8 or higher for either the beneficial or deleterious class were extracted. Those variants
that had an RS number were queried in the NHGRI GWAS catalog to look for genome-wide
significant SNPs.[87, 51] For all the found associations it was manually determined whether
the associated trait was beneficial, deleterious or unassigned to each of the classes.

4.6.3 Selective sweeps

All variants in ExAC were randomly split into two splits, a multinomial regression was
trained on the one group to score the other and vice versa. The 10,000 variants with the
highest posterior for the beneficial class, the 10,000 variants with the highest posterior for
the neutral class and the 10,000 variants with the highest posterior for the deleterious class
were extracted. The entire 1000 genome project phase 3[10] was scanned for selective sweeps
using the SweepFinder[57, 62] algorithm. The algorithm gives a likelihood for each position
for belonging to a selective sweep. The distributions of the likelihoods for selection sweeps
for the di↵erent classes were compared.

4.7 Consequence barplot

For creating the barplot of di↵erent variant consequences we simply took the training set
and for each of the classes we plotted the number of variants that made up that consequence
type. To determine if the di↵erence between the classes for that consequence type were
significant we used the beta distribution and calculated if their distributions overlapped for
more than 2.5%. The beta distribution of each class for each variants consequence types was
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given by:

f(x,↵, �) =
1

B(↵, �)
x

↵�1(1� x)��1 (3)

, where B is the beta function, ↵ is the number of variants in that class that have the conse-
quence investigated and � is the number of variants in that class not having the consequence.
If the all the three distributions had an overlap less than 2.5% probability we marked the
consequence as significantly di↵erent.

4.8 CHC-EOAD comparison

The CHCs used for this comparison were enrolled in the 100plus study. The 100plus study
had the exomes of 217 CHCs. These CHCs were self-reported to be cognitively healthy
and underwent neuropsychological testing1. The EOAD variants were gathered from the
Amsterdam Dementia Cohort(ADC)[85]. The cohort contained the exomes of 373 EOAD
cases. A minor allele frequency(MAF) filter was applied to the data set to filter out all the
variants with an MAF of 0.005 or lower. Out of the total set of variants three di↵erent
sets of variants were created: 1) a set of variants unique to the CHCs, 2) a set of variants
unique to the ADC, and 3) a set that occurred in both groups. All three groups were
scored using the multinomial classifier and the resulting posterior probabilities were analyzed.
To see if the cohorts were extreme cases for any of the classifications we used a random
permutation procedure. In this procedure, the AD label of CHC label of subjects was
randomly permutated resulting in new unique variants. The process was repeated 1000
times to generate the 2.5% extreme and the 97.5% extreme of the resulting distribution.

1www.100plus.nl
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5 Supplementary data

5.1 Derived allele frequency spectrum

Figure 15 shows the DAF spectra for variants that were predicted to be beneficial, deleterious
and neutral. It can be seen that the deleterious class is very prevalent in the first percentage

Figure 15: The derived allele frequency spectra for the predicted beneficial variants, deleterious
variants, and neutral variants extracted from the ExAC exome database.

bin. However, deleterious variants are depleted in the rest of the spectrum. As expected
neutrally predicted variants are enriched in the middle part of the spectrum and depleted in
the extreme ends, and beneficial variants are enriched for the high DAF region.

5.2 Precision recall

All the single feature analyses in the results were based on the AUROC, however, the AUC
does not tell the complete story. It only informs us on how well a single feature predicts
for the entire set. Another statistic that could be used is the area under the precision-recall
curve (AUPRC), which is more informative in an information retrieval sense. That is, how
predictive is the feature for the relevant samples? For example, how predictive is being a
nonsynonymous variant for the deleterious class? Figure 16 shows the AUPRC of each of
the features for each of the possible class di↵erences. It can be seen that the precision-recall
is less clustered than the AUROC.
It is interesting to see that for example some of the amino acid substitutions and nucleotide
substitutions have high recall-precision whereas their AUROC was relatively low. This in-
dicates that these features actually contribute a lot to classifier performance for the specific
instances.

5.3 Supplementary tables

Name Type Description
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Ref Factor Reference allele
Alt Factor Alternative allele
Type Factor Variant type (SNV, DEL, INS)
Length Int Length of INDEL
IsTv Boolean Transversion
Consetquence Factor Variant consequence
GC Num Percent GC in a window of +/- 75bp
GpC Num Percent GpC in a window of +/- 75bp
priPhCons[33] Num Primate PhastCons conservation score (excl. human)
mamPhCons[33] Num Mammalian PhastCons conservation score (excl. human)
verPhCons[33] Num Vertebrate PhastCons conservation score (excl. human)
priPhyloP[33] Num Primate PhyloP score (excl. human)
mamPhyloP[33] Num Mammalian PhyloP score (excl. human)
verPhyloP[33] Num Vertebrate PhyloP score (excl. human)
GerpN[14] Num Neutral evolution score by GEPR++
GerpS[14] Num GERP++ Rejected substitions score
GerpRS[14] Num GERP++ element score
GerpRSpval[14] Num GERP++ element p-value
bStatistic int Background selection score
mutIndex[73] Num Mutability index
dnaHelT[91] Num Predicted local DNA structure e↵ect on dnaHelT
dnaMGW[91] Num Predicted local DNA structure e↵ect on dnaMGW
dnaProT[91] Num Predicted local DNA structure e↵ect on dnaProT
dnaRoll[91] Num Predicted local DNA structure e↵ect on dnaRoll
mirSVR-Score[7] Num mirSVR-Score
mirSVR-E[7] Num mirSVR-E
mirSVR-Aln[7] Num mirSVR-Aln
cHmmTssA[19] Num Proportion of 127 cell types in cHmmTssA state
cHmmTssAFlnk[19] Num Proportion of 127 cell types in cHmmTssAFlnk state
cHmmTx[19] Num Proportion of 127 cell types in cHmmTx state
cHmmTxFlnk[19] Num Proportion of 127 cell types in cHmmTxFlnk state
cHmmTxWk[19] Num Proportion of 127 cell types in cHmmTxWk state
cHmmEnh[19] Num Proportion of 127 cell types in cHmmEnh state
cHmmEnhG[19] Num Proportion of 127 cell types in cHmmEnhG state
cHmmZnfRpts[19] Num Proportion of 127 cell types in cHmmZnfRpts state
cHmmHet[19] Num Proportion of 127 cell types in cHmmHet state
cHmmTssBiv[19] Num Proportion of 127 cell types in cHmmTssBiv state
cHmmBivFlnk[19] Num Proportion of 127 cell types in cHmmBivFlnk state
cHmmEnhBiv[19] Num Proportion of 127 cell types in cHmmEnhBiv state
cHmmReprPC[19] Num Proportion of 127 cell types in cHmmReprPC state
cHmmReprPCWK[19]Num Proportion of 127 cell types in cHmmReprPCWK state
cHmmQuies[19] Num Proportion of 127 cell types in cHmmQuies state
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EncExp[11] Num Maximum ENCODE expression value
EncH3k27Ac[11] Num Maximum ENCODE H3K27 acetylation level
EncH3K27Me1[11] Num Maximum ENCODE H3K4 methylation level
EncH3K4Me3[11] Num Maximum ENCODE H3K4 trimethylation level
EncNucleo[11] Num Maximum of ENCODE Nucelosome position track score
EncOCC[11] Num ENCODE open chromatin code
EncOCombPval[11] Num ENCODE combined p-Value (PHRED-scale)
EncOCDNasePVal[11]Num p-Value (PHRED-scale) of Dnase evidence for open chro-

matin
EncOCFairePVal[11]Num p-Value (PHRED-scale) of Faire evidence for open chro-

matin
EncOCpolIIPval[11] Num p-Value (PHRED-scale) of polII evidence for open chromatin
EncOCctcfPval[11] Num p-Value (PHRED-scale) of CTCF evidence for open chro-

matin
EncOmycPval[11] Num p-Value (PHRED-scale) of Myc evidence for open chromatin
EncOCDNaseSig[11]Num Peak signal for Dnase evidence of open chromatin
EncOCFaireSig[11] Num Peak signal for Faire evidence of open chromatin
EncOCpolIISig[11] Num Peak signal for polII evidence of open chromatin
EncOCctcfSig[11] Num Peak signal for CTCF evidence of open chromatin
EncOCmycSig[11] Num Peak signal for Myc evidence of open chromatin
Segway[32] Factor Result of genomic segmentation algorithm
tOverlapMotifs Int Number of overlapping predicted TF motifs
motifDist Num Di↵erence in predicted overlapping motifs between ref and

alt
motifEcount Int Total number of overlapping motifs
motifEname String name of overlapping motifs
motifEHIPos bool Position highly informative
morifEscoreChng Num VEP score change for the overlapping motif site
TFBS Int Number of di↵erent overlapping ChIP transcription binding

sites
TFBSPeaks Int TFBS summed over di↵erent celltypes
TFBSPeaksMax Int Maximum TFBS across all celltypes
minDistTSS Int Distance to closest TSS
minDistTSE Int Distance to closest TSE
cDNApos Int Base position from transcription start
relcDNApos Num Relative position in protein coding sequence
CDSpos Int Base position from coding start
relCDSpos Num relative position coding sequence
protPos Int Amino acid position from coding start
relProtPos Num Relative position in protein codon
Domain String Domain annotation inferred from VEP
Dst2Splice Int Distance to splice site in 20bp
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Dst2SplType Factor Closest splice site is ACCEPTOR or DONOR
oAA Factor Reference Amino Acid
nAA Factor Amino acid of observer variant
Grantham[25] int Grantham score: oAA, nAA
PolyPhenCat[1] factor Polyphen category of change
PolyPhenVal[1] Num Polyphen Score
SIFTcat[44] Factor SIFT category
SIFTvalue[44] Num SIFT score
CADDvalue*[41] Num CADD score

Table 7: Adapted version of the CADD feature description in the CADD release notes. ’*’
indicates features not used in CADD

38



Figure 16: Heat map shows the AUPRC of all features used in one versus one classification. The
AUPRC was generated training for the two corresponding classes on the feature alone and testing
its AUPRC performance.

Feature B-D (CV) B-N (CV) D-N (CV)
Rank 1 RawScore 0.72 mutIndex 0.64 RawScore 0.70
Rank 2 priPhyloP 0.79 isTv 0.71 GerpRS 0.77
Rank 3 NSxmutIndex 0.81 RawScore 0.73 bStatistic 0.79
Rank 4 SIFTval 0.82 SNxmutIndex 0.75 NSxbStatistic 0.79
Rank 5 SNxpriPhCons 0.82 SIFTval 0.76 verPhCons 0.80
Rank 6 cHmmTssBiv 0.82 RefxG 0.76 dnaProT 0.80
Rank 7 NSxdnaProT 0.83 RefxC 0.77 IxpriPhCons 0.80
Rank 8 SNxdnaProT 0.83 NSxGerpN 0.77 RxpriPhCons 0.81
Rank 9 NSxGerpN 0.83 priPhyloP 0.77 SxpriPhCons 0.81
Rank 10 SxmutIndex 0.84 oAAxK 0.77 SIFTval 0.81

Table 4: Shows the 10 most important features of the greedy feature selection for each of the dif-
ferent one versus one classifications. The CV columns give the cumulative crossvalidation accuracy
for the di↵erent features.
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Manual assignment Trait OR/Beta RS Ref P-value
D Blood protein levels (Extracellular matrix protein 1 ) 0.8493 13294 [77] 8,00E-102

Height 0.06 1351394 [2] 2,00E-65
Height 1.32 1351394 [2] 2,00E-32

B Hepatitis B (Viral clearance) 1.64 9277535-G [53] 2E-21
D Blood protein levels (Ck-beta-8-1 ) 0.4715 1003645 [77] 2,00E-19

Hip circumference (BMI adjusted ) 0.0253 1351394 [9] 5,00E-13
Nose size 0.026 10761129 [64] 7,00E-09

B Pancreatic cancer (Survival) 3.3 763780-G [80] 3,00E-08
B Postburn scarring (Severity) 0.23 11136645 [75] 8,00E-08
B Non-small lung cancer (Survival) 2.38 1656402 [67] 8,00E-08

Obesity-related traits (Weight ) 0.03 1056513 [9] 1,00E-07
Obesity-related traits (Fat mass ) 0.04 1056513 [9] 2,00E-07
Obesity-related traits (Trunk fat mass ) 0.04 1056513 [9] 2,00E-07
Obesity-related traits (Fat free mass ) 0.03 1056513 [9] 3,00E-07
Obesity-related traits (Lean body mass ) 0.03 1056513 [9] 3,00E-07

B Prostate cancer (Survival ) 1.15 723557 [78] 6,00E-7
D Carotid intima media thickness (Multiple-adjusted ) 17433780 [88] 2,00E-06

Obesity-related traits (Hip circumference ) 0.02 1056513 [9] 3,00E-06
Obesity-related traits (Total energy expenditure ) 0.03 1056513 [9] 6,00E-06
Obesity-related traits (Leptin ) 0.02 1056513 [9] 7,00E-06
Obesity-related traits (Sleep energy expenditure ) 0.03 1056513 [9] 7,00E-06

B Obesity-related traits (Bone mineral content ) 0.02 1056513 [9] 7,00E-06
Obesity-related traits (BMI ) 0.02 1056513 [9] 8,00E-06

Table 5: All the variants from ExAC found in the GWAS catalog that had a posterior probability
for the beneficial class of 0.8 or higher.
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Manual assignment Trait OR/Beta RS number Ref P-value
D Acylcarnitine levels (Nonaylcarnitine) 0.2057 2286963 [17] 3,00E-118

Blood protein levels (ERA 1) 1.142 17482078 [77] 3,00E-115
D Homocysteine levels 0.1583 1801133 [60] 4,00E-104

Lipoprotein (a) levels 8.63 41272114 [52] 5,00E-86
Lipid metabolism phenotypes (VLDL.small, whole) 4.219 676210 [8] 4,00E-64
Metabolite levels (C9/C10:2) 0.219 2286963 [17] 3,00E-60
Lipid metabolism phenotypes (VLDL.total, whole) 6.384 676210 [8] 9,00E-56

D LDL (oxidized) 10.5 676210 [8] 3,00E-47
D Homocysteine levels (WGHS) 0.05 1801133 [60] 8,00E-35
D Parkinson’s disease 9.62 34637584 [16] 2,00E-28

Lipoprotein(a) 5.73 41272114 [52] 3,00E-24
D LDL cholesterol levels (Trans-ethnic initial) 0.0375 1169288 [76] 2,00E-22

HDL cholesterol levels (Trans-ethnic initial) 0.0336 1877031 [76] 1,00E-21
D LDL cholesterol 0.038 1169288 [76] 6,00E-21

Gamma gluatamyl transferase levels 0.132 1169288 [76] 2,00E-18
D Coronary heart disease 1.09 11556924 [71] 9,00E-18
D Cholesterol, total 0.032 1169288 [76] 4,00E-17

Blood protein levels (EA, Cathepsin S) 267738 [77] 9,00E-17
Response to SRIs in major depressive disorder (S-DDCT concentration) 1065852 [36] 2,00E-16
Response to SRIs in major depressive disorder (S-DDCT/S-DCT ratio) 1058172 [36] 8,00E-16
Response to SRIs in major depressive disorder (S-DDCT/S-DCT ratio) 1065852 [36] 8,00E-16

D LDL cholesterol 1.42 1169288 [76] 1,00E-15
Cholesterol, total 1.45 1169288 [76] 1,00E-14

D Glomerular filtration rate (creatinine) 0.0091 267738 [77] 1,00E-14
D Serum alpha1-antitrypsin levels 1.79 1169288 [76] 2,00E-12
D Behcet’s disease (Turkish cases with Uveitis) 4.56 17482078 [43] 5,00E-11
D Coronary artery disease 1.08 11556924 [71] 5,00E-11

Sleep traits (multi-trait analysis) 12140153 [47] 1,00E-10
D Schizophrenia 1.17 1051061 [90] 1,00E-10
D Celiac disease or Rheumatoid arthritis 2298428 [18] 3,00E-10
D Coronary artery disease 10.989 11556924 [71] 3,00E-10
D Coronary artery disease or large artery stroke 11556924 [71] 8,00E-10

Height 0.033 2270518 [29] 8,00E-10
D Coronary artery disease or ischemic stroke 11556924 [71] 9,00E-10
D Lipid metabolism phenotypes (TG.assay, fasting) 0.047 676210 [8] 2,00E-09
B Lifespan (females) 5.445 2229188 [89] 2,00E-08
D Mild influenza (H1N1) infection 41529445 [24] 2,00E-08

Plasma plasminogen levels 0.056 41272114 [52] -3,00E-08
Chronotype 0.039 12140153 [37] 3,00E-08

D Behcet’s disease (All Turkish cases) 3.08 17482078 [43] 4,00E-08
D Myocardial infarction 1.07 11556924 [71] 4,00E-08
D Rhegmatogenous retinal detachment 1.23 267738 [42] 1,00E-07
D Chronic lymphocytic leukemia 1.29 757978 [18] 1,00E-07
D Celiac disease 1.13 2298428 [18] 2,00E-07

Serum sulfate level 0.02 362272 [84] 3,00E-07
D Excessive daytime sleepiness 0.036 12140153 [47] 7,00E-07
D Systemic sclerosis (EA) 0.654 35677470 [81] 9,00E-07
D ALT levels after remission induction therapy in ALL (AA) 7.692.308 144122212 [50] 2,00E-06
D Chronic lymphocytic leukemia 1.46 757978 [6] 3,00E-06
B Survival in pancreatic cancer 2.46 3795244 [80] 3,00E-06
D ALT levels after remission induction therapy in ALL (AA) 8.55 139242087 [50] 3,00E-06
D Tuberculosis 1.46 1434579 [83] 4,00E-06

Morning vs. evening chronotype 1.07 12140153 [37] 4,00E-06
Glucose homeostasis traits (SG) 2.09 17650440 [59] 6,00E-06
Height 0.018 6180 [29] 8,00E-06

D Dental caries 1.33 2302189 [72] 8,00E-06

Table 6: All the variants from ExAC found in the GWAS catalog that had a posterior probability
for the beneficial class of 0.8 or higher.
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