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1 Introduction

1.1 Bachelorproject
This thesis is a report on my bachelor project at LIACS. The goal of this project
is to get more acquainted with doing research and to cooperate in real research.
Furthermore it is a way to use some skills learned during the bachelor.

1.2 Multi-objective optimization
This thesis is on multi-objective optimization (MOO). Optimization is about find-
ing an optimal solution for f (x) with x ∈ X. MOO is optimizing with multiple
objectives, we want to find an optimal solution for f1(x), ..., fm(x) with x ∈ X.

MOO problems are hard to solve because of a few reasons: first of all the
search space is usually very big. In an n objective optimization problems we have
n different search spaces that we all have to explore in order to find good solutions.

A second challenge is that we have to achieve more than one goal. Often these
goals are conflicting, finding an optimal solution for one of the objectives may
give a bad result on another objective.

From the latter follows that there is a definition problem: what is a good result?
Can a result that optimizes just one objective be considered a good result? Are the
results that optimize all objectives the only results that we are looking for? How
do we compare different results?

1.2.1 Pareto dominance

To be able to compare different MOO results we use the Pareto dominance rela-
tion. This relation introduces the notion of Pareto dominance.

For any y(1) ∈ Rm and y(2) ∈ Rm : y(1) dominates y(2) if and only if: ∀i = 1, ...,m :
y(1)

i ≤ y(2)
i and ∃i ∈ {1, ...,m} : y(1)

i < y(2)
i .

With this notion of Pareto dominance we can say that dominating solutions are
better than the solutions they dominate. Even more important is that there are
non-dominated solutions. These solutions are not dominated by any other solu-
tion, but this does not mean that there is just one non-dominated solution. Two
non-dominated solutions can exist at the same time because they are incomparable



Figure 1: Illustration of the mapping of points in the search space (left) to so-
lutions in the objective space (right). The green area is dominated by the non-
dominated points.

with each other. For example, solution A is better in objective one than solution B,
while solution B is better in objective two. In such a situation we cannot choose
between A and B because we think both objectives are equally important. There-
fore A and B are said to be incomparable.

All non-dominated points are part of the Pareto front of the problem. The in-
put parameters that belong to these solutions are the actual solutions of the MOO
problem. So, what we are actually looking for are input parameters that lead to
non-dominated objective function vectors. These input parameters can afterwards
be investigated by experts in the MOO problems field to choose one single solu-
tion to use in the real world. In the case of this thesis this might be a building
engineer looking for a good solution in the area of building performance, which
is also practical to build.

Note, that there is a possibility that different sets of input parameters produce
the same objective function values.



1.3 Multi-Objective Particle Swarm Optimizer
As an extension to the work of Marijt [1] MOO on a real world problem will be
studied in this thesis. Marijt researched how an evolutionary algorithm, the SMS-
EMOA algorithm [2], can be used in order to optimize the thermal efficiency and
comfort of building designs based on a building performance simulation tool.

Instead of using the SMS-EMOA algorithm as in Marijt [1] this thesis will
investigate the Multi Objective Particle Swarm Optimizer (MOPSO) as it was
proposed in [3]. The main question we want to answer is whether or not this algo-
rithm will yield good results on the real world problem of building performance
optimization. To do this we will test different parameterizations and at the end we
will compare the results to those obtained with SMS-EMOA.

1.4 Vabi Building Simulator
The real-world-problem that we use for this study is the Vabi building simulator
[4], the same as in [1]. The simulator is a black box from the point of view of
the optimizer. It uses 77 input parameters that represent different aspects of a
building. Among these are for instance the thickness and material of which the
walls are made, the number of people in the building and a binary variable that
decides whether or not double glass windows are used.

As an output we will read the numbers representing the 2 objectives. Objective
1 is the thermal comfort, represented by the numbers of weighted overheating
hours (WOH+) and weighted underheating hours (WOH-). The second objective
is the energy consumption measured in annual heating and annual cooling, both
in kWh. We want to optimize (minimize) both objectives.

The Vabi building simulator was used while designing “het Bouwhuis” in Zoeter-
meer. “Het Bouwhuis” is the headquarters of Bouwend Nederland, an organisa-
tion of construction companies in the Netherlands. When Bouwend Nederland
designed the building they chose from two alternatives for regulating the heading
and cooling facilities. Option one was a regular all airconditioned system. Option
two involved transparent facades on most of the buildings floors. After calcula-
tions option two was chosen, which resulted in a energy consumption that is 24
percent below the standard.



Figure 2: Het Bouwhuis in Zoetermeer

In this thesis, certain parameters of
the building are optimized. These pa-
rameters were selected based on a sen-
sitivity analysis in [5]. In [5] the effect
of the parameters on the design objec-
tives, thermal comfort and energy con-
sumption, was compared.

The remainder of this thesis is struc-
tured as follows:
Section 2 introduces the MOPSO al-
gorithm. Then, section 3 deals with
the tests that are done to prove that the
MOPSO implementation works prop-
erly. Section 4 describes the results
on the Vabi building simulator. Fi-
nally, section 5 will consist of conclu-
sions that can be drawn based on the
results, together with some recommen-
dation for future research.

2 The MOPSO

2.1 What is a MOPSO?
A particle swarm optimizer (PSO) is
an algorithm based on the behavior of
flocks of birds or schools of fish collec-
tively searching for food sources. Al-
though the MOPSO algorithm works with a population it is not an evolutionary
algorithm. The population is not altered with crossover nor with mutation opera-
tors. There is no selection operator either; all individuals are kept in the population
at all time. Even more important is that individuals keep a memory of their past
positions and that their moves are directed.

The population of a Particle Swarm Optimizer (PSO) consists of particles that
are initially placed randomly on the search space. Each particle has a direction
and speed. Each iteration of the algorithm the speed and position of a particle are
updated. The speed and direction of each particle are influenced by its own local
optimum, a global optimum and a random factor.



2.1.1 The multi-objective variant

The multiobjective variant of the PSO, the MOPSO, is different in a few ways.
Because we deal with multiple objectives the result will be a Pareto front with
particles instead of a single best solution. With each iteration of the algorithm, all
non-dominated points of the particles history are stored in a repository. This is the
global “memory” of the particle. Another, very logical, difference is that particles
are moved in n objectives instead of just one.

2.1.2 Pseudo code

Next, let us outline the pseudocode of a canonical MOPSO algorithm (cf. Coello
Coello [3]).

1. Randomly initialize population −−−→POP of size µ.

2. Initialize the speed −−−→VEL of each particle.

∀i ∈ {1, ..., µ} −−−→VEL[i] = 0.

3. Evaluate each particle in −−−→POP.

4. Store non-dominated points in the repository −−−→REP.

5. Generate hypercubes (cubes in m dimensions, where m is the number of
objectives) of the objective space explored so far. Do this by dividing the
objective space explored by numDivisions in each dimension of it.

6. For each particle, determine in which hypercube it is positioned.

7. Initialize the memory −−−−−−−−→PBES TS of each particle.

∀i ∈ {1, ..., µ} −−−−−−−−→PBES TS [i] =
−−−→POP[i].

8. while the maximum number of loops is not exceeded, do:

• compute the speed of each particle i (in each direction) with the for-
mula −−−→VEL[i] = W × −−−→VEL[i] + R1 × (−−−−−−−−→PBES TS [i] − −−−→POP[i]) + R2 ×

(−−−→REP[h] − −−−→POP[i])
Where W is an inertia weight of 0.4, R1 and R2 are random values

between 0 and 1.

• compute the new position of each particle with −−−→POP[i] =
−−−→POP[i] +

−−−→VEL[i].

• Make sure each particle stays within the search space boundaries.



• update −−−→REP, −−−−−−−−→PBES TS , the hypercubes and the position of each parti-
cle within these hypercubes.

The index for the global optimum, h, is randomly selected. The “fitness” of
each hypercube is computed by dividing a number (in this thesis 1) by the number
of particles in that hypercube. This fitness is then used to apply roulette-wheel se-
lection. This selects a hypercube from which a particle is randomly picked. This
selection should make sure that hypercubes with less particles have a higher prob-
ability to be selected. This way there is some disadvantage for highly-populated
hypercubes. Particles will be attracted to the lesser populated parts of the Pareto
front, which is a good thing as we want it to be well-spread.

There is one thing that is implemented in a way not proposed in [3], the size of
the repository. We did not limit the amount of particles in this repository. A very
large repository might be undesirable because it would make computing the Pareto
front costly. In this study this is not a problem. One run of the Vabi simulator takes
approximately 14 seconds. It is clear that this will be the delaying factor in our
tests.

Furthermore, we do not intend to make a great number of function evaluations.
Therefore we do not have to worry about too much individuals in the repository,
most probably we get less then we want. It is because of these reasons that we did
not put a limit on the number of individuals in the repository.

2.2 Advantages of using the MOPSO algorithm
The MOPSO algorithm is simple but it is reported to perform well [3]. The main
problem in (real-world) optimization problems is the time it takes to run the al-
gorithm. So, reducing the number of function evaluations is one of the best ways
to make our solution applicable in practice. Marijt [1] reduced the amount of
function evaluations by using a meta-model. This way he estimated the objective
function values of his inputs and therefore needed less real evaluations.

MOPSO uses directional information and is therefore fast in approximating the
Pareto front. This makes it especially suitable for this project. Still, the question is
whether or not it makes good approximations using a small number of evaluations.

Another reason for using a MOPSO was that there was no MATLAB imple-
mentation at LIACS. This thesis will make such an implementation available for



further research plus a function handler for the Vabi simulator. Besides that it will
provide some first empirical results of this implementation on test problems.

2.3 Implementation
The MOPSO build for this thesis is based on the description in [3]. It is written in
MATLAB and was built to accommodate function handling for multiple objective
functions that can be easily exchanged. The function handles make sure all sorts of
objective functions can be used, even external evaluation tools. The main function
is called with 4 function handles. The first handle is for initializing all variables
and the population. The second is for moving the particles, the third one is the
objective function itself.

This setup of the function is not new, however very important. To ensure per-
sistance of the software project it is important that the function handles are easy to
use and to be reconfigured. That is why the approach with function handles was
chosen. The documented source code can be found in appendix A of this thesis.

3 Evaluating the implementation
Before the MOPSO can be used to optimize with the building simulator, the proper
functioning of the implemented algorithm should be validated on test problems
with a known Pareto front. Therefore it was tested on the Supersphere testfunction
proposed by Emmerich and Deutz [6]. Testing on this test function must prove that
a good Pareto front is found and, more importantly, that it is found consistently.

Knowing how long it takes to converge is also very important. As mentioned
before, the number of function evaluations must be kept to a minimum due to
costly evaluations of the building simulator.

3.1 Parameters
A few parameters are essential for the MOPSO algorithm to perform well on a
problem. First of all, the number of objective function evaluations. This parameter
determines the quality of the results found by the algorithm since it determines
how many computations can be done. It is debatable if this parameter is a control
parameter or a given constant since we want to know how the MOPSO performes
with only few objective function evaluations.



Also, the number of divisions we make in the objective space is an important
parameter. This is used to divide the explored search space up in hypercubes, and
therefore determines the size of the hypercubes. This size of the hypercubes is
important when we select the repository index h.

The inertia weight W is the last parameter that we will tune in order to get
the best results on the simulator. The inertia weight determines to what extend
the old velocity of a particle is considered while calculating the new velocity. A
percentage of the old velocity, depending on the inertia weight, can be added to
the new velocity. With a low inertia weight the particles can adjust there “flight
path” more quickly while a large inertia weight makes it more difficult to change
course.

These are the parameters with which we will try to optimize the algorithm.
There are, however, some others. There is, for example, the number of particles
in the population. Also, the two random values used to move the particles around
can be changed. Although these are all important parameters, they will not be
changed, and instead use the default values introduces in section 2.1.2.

The reason for this decision is simple. The number of evaluations can be con-
sidered a static value. Taking a maximum amount of 400 should be enough to
find good results. This proved to be sufficient in the tests of Marijt [1]. A second
important factor is the time it takes to run a test. A test with 400 evaluations with
the Vabi simulator takes approximately 23 hours. More evaluations will mean
longer tests and building engineers usually do not want to wait that long for a re-
sult. We should keep an eye on the usefulness of this algorithm when applied in
the real world. Therefore 400 was chosen as an upper bound for the number of
evaluations.

The number of divisions in the search space is the second parameter to be tested.
This parameter is important to ensure that the Pareto front will be spread evenly
along all non-dominated solutions. Recall that the hypercubes are used to select a
guiding particle from the repository to which a particle moves. A right setting of
this parameter will make hypercubes of the right size. This means that whenever
they are too big, all hypercubes will be full of solutions. Hypercubes that are too
small are also unfavorable. In this case almost all hypercubes will contain zero or
just a few particles. A good setting will make sure that some hypercubes are full
of particles and some others will just contain one or two.



The inertia weight has it influence on the direction and speed of each particle.
If the inertia weight would be 0.0 then each particle would be flying towards its
own and towards a global optimum. This way there would not be any influence
of previous velocities on the new one. The other extreme, a value of 1.0 would
mean that all velocities are stacked upon each other. This could lead to very
high velocities and uncontrolable behaviour. We will be testing a range of values
between 0 and 1 to test what works best.

There are multiple reasons why the random- and size of population parameters
have not been tested. First of all it would take a lot of tests and would exceed the
scope of this bachelor thesis. A second reason is that the number of particles in
the repository, also influenced by the number of evaluations, and the number of
divisions strongly depend on each other. We have chosen to take those apart and
keep the rest constant. Furthermore this setup worked good, there was not a real
necessity to tune more parameters.

Coello Coello [3] proposed to use the MOPSO with 20-80 particles, 80-120
rounds, 30-50 divisions and an inertia weight of 0.4. These settings were tested
on the superspheres problem. The results will indicate whether or not the imple-
mentation that was made works properly. Furthermore it will indicate how the
parameters should be set. Once a set of good parameters is found, the algorithm
can be deployed on the Vabi building simulator.

3.2 Setup of the tests
To make sure we do not make too much evaluations we keep the particles at 20

and the number of rounds, too. This will lead to 400 objective function evalua-
tions 1, the exact number used in [1]. The expectation is that a higher number of
evaluations will find a better Pareto front. However, the question is if the Pareto
front approximation found after 400 evaluations is already good enough.

With an almost static amount of evaluations, we can focus on fine tuning the
number of divisions and the inertia weight. We try to optimize the combination of
these parameters so we will first optimize the first parameter and then the other,
resulting in the following tests that can be found in table 1.

1A function evaluation here is assumed to always compute the full vector of objective function
values



3.3 Results
The result of the MOPSO implementation on the superspheres testfunction will

be shown below. The most important measure of success will be the hypervolume
measure proposed in [6]. This hypervolume measure is essentially the size of the
surface that is dominated by the Pareto front. As a reference point [1.5, 1.5] was
used because this point is close to the points of the Pareto front approximations
but always dominated.

The next measurement is the Summary Attainment Surface (SAS) plot pro-
posed by Fonseca and Fleming [7], plotted using the tool made by Knowles [8].
This is a way to average different Pareto fronts. It gives a good insight into what
is dominated by a front and makes it easy to compare fronts from different runs.

As we can see in figure 3(a) the MOPSO performes really well on the super-
spheres problem. So well actually that it is hard to see what setting of the number

20 particles 20 rounds 0.4 inertia weight 5 divisions
20 particles 20 rounds 0.4 inertia weight 10 divisions
20 particles 20 rounds 0.4 inertia weight 20 divisions
20 particles 20 rounds 0.4 inertia weight 30 divisions
20 particles 20 rounds 0.4 inertia weight 40 divisions
20 particles 20 rounds 0.0 inertia weight best so far
20 particles 20 rounds 0.1 inertia weight best so far
20 particles 20 rounds 0.2 inertia weight best so far
20 particles 20 rounds 0.3 inertia weight best so far
20 particles 20 rounds 0.4 inertia weight best so far
20 particles 20 rounds 0.5 inertia weight best so far
20 particles 20 rounds 0.6 inertia weight best so far
20 particles 20 rounds 0.7 inertia weight best so far
20 particles 20 rounds 0.8 inertia weight best so far
20 particles 20 rounds 0.9 inertia weight best so far
20 particles 20 rounds 1.0 inertia weight best so far
20 particles 40 rounds best so far best so far

Table 1: Setup of all tests that will be done to evaluate the implementation of the
MOPSO.



0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

m
in

im
iz

e
f 2

minimize f1

5
10
20
30
40
50

(a) Median attainment surface plots with different number of divisions on the Superspheres
problem.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

m
in

im
iz

e
f 2

minimize f1

0.0
0.2
0.4
0.6
0.8
1.0

(b) Median attainment surface plots with different inertia weights on the Superspheres prob-
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Figure 3: Different plots on the Superspheres problem.



particles rounds inertia weight divisions hypervolume
20 20 0.4 5 2.1335
20 20 0.4 10 2.0566
20 20 0.4 20 2.0518
20 20 0.4 30 2.0342
20 20 0.4 40 2.0654
20 20 0.4 50 2.0056

Table 2: Average hypervolume for each run with the superspheres function opti-
mizing the number of divisions.

particles rounds divisions inertia weight hypervolume
20 20 5 0.0 1.7730
20 20 5 0.2 1.6342
20 20 5 0.4 2.0183
20 20 5 0.6 2.0954
20 20 5 0.8 1.6665
20 20 5 1.0 1.5173

Table 3: Average hypervolume for each run with the superspheres function opti-
mizing the inertia weight.



of divisions works best. The hypervolume of each run, given in table 2 gives us
an answer but also shows that the differences are minimal. Setting the number of
divisions to 5 gives the best results, but all other settings also provide us with good
results.

The results for the tuning of the inertia weight is shown in figure 3(b). A good
value for the superspheres function is 0.4 or 0.6. As with the tuning of the number
of divisions all results are very close together.

Figure 4(a) displays different SAS plots of the best run we had with the Su-
perspheres function, with a number of divisions of 5 and an inertia weight of
0.6. What we can see are a worstcase, an average and a bestcase SAS plot. The
differences between these plots are not very big which means our algorithm is
consistently finding good Pareto front approximations.

The development of the hypervolume over time is plotted in figure 4(b). We
can see that hypervolume initialially grows very fast and than stagnates. This is
what we could expect since MOPSO uses directional information to find good
solutions. The convergence is fast and the established hypervolume is good.

There are however a few inconsistencies in the plot where the hypervolume
declines again. This can easily be explained. Since new points are selected for
the Pareto front on Pareto-dominance alone, this could mean these points do not
necessarily improve the hypervolume.

This result is very good. Most improvements of the hypervolume, and therefore
on the Pareto front, are done within the first 400 objective function evaluations.
After this the front still changes but it mostly gets denser instead of really better.
This is exactly what we want because it means that even with as little as 400
evaluations a good approximation of the Pareto front is found.

As an additional test we checked if the MOPSO could converge to Pareto
frontsof different shapes. To do this we had to change the Superspheres func-
tion. Changing the α parameter changes the shape of the Pareto front so that it
becomes convex or straight instead of concave like it is ussualy. The test was
done with only 400 function evaluations and 5 divisions.
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Figure 4: Different plots of the optimizations on the Superspheres function.
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Figure 5: Results on differently shaped pareto fronts of the superspheres problem.

What we see in figure 5 is that there is a good approximation for almost all
types of front. The concave front is not approximated very well, this however is
understandable since this shape is most difficult to find. Overall this result is very
good.

4 Tests on the Vabi building simulator
As allready said, the Vabi building simulator is our real world problem we try to
optimize. And, as we also mentioned before, this simulator works like a black
box. With some procedures we fill the input files that Vabi uses. Then we run the
simulator using the system command of matlab. When the simulation is finished
we read the output files and gather the variables that form our objective values.

We can see in figure 6(a) that the results on the Vabi building simulator are dif-
ferent. This figure shows the different fronts found by the MOPSO with different
numbers of divisions over 400 function evaluations. The difference between the
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particles rounds inertia weight divisions hypervolume
20 20 0.4 5 220.221.920
20 20 0.4 10 237.740.142
20 20 0.4 20 158.467.624
20 20 0.4 30 181.003.258
20 20 0.4 40 154.162.660
20 20 0.4 50 195.093.559

Table 4: Average hypervolume for each run with the Vabi building simulator.

particles rounds divisions inertia weight hypervolume
20 20 10 0.0 133.239.557
20 20 10 0.2 147.614.801
20 20 10 0.4 237.740.142
20 20 10 0.6 223.622.766
20 20 10 0.8 283.637.382
20 20 10 1.0 286.070.400

Table 5: Average hypervolume for each run with different inertia weights on the
Vabi building simulator.

different settings are bigger than the ones on the Superspheres function. A value
of 10 seems to working best allthough the difference with a value of 5 is not very
big.

Table 4 shows that 5 and 10 divisions give the best results, but besides that it
also shows that the hypervolume achieved with 20-50 divisions are very irregular.
This could be caused by the fact that some values really work better than others.
It could also be that this is caused by a few very good or very bad runs. Due to
time limitations we have only been able to test each setup 9 times. More tests
are needed before we can really conclude which of these values works best. Still,
the hypervolumes achieved with 5 and 10 divisions are definitely better than the
others.

Only 10 divisions seems to be a low value. Especially when we compare it to
the suggested amounts of divisions that Coello Coello proposed: 30-50. There is
however an explanation for this behaviour: the number of divisions and the total
amount of particles in the repository are strongly correlated. Since we do not have
large amounts of particles, due to the limited number of function evaluations, we



get best results with a lower value. This value, in this particular case, yields the
best distribution of particles over the hypercubes.

Another interesting thing we can see in figure 6(a) is that the differences be-
tween the runs are made on just a specific part of the Pareto front. At the left top
of the plot all lines are very close together while the differences on the other hand
of the front are biggest. This suggests there are some areas which are easier to
optimize than others.

In figure 6(b) the different runs with the inertia weight on the Vabi simulator
are plotted. As we can see the differences between these runs are bigger than the
ones tuning the number of divisions. As we can also see in table 5 a higher value
for the inertia weight results in a bigger hypervolume. The highest value of 1.0
yields the best results.

Just like in figure 6(a) the big differences are all concentrated on one part of
the Pareto front approximation, which is the same part as they were in figure 6(a).
This makes it even more likely that this part of the front is harder to optimize.

Figure 7(a) presents the SAS plots of the best run on the Vabi simulator. The
overall shape of the lines looks like a Pareto front approximation. Also, the consis-
tency of the fronts seems to be very good. Even the worstcase SAS plot stretches
out over the full length of the objective space. The differences between them is
namely in the points they dominate, the shape of all fronts is good.

The development of the hypervolume on the Vabi problem is presented in figure
7(b). As we can see the hypervolume grows rapidly and then somewhat stagnates.
The variations in the hypervolume after the initial growth are caused by changes
in the Pareto front. These variations in the hypervolume are normal and the overall
look the plot is good. The largest optimizations are done within the first 20 rounds
allthough this will probably not always be the case.

The most important information we can extract from figure 7(b) is that the
hypervolume does not grow dramatically after 400 function evaluations, most of
the progress is done beforehand. This is good because it points out that we have
fast convergence. On the other hand we can see that the improvements that are
achieved decrease. This means that, even though we run the algorithm longer, we
do not automatically get a better result. This can either be caused by a lack of
power of the algorithm, difficult local optima in the objective space or the fact that
we allready found the global optimum.
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(a) Summary attainment surface plots for the best run on the Vabi simulator, with a number
of divisions of 10 and an inertia weight of 1.0.
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Figure 7: Different plots of the optimizations on the Superspheres function.
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Figure 8: Velocity development for three Vabi runs.
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Figure 9: Velocity development for one Vabi runs on logaritmic scale.

As our last result on the Vabi simulator we have included a plot of the velocities
of all particles during a run, which is shown in figure 8. The most left plot is of
our worst run during the tuning of the inertia weight, so with an inertia weight of
0.0. The plot in the middle is of the best run, with an inertia weight of 1.0. The
rightmost plot is of the long run which was also done with an inertia weight of



1.0. This last run lasted 40 rounds and was also used to show the hypervolume
development in figure 7(b).

What we can clearly see in figure 7(b) is that a higher inertia weight results
in a higher average velocity. The velocities are concentrated near the very small
values with some occasional outliers. What is interesting is that the velocities
do not seem to “grow” as we can also see in figure 9 which is plotted using a
logarithmic scale. One could expect the velocities to quickly grow and get out of
proportion, apparently this is not the case here. The relatively small ranges that
the variables have to move make sure that a high inertia weight does not give this
problem.

4.1 Comparison with Marijt
This research project was preceded by Marijt [1] who implemented a different
algorithm to optimize the Vabi building simulator in a robust way. Even though
Marijt used a robust way of optimizing the simulator, it is still interesting to see
how our results compare because different optimization algorithms were used.
Marijt worked with the SMS-EMOA algorithm [2] which uses a totally different
approach than our MOPSO which uses directional information.

Figure 10 shows 2 different Pareto front approximations. One is the median
attainment surface, also shown in figure 7(a), found in the best run using the
MOPSO. The other one is the best front found by Marijt in his studie. The results
look very promising and indicate that the MOPSO yields good results. There are
a few differences between the 2 fronts but these can be explained.

Firstly the MOPSO achieved an overall better front. This can be expected since
the robustness in Marijt’s results will lead to a more conservative choice of solu-
tions. Points that are on the MOPSO front will probably be less robust since we
did not test them on robustness.

Secondly, the front achieved by the MOPSO stretches much longer than the
front of Marijt. This too can be explained by the robustness in Marijt’s results.
The bottom side of the objective space is probably less robust since the robust
front does not cover this part. This idea is strengthened by the observations we
made earlier. As we noticed in figures 6(a) and 6(b) the lower part of the objective
space seems to be more difficult to optimize. This could explain the fact that the
robust front did not find any solutions in that part of the objective space.



Lastly, the difference in the number of solutions in the front can be explained
by the differences between the algorithms. The MOPSO stores all non-dominated
solutions in a repository while the SMS-EMOA algorithm is an evolutionary algo-
rithm with a fixed population size and therefor a maximum number of solutions.
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Figure 10: Comparement of the best Pareto front found with the MOPSO and one
of Marijt’s fronts.

5 Conclusions

5.1 MOPSO
The results presented in the last 2 chapters indicate that the implementation of
the MOPSO algorithm works. Using the Superspheres function we showed that
the algorithm finds optima in a fast and consistent way. It finds different Pareto
front shapes, although the concave shaped Pareto front proved to be much harder
to find.

We tried to find optimal values for the number of divisions and the inertia weight
parameters. The optimal values are, for this particular function, 5 divisions and an



inertia weight of 0.6. Especially the inertia weight makes an impact on the results,
the importance of the number of divisions is almost none. This can however be
caused by the fact that the Superspheres function is relatively easy to optimize.
This makes the influence of the parameters minor, as good results are found even
with suboptimal settings.

5.2 Vabi building simulator
The MOPSO algorithm performed well on the Vabi building simulator, especially
considered its simple setup. Pareto front approximations seem to be found cinsis-
tently and the results can be improved dramatically with some simple parameter
tuning.

Number of divisions The number of divisions parameter was tuned first and the
best value for the Vabi objective function was 10. This small value (compared to
the value advised by Coello Coello) can be related to the small number of particles
in the population. The right setting for the number of divisions not only increases
the hypervolume that is achieved, more importantly it also yields Pareto front
approximations that are more spread across the objective space. This is just what
we expected it to do.

Inertia weight The inertia weight has an even bigger impact on the results.
This parameter, set to the correct value of 1.0, does also influence the spread of
the Pareto front. More importantly, it dramatically increases the hypervolume.
The value of 1.0 would at first seem very unlikely since it makes all velocities
stack upon each other, ever increasing the speed of each particle. Why this value
works best can be caused by the fact that a faster particles can “travel” faster and
therefor achieve better results in less evaluations. Another explanation may be
that the high speed enables particles to jump over local optima and thus gain more
progress.

On might expect that a high inertia weight would yield higher and higher ve-
locities, which could seriously affect the functioning of the algorithm. However,
the bounds of the input parameters are quite small and therefor there is not much
room for developing too high velocities.

We can conclude that the MOPSO yields good results on the Vabi building
simulator and that our parameter tuning really improved the results. Also, the 400
evaluations that we set as a maximum do not really form a limitation to what the



algorithm achieves, which is very good news. All in all the MOPSO algorithm
has very fast and fairly good convergence.

These results are very promising. It shows that algorithms that use directional
information, like the MOPSO algorithm, can optimize building design problems.
Up till now only evolutionary algorithms, like SMS-EMOA and NSGA-II were
tested on the Vabi building simulator. This results is very good since it gives us
more alternatives when searching for good optimizations.

5.3 Further research
As an extend to this thesis, more tests could be performed. Due to time limitations
we have only been able to run 9 tests with each setup. This is good enough for
our first results but more tests are needed to make sure our results are not based
on some unpredictable inconsistencies in the results.

Furthermore, to be able to compare our results with Marijt’s it would be best to
test our results on robustness too. This way we could determine if our solutions
are indeed less robust than Marijt’s, as we think now. This would confirm our
idea that Pareto front would be more like Marijt’s if we would have considered
robustness too.

Lastly, more algorithms could be tested on the Vabi simulator to discover what
type of algorithms are capable of optimizing this problem. To be able to compare
these tests it would be better to test them in the same framework. Making a non-
robust SMS-EMOA or a NSGA-II implementation to run the same tests as in this
thesis could be a good project.

A Source Code

A.1 Index and explanation
This appendix contains the MATLAB source code for the MOPSO algorithm that
is implemented for this thesis. Each section represents a different MATLAB file
with each containing one function, as is usual for MATLAB.

mopso.m

function mopso(fh_initialise, fh_move_particles, fh_evaluate)



global nParticles; %nr of particles (population size)

global nMaxRounds; %number of rounds to loop through the algorithm

global aParticles; %current particles (population)

global aVelocity; %speed of current particles

global aObjectiveValues; %objective values of current particles

global aCoordinates; %hypercube coordinates of current particles

global aRepositoryX; %inputs of current non-dominated particles

global aRepositoryY; %outputs of current non-dominated particles

global aPbestsX; %personal best location of each particle

global aPbestsY; %personal best objective values of each particle

global nCounter; %count the current round of the algorithm,

%used for reading vabi results

%

%

%

%initialise different variables like nDimensions, upper- and lowerBounds

%and offcourse the population

fh_initialise();

%initialise speed

aVelocity = zeros(size(aParticles));

%evaluate particles

aObjectiveValues = fh_evaluate();

%compute non-dominated set (repositoryX and repositoryY)

[aRepositoryX, aRepositoryY] = nonDominatedSet(aParticles, aObjectiveValues); %x and y

%compute hypercube-coordinates for each particle

aCoordinates = getHypercubeCoordinates(aRepositoryY);

%initialise aPbests

aPbestsX = aParticles;

aPbestsY = aObjectiveValues;

%begin execution

for nCounter=1:nMaxRounds

%compute speed of each particle

%compute new position of particle

%enforce lower and upper bound

aParticles = fh_move_particles();

%evaluate population

aObjectiveValues = fh_evaluate();

%compute non-dominated values in (aObjectiveValues + aRepository)

%update aRepositoryX and aRepositoryY

[aRepositoryX, aRepositoryY] = ...

nonDominatedSet([aParticles; aRepositoryX], [aObjectiveValues; aRepositoryY]);

%compute hypervolume-measure of current non-dominated particles

nHypervolume = computeHypervolume(aRepositoryY); %#ok<NASGU>

if (nCounter ˜= nMaxRounds)

%compute hypercube-coordinates for each particle

aCoordinates = getHypercubeCoordinates(aRepositoryY);

%update aPbestsX and aPbestsY

for i=1:size(aParticles,1)

if dominates(aObjectiveValues(i,:), aPbestsY(i,:))



aPbestsY(i,:) = aObjectiveValues(i,:);

aPbestsX(i,:) = aParticles(i,:);

end

end

end

end

%done

display(’done.’);

end

initialiseVabi.m

function initialiseVabi()

global aParticles; %current particles (population)

global MU; %mean of all but sparam parameters

global S; %standard deviation of all but sparam parameters

global aLowerBounds; %lower bounds for parameter 73-77

global aUpperBounds; %upper bounds for parameter 73-77

global aIndexes; %boolean array with sparam-parameters as 1

%and the rest as 0

global aVariables; %names of all parameters

global sparam; %names of parameters that we adjust

global vabidir; %path of vabi simulator

global nParticles; %nr of particles (population size)

global nMaxRounds; %number of rounds to loop through the algorithm

global nObjectives; %nr of objectives

global nDivisions; %nr of divisions used to compute hypercubes

global aReferencePoint; %used to compute hypervolume

global nCounter; %count the current round of the algorithm,

%used for reading vabi results

%

%

%

%fill config settings

nParticles = 2;

nMaxRounds = 10;

nObjectives = 2;

nDivisions = 10;

aReferencePoint = [100000 100000];

nCounter = 0;

vabidir = ’C:\VABI_UO\VA114\progab\uogev\’;

aVariables = {’Twall1’,’Twall2’,’Twall3’,’Tfloor1’,’Tfloor2’,’Tfloor3’,’Tfloor4’,...

’Tfloor5’,’Tfloor6’,’Troof1’,’Troof2’,’Troof3’,’Troof4’,’Troof5’,...

’Cwall1’,’Cwall2’,’Cwall3’,’Cfloor1’,’Cfloor2’,’Cfloor3’,’Cfloor4’,...

’Cfloor5’,’Cfloor6’,’Croof1’,’Croof2’,’Croof3’,’Croof4’,’Croof5’,...

’Dwall1’,’Dwall2’,’Dwall3’,’Dfloor1’,’Dfloor2’,’Dfloor3’,’Dfloor4’,...

’Dfloor5’,’Dfloor6’,’Droof1’,’Droof2’,’Droof3’,’Droof4’,’Droof5’,...

’SHCwall1’,’SHCwall2’,’SHCwall3’,’SHCfloor1’,’SHCfloor2’,’SHCfloor3’,...

’SHCfloor4’,’SHCfloor5’,’SHCfloor6’,’SHCroof1’,’SHCroof2’,’SHCroof3’,...

’SHCroof4’,’SHCroof5’,’Sawall’,’Iewall’,’Oewall’,’Uenkel’,’Udouble’,...

’infiltration’,’Saroof’,’Ieroof’,’Oeroof’,’Safloor’,’Iefloor’,...



’Oefloor’,’Saglass’,’Ieglass’,’Oeglass’,’glasswindow’,’Geometry’,...

’Height’,’Persons’, ’Equipment’,’Lighting’};

% The order of the unindented variables below also hold for MU and S

% Twall1 Twall2 Twall3

% Tfloor1 Tfloor2 Tfloor3 Tfloor4 Tfloor5 Tfloor6

% Troof1 Troof2 Troof3 Troof4 Troof5

% Cwall1 Cwall2 Cwall3

% Cfloor1 Cfloor2 Cfloor3 Cfloor4 Cfloor5 Cfloor6

% Croof1 Croof2 Croof3 Croof4 Croof5

% Dwall1 Dwall2 Dwall3

% Dfloor1 Dfloor2 Dfloor3 Dfloor4 Dfloor5 Dfloor6

% Droof1 Droof2 Droof3 Droof4 Droof5

% SHCwall1 SHCwall2 SHCwall3

% SHCfloor1 SHCfloor2 SHCfloor3 SHCfloor4 SHCfloor5 SHCfloor6

% SHCroof1 SHCroof2 SHCroof3 SHCroof4 SHCroof5

% Sawall Iewall Oewall

% XKos

% Uenkel Udouble

% ThickEnkel ThickDouble

% infiltration

% vermpersonen vermapparaten vermverlichting

% glasssurface

% Saroof Ieroof Oeroof

% Safloor Iefloor Oefloor

% Saglass Ieglass Oeglass

% glasswindow

% singledouble

% Mean of normal distributed variables.

MU = [0.005 0.127 0.2 ...

0.8 0.28 0.1 0.0635 0.025 0.015 ...

0.01 0.005 0.15 0.1345 0.019 ...

50 0.04 1.41 ...

1.41 0.84 1.13 0.025 0.15 0.06 ...

0.96 0.5 1.13 0.04 0.056 ...

7800 12 1900 ...

1900 1700 2000 30 800 160 ...

1800 1700 2000 12 380 ...

480 840 1000 ...

1000 800 1000 1400 2093 2500 ...

1000 1000 1000 840 1000 ...

0.6 0.9 0.9 ...

5.1034 1.21 ...

0.5 ...

0.6 0.9 0.9 ...

0.6 0.9 0.9 ...

0.6 0.9 0.9];

% Standard deviation of normal distributed variables.

S = [0.0005 0.0127 0.02 ...

0.08 0.028 0.01 0.00635 0.0025 0.0015 ...

0.001 0.0005 0.015 0.01345 0.0019 ...

0.75 0.0032 0.1269 ...

0.4653 0.2772 0.1017 0.00875 0.025 0.0078 ...

0.288 0.25 0.1017 0.0032 0.02436 ...

25.74 1.08 28.5 ...

332.5 297.5 30 21 25 18.4 ...

228.6 493 30 1.08 102.6 ...

19.2 56.28 106 ...

107.5 86 106 378 134 0 ... % SHCfloor6 0



195 330 106 56.28 108 ...

0.006 0.0198 0.0198 ...

0.255 0.0605 ...

0.17 ...

0.006 0.0198 0.0198 ...

0.006 0.0198 0.0198 ...

0.006 0.0198 0.0198];

%define which variables that will be varied

sparam = {’Twall3’, ’Cfloor4’, ’Croof2’, ’infiltration’, ’glasswindow’,’Geometry’,...

’Height’,’Persons’, ’Equipment’,’Lighting’};

%lowerBound and upperBound for Geometry, Height, Persons, Equipment and Lighting

aLowerBounds = [25.7661, 4.3050, 6, 6, 6];

aUpperBounds = [26.7661, 6.3050, 25, 35, 20];

%get boolean array which determines per attribute if it should be optimised or not

%so, a 0 means the attribute is not changed and offcourse a 1 means that is does

aIndexes = getindexes();

%initialise particles

aParticles = initPopulationVabi();

%empty vabi output

emptyoutput();

end

getindexes.m

function res = getindexes()

global aVariables; %names of all parameters

global sparam; %names of parameters that we adjust

%

%

%

%create array of zero’s

res = zeros(1,size(aVariables,2));

%loop over variables

for i=1:size(aVariables, 2)

%loop over

for j=1:size(sparam, 2),

if strcmp(sparam(j), aVariables(i)) == 1,

res(i) = 1;

break;

end

end

end

end



initPopulationVabi.m

function res = initPopulationVabi()

global nParticles; %nr of particles (population size)

global aVariables; %names of all parameters

global MU; %mean of all but sparam parameters

global S; %standard deviation of all but sparam parameters

global aIndexes; %boolean array with sparam-parameters as 1

%and the rest as 0

global aLowerBounds; %lower bounds for parameter 73-77

global aUpperBounds; %upper bounds for parameter 73-77

%

%

%

%initialise empty array

res = zeros(nParticles, size(aVariables,2));

%produce a set of inputs, result of this function

for i=1:nParticles

for j=1:size(aVariables,2)

%constant parameters, keep at mean value

if ((j < 72) && (aIndexes(j) == 0))

res(i,j) = MU(j);

%adjusted variables

elseif ((j < 72) && (aIndexes(j) == 1))

%generate value from a normal distribution with mean A and

%standard deviation B

% = A + B.*randn(x,y);

nLowerBound = MU(j) - (3*S(j));

nUpperBound = MU(j) + (3*S(j));

%make sure values stay within [nLowerBound, nUpperbound]

%and always above 0

bWithinBounds = false;

while (˜bWithinBounds)

res(i,j) = MU(j) + S(j) .* randn(1);

if ((res(i,j) >= nLowerBound) && ...

(res(i,j) <= nUpperBound) && (res(i,j) >= 0))

bWithinBounds = true;

end

end

%parameter glasswindow

elseif (j == 72)

%0 or 1

res(i,j) = round(rand(1));

%adjusted variables with own lower- and upper bounds

elseif (j > 72)

boundIndex = (j-72);



res(i,j) = aLowerBounds(boundIndex) + ...

(aUpperBounds(boundIndex)-aLowerBounds(boundIndex)) * rand(1);

end

end

end

end

emptyoutput.m

function emptyoutput()

global vabidir; %path of vabi simulator

%

%

%

fileNameSource = strcat(vabidir, ’va114gvu.par.N’);

fileNameTarget = strcat(vabidir, ’va114gvu.par’);

file_1 = fopen(fileNameSource,’w’);

header1 = ’Uitvoerfile va114gvu.par: gevoeligheden’;

header2 = ’IPAR IPARGEV PARGEV QCEVW QCEKL PCEVW PCEKL IV QLOVW...

QLOKL PLOVW PLOKL TLMAX TLMIN TLGEM TCMAX TCMIN OHL25 OHL28 OHC25...

OHC28 WOH- WOH+’;

header3 = ’ - - - kWh kWh kW kW - kWh...

kWh kW kW C C C C C h h h...

h h h’;

fprintf(file_1,’%s\r\n%s\r\n%s\r\n’,header1, header2, header3);

fclose(file_1);

copyfile(fileNameSource, fileNameTarget);

end

evaluateVabi.m

function res = evaluateVabi()

global aParticles; %current particles (population)

global nObjectives; %nr of objectives

global vabidir; %path of vabi simulator

global nCounter; %count the current round of the algorithm,

%used for reading vabi results

%

%

%

%initialise output array

res = zeros(size(aParticles,1), nObjectives);



%

% Objective function

%

%loop over all particles

for i=1:size(aParticles,1)

%set some helping variables

infiltration = aParticles(i,62);

glasstype = aParticles(i,72);

load = 1;

%write some data with the changing parameters

writedataHOE(aParticles(i,73), aParticles(i,74));

writedataIWP(aParticles(i,75), aParticles(i,76), aParticles(i,77));

%write an inputfile for vabi

file_1 = fopen(’temp.txt’,’w’);

for j=1:size(aParticles,2),

fprintf(file_1, ’%f’, aParticles(i,j));

if j<size(aParticles,2),

fprintf(file_1,’, ’);

end

end

fclose(file_1);

%write other datafiles

writedataBFY(1, load, ’temp.txt’);

writedataMVE(infiltration);

writedataTYP(glasstype);

%run vabi with all these files

run = strcat(vabidir, ’exe\’, ’run.bat’);

system(run); %#ok<NASGU>

%read a single row from the vabi output file

row = (nCounter*size(aParticles,1)) + i;

res(i,:) = readdataGVU(row);

end

end

writedataHOE.m

function writedataHOE(geometry, height)

global vabidir; %path of vabi simulator

%

%

%

fileNameSource = strcat(vabidir, ’ref\’, ’VA114IN.HOE.N’);

fileNameTarget = strcat(vabidir, ’ref\’, ’VA114IN.HOE’);

file_1 = fopen(fileNameSource,’w’);

header1 = ’File Va114in.hoe - coordinaten alle hoekpunten in het gebouw’;



header2 = ’ Aantal hoekpuntnummers’;

header3 = ’ 28’;

header4 = ’ Hptnr X(in m) Y(in m) Z(in m)’;

fprintf(file_1,’%s\r\n%s\r\n%s\r\n%s\r\n’,header1, header2, header3, header4);

[nr,x,y,z] = readdataHOE();

x(13:24) = geometry;

y(18:19) = height;

y(22:23) = height;

for i=1:size(nr,1),

fprintf(file_1,’%d\t%f\t%f\t%f\r\n’,nr(i),x(i),y(i),z(i));

end

fclose(file_1);

copyfile(fileNameSource, fileNameTarget);

end

writedataIWP.m

function writedataIWP(personen, apparaten, verlichting)

global vabidir; %path of vabi simulator

%

%

%

personen = round(personen * 230.3);

apparaten = round(apparaten * 230.3);

verlichting = round(verlichting * 230.3);

fileNameSource = strcat(vabidir, ’ref\’, ’VA114IN1.IWP.N’);

fileNameTarget = strcat(vabidir, ’ref\’, ’VA114IN1.IWP’);

file_1 = fopen(fileNameSource,’w’);

header1 = ’’;

header2 = ’ latente of vochtdeel’;

header3 = ’ VPERS VAPPA VVERL VZON RMETA RCLOW RCLOZ’;

header4 = ’ 0.40 0.00 0.00 .0 1.20 0.90 0.70’;

header5 = ’ convectiefactoren personen, apparatuur, verlichting, zon’;

header6 = ’ CPERS CAPPA CVERL CZON’;

header7 = ’ 0.50 1.00 0.80 0.1’;

header8 = ’ schakelende verlichting’;

header9 = ’ RLIMIN DAGLIA DAGLIU’;

header10 = ’ 1.00 0 9999’;

header11 = ’ A. vermogens van personen’;

header12 = ’ IWKDAG IUUR --->’;

header13 = ’ UUR 1 t/m 24’;

fprintf(file_1,...

’%s\r\n%s\r\n%s\r\n%s\r\n%s\r\n%s\r\n%s\r\n%s\r\n%s\r\n%s\r\n%s\r\n...

%s\r\n%s\r\n’,...

header1, header2, header3, header4, header5, header6, header7, header8,...

header9,header10, header11, header12, header13);



[nr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20...

h21 h22 h23 h24] = readdataIWP(13);

n = 75;

f = ceil(n.*rand(100,1));

h9(1:5) = personen;

h10(1:5) = personen;

h11(1:5) = personen;

h12(1:5) = personen;

h13(1:5) = personen;

h14(1:5) = personen;

h15(1:5) = personen;

h16(1:5) = personen;

h17(1:5) = personen;

h18(1:5) = personen;

for i=1:size(h9,1),

fprintf(file_1,...

’ %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f...

%f %f\r\n’,...

nr(i), h1(i), h2(i), h3(i), h4(i), h5(i), h6(i), h7(i), h8(i), h9(i),...

h10(i), h11(i),h12(i), h13(i), h14(i), h15(i), h16(i), h17(i), h18(i),...

h19(i), h20(i), h21(i), h22(i),h23(i), h24(i));

end

header1 = ’ B. vermogens van apparatuur’;

header2 = ’ IWKDAG IUUR --->’;

header3 = ’ UUR 1 t/m 24’;

fprintf(file_1,’%s\r\n%s\r\n%s\r\n’,header1, header2, header3);

[nr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20...

h21 h22 h23 h24] = readdataIWP(13+ 9 + 3);

n = 75;

f = ceil(n.*rand(100,1));

h9(1:5) = apparaten;

h10(1:5) = apparaten;

h11(1:5) = apparaten;

h12(1:5) = apparaten;

h13(1:5) = apparaten;

h14(1:5) = apparaten;

h15(1:5) = apparaten;

h16(1:5) = apparaten;

h17(1:5) = apparaten;

h18(1:5) = apparaten;

for i=1:size(h9,1),

fprintf(file_1,...

’ %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f...

%f %f\r\n’,...

nr(i), h1(i), h2(i), h3(i), h4(i), h5(i), h6(i), h7(i), h8(i), h9(i),...

h10(i), h11(i),h12(i), h13(i), h14(i), h15(i), h16(i), h17(i), h18(i),...

h19(i), h20(i), h21(i),h22(i), h23(i), h24(i));

end

header1 = ’ C. vermogens van verlichting’;

header2 = ’ IWKDAG IUUR --->’;

header3 = ’ UUR 1 t/m 24’;

fprintf(file_1,’%s\r\n%s\r\n%s\r\n’,header1, header2, header3);

[nr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20...



h21 h22 h23 h24] = readdataIWP(13+ 9 + 3 + 9 + 3);

n = 75;

f = ceil(n.*rand(100,1));

h9(1:5) = verlichting;

h10(1:5) = verlichting;

h11(1:5) = verlichting;

h12(1:5) = verlichting;

h13(1:5) = verlichting;

h14(1:5) = verlichting;

h15(1:5) = verlichting;

h16(1:5) = verlichting;

h17(1:5) = verlichting;

h18(1:5) = verlichting;

for i=1:size(h9,1),

fprintf(file_1,...

’ %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f...

%f %f\r\n’,...

nr(i), h1(i), h2(i), h3(i), h4(i), h5(i), h6(i), h7(i), h8(i), h9(i),...

h10(i), h11(i), h12(i), h13(i), h14(i), h15(i), h16(i), h17(i), h18(i),...

h19(i), h20(i),h21(i), h22(i), h23(i), h24(i));

end

fclose(file_1);

copyfile(fileNameSource, fileNameTarget);

end

writedataBFY.m

function writedataBFY(j, load, fileName)

global vabidir; %path of vabi simulator

%

%

%

fileNameSource = strcat(vabidir, ’ref\’, ’VA114IN.BFY.R’);

fileNameTarget = strcat(vabidir, ’ref\’, ’VA114IN.BFY’);

% "database" open and connect

fid=fopen(fileNameSource,’r’);

x=fread(fid);

% close "database"

fclose(fid);

inputFile = ’samples.txt’;

if load == 1,

inputFile = fileName;

end

%read symbols and translate to characters

x1=char(x’);

% a equals number of lines



a=find(x’==10);

b=[0 a];

%write lines individually intop workspace

for i=1:length(a)

eval([’line’ num2str(i) ’=x1(b(i)+1:b(i+1));’])

end

%Thickness

Twall1= csvread(inputFile,j-1,0,[j-1,0,j-1,0]);%Spalte 1

Twall2= csvread(inputFile,j-1,1,[j-1,1,j-1,1]);%Spalte 2

Twall3= csvread(inputFile,j-1,2,[j-1,2,j-1,2]);%Spalte 3

Tfloor1= csvread(inputFile,j-1,3,[j-1,3,j-1,3]);%Spalte 4

Tfloor2= csvread(inputFile,j-1,4,[j-1,4,j-1,4]);%Spalte 5

Tfloor3= csvread(inputFile,j-1,5,[j-1,5,j-1,5]);%Spalte 6

Tfloor4= csvread(inputFile,j-1,6,[j-1,6,j-1,6]);%Spalte 7

Tfloor5= csvread(inputFile,j-1,7,[j-1,7,j-1,7]);%Spalte 8

Tfloor6= csvread(inputFile,j-1,8,[j-1,8,j-1,8]);%Spalte 9

Troof1= csvread(inputFile,j-1,9,[j-1,9,j-1,9]);%Spalte 10

Troof2= csvread(inputFile,j-1,10,[j-1,10,j-1,10]);%Spalte 11

Troof3= csvread(inputFile,j-1,11,[j-1,11,j-1,11]);%Spalte 12

Troof4= csvread(inputFile,j-1,12,[j-1,12,j-1,12]);%Spalte 13

Troof5= csvread(inputFile,j-1,13,[j-1,13,j-1,13]);%Spalte 14

%Conductivity

Cwall1= csvread(inputFile,j-1,14,[j-1,14,j-1,14]);%Spalte 15

Cwall2= csvread(inputFile,j-1,15,[j-1,15,j-1,15]);%Spalte 16

Cwall3= csvread(inputFile,j-1,16,[j-1,16,j-1,16]);%Spalte 17

Cfloor1= csvread(inputFile,j-1,17,[j-1,17,j-1,17]);%Spalte 18

Cfloor2= csvread(inputFile,j-1,18,[j-1,18,j-1,18]);%Spalte 19

Cfloor3= csvread(inputFile,j-1,19,[j-1,19,j-1,19]);%Spalte 20

Cfloor4= csvread(inputFile,j-1,20,[j-1,20,j-1,20]);%Spalte 21

Cfloor5= csvread(inputFile,j-1,21,[j-1,21,j-1,21]);%Spalte 22

Cfloor6= csvread(inputFile,j-1,22,[j-1,22,j-1,22]);%Spalte 23

Croof1= csvread(inputFile,j-1,23,[j-1,23,j-1,23]);%Spalte 24

Croof2= csvread(inputFile,j-1,24,[j-1,24,j-1,24]);%Spalte 25

Croof3= csvread(inputFile,j-1,25,[j-1,25,j-1,25]);%Spalte 26

Croof4= csvread(inputFile,j-1,26,[j-1,26,j-1,26]);%Spalte 27

Croof5= csvread(inputFile,j-1,27,[j-1,27,j-1,27]);%Spalte 28

%Densitity

Dwall1= csvread(inputFile,j-1,28,[j-1,28,j-1,28]);%Spalte 29

Dwall2= csvread(inputFile,j-1,29,[j-1,29,j-1,29]);%Spalte 30

Dwall3= csvread(inputFile,j-1,30,[j-1,30,j-1,30]);%Spalte 31

Dfloor1= csvread(inputFile,j-1,31,[j-1,31,j-1,31]);%Spalte 32

Dfloor2= csvread(inputFile,j-1,32,[j-1,32,j-1,32]);%Spalte 33

Dfloor3= csvread(inputFile,j-1,33,[j-1,33,j-1,33]);%Spalte 34

Dfloor4= csvread(inputFile,j-1,34,[j-1,34,j-1,34]);%Spalte 35

Dfloor5= csvread(inputFile,j-1,35,[j-1,35,j-1,35]);%Spalte 36

Dfloor6= csvread(inputFile,j-1,36,[j-1,36,j-1,36]);%Spalte 37

Droof1= csvread(inputFile,j-1,37,[j-1,37,j-1,37]);%Spalte 38

Droof2= csvread(inputFile,j-1,38,[j-1,38,j-1,38]);%Spalte 39

Droof3= csvread(inputFile,j-1,39,[j-1,39,j-1,39]);%Spalte 40

Droof4= csvread(inputFile,j-1,40,[j-1,40,j-1,40]);%Spalte 41

Droof5= csvread(inputFile,j-1,41,[j-1,41,j-1,41]);%Spalte 42



%Specific heat capacity

SHCwall1= csvread(inputFile,j-1,42,[j-1,42,j-1,42]);%Spalte 43

SHCwall2= csvread(inputFile,j-1,43,[j-1,43,j-1,43]);%Spalte 44

SHCwall3= csvread(inputFile,j-1,44,[j-1,44,j-1,44]);%Spalte 45

SHCfloor1= csvread(inputFile,j-1,45,[j-1,45,j-1,45]);%Spalte 46

SHCfloor2= csvread(inputFile,j-1,46,[j-1,46,j-1,46]);%Spalte 47

SHCfloor3= csvread(inputFile,j-1,47,[j-1,47,j-1,47]);%Spalte 48

SHCfloor4= csvread(inputFile,j-1,48,[j-1,48,j-1,48]);%Spalte 49

SHCfloor5= csvread(inputFile,j-1,49,[j-1,49,j-1,49]);%Spalte 50

SHCfloor6= csvread(inputFile,j-1,50,[j-1,50,j-1,50]);%Spalte 51

SHCroof1= csvread(inputFile,j-1,51,[j-1,51,j-1,51]);%Spalte 52

SHCroof2= csvread(inputFile,j-1,52,[j-1,52,j-1,52]);%Spalte 53

SHCroof3= csvread(inputFile,j-1,53,[j-1,53,j-1,53]);%Spalte 54

SHCroof4= csvread(inputFile,j-1,54,[j-1,54,j-1,54]);%Spalte 55

SHCroof5= csvread(inputFile,j-1,55,[j-1,55,j-1,55]);%Spalte 56

%SA, IE, OE

SAwall= csvread(inputFile,j-1,56,[j-1,56,j-1,56]);%Spalte 57

IEwall= csvread(inputFile,j-1,57,[j-1,57,j-1,57]);%Spalte 58

OEwall= csvread(inputFile,j-1,58,[j-1,58,j-1,58]);%Spalte 59

%XKOS 59

%U-value, thickness single, double glass

US= csvread(inputFile,j-1,59,[j-1,59,j-1,59]);%Spalte 61

UD= csvread(inputFile,j-1,60,[j-1,60,j-1,60]);%Spalte 62

% ThickEnkel 62

% ThickDouble 63

% infiltration 64

% vermpersonen 65

% vermapparaten 66

% vermverlichting 67

% glasssurface 68

% singledouble 69

SAroof= csvread(inputFile,j-1,62,[j-1,62,j-1,62]);%Spalte 71

IEroof= csvread(inputFile,j-1,63,[j-1,63,j-1,63]);%Spalte 72

OEroof= csvread(inputFile,j-1,64,[j-1,64,j-1,64]);%Spalte 73

SAfloor= csvread(inputFile,j-1,65,[j-1,65,j-1,65]);%Spalte 74

IEfloor= csvread(inputFile,j-1,66,[j-1,66,j-1,66]);%Spalte 75

OEfloor= csvread(inputFile,j-1,67,[j-1,67,j-1,67]);%Spalte 76

SAglass= csvread(inputFile,j-1,68,[j-1,68,j-1,68]);%Spalte 77

IEglass= csvread(inputFile,j-1,69,[j-1,69,j-1,69]);%Spalte 78

OEglass= csvread(inputFile,j-1,70,[j-1,70,j-1,70]);%Spalte 79

glassType = csvread(inputFile,j-1,71,[j-1,71,j-1,71]);%Spalte 79

%single, double glass

line218=strrep(line218,’VAR_UD’, num2str(UD,10));

line58=strrep(line58,’VAR_US’, num2str(US,10));

line80=strrep(line80,’VAR_US’, num2str(US,10));

if glassType == 0,

line183=strrep(line183,’VAR’, ’0BR-Dubbelglas’);

else

line183=strrep(line183,’VAR’, ’0BR-window1’);

end



%SA,IE,OE SAwall SAroof SAfloor SAglass

line6=strrep(line6,’VAR_SA’, num2str(SAwall, 10));

line6=strrep(line6,’VAR_OE’, num2str(OEwall, 10));

line40=strrep(line40,’VAR_SA’, num2str(SAwall, 10));

line40=strrep(line40,’VAR_IE’, num2str(IEwall, 10));

line103=strrep(line103,’VAR_SA’, num2str(SAwall, 10));

line103=strrep(line103,’VAR_OE’, num2str(OEwall, 10));

line137=strrep(line137,’VAR_SA’, num2str(SAwall, 10));

line137=strrep(line137,’VAR_IE’, num2str(IEwall, 10));

line144=strrep(line144,’VAR_SA’, num2str(SAglass, 10));

line144=strrep(line144,’VAR_OE’, num2str(OEglass, 10));

line178=strrep(line178,’VAR_SA’, num2str(SAglass, 10));

line178=strrep(line178,’VAR_IE’, num2str(IEglass, 10));

line241=strrep(line241,’VAR_SA’, num2str(SAfloor, 10));

line241=strrep(line241,’VAR_OE’, num2str(OEfloor, 10));

line275=strrep(line275,’VAR_SA’, num2str(SAfloor, 10));

line275=strrep(line275,’VAR_IE’, num2str(IEfloor, 10));

line282=strrep(line282,’VAR_SA’, num2str(SAroof, 10));

line282=strrep(line282,’VAR_OE’, num2str(OEroof, 10));

line316=strrep(line316,’VAR_SA’, num2str(SAroof, 10));

line316=strrep(line316,’VAR_IE’, num2str(IEroof, 10));

%wall

line10=strrep(line10,’VAR_T’, num2str(Twall1, 10));

line10=strrep(line10,’VAR_C’, num2str(Cwall1, 10));

line10=strrep(line10,’VAR_D’, num2str(Dwall1, 10));

line10=strrep(line10,’VAR_SHC’, num2str(SHCwall1, 10));

line16=strrep(line10,’VAR_T’, num2str(Twall2, 10));

line16=strrep(line10,’VAR_C’, num2str(Cwall2, 10));

line16=strrep(line10,’VAR_D’, num2str(Dwall2, 10));

line16=strrep(line10,’VAR_SHC’, num2str(SHCwall2, 10));

line19=strrep(line19,’VAR_T’, num2str(Twall3, 10));

line19=strrep(line19,’VAR_C’, num2str(Cwall3, 10));

line19=strrep(line19,’VAR_D’, num2str(Dwall3, 10));

line19=strrep(line19,’VAR_SHC’, num2str(SHCwall3, 10));

%0RW-internalpartition

line107=strrep(line107,’VAR_T’, num2str(Twall1, 10));

line107=strrep(line107,’VAR_C’, num2str(Cwall1, 10));

line107=strrep(line107,’VAR_D’, num2str(Dwall1, 10));

line107=strrep(line107,’VAR_SHC’, num2str(SHCwall1, 10));

line113=strrep(line113,’VAR_T’, num2str(Twall2, 10));

line113=strrep(line113,’VAR_C’, num2str(Cwall2, 10));

line113=strrep(line113,’VAR_D’, num2str(Dwall2, 10));

line113=strrep(line113,’VAR_SHC’, num2str(SHCwall2, 10));

line116=strrep(line116,’VAR_T’, num2str(Twall3, 10));

line116=strrep(line116,’VAR_C’, num2str(Cwall3, 10));

line116=strrep(line116,’VAR_D’, num2str(Dwall3, 10));

line116=strrep(line116,’VAR_SHC’, num2str(SHCwall3, 10));

%floor

%line245=strrep(line245,’VAR_T’, num2str(Tfloor1, 10));

line245=strrep(line245,’VAR_C’, num2str(Cfloor1, 10));

line245=strrep(line245,’VAR_D’, num2str(Dfloor1, 10));

line245=strrep(line245,’VAR_SHC’, num2str(SHCfloor1, 10));

line248=strrep(line248,’VAR_T’, num2str(Tfloor1, 10));

line248=strrep(line248,’VAR_C’, num2str(Cfloor1, 10));



line248=strrep(line248,’VAR_D’, num2str(Dfloor1, 10));

line248=strrep(line248,’VAR_SHC’, num2str(SHCfloor1, 10));

line251=strrep(line251,’VAR_T’, num2str(Tfloor2, 10));

line251=strrep(line251,’VAR_C’, num2str(Cfloor2, 10));

line251=strrep(line251,’VAR_D’, num2str(Dfloor2, 10));

line251=strrep(line251,’VAR_SHC’, num2str(SHCfloor2, 10));

line254=strrep(line254,’VAR_T’, num2str(Tfloor3, 10));

line254=strrep(line254,’VAR_C’, num2str(Cfloor3, 10));

line254=strrep(line254,’VAR_D’, num2str(Dfloor3, 10));

line254=strrep(line254,’VAR_SHC’, num2str(SHCfloor3, 10));

line257=strrep(line257,’VAR_T’, num2str(Tfloor4, 10));

line257=strrep(line257,’VAR_C’, num2str(Cfloor4, 10));

line257=strrep(line257,’VAR_D’, num2str(Dfloor4, 10));

line257=strrep(line257,’VAR_SHC’, num2str(SHCfloor4, 10));

line260=strrep(line260,’VAR_T’, num2str(Tfloor5, 10));

line260=strrep(line260,’VAR_C’, num2str(Cfloor5, 10));

line260=strrep(line260,’VAR_D’, num2str(Dfloor5, 10));

line260=strrep(line260,’VAR_SHC’, num2str(SHCfloor5, 10));

line263=strrep(line263,’VAR_T’, num2str(Tfloor6, 10));

line263=strrep(line263,’VAR_C’, num2str(Cfloor6, 10));

line263=strrep(line263,’VAR_D’, num2str(Dfloor6, 10));

line263=strrep(line263,’VAR_SHC’, num2str(SHCfloor6, 10));

%roof

line286=strrep(line286,’VAR_T’, num2str(Troof1, 10));

line286=strrep(line286,’VAR_C’, num2str(Croof1, 10));

line286=strrep(line286,’VAR_D’, num2str(Droof1, 10));

line286=strrep(line286,’VAR_SHC’, num2str(SHCroof1, 10));

line289=strrep(line289,’VAR_T’, num2str(Troof2, 10));

line289=strrep(line289,’VAR_C’, num2str(Croof2, 10));

line289=strrep(line289,’VAR_D’, num2str(Droof2, 10));

line289=strrep(line289,’VAR_SHC’, num2str(SHCroof2, 10));

line292=strrep(line292,’VAR_T’, num2str(Troof3, 10));

line292=strrep(line292,’VAR_C’, num2str(Croof3, 10));

line292=strrep(line292,’VAR_D’, num2str(Droof3, 10));

line292=strrep(line292,’VAR_SHC’, num2str(SHCroof3, 10));

line295=strrep(line295,’VAR_T’, num2str(Troof4, 10));

line295=strrep(line295,’VAR_C’, num2str(Croof4, 10));

line295=strrep(line295,’VAR_D’, num2str(Droof4, 10));

line295=strrep(line295,’VAR_SHC’, num2str(SHCroof4, 10));

line301=strrep(line301,’VAR_T’, num2str(Troof5, 10));

line301=strrep(line301,’VAR_C’, num2str(Croof5, 10));

line301=strrep(line301,’VAR_D’, num2str(Droof5, 10));

line301=strrep(line301,’VAR_SHC’, num2str(SHCroof5, 10));

% combine all lines into one line

test=’’;

for i=1:length(a)

eval([’test=[test line’ num2str(i) ’];’])

end

% "database" open and connect

fid3=fopen(fileNameTarget,’w’);



fwrite(fid3,test’);

% close "database"

fclose(fid3);

end

writedataMVE.m

function writedataMVE(infiltration)

global vabidir; %path of vabi simulator

%

%

%

fileNameSource = strcat(vabidir, ’ref\’, ’VA114IN1.MVE.N’);

fileNameTarget = strcat(vabidir, ’ref\’, ’VA114IN1.MVE’);

file_1 = fopen(fileNameSource,’w’);

header1 = ’gegevens van mech.vent.(m3/s)’;

header2 = ’1=dagbedrijf , 2=nacht/weekendbedrijf’;

header3 = ’bedrijfsperiode, totaal, vers, afzuig, separaat’;

header4 = ’1 VAR VAR VAR 0.000000’;

header5 = ’2 0.000000 0.000000 0.000000 0.000000’;

header6 = ’’;

header7 = ’nachtkoel/verw, totaal, vers, afzuig, separaat’;

header8 = ’3 VAR VAR VAR 0.000000’;

header9 = ’er treedt onbalans op in vertrek 0’;

header10 = ’luchtstromen gaan naar(+) of komen van(-)’;

header11 = ’de omgeving of een aangrenzend vertrek’;

header12 = ’de volgende stromen betekenen :’;

header13 = ’periode,onbalans,omgeving,vertrek-a,vertrek-b,vertrek-c’;

header14 = ’1 0.000000 0.000000 0.000000’;

header15 = ’2 0.000000 0.000000 0.000000’;

header16 = ’3 0.000000 0.000000 0.000000’;

for i=1:3,

fprintf(file_1,’%s\r\n’,eval([’header’ num2str(i)]));

end

fprintf(file_1,’1 %.10f %.10f %.10f 0.000000\r\n’, infiltration, infiltration,...

infiltration);

for i=5:7,

fprintf(file_1,’%s\r\n’,eval([’header’ num2str(i)]));

end

fprintf(file_1,’3 %.10f %.10f %.10f 0.000000\r\n’, infiltration, infiltration,...

infiltration);

for i=9:16,

fprintf(file_1,’%s\r\n’,eval([’header’ num2str(i)]));

end

fclose(file_1);

copyfile(fileNameSource, fileNameTarget);



end

writedataTYP.m

function writedataTYP(glass)

global vabidir; %path of vabi simulator

%

%

%

fileNameSource = strcat(vabidir, ’ref\’, ’VA114IN1.TYP.N’);

fileNameTarget = strcat(vabidir, ’ref\’, ’VA114IN1.TYP’);

file_1 = fopen(fileNameSource,’w’);

header1 = ’File VA114INx.TYP: soort vlak + bouwfysische naam van vlak’;

header2 = ’Vlak W/R/D? Bfy-naam’;

header3 = ’ - 1/2/3 -’;

header4 = ’ 1 1 0BW-externalwall’;

header5 = ’ 2 2 0BR-window1’;

header6 = ’ 3 2 0BR-window1’;

header7 = ’ 4 1 1RW-internalpartition’;

header8 = ’ 5 1 0BW-externalwall’;

header9 = ’ 6 2 0BR-window1’;

header10 = ’ 7 2 0BR-window1’;

header11 = ’ 8 1 0BW-test’;

header12 = ’ 10 1 1CW-TUSSENVLOER’;

header13 = ’ 11 1 0BW-roof’;

header14 = ’Naam waaronder overige informatie (TIM, plafond vent, ed.) staat’;

header15 = ’rest1’;

for i=1:11,

fprintf(file_1,’%s\r\n’,eval([’header’ num2str(i)]));

end

if glass == 0,

fprintf(file_1,’ 9 2 0BR-Dubbelglas\r\n’);

else

fprintf(file_1,’ 9 2 0BR-window1\r\n’);

end

for i=12:15,

fprintf(file_1,’%s\r\n’,eval([’header’ num2str(i)]));

end

fclose(file_1);

copyfile(fileNameSource, fileNameTarget);

end

readdataGVU.m

function ret = readdataGVU(round)



global vabidir; %path of vabi simulator

%

%

%

fileNameSource = strcat(vabidir, ’va114gvu.par’);

[IPAR IPARGEV PARGEV QCEVW QCEKL PCEVW PCEKL IV QLOVW QLOKL PLOVW PLOKL TLMAX...

TLMIN TLGEM TCMAX TCMIN OHL25 OHL28 OHC25 OHC28 WOH_min WOH_plus] = ...

textread(fileNameSource,...

’%d %d %s %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f’,...

’headerlines’,3 + round - 1);

%output value of ret(1) to see what goes wrong

%test = WOH_plus + WOH_min %#ok<NASGU,NOPRT>

%test2 = abs(QCEKL) + QLOVW %#ok<NOPRT,NASGU>

ret(1)= WOH_plus + WOH_min;

ret(2)= abs(QCEKL) + QLOVW;

end

nonDominatedSet.m

function [resX, resY] = nonDominatedSet(aParticles, aObjectiveValues)

%aParticles is passed, can alse be [aParticles; aRepositoryX]

%aObjectiveValues is passed, can alse be [aObjectiveValues; aRepositoryY]

%

%

%

%clear what will become aRepositoryX and aRepositoryY

resX = [];

resY = [];

%find non-dominated particles

for i=1:size(aObjectiveValues,1),

%test if current particle is non-dominated

is_dominated = false;

for j=1:size(aObjectiveValues,1),

if dominates(aObjectiveValues(j,:),aObjectiveValues(i,:)) == true,

is_dominated = true;

end

end

if is_dominated == false,

%particle i is non-dominated in current population (+ repository)

resX = [resX; aParticles(i,:)]; %#ok<AGROW>

resY = [resY; aObjectiveValues(i,:)]; %#ok<AGROW>

end

end



end

dominates.m

function res = dominates(particleA, particleB)

res = false;

%check if A < B for all i

for i=1:size(particleA,2)

%check if any value of B is better than A

if (particleB(i) < particleA(i))

res = false;

return

%check if any value of A is better than B

elseif (particleB(i) > particleA(i))

res = true;

end

end

%if we get here, this means that no value of B is better than the A

%the value of res will tell us if there is a value of A that is

%better than B

%if res is false at this point than all values of A and B are the same

end

getHypercubeCoordinates.m

function res = getHypercubeCoordinates(aParticles)

global nDivisions; %nr of divisions used to compute hypercubes

%

%

%

%get upper- and lowerbound for objective-values discovered so far

aMin = aParticles(1,:);

aMax = aParticles(1,:);

for i=1:size(aParticles,1)

for j=1:size(aParticles,2)

if (aParticles(i,j) < aMin(1,j))

aMin(j) = aParticles(i,j);

elseif (aParticles(i,j) > aMax(1,j))



aMax(j) = aParticles(i,j);

end

end

end

%divide search space into hypercubes

aCubeSize = zeros(1,size(aMin,2));

for j=1:size(aMin,2)

aCubeSize(j) = (aMax(j) - aMin(j)) / (nDivisions-1);

end

%compute hypercube coordinates for each particle

%

% temp(x,x) = coordx, coordx, ..., coordx

%

temp = zeros(size(aParticles,1), size(aParticles,2));

for i=1:size(aParticles,1)

for j=1:size(aParticles,2)

%assign coordinate-number of hypercube

%add 1 to make the range go from 1-nDivisions instead of 0-(nDivisions-1)

temp(i,j) = floor((aParticles(i,j) - aMin(j)) / aCubeSize(j)) + 1;

end

end

%put particles in structs based on coordinates

%

% res.coord(1) = x

% res.coord(2) = x

% ...

% res.particles = [x x x x]

%

structCounter = 1;

for i=1:size(temp,1)

if (i == 1)

%first particle, start building the struct

res(structCounter).coords = temp(i,:); %#ok<AGROW>

res(structCounter).particles = i; %#ok<AGROW>

structCounter = structCounter + 1;

else

%check if the coordinates are allready in struct

bSameCoordinates = false;

for k=1:size(res,2)

if isequal(temp(i,:), res(k).coords)

%coordinates are in struct

%add this particle to this set of coordinates

res(k).particles = [res(k).particles i]; %#ok<AGROW>

bSameCoordinates = true;

end

end

%if the coordinates weren’t found in the struct



%add this particle as the next row in the struct

if (bSameCoordinates == false)

res(structCounter).coords = temp(i,:); %#ok<AGROW>

res(structCounter).particles = i; %#ok<AGROW>

structCounter = structCounter + 1;

end

end

end

end

moveParticlesVabi.m

function res = moveParticlesVabi()

global aParticles;

global aVelocity;

global aPbestsX;

global aRepositoryX;

global nInertiaWeight;

global MU;

global S;

global aIndexes;

global aLowerBounds;

global aUpperBounds;

%initialise variables

aTempVelocity = zeros(size(aParticles,1), size(aParticles,2));

res = zeros(size(aParticles,1), size(aParticles,2));

%loop over particles

for i=1:size(aParticles,1)

%loop over attributes to compute indivual speeds

for j=1:size(aParticles,2)

%dont move the normal parameters

if ((j >= 72) || (aIndexes(j) ˜= 0))

%compute h: index for a global best particle from the repository

h = chooseRepositoryIndex();

%compute speed of particle

aTempVelocity(i,j) = nInertiaWeight * aVelocity(i,j) + ...

rand(1) * (aPbestsX(i,j) - aParticles(i,j)) + ...

rand(1) * (aRepositoryX(h,j) - aParticles(i,j));

%this attributes should be changed but must also stay within bounds

if ((j < 72) && (aIndexes(j) == 1))

%inputs must be withing MU + 3S

nLowerBound = MU(j) - (3*S(j));

nUpperBound = MU(j) + (3*S(j));

if ((aTempVelocity(i,j) + aParticles(i,j)) < 0)



res(i,j) = aParticles(i,j);

aVelocity(i,j) = 0;

elseif ((aTempVelocity(i,j) + aParticles(i,j)) < nLowerBound)

res(i,j) = nLowerBound;

aVelocity(i,j) = nLowerBound - aParticles(i,j);

elseif ((aTempVelocity(i,j) + aParticles(i,j)) > nUpperBound)

res(i,j) = nUpperBound;

aVelocity(i,j) = nUpperBound - aParticles(i,j);

else

res(i,j) = (aTempVelocity(i,j) + aParticles(i,j));

aVelocity(i,j) = aTempVelocity(i,j);

end

%parameter glasswindow should always be 0 or 1

elseif (j == 72)

if ((aTempVelocity(i,j) + aParticles(i,j)) >= 0.5)

res(i,j) = 1;

else

res(i,j) = 0;

end

aVelocity(i,j) = aTempVelocity(i,j);

%these attributes should stay within there own upper- and lowerbounds

elseif (j > 72)

boundIndex = (j-72);

if ((aTempVelocity(i,j) + aParticles(i,j)) < 0)

res(i,j) = aParticles(i,j);

aVelocity(i,j) = 0;

elseif ((aTempVelocity(i,j) + aParticles(i,j)) ...

< aLowerBounds(boundIndex))

res(i,j) = aLowerBounds(boundIndex);

aVelocity(i,j) = aLowerBounds(boundIndex) - aParticles(i,j);

elseif ((aTempVelocity(i,j) + aParticles(i,j)) ...

> aUpperBounds(boundIndex))

res(i,j) = aUpperBounds(boundIndex);

aVelocity(i,j) = aUpperBounds(boundIndex) - aParticles(i,j);

else

res(i,j) = (aTempVelocity(i,j) + aParticles(i,j));

aVelocity(i,j) = aTempVelocity(i,j);

end

end

%other attributes should always be at their mean value

else

%we don’t adjust these parameters, just copy them

res(i,j) = aParticles(i,j); %#ok<AGROW,NASGU>

end

end

end

end



chooseRepositoryIndex.m

function res = chooseRepositoryIndex()

global aCoordinates; %hypercube coordinates of current particles

%

%

%

%compute weight of each hypercube

%hypercubes with more particles should get a lower weight

aWeights = zeros(size(aCoordinates,2), 1);

for i=1:size(aCoordinates,2)

aWeights(i) = 1/size(aCoordinates(i).particles, 2);

end

%get the total weight of all hypercubes togethers

nTotal = sum(aWeights);

%compute the ratio for each hypercube

aRatios = zeros(size(aCoordinates,2), 1);

for i=1:size(aCoordinates,2)

aRatios(i) = sum(aWeights(1:i))/nTotal;

end

%take a random number, see in which hypercube it lands

nHypercube = rand(1);

for i=1:size(aCoordinates, 2)

if (nHypercube <= aRatios(i))

%set the number of the hypercube as a normal integer

nHypercube = i;

break;

end

end

%take a random particle from aCoordinates(nHypercube).particles

nParticle = round(1 + (size(aCoordinates(nHypercube).particles, 2)-1) * rand(1));

res = aCoordinates(nHypercube).particles(nParticle);

end

computeHypervolume.m

function res = computeHypervolume(aParticles)

res = 0;

%sort particles on height, heighest ones first

[x, i] = sort(aParticles(:,2), ’descend’);

aParticles = aParticles(i,:);

aParticles = [100000 100000; aParticles];

%add volume that each particles contributes to the total hypervolume

for i=2:size(aParticles,1)

res = res + ( (2-aParticles(i,1)) * (aParticles(i-1,2)-aParticles(i,2)) );



end

end
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