
Genetic Algorithm for
Predicting Protein Folding in the 2D HP Model

A Parameter Tuning Case Study

Eyal Halm
Leiden Institute of

Advanced Computer Science,
University of Leiden

Niels Bohrweg 1
2333 CA Leiden,
The Netherlands

ehalm@liacs.nl
(Received 21 December 2007)

ABSTRACT
Given the amino acid sequence of a protein, predicting its
tertiary structure is known as the protein folding problem.
This problem has been widely studied under the HP model
in which each amino acid is classified, based on its hydropho-
bicity, as an H (hydrophobic or non-polar) or a P (hydrophilic
or polar). Conformation of a protein in the HP model is em-
bedded as a self-avoiding walk in either a two-dimensional
or three-dimensional lattice. The protein folding problem in
the HP model is to find a conformation (a folded sequence)
with the lowest energy. In [5], a genetic algorithm is intro-
duced in order to find the lowest energy conformation for
some benchmark HP sequences of amino acids. Many pa-
rameters in the initial setup of the algorithm can influence
the performance of the algorithm. In this paper we will play
with the parameters in order to investigate the influence on
the success rate of this algorithm.

Keywords
Genetic Algorithm, 2D HP Model, Protein Folding, Param-
eter Tuning

1. INTRODUCTION
The protein folding problem is known to be NP-Complete
in both two-dimensional and three-dimensional square lat-
tices (see [2]). In [5] a genetic algorithm combined with
Simulated Annealing [1] is introduced in order to solve the
protein folding problem using the 2D HP Model. We now
take this algorithm, and let it run multiple times with dif-
ferent parameters in the initial setting. In this case study,
we use the benchmark strings given in [5], to be seen here in
Table 2. From this table, we can see what is the minimum
energy for each of the given strings. We then set the initial

parameters differently and look for the results. As a result
we will check which of the parameters have the most influ-
ence on the percentage of success in finding the minimum
energy configuration, how many evaluations and how many
generations were needed in order to find this minimum.

2. THE 2D HP MODEL
The 2D HP Model was introduced by [3].
This model is quite simple and captures the essence of the
important components of protein folding. Every protein is
represented by a linear sequence of ”amino-acids”of only two
types: H (hydrophobic or Non-polar - we will designate it
the color black) or P (hydrophilic or Polar - we will desig-
nate it the color white). This sequence is folded on a two-
dimensional square lattice on which at each point the chain
can turn 90◦ left, 90◦ right, or continue ahead. When look-
ing at the folded conformation of the protein, each hydropho-
bic (black) amino-acid that is found in front of another hy-
drophobic amino-acid but not bounded with it, contributes
-1 to the total energy of this conformation. In Figure 1,
the 20 amino-acid molecule B-W-B-W-W-B-B-W-B-W-W-
B-W-B-B-W-W-B-W-B is to be seen in a conformation that
has energy -4. In Figure 2, the same sequence is folded in a
different way, and it has energy -9 (which is also the mini-
mum energy for this 20 amino-acids long protein). During
the process of folding the protein on this square-lattice, only
one amino acid can be found in each location of the lattice
- The folded protein can not ”collide” with itself.

3. THE ALGORITHM
The algorithm introduced in [5] combines two search tech-
niques: Monte Carlo and a Genetic Algorithm. The Ge-
netic Algorithm works with a population of conformations,
in which 2 parents are being chosen, and one new offspring
is introduced, using a crossover operator. This process is
repeated every time with 2 different parents to fill the new
population with new offsprings. The Monte Carlo step takes
care of mutating the parents just before they are being eval-
uated in order to be chosen by the genetic algorithm. In the
coming two subsections, these two steps will be explained
more thoroughly.

� � �

� � �

20

>>|||
� �

�

� �

11

:B
||||

� � � �

� � �

� �

1

>>}}}

Figure 1: (Adapted from [5]) The 20 amino-acids
long sequence B-W-B-W-W-B-B-W-B-W-W-B-W-
B-B-W-W-B-W-B found here in a conformation
yielding an energy of -4 according to the 2D HP
model. 4 pairs of hydrophobic residues (marked
black) in the conformation are found in front of
each other without being connected with each other.
Each such pair contributes -1 to the total energy of
the conformation

11

�%
BBBB

� �

� � � � �

� � � � �

� � � � �

� � � 20

``BBB
1

``BBB

Figure 2: The same sequence found here in a con-
formation yielding an energy of -9. Here 9 pairs
of hydrophobic residues are to be found, each con-
tributing a -1 to the total energy of the conforma-
tion. There are in total 83,779,155 ways to fold this
20 amino-acids long sequence. Only 4 conformations
yield an energy of -9, which is the lowest energy con-
formation that can be found for this 20 amino-acids
long sequence. Note that this conformation with
energy -9 can be obtained by changing the direc-
tion the conformation takes after residue 11 from
90◦ right turn (in Figure 1) to a 90◦ left turn (in this
figure). That is a mutation that can take place in
the Monte Carlo step explained later

3.1 Monte Carlo step
A monte carlo step takes one conformation of amino-acids
S1. First, the energy E1 of this conformation is being eval-
uated. It then chooses randomly one of the amino-acids in
the conformarion and randomly changes there the direction
of the chain (90◦ left, 90◦ right, or continue ahead). The
result, S2, is a different conformation of this sequence of
amino-acids. S2 is being checked for self-avoidance - the
conformation may not collide with itself (two amino-acids
on the same space in the square lattice). If S2 collides with
itself, a new monte carlo step is being performed on S1 until
a conformation is found which is not colliding with itself.
Once such S2 is found, the energy E2 of this conformation
is being evaluated. The new (mutated) conformation S2 is
being accepted in two cases:
1) If its energy E2 ≤ E1 (The energy of the not mutated
conformation S1) or
2) If its energy E2 > E1 but a random number Rnd be-
tween 0 and 1 is satisfying the equation Rnd < exp[E1−E2

ckmc

].

ckmc is gradually decreased (cooled) during the simulation
to achieve convergence (In the beginning, more destructive
mutations will be accepted).
If the new S2 did not comply with these 2 cases, a new monte
carlo step will occur on S1.

3.2 Genetic Algorithm step
The Genetic Algorithm step takes N different conformations
of the same sequence of amino-acids. By using a roulette
wheel mechanism, it then chooses 2 parents and recombines
them into one offspring. The selection of the two parents is
made in such a way that the probability p(Si) of a structure
being selected is proportional to its energy Ei:

p(Si) =
Ei

PN

j=1
Ej

So the lower the energy, the higher the probability that it will
be chosen. The crossover of these two parents takes place by
choosing a random location in the conformation. The turns
the offspring conformation takes are being copied from the
first parent until this random location is reached. The rest
of the directions are being copied from the second parent. In
order to connect these two parts, a random direction is being
chosen for the gluing (90◦ left, 90◦ right, or continue ahead).
The offspring is being checked for self-avoidance (not collid-
ing with itself). If it does collide with itself, another random
direction is being chosen. If all 3 random gluing directions
lead to a colliding structure, a new pair of parents is being
chosen. Once we found a self-avoiding offspring structure,
its energy Ek is being evaluated and compared to the aver-
age energy of its parents (Eij = (Ei +Ej)/2). The structure
Sk will be accepted if Ek ≤ Eij . If Ek > Eij , the structure
is still accepted if

Rnd < exp[
Eij − Ek

ckga

]

The crossover operation is repeated on N − 1 pairs of par-
ents until N −1 new offsprings are created. The parent with
the lowest energy is copied to the next generation as off-
spring number N . Figure 3 shows a genetic algorithm step
in action. Parent A is a conformation with energy of -5.
Parent B is another conformation of the same sequence but
this time with energy -2. The crossover between parent A

and parent B on the marked residue, with a specific random
gluing direction yields the offspring C, which has energy -9.
Figure 4 shows a single run of the genetic algorithm. The
distribution of the different energies among the population is
to be seen, along the progress of the algorithm while looking
for the optimum solution.

4. EXPERIMENTAL RESULTS
In [5] the genetic algorithm is tested with 300 generations of
200 individuals. The cooling scheme of the Monte Carlo step
started with ckmc = 2 and was cooled by ckmc = 0.97×ckmc

every 5 generations. The Genetic Algorithm cooling scheme
started with ckga = 0.3 and was cooled by ckga = 0.99×ckga

every 5 generations. For each sequence the simulation was
run 5 times. They experimented with different sequences
with lengths from 20 to 64. Using exactly this same algo-
rithm, I implemented it using C language, and ran some tests
with different parameters to check the influence on the per-
formance of the algorithm. The following parameters were
changed and tested:

1. Length of the sequence (given benchmark sequences as
seen in Table 2)

2. Population size of each generation in the genetic algo-
rithm (N)

3. Maximum number of generations the genetic algorithm
will execute

4. Number of mutations each parent will go through be-
fore being chosen

5. Number of generations between cooling down the Monte
Carlo and Genetic Algorithm cooling factors

6. Start value for MC cooling (ckmc)

7. Start value for GA cooling (ckga)

Every test outputs the minimum energy found in each gen-
eration with the corresponding number of evaluations that
were needed to create the new generation. If the test reaches
the known minimum value for this sequence, the test stops
and the best conformation is being printed.
Every parameter configuration was run 50 times. The tests
were run using a computer on the faculty which is deliber-
ately limited with its computation power (multi user), so
at some point, with sequences of length 48, I reached this
limit and the program terminated abnormally. This is the
reason I have no tests with sequence length larger than 36.
It usually takes a couple of seconds to find the minimum
energy conformation for a sequence with length 20. For the
longer sequences, it can sometimes take a couple of minutes.
Ofcourse the longer the algorithm runs, the more difficult
it will be to find mutations that are not causing collisions
with itself. The algorithm tries again and again until such a
mutation is found. In general the first generations will need
less time to be calculated. A summary of all results of the
tests is being shown in Table 1. In each line we see what
were the 9 parameters the algorithm was run with, and the
following results:

1. Average number of evaluations that were needed to
reach the minimum energy conformation (from 50 tests)

2. The minimum number of evaluations that were needed
to reach the minimum energy conformation (out of 50
tests)

3. Average number of generations that were needed to
reach the minimum energy conformation (from 50 tests)

4. The minimum number of generations that were needed
to reach the minimum energy conformation (out of 50
tests)

5. Percent of success - how many of the 50 tests reached
the minimum energy conformation within the given
number of generations?

5. DISCUSSION
From Table 1 we try to conclude the influence of the param-
eters on the efficiency of the algorithm. We will now discuss
each of the changed parameters:

5.1 Sequence length
It is easy to see that the shorter the sequence is, the higher
the percentage of success with finding the minimum energy
conformation. This is of course due to the fact that a longer
sequence introduces a much larger search space, simply be-
cause there are more positions where we can change the
direction the conformation takes.
Comparing test1 with test3, we see they both have exactly
the same parameters, but test3 runs on a 24 amino-acids
sequence, while test1 on a 20 amino-acids sequence. This
means we have 4 extra positions we have to find the turn di-
rection for. This makes the search space larger, which drops
the success rate from 90% to 58%.
Comparing test1 with test6 shows that if we search a so-
lution for a 25 long sequence, the success rate drops even
further, to 16%.

5.2 Population size
The population size dictates how many individuals are found
in each generation of the genetic algorithm. If we have more
individuals in each generation, the algorithm is more likely
to diverge into the ultimate solution within the given number
of generations. More individuals means a higher probability
of finding the minimum energy among the population.
Comparing test22 with test9 shows that indeed, when we
double the number of individuals per generation (from 200
to 400), the success rate grows from 48% to 80%. But the
cost we have to pay is of course more evaluations during the
run of the algorithm. It is interesting to see that the average
number of generations that are needed to find the optimum
is lower when the population size is larger. The diversity
of the population increases the probability of finding the
optimum within the current population.

5.3 Number of generations
In the first generation all individuals have energy 0, since
none of them is folded at any point along the sequence.
A couple of generations later, when the conformations are
folded in some points along the sequence, we see that the
conformations have different energies (distributed from en-
ergy 0 to the lowest energy found until now). It is a question

� �

� � � � � 1

!!C
CC

C

� � � � � � � � �

� 14

^f EEE
EEE

� � � � � � � �

� � 1

aaCCCC
� � � � � � � � � � �

� � � � � � � � � � � �

� � � � 15

\dBBBB

� � � � � � 20

ccGGGG
1

aaCCCC

20

bbEEE
20

aaBBB

(A) −5 (B) −2 (C) −9

Figure 3: (Adapted from [5]) A Genetic Algorithm step: (A) and (B) are two parents. Parent (A) has energy
-5, and parent (B) has energy -2. The randomly chosen residue for the crossover is residue number 14. The
first 14 turns are copied from parent (A). The last 5 turns are being copied from parent (B). In between
the two parts a random turn is inserted, in this case a 90◦ right turn. The new born offspring (C) does not
collide with itself and the energy can be evaluated. It gets the energy -9, which is better than the average of
the two parents (-3.5). The new offspring is accepted. This is also the minimum energy that can be found
for this sequence, so the algorithm terminates

Table 1: Results of 50 tests with each parameter setup

Test Cool Start Start Factor Factor Evals Gens Percent
No. Length Pop Gens Mutat Every MC GA MC GA Avg Min Avg Min Success

2 20 200 300 2 5 2.0 0.3 0.97 0.99 241585 25015 79 11 100
1 20 200 300 1 5 2.0 0.3 0.97 0.99 100012 19380 50 14 90

5 24 200 500 2 5 2.0 0.3 0.97 0.99 525262 52875 116 16 94
4 24 200 300 2 5 2.0 0.3 0.97 0.99 520332 29023 116 10 82
3 24 200 300 1 5 2.0 0.3 0.97 0.99 307475 45839 103 21 58

22 25 400 300 2 10 2.0 0.3 0.97 0.99 965562 161744 112 23 80
9 25 200 300 2 10 2.0 0.3 0.97 0.99 619833 59978 142 17 48

13 25 200 300 2 5 3.0 0.6 0.97 0.99 618601 91232 148 27 46
14 25 200 300 2 10 3.0 0.3 0.97 0.99 626821 68991 147 20 46
15 25 200 300 2 10 3.0 0.6 0.97 0.99 667566 58540 161 18 38
10 25 200 300 2 10 2.0 0.6 0.97 0.99 646931 156553 154 41 34
8 25 200 300 2 5 2.0 0.6 0.97 0.99 659362 155414 155 40 34

12 25 200 300 1 5 3.0 0.6 0.97 0.99 245028 28646 92 16 32
7 25 200 300 1 5 2.0 0.6 0.97 0.99 133645 24865 53 14 30

11 25 200 300 1 5 3.0 0.3 0.97 0.99 184485 19908 65 12 30
6 25 200 300 1 5 2.0 0.3 0.97 0.99 218026 18615 76 12 16

21 25 200 300 3 10 2.0 0.3 0.97 0.99 889281 309355 151 55 6

17 36 200 300 1 5 2.0 0.6 0.97 0.99 2031608 2031608 181 181 3

Table 2: 4 sequences that were used as benchmark tests in [5]. The Optimal Energy is taken from the runs
made by Ron Unger and John Moult. When this energy is reached, the algorithm terminates

Length Optimal Energy Sequence
20 -9 BWBWWBBWBWWBWBBWWBWB
24 -9 BBWWBWWBWWBWWBWWBWWBWWBB
25 -8 WWBWWBBWWWWBBWWWWBBWWWWBB
36 -14 WWWBBWWBBWWWWWBBBBBBBWWBBWWWWBBWWBWW

0 5 10 15 20 25 30 35 40
−100

−50

0

50

100

150

200

250

300

350

400
0
−1
−2
−3
−4
−5
−6
−7
−8
Best
Energy (*10)

Figure 4: A run of the genetic algorithm. This is one of the outputs of test22. It runs 300 generations with a
population of 400 individuals. We see that in the first generation, all 400 conformations have energy 0 (they
are all not folded). Generation 5 has only 214 conformations with energy 0, 88 conformations with energy
-1, 76 with energy -2, 19 with energy -3, and 3 with energy -4. One of the mutated -4 conformations yielded
a conformation of -5 (See the best energy below the zero axis). The 400 conformations keep changing their
energies until at some point, somewhere during the 36th generation, a conformation with energy -9 is found.
At that point the algorithm terminates and reports its findings

of luck that, at some point in time, we choose 2 parents, a lo-
cation for a crossover and a good gluing direction that gives
us the ultimate solution - the conformation with the mini-
mum energy. At that point the algorithm stops. But having
said it is a question of luck, if we try some more generations,
maybe we will get lucky... So adding some generations will
increase the probability that we get lucky with finding the
correct combination.
However, the cooling mechanism of both the Monte Carlo
step and the Genetic Algorithm step, makes sure that the
further we progress through the generations, the less we ac-
cept conformations that are worse than the parents. That
means that as time goes by, we will be doing more exploita-
tion (looking deeper - in the current region) than exploration
(looking wider - in other regions). Due to that fact, we are
most likely to be stuck in a local minimum, which has small
chances of bringing us to the global minimum we are actu-
ally looking for.
So increasing the number of generations with the same fac-
tor of increasing the number of individuals per generation,
will probably have a smaller effect on the efficiency of the
algorithm in finding the global minimum.
Comparing test4 with test5 shows that increasing the num-
ber of generations from 300 to 500, improved the success rate
from 82% to 94%. At the same time, doubling the number of
individuals (see test9 compared to test22) increased the suc-
cess rate from 48% to 80%. It is quite interesting to see that
the average number of evaluations and average number of
generations are quite the same for test4 and test5. However,
the minimum number of evaluations and minimum number
of generations are lower for test4. This proves that we deal
here with a very random algorithm which can get lucky with
finding the optimum solution within the huge search space.

5.4 Number of mutations per parent
In [5] in section 4 (page 78 bottom left) it is claimed that for
the 20-residue long molecule, they performed a simulation
with a population of 200 structures with 20 steps of individ-
ual mutations per structure between crossover stages. This
does not prove to be so useful. One can see that 2 mutations
instead of 1 indeed gives better success rates (compare test2
with test1 - 100% success and 90% success respectively).
But, when we apply 3 mutations (in test21), it goes awfully
wrong. Comparing with test9, which had 48% success, a
test with 3 mutations had only 6% success! This tendency
was even worse when applying more mutations. Mutating so
many times goes awfully wrong because we have a high prob-
ability of mutating in the ”wrong direction” - too many times
we take a structure with a good energy, and by changing so
many turning positions we actually spoil the structure. We
then either see a structure with a higher energy (will not
be selected) or it will introduce a self-colliding structure. In
both cases the progress is hindered.
It is wise to use 2 mutations instead of 1, but using 3 muta-
tions or more leads to very low success rates. I assume this
is a misunderstanding in the interpretation of [5] .

5.5 Cooling every # generations
In test10 the cooling constant is cooled every 10 generations
of the genetic algorithm. In test8, this is done every 5 gen-
erations. The cooling in test10 is thus slower (meaning that
it takes more time before we start exploiting instead of ex-
ploring). It could have had some influence on the results but

as one can see it has minor or no influence at all.

5.6 Cooling start value for the Monte Carlo
step

Test11 starts with a Monte Carlo cooling factor of 3.0. Test6
begins with a cooling factor of 2.0. Test11 has in the begin-
ning a lower probability of accepting a mutation on a con-
formation which yields a conformation with a worse energy
evaluation. That means test11 is a bit more greedy and tries
to go faster in the direction of a better solution. Indeed we
see that test11 performed almost twice as well (30% success)
as test6 (only 16% success).

5.7 Cooling start value for the Genetic
Algorithm step

Test7 starts with a Genetic Algorithm cooling factor of 0.6.
Test6 begins with a cooling factor of 0.3. Test7 has in the
beginning a lower probability of accepting an offspring which
yields a conformation with a worse energy evaluation than
the average of its parents. That means test7 is a bit more
greedy and tries to go faster in the direction of a better
solution. Indeed we see that test7 performed almost twice
as well (30% success) as test6 (only 16% success). However,
comparing test14 with test15 shows that it can work also the
other way around. There we see that test14, which starts
with a lower cooling factor for the Genetic algorithm scores
slightly better than test15. This shows the complexity of this
problem. Since we are speaking about a genetic algorithm
that uses recombination of two parents into one offspring, it
can be sometimes the case that a parent (or even two) with
a very low score (quite high energy) can be recombined into
an extremely good offspring (see Figure 3 - where energies
-2 and -5 yield an offspring with energy -9). In this case,
exploration can be used as a ’backtracking’ mechanism -
we make sure we still have some ’bad’ individuals in the
population and we still have a probability of yielding very
good offsprings.

6. CONCLUSIONS
We are dealing here with a very complex problem. If we
were searching in the 3D space, it would have been even
more complex (there we have 5 turn options at each point
on the sequence). A genetic algorithm can indeed search
this space in a better way than a totally random algorithm.
Longer sequences introduce of course larger search spaces,
it takes a longer time to find the optimum and the success
rate is doomed to decrease. Fine tuning the genetic algo-
rithm can have major influence on the performance and the
success rate. Working with large population sizes improves
the success rate more than running the algorithm for more
generations. Interesting is the fact that 2 mutations on each
parent before creating a new offspring improves the perfor-
mance tremendously but going any higher than that number,
results in a terrible deterioration of the success rate. In 2005,
a paper was published [4] which introduces an even more ef-
ficient way of using genetic algorithms to solve the protein
folding problem. The solutions the Genetic Algorithm finds
are locally optimized by using another Genetic Algorithm
that looks at the secondary structure of the protein.
It might be a good idea to try and fine tune the genetic al-
gorithm presnted in [5] automatically by using another evo-
lutionary algorithm.

7. REFERENCES
[1] E. Aarts and J. Korst, Simulated annealing and

boltzmann machines, John Wiley and Sons, New York
(1989).

[2] B. Berger and T. Leighton, Protein folding in the
hydrophobic-hydrophilic (hp) model is np-complete,
International Conference on Computational Molecular
Biology, New York, NY, USA, ACM Press (March
1998), 30–39.

[3] K.F. Lau and K.A. Dill, Theory of protein mutability
and biogenesis, Proc. Nat. Acad. Scie. (1990), no. 87,
638–642.

[4] G. Sundarraj and T.N. Bui, An efficient genetic
algorithm for predicting protein tertiary structures in
the 2d hp model, GECCO ’05, ACM Press (June 25-29,
2005), 385–392.

[5] R. Unger and J. Moult, Genetic algorithms for protein
folding simulations, J. Mol. Biol. (1993), no. 231, 75–81.

